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Abstract001

Over the last years, state-of-the-art AI models002
have grown to a point where their use bears003
significant economic and environmental cost.004
At the same time, investigation of NLP mod-005
els has shown that they are often overparam-006
eterized, giving rise to research of compres-007
sion approaches. Such approaches often suffer008
the trade-off between hardware requirements009
and classification performance. In this work,010
we propose the hardware-independent compres-011
sion strategy Adaptive Parameter Compression012
(APC). We extend the Weight Squeezing ap-013
proach by introducing compression biases and014
weights, as well as investigating multiple ini-015
tialization strategies for these weights and the016
application of APC to transformer model com-017
ponents. Experiments with BERTbase show the018
compression’s effectiveness, slightly outper-019
forming DistilBERT while being significantly020
more efficient.021

1 Introduction022

Since the introduction of the Transformer archi-023

tecture (Vaswani et al., 2017) and its widespread024

adoption in the NLP community, significant per-025

formance gains were achieved by increasing the026

parameter count of models, with OpenAI’s GPT-027

2 using about 1.5 billion parameters (Radford028

et al., 2019) and growing to 175 billion in the029

next iteration GPT-3 (Brown et al., 2020), as well030

as Megatron Turing NLG (530 billion parame-031

ters) (Smith et al., 2022) and PaLM (540 billion032

parameters) (Chowdhery et al., 2023). This race033

for the largest language model has currently cul-034

minated in GPT-4 which, while officially not dis-035

closed, is estimated to comprise a total of 1.8 tril-036

lion parameters (Schreiner, 2023). While these037

models usually outperform their predecessors in038

various benchmark tests, the efficiency of this expo-039

nential growth is questionable, in particular when040

considering the economical and ecological costs of041

training and using these models; e.g., the training of 042

GPT-3 is estimated to have emitted about 550 tons 043

CO2e (Patterson et al., 2021) and consumed about 044

700 tons of water (Li et al., 2022). Further, the 045

increase in model size sets a high bar for their train- 046

ing and inference, resulting in strong dependencies 047

on a small number of tech companies (Kak and My- 048

ers Wes, 2023), which limits independent research 049

and bears great ethical risks (Müller, 2020). 050

However, as the Lottery Ticket Hypothesis by 051

Frankle and Carbin (2019) suggests, dense neu- 052

ral networks (as used in the Transformer archi- 053

tecture) contain small subnetworks which, when 054

trained solely without the remaining weights, can 055

match the performance of a fully trained network, 056

which could indicate that at least for inference a 057

great amount of the weights are not necessary. In 058

fact, multiple approaches have shown that param- 059

eters can be removed or nullified to a great extent 060

with small performance sacrifices (e.g. Zafrir et al., 061

2021; Michel et al., 2019; Elkerdawy et al., 2020). 062

In our work, we present Adaptive Parame- 063

ter Compression (hereafter referred to as APC), 064

an algorithm based on Weight Squeezing (Chu- 065

machenko et al., 2020), which we show is a gener- 066

alization of neuron pruning (e.g. Jiang et al., 2018) 067

and neuron merging (e.g. Yvinec et al., 2023). APC 068

removes weights by “rewiring” connections with 069

varying compression ratios across different layers, 070

allowing us to adapt to the complexity of feature 071

extraction at each layer. With our experiments, we 072

show that APC is on par with similar compression 073

techniques in terms of performance, but poses no 074

constraints with respect to hardware specializations 075

and finds suitable compressions quickly. 076

2 Background & Related Work 077

2.1 Compression Techniques 078

Since the training and inference of Deep Neural 079

Networks (DNNs) was and still is expensive, the 080

1



study of methods to reduce model sizes has been081

around for decades (e.g., Janowsky, 1989; LeCun082

et al., 1989). We briefly describe some common083

compression techniques and their relation to APC.084

Pruning085

Pruning is a technique to zero out (and thus re-086

move) weights which have the least effect on the087

model’s performance. Commonly, the model is088

fine-tuned after the removal of weights to “patch”089

it, mitigating the negative effect of pruning. In gen-090

eral, we can distinguish between unstructured and091

structured pruning: Unstructured pruning was al-092

ready discussed in early works (LeCun et al., 1989;093

Hassibi et al., 1993), which measured performance094

degradation by pruning parameters by means of095

the effect on the loss’s second order derivatives096

(which are expensive to calculate). An approxima-097

tion of the second order derivatives can be calcu-098

lated via Fisher information, as used in more re-099

cent approaches (Tu et al., 2016; Molchanov et al.,100

2019; Theis et al., 2018). Other popular techniques101

use a magnitude-based importance measurement,102

typically the l1 norm (Han et al., 2015; Frankle103

and Carbin, 2019), which minimizes the Frobe-104

nius norm of the difference between the weight ma-105

trix before and after pruning. While unstructured106

pruning yields high compression ratios with min-107

imal performance loss (e.g., Zafrir et al.’s (2021)108

BERT model with 90% pruning ratio), exploiting109

these sparse matrices is non-trivial and either re-110

quires specialized hardware (Mishra et al., 2021)111

or cannot gain similar inference acceleration to112

structured pruning when optimizing with software113

only (Wang, 2021).114

Structured pruning constrains the pruning mask115

to, as the name suggests, specific structures, e.g.116

to block structures in weight matrices (Chandy117

et al., 2023), filters in convolutional neural net-118

works (CNNs) (Li et al., 2016; Hu et al., 2016)119

(which can be extended to single neurons), atten-120

tion heads (Michel et al., 2019), and entire lay-121

ers (O’Neill et al., 2020). A notable neuron pruning122

approach is described by Molchanov et al. (2016)123

which defines a mask M := 1 ∈ Rout with the124

output of a linear layer for input x being changed125

to M ⊙ (x⊤W + b⊤) so that the gradient of M126

provides insight into the effect of pruning a neuron.127

This approach, to which we will hereafter refer to128

as neuron sensitivity pruning, has also been used129

by Prasanna et al. (2020).130

A special case of neuron pruning is neuron merg-131

ing, which identifies “similar” neurons (e.g. by clus- 132

tering) which are then collapsed into a single neu- 133

ron (Srinivas and Babu, 2015; Zhong et al., 2018). 134

Since models edited with structured pruning are 135

in most cases indistinguishable from models with 136

different dimension sizes, their pruning ratio usu- 137

ally corresponds to an asymptotically identical in- 138

ference acceleration, but the given constraints on 139

pruning selection affect performance stronger than 140

unstructured pruning. Neuron pruning and hence 141

also neuron merging are special cases of APC, as 142

described in Subsection 4.2. 143

Knowledge Distillation 144

Knowledge Distillation, also known as Teacher- 145

Student-Training, was introduced by Hinton et al. 146

(2015). The core idea is to imitate a (smoothed) 147

probability distribution of a teacher model (of large 148

size) using a new student model (which can be 149

of smaller size), e.g., by matching the teacher’s 150

logits. Thus, the student does not learn directly 151

from the hard gold label standard of the data, but 152

instead reproduces a softer distribution which is, 153

according to Hinton et al. (2015), easier and results 154

in superior performance compared to training a 155

small model without knowledge distillation. Since 156

then, knowledge distillation has been adapted to 157

not only match the final output, but also aligning in- 158

termediate hidden representations (Zagoruyko and 159

Komodakis, 2017), often by introducing alignment 160

weights (which can be discarded after training) to 161

match sizes between the student and teacher mod- 162

els’ hidden embeddings (Romero et al., 2015; Li 163

et al., 2020; Zhou et al., 2020). 164

Knowledge Distillation was extensively applied 165

to language models, in particular BERT (De- 166

vlin et al., 2019), e.g., the well-known Distil- 167

BERT (Sanh et al., 2019) which considered the 168

masked language modelling (MLM) task and re- 169

moved half of BERTbase’s layers, Turc et al.’s 170

(2019) models which also considered the next sen- 171

tence prediction (NSP) for distillation and further 172

pre-trained student models, and Weight Squeez- 173

ing (Chumachenko et al., 2020), the algorithm APC 174

extends, which uses knowledge distillation on the 175

final outputs to learn a reparameterization by means 176

of projections of the original weight matrices in- 177

stead of learning a freshly initialized student model. 178

An advantage of knowledge distillation is that 179

it is independent of other compression techniques 180

described here, allowing to combine strategies, e.g., 181

with neuron pruning (Mao et al., 2020) or unstruc- 182
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tured pruning (Zafrir et al., 2021).183

Quantization184

A major current research focus of model compres-185

sion is quantization, which aims at reducing the186

precision of values used in computation to reduce187

model size, training time and latency. In general,188

quantization approaches reduce the precision of189

the weights of a model (e.g. Courbariaux et al.,190

2015; Zafrir et al., 2019; Zadeh et al., 2020; Razani191

et al., 2021), which allows to reduce weights in192

LLMs to as low as a ternary representation without193

performance loss (Ma et al., 2024). However, to194

effectively make use of quantization at inference,195

sometimes specific hardware is needed which is196

suitable for the used precision level.197

APC’s design is orthogonal to quantization, thus198

quantization can be applied after APC or vice versa.199

2.2 Layer Importance200

In our proposed method, we can choose the com-201

pression ratio for each layer independently. Since202

the hyperparameter space is commonly large and203

a direct search or other methods are cumber-204

some (White et al., 2023), we aim to group layers205

with similar importance, which serves as an indica-206

tor for compressibility (Zhang et al., 2022; Michel207

et al., 2019; Elkerdawy et al., 2020; O’Neill et al.,208

2020). To this end, we use three metrics: weight209

imprinting, layer dropping, and fisher information.210

Weight Imprinting211

Proposed by Qi et al. (2018) to extend an existing212

classifier by an additional unseen class, the authors213

argue that in a normalized output the new class can214

be well-separated from the already learnt classes,215

allowing us to add the expected embedding of the216

output as an additional column to our weight ma-217

trix. By adding a classifier that discriminates the218

expected hidden embeddings for all output classes219

after each layer and measuring these classifier’s220

relative performance differences with the classifier221

of the previous layer, we can calculate an impor-222

tance measurement for each layer (Elkerdawy et al.,223

2020, 2021; Liu et al., 2021).224

Layer Dropping225

Layer dropping is a simple importance heuristic226

which removes an entire layer and compares the227

performance of this model with the full model, mo-228

tivated by the assumption that layers which con-229

tribute strongly to a classification transform their230

input to a significantly different sub-manifold of231

the data space (Sajjad et al., 2023). Note that this 232

approach fails if the input and output dimensions 233

of a layer do not match. 234

Chatterji et al. (2019) and Zhang et al. (2022) 235

propose to instead replace the layer with its state 236

after initialization for a more accurate score. How- 237

ever, having access to the original initialized values 238

of foundation models is rare, which makes this 239

approach only viable when training from scratch. 240

Fisher Information 241

As described in Subsection 2.1, Fisher information 242

has been used in unstructured pruning to identify 243

weights with low effect on the performance as it 244

provides an estimate of the second order deriva- 245

tive for converged models. By averaging over the 246

fisher information of all weights in a layer, we get 247

an approximation of the compressibility of a layer 248

since many “unimportant” weights and few “impor- 249

tant” weights usually yield a smaller average value, 250

indicating a higher compression tolerance. 251

3 Adaptive Parameter Compression 252

APC is a projection-based compression algorithm 253

which allows us to learn lower-dimensional approx- 254

imations of the parameter space of a model. 255

3.1 General Structure 256

Figure 1: Adaptive Parameter Compression of a single
intermediate perceptron layer.

Consider an affine-linear layer l defined by Y = 257

XW + b with Y ∈ Rbatch×out, X ∈ Rbatch×in, 258

W ∈ Rin×out, and b ∈ Rout. Then for some com- 259

pressed input dimensionality cmpl−1 < in and 260

compressed output dimensionality cmpl < out, 261

we introduce trainable tensors U ∈ Rcmpl−1×in, 262

D ∈ Rout×cmpl , B ∈ Rcmpl−1×cmpl , bU ∈ Rin, 263

and bD ∈ Rout to transform the layer l to Y̌ = 264

X̌UWD+ X̌B +D⊤W⊤bU +D⊤b+ bD where 265

Y̌ , X̌ denote compressed outputs and inputs, re- 266

spectively (see also Figure 1). Then with 267

W̌ := UWD +B (1) 268
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b̌ := D⊤W⊤bU +D⊤b+ bD (2)269

we can calculate compressed parameters W̌ ∈270

Rcmpl−1×cmpl , b̌ ∈ Rcmpl so that Y̌ = X̌W̌ + b̌.271

Now consider an activation function σ with272

X l+1 = σ(X lW + b). From a reconstruction per-273

spective, APC calculates274

X̃ l+1 = σ((X lW+b)D+bD+X lB̃)U+bu (3)275

for B = U lB̃ (since X l is not compressed here),276

which is an approximation of X l+1 with a bottle-277

neck at the activation function. This motivates the278

error term279

EXl

∥∥∥X l+1 − X̃ l+1
∥∥∥
F
, (4)280

hereafter referred to as reconstruction error, which281

indicates that our compressed network locally mod-282

els a similar function as the uncompressed one.283

Since we introduce the bias terms bD and bU (un-284

like Chumachenko et al. (2020)), we map to a285

larger set of hyperplanes, theoretically allowing286

for a lower reconstruction error.287

The introduction of the corrective weight bias288

B is motivated by the fact that the function289

cW (U,D) = UWD is generally not surjective,290

hence an optimal compressed weight matrix W̌ is291

not necessarily in the image of cW , which can be292

compensated for with B. Further, this serves as a293

gateway to pass the information flow directly from294

layer l−1 to layer l+1 (or vice versa for gradients).295

3.2 APC Compression Types for Transformer296

Blocks297

So far we have only discussed APC for Multi298

Layer Perceptrons (MLP), which allows a straight-299

forward pairing of D and U : As they are posi-300

tioned around the bottleneck, they can be jointly301

optimized. In a Transformer, however, we can dis-302

tinguish between the size of the hidden embedding303

within each block and further the size within the304

Feed Forward Network (FFN) and the attention305

heads, compressing them separately. Each com-306

pression is orthogonal to the others, allowing us to307

combine them freely afterward.308

For simplicity, we will refer to each compression309

only by its matrices U,D, but implicitly also add310

the biases and the bias correction matrix to every311

pair of following U and D, as seen in Figure 1.312

Embedding Compression313

Embedding Compression reduces the hidden size314

inside a Transformer block by neither affecting the315

dimensionality of the FFN nor the attention heads 316

(see Figure 2). Since we have residual connections 317

within the block, we must ensure the dimension 318

stays the same within the block. 319

To this end, for an embedding compression di- 320

mension cmpe we introduce the pre- and post- 321

scaling matrices DPS , UPS , outer attention upscal- 322

ing UV , UK , UQ (which are shared between all 323

attention heads) and downscaling DO, as well as 324

Uα and Uβ for the 2-layer FFN in the standard 325

Transformer. Consider two adjacent Transformer 326

blocks b and b+1. Then Jb := UPS
b DPS

b+1 is the lin- 327

ear transformation between these two blocks. If the 328

compression dimension of both blocks is identical, 329

this becomes a square matrix, which poses no prob- 330

lem as long as it has full rank, but can affect the 331

residual flow through the Transformer. Thus, ini- 332

tializing these two matrices in a way that Jb is the 333

identity matrix (or omitting them entirely) stands 334

to reason. 335

To maximize the residual flow, we initialize 336

as many Jb as identity matrices as possible and 337

otherwise pair adjacent D and U matrices (see 338

Appendix A for exact pairings). For any two 339

paired matrices, we can then optimize the recon- 340

struction error (see Equation 4) with X l the in- 341

put before D, X l+1 the output without compres- 342

sion, and X̃ l+1 the output after U , e.g., if DPS and 343

U{V,K,Q} are paired, we minimize the three errors 344

EX

∥∥X −XDPSU i
∥∥
F

with i ∈ {V,K,Q}. 345

Attention Compression 346

Attention Compression reduces the dimensionality 347

of the embeddings of the keys, queries and val- 348

ues within the multi-head attention to a dimension 349

cmpa. We introduce the inner attention downscal- 350

ing matrices DV , DK , DQ (which are of block di- 351

agonal structure, processing the concatenated out- 352

puts of the linear layers simultaneously, i.e., each 353

head has its own block in the inner downscaling, 354

unlike the outer upscaling, which is shared), as well 355

as the inner upscaling UO. 356

Consider the compressed Multi-Head Attention 357
ˇMHA(X) where ŠAi(X) is the compressed at- 358

tention head i: 359

ˇMHA(X) := ŠA(X)UOWO (5) 360

ŠA(X) :=
(
ŠA1(X) | . . . | ŠAH(X)

)
(6) 361

ŠAi(X) := softmax(Ži(X))XW V
i DV

i (7) 362

Ži(X) :=
XWQ

i DQ
i

(
XWK

i DK
i

)⊤
√
dK

(8) 363
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Figure 2: Left: Feed Forward Compression (blue). Center: Embedding Compression (green). Right: Attention
Compression (orange).

Here, D{V,K,Q}
i are the blocks i of the correspond-364

ing D{V,K,Q} matrix. By rearranging we have365

ˇMHA(X) = (Y1 | . . . | YH)DV UOWO (9)366

with Yi := softmax(Ži(X))XW V
i . Then367

in particular we have that DV and UO are368

adjacent in our computation, and we can369

jointly optimize them by minimizing the error370

EX

∥∥SA(X)− SA(X)DV UO
∥∥
F

where SA(X)371

denotes the uncompressed self-attention.372

This leaves us with the matrices DK , DQ373

which we pair, thus aiming to minimize the er-374

ror EX

∥∥softmax(Zi(X))− softmax(Ži(X))
∥∥
F

375

with Zi(X) :=
XWQ

i (WK
i )⊤X⊤

√
dK

, which is non-376

trivial due to the softmax function. Instead, we377

replace this objective by378

EX

∥∥∥(Zi(X)− Ži(X)) ·
√

dK

∥∥∥
F
= (10)379

EX

∥∥∥XWQ
i (I −DQ

i (D
K
i )⊤)(XWK

i )⊤
∥∥∥
F

(11)380

which is an upper bound for the original error since381

softmax is Lipschitz-continuous w.r.t. the Frobe-382

nius norm with Lipschitz constant 1 (Gao and Pavel,383

2017). With LΣR⊤ the SVD of XWQ
i (XWK

i )⊤384

and Ľ, Ř the cmpa first columns of LΣ
1
2 resp.385

RΣ
1
2 , DQ

i = (XWQ
i )†Ľ and DK

i = (XWK
i )†Ř386

then minimize the objective in Equation 11. The387

proof for this can be found in Appendix B.388

Feed Forward Compression389

Feed Forward Compression is straightforward and390

follows the same approach for optimization as de-391

scribed in Subsection 3.1. We introduce the pre-392

and postscaling matrices Dα, Uβ which create a 393

bottleneck with dimension cmpf and get the com- 394

pressed network 395

F̌F (X) := σ((XWα+bα)Dα)UβW β+bβ (12) 396

in which we pair the newly introduced matrices. 397

4 Experiments 398

We now investigate how to apply APC in prac- 399

tice. To this end, we compress the well-studied 400

BERTbase model (Devlin et al., 2019) and use 401

1,000 randomly sampled Wikipedia articles as 402

well 10,000 randomly sampled sentences from the 403

BooksCorpus (Zhu et al., 2015) for training with 404

a 90-10 train-dev split to match the model’s pre- 405

training data distribution. All experiments were 406

run on a single Nvidia A40 paired with an AMD 407

Epyc 7413 and 512 GB RAM. Throughout our 408

experiments, we use Python 3.10 with the libraries 409

transformers (4.36.2), torch (2.1.2), and optuna 410

(3.5.0). 411

4.1 Compression Sizes 412

As laid out in the previous section, APC allows 413

us to choose different compression dimensions at 414

each bottleneck. To reduce the combinatorial ex- 415

plosion resulting from 3 different compressions per 416

layer and 12 layers, we first seek to group layers 417

which will then share compression dimensions. To 418

this end, we measure the importance of each layer 419

using the methods described in Section 2.2 both 420

for the MLM and NSP tasks, which can be seen 421

in Figure 3. While Fisher information is almost 422

uniformly distributed for NSP, weight imprinting 423
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(b) Layer Importance w.r.t. NSP accuracy

Figure 3: Layer Importances in BERTbase. Layer Impor-
tances are normalized to sum to 1.

suggests a strong importance of layers 1 and 4,424

and layer dropping for layers 10 and 11. For the425

MLM task, importance distributions are signifi-426

cantly different: While Fisher information suggests427

high relevance of layer 2 and 3, layer dropping indi-428

cates a strong influence of the last three layers, and429

weight imprinting sees layer 2 and 11 as the most430

important. For both tasks, layers 5 to 9 have only431

slight influence on the accuracy of the network,432

motivating us to compress them with identical ra-433

tios. Further, we group layers 10 to 12, given their434

strong values for layer dropping for MLM, layer 1435

and 2, as well as layer 3 and 4.436

Given these groups, we continue with a hyperpa-437

rameter search to find optimal dimensions for the438

embedding, attention, and feed forward compres-439

sions, using the Optuna optimization engine with440

a tree-structured Parzen estimator sampler (Akiba441

et al., 2019) with 100 trials per search.442

We search compression dimensions for a to-443

tal compression rate of 90% (APC-90-opt), 50%444

(APC-50-opt), and 15% (APC-15-opt). Since the445

found architecture for a compression of 50% barely446

compressed layers 1 and 2, we ran an additional447

search, restricting the compression only to the448

remaining layers, which yielded a better perfor-449

mance on the pre-training tasks during the param-450

eter search, hence we will keep this architecture.451

Further, we include a manually chosen architecture452

with a 50% compression rate which only uses feed- 453

forward compression on layers 3 to 12 (APC-50-ff), 454

limiting them to a dimension of 256. 455

The found architectures mostly follow the rele- 456

vance assigned to layers by weight imprinting and 457

average fisher information, indicated by a low com- 458

pression ratio on lower layers and stronger com- 459

pression in higher layers. The exact compression 460

dimensions can be found in Appendix D in Table 4. 461

4.2 Initialization Strategies 462

We look into different initialization strategies to 463

reduce the reconstruction error and maximize accu- 464

racy on our pre-training dataset. For all approaches, 465

we set bU , bD, and B to 0. 466

Random Initialization 467

For random initialization, we sample all en- 468

tries for U and D independently from a zero- 469

centered Gaussian distribution with a tiny, fixed 470

variance of 10−6. In our experiments, this vari- 471

ance has shown to be most effective compared 472

with input-output variance-preserving and gradi- 473

ent variance-preserving initializations (Glorot and 474

Bengio, 2010), which showed slow convergence 475

behavior. Thus, we omit the derivations and defini- 476

tions of the necessary variance values for the latter 477

two cases for the sake of brevity. 478

Reconstructive Random Initialization 479

Identically to the random initialization, we sam- 480

ple all entries of D from the same distribution as 481

described above, but then calculate the entries of 482

U by means of a multivariate linear regression, 483

minimizing the reconstruction errors described in 484

Subsection 3.2, using a randomly sampled batch of 485

training data of size 5000. 486

Reconstructive SVD Initialization 487

The reconstructive SVD initialization is inspired by 488

Weight Factorization as done by Chen et al. (2021), 489

essentially pruning in an orthogonalized column 490

space of the original matrix W . To this end, we 491

initialize D with the right singular vectors of W 492

corresponding to the cmp-highest singular values. 493

U is then calculated as in the reconstructive random 494

initialization to minimize the reconstructive error. 495

Neuron Sensitivity Pruning Initialization 496

We use Molchanov et al.’s (2016) approach (see 497

Subsection 2.1) to determine the cmp most impor- 498

tant columns in our weight matrix W and initial- 499

ize D s.t. WD corresponds to exactly these cmp 500
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Initialization strategy CE KD actKD

Random 0.308 / 0.924 0.295 / 0.916 0.317 / 0.929
Reconstructive Random 0.044 / 0.484 0.044 / 0.484 0.045 / 0.484
Sensitivity Neuron Pruning 0.434 / 0.972 0.425 / 0.972 0.439 / 0.972
Reconstructive SVD 0.047 / 0.516 0.044 / 0.516 0.120 / 0.726
k-Means 0.397 / 0.963 0.388 / 0.958 0.383 / 0.948

Table 1: MLM- / NSP-accuracies after 100 steps of APC-50-ff training. Blue values indicate the best scores per
loss, bold values the best scores per initialization strategy.

columns. U is then set to D⊤. The formal algo-501

rithm can be found in Appendix C. This initializa-502

tion directly corresponds to neuron pruning, thus503

APC generalizes this approach.504

k-Means Initialization505

This approach is based on Zhong et al.’s (2018)506

neuron merging: We cluster all columns of W into507

cmp many sets and initialize D s.t. each column508

of WD is the average of the columns in the cor-509

responding cluster. For U , we have Ui,j := 1 if510

Dj,i ̸= 0 and Ui,j := 0 otherwise. The formal511

algorithm can be found in Appendix C.512

When comparing the reconstruction errors of513

these initialization techniques on our APC-50-ff514

architecture, both reconstructive approaches scored515

best since they actively minimize this error, with516

the neuron pruning and merging approaches follow-517

ing, most likely due to their preserving nature of the518

original weight matrix, and random scoring worst,519

which is to be expected. The exact error terms can520

be found in Appendix D, Table 5. However, one521

must note that while a low reconstruction error in-522

dicates a better mimicking of the original network,523

it does not necessarily correlate with stronger lan-524

guage modelling performance. Hence, we continue525

with training our new parameters and evaluating526

the resulting models on the pretraining task.527

4.3 Training and Loss Functions528

While we can use a standard cross entropy (CE)529

loss LCE, knowledge distillation motivates fitting530

the output distribution of our compressed network531

to the original one’s by means of a student-teacher532

regularization term. We define Lstudent−teacher as533
5

104
·Ls−t

MLM+ 5
2 ·L

s−t
NSP with Ls−t the soft target loss534

to balance the differences in numbers of classes be-535

tween both tasks. Our knowledge distillation (KD)536

loss is then Ltotal = 0.7LCE+0.3Lstudent−teacher.537

Further, as applied by Chumachenko et al. (2020),538

we also test aligning the outputs of the activation 539

functions (Zagoruyko and Komodakis, 2017) to fur- 540

ther minimize the reconstruction error by means of 541

Ltotal = 0.7LCE + 0.3β
∑L

l=1

∥∥∥X l+1 − X̃ l+1
∥∥∥
F

542

with β = 105, the activation knowledge distillation 543

(actKD) loss. Whenever applying knowledge dis- 544

tillation, we use a temperature of 1 and in all cases 545

we train for 100 steps with a step size of 10−4 and a 546

linear learning rate decay. We showcase the results 547

in Table 1 for APC-50-ff, the best-performing ar- 548

chitecture, results for the remaining compressions 549

can be found in Appendix D. 550

While these results show a quick improvement 551

of APC-50-ff with neuron pruning (and random 552

initialization for the other architectures) when com- 553

bined with the actKD loss, running the training 554

for 5 epochs with early stopping actually indicates 555

better performance of the standard CE loss, with 556

a final accuracy of 0.488 resp. 0.981 versus 0.462 557

resp. 0.979 for actKD (with 0.468 resp. 0.981 for 558

KD), with similar observations for the other ar- 559

chitectures. Given this plus the additional cost of 560

calculating the regularization terms leads us to the 561

decision of using the CE loss instead. 562

4.4 Fine-Tuning Strategies 563

There are multiple strategies to fine-tune pre- 564

trained APC models: We can either finalize the 565

model by replacing all W, b with W̌ , b̌ as in Equa- 566

tions 1,2 and then train those new parameters, fine- 567

tune only the compression parameters, fine-tune 568

all parameters after pre-training or simultaneously 569

fine-tune and compress the model by APC. We test 570

our architectures on four datasets from the GLUE 571

benchmark suite (Wang et al., 2018), namely SST- 572

2 (Socher et al., 2013), RTE, MRPC (Dolan and 573

Brockett, 2005), and MNLI (Williams et al., 2018). 574

Training is done with a batch size of 32, a learning 575

rate of 2·10−5, linear warmup for 100 steps and lin- 576
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SST2 MNLI (m. / mm.) RTE MRPC (acc. / F1) Avg.

BERTbase 0.927 0.844 / – [0.664] 0.867 / – 0.837
Zafrir et al. 0.909 0.815 / 0.824 – – / – –
DistilBERT 0.913 0.822 / – 0.599 0.875 / – 0.802
Turc et al. 0.911 0.825 / 0.834 0.667 0.849 / 0.894 0.813
APC-50-ff 0.901 0.799 / 0.806 0.682 0.853 / 0.894 0.809
Neuron Pruning 0.905 0.788 / 0.797 0.657 0.853 / 0.896 0.801

Table 2: Fine-tuning results of multiple (compressed) BERTbase-models on various GLUE tasks. Best scores per
task are highlighted in bold. Scores are reported over dev sets or, when in brackets, over the closed test sets. Further,
we report the average overall task scores, where we only count matched MNLI, and for MRPC, only accuracy.

ear learning rate decay, and an approximately equal577

amount of steps per dataset, resulting in 1 epoch for578

MNLI, 8 epochs for SST-2, 163 epochs for MRPC,579

and 240 epochs for RTE. The results for APC-50-ff580

can be found in Table 3, the results for the other581

architectures in Appendix D. The results suggest a582

generally higher performance when training both583

the compression and the original weights, however,584

this comes with a significant increase of necessary585

compute power compared to training the finalized586

network for marginal performance gains, hence we587

recommend fine-tuning the finalized model instead.588

Finalized Compr.
only

All
Params

FT +
Compr.

SST-2 0.901 0.899 0.900 0.898
MNLI
(m. / mm.
acc.)

0.792 /
0.799

0.776 /
0.789

0.799 /
0.806

0.765 /
0.772

RTE 0.675 0.664 0.682 0.646
MRPC
(acc. / F1)

0.831 /
0.884

0.821 /
0.877

0.853 /
0.894

0.772 /
0.847

Table 3: Fine-tuning results of APC-50-ff on various
GLUE tasks with different fine-tuning strategies. Scores
of the best fine-tuning strategy per architecture are high-
lighted in bold. Scores are reported over dev sets.

589

5 Results590

Eventually, we would like to relate APC to other591

compression approaches. To this end, we com-592

pare the best dev set scores of APC-50-ff for the593

given downstream tasks with the numbers officially 594

provided for the models of Zafrir et al. (2021), 595

Turc et al. (2019) (see Subsection 2.1), DistilBERT, 596

BERTbase with 50% neuron sensitivity pruning on 597

layers 3 to 12, and BERTbase as a baseline. The 598

results can be found in Table 2. It is notable that 599

our architecture retains about 97% of BERTbase’s 600

average performance, and performs slightly better 601

on average than DistilBERT. This is, however, only 602

a result of the significantly better score for the RTE 603

dataset. APC performs slightly worse than Zafrir 604

et al.’s (2021) model, but provides gains in compu- 605

tational speed even on regular consumer hardware, 606

which unstructured pruning approaches cannot. In 607

general, APC-50-ff shows an on-par performance 608

with other methods of similar compression size, but 609

is not hardware-dependent for speed gains and can 610

be trained very fast (APC-50-ff required about 90 611

minutes on a single A40 GPU). 612

6 Conclusion 613

We have presented Adaptive Parameter Compres- 614

sion, a flexible technique to compress DNNs, 615

which learns low-dimensional approximations 616

through affine projections in the parameter space. 617

APC extends and modifies the Weight Squeezing 618

approach to improve its performance, matching the 619

ones of similarly strongly compressed approaches 620

at a reduced training time. We provided theoretical 621

and empirical insights into different optimization 622

techniques for APC and guidelines on how to apply 623

it to a BERT model. Future work will focus on 624

testing APC on larger LMs, improving its perfor- 625

mance for lower compression ratios, and extending 626

the approach to also reduce the number of layers. 627
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7 Limitations628

In our work, we present how to apply APC to629

BERTbase and investigated how we can optimize it630

for this specific model. Due to limited computa-631

tional resources, we could not evaluate our method632

on more recent, larger language models yet, which633

may show a different behavior when applying the634

same initialization techniques and loss functions635

we chose for BERTbase. While we assume that APC636

should work even better on larger, overparameter-637

ized models, more extensive testing with a variety638

of models is required to show scalability of our639

method.640

Further, while pruning algorithms follow an it-641

erative paradigm of removing parameters and thus642

slowly decrease the performance of the original643

model, APC starts with a worse initial performance644

which is increased by training, similar to distillation645

approaches. This makes it rather unsuitable for low646

compression ratios as we have to introduce more647

parameters, which increase training time and, thus,648

provide a worse tradeoff between computational649

cost for finding the optimal compressed model and650

performance than neuron pruning.651

Currently, APC also requires to choose a fixed652

compression architecture, making it cumbersome653

to find the best tradeoff between the model’s per-654

formance and inference cost. We have started to655

conceptualize methods to overcome this, however656

further research and testing is required, hence we657

did not include these in this paper.658

While some of our initialization strategies aimed659

at minimizing the reconstructive error in each layer,660

which theoretically should align the original and661

the compressed model, the language modelling per-662

formance did not confirm this assumption. We663

conjecture that this is caused by the depth of the664

network since we only minimize the error locally,665

thus potentially propagating errors throughout mul-666

tiple up- and downscaling pairs, which cumulates667

and affects performance negatively. Thus, extend-668

ing the approach to reduce the number of layers669

and optimizing the global reconstruction error are670

future directions we want to look into.671
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A Pairings for Embedding Compression1000

Consider three Transformer blocks b− 1, b, b+ 1,1001

then we have the following cases in which we pair1002

the matrices in embedding compression as follows:1003

• cmpeb−1 ̸= cmpeb (or b is the first block) and 1004

cmpeb ̸= cmpeb+1 (or b is the last block): We 1005

pair DPS
b with U

{V,K,Q}
b , DO

b with Uα
b , and 1006

Dβ
b with UPS

b . 1007

• cmpeb−1 ̸= cmpeb (or b is the first block) 1008

and cmpeb = cmpeb+1: We pair DPS
b with 1009

U
{V,K,Q}
b , DO

b with Uα
b , Dβ

b with U
{V,K,Q}
b+1 , 1010

and UPS
b with DPS

b+1. 1011

• cmpeb−1 = cmpeb and cmpeb ̸= cmpeb+1 (or b 1012

is the last block): We pair DPS
b with UPS

b−1, 1013

Dβ
b−1 with U

{V,K,Q}
b , DO

b with Uα
b , and Dβ

b 1014

with UPS
b . 1015

• cmpeb−1 = cmpeb and cmpeb = cmpeb+1: We 1016

pair DPS
b with UPS

b−1, Dβ
b−1 with U

{V,K,Q}
b , 1017

DO
b with Uα

b , Dβ
b with U

{V,K,Q}
b+1 , and UPS

b 1018

with DPS
b+1. 1019

B Proof for Optimality 1020

Claim: Let A1, A2 ∈ Rn×a be of maximal rank. 1021

Define the optimization problem 1022

min
B1,B2∈Ra×b

∥∥A1(Ia −B1B
T
2 )A

T
2

∥∥
F
, (13) 1023

for some n ≥ a > b. An optimal solution to (13) 1024

is then given by 1025

B1 := A†
1L̂, B2 := A†

2R̂, (14) 1026

for L̂ and R̂ being the submatrices of the b first 1027

columns of L̃ and R̃ respectively, where L̃ := 1028

LΣ1/2 and R̃ := RΣ1/2 for L,Σ, R denoting 1029

the singular value decomposition of A1A
T
2 , i.e., 1030

A1A
T
2 = LΣRT . 1031

Proof : 1032

Firstly, we rewrite (13) as 1033

min
B1,B2∈Ra×b

∥∥A1A
T
2 −A1B1B

T
2 A

T
2

∥∥
F
, (15) 1034

and note that A1B1B
T
2 A

T
2 is of at most rank b be- 1035

cause B1 (and B2) are of at most rank b. Therefore, 1036

because L̂R̂T is by definition the best rank-b ap- 1037

proximation of A1A
T
2 , we get 1038

min
B1,B2∈Ra×b

∥∥A1A
T
2 −A1B1B

T
2 A

T
2

∥∥
F
≥∥∥∥A1A

T
2 − L̂R̂T

∥∥∥
F
.

(16) 1039

On the other hand, let B1 and B2 be defined as 1040

in (14). Then 1041∥∥A1(Ia −B1B
T
2 )A

T
2

∥∥
F

(17) 1042

12

https://doi.org/10.1109/TPAMI.2022.3179616
https://doi.org/10.1109/TPAMI.2022.3179616
https://doi.org/10.1109/TPAMI.2022.3179616
https://doi.org/10.1109/TPAMI.2022.3179616
https://doi.org/10.1109/TPAMI.2022.3179616
https://doi.org/10.1109/EMC2-NIPS53020.2019.00016
https://openreview.net/forum?id=Sks9_ajex
https://openreview.net/forum?id=Sks9_ajex
https://openreview.net/forum?id=Sks9_ajex
https://openreview.net/forum?id=Sks9_ajex
https://openreview.net/forum?id=Sks9_ajex
https://openreview.net/forum?id=Sks9_ajex
https://openreview.net/forum?id=Sks9_ajex
https://doi.org/10.1109/ICPR.2018.8545107
https://doi.org/10.1109/ICPR.2018.8545107
https://doi.org/10.1109/ICPR.2018.8545107


=
∥∥∥A1(Ia −A†

1L̂R̂
T (AT

2 )
†)AT

2

∥∥∥
F

(18)1043

=
∥∥∥A1A

†
1(A1 − L̂R̂T (AT

2 )
†)AT

2

∥∥∥
F

(19)1044

=
∥∥∥A1A

†
1(A1A

T
2 − L̂R̂T )(AT

2 )
†AT

2

∥∥∥
F

(20)1045

=
∥∥∥PA1(A1A

T
2 − L̂R̂T )P T

A2

∥∥∥
F
, (21)1046

where P∗ denotes the orthogonal projection onto1047

the range of ∗. Because the range of A1A
T
2 and of1048

L̂R̂T are a subspace of the range of A1, we further1049

get1050

... =
∥∥∥(A1A

T
2 − L̂R̂T )P T

A2

∥∥∥
F
, (22)1051

and with analogous reasoning for A2 by transpo-1052

sition,1053

... =
∥∥∥A1A

T
2 − L̂R̂T

∥∥∥
F
. (23)1054

Thus, the bound from (16) holds with equality1055

for the choice of B1 and B2 as defined in (14),1056

which concludes the proof.1057

C Algorithms1058

Algorithm 1 Neuron Pruning Initialization

Require: in, out, cmp,W ∈ Rin×out

1: D ← zero-matrix of size out× cmp
2: U ← zero-matrix of size cmp× out
3: S ← compute index set of cmp-many columns

of W corresponding to most “important” neu-
rons, according to neuron sensitivity pruning
mask M .

4: j ← 0
5: for i ∈ {1, . . . , out} do
6: if i ∈ S then
7: Di,j ← 1
8: j ← j + 1
9: end if

10: end for
11: U ← D⊤

12: bD, bU , B ← initialize with zero entries
13: return U, bU , D, bD, B

D Compression Architectures &1059

Performance1060

1061

Algorithm 2 k-Means Initialization

Require: in, out, cmp,W ∈ Rin×out

1: D ← zero-matrix of size out× cmp
2: U ← zero-matrix of size cmp× out
3: (Si)i ← cmp-many sets of neuron indices be-

longing to cluster i, retrieved by k-means
4: for i ∈ {1, . . . , cmp} do
5: cluster_size← |Si|
6: for j ∈ Si do
7: Dj,i ← 1/cluster_size
8: Ui,j ← 1
9: end for

10: end for
11: bD, bU , B ← initialize with zero entries
12: return U, bU , D, bD, B
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Layer group
(1, 2)

Layer group
(3, 4)

Layer group
(5, 6, 7, 8, 9)

Layer group
(10, 11, 12)

APC-15-opt (16.9%) compression MLM / NSP Accuracy: 0.124 / 0.729

cmpe 654 753 768 720
cmpa 588 756 708 768

cmpf 2251 1399 2527 3057

Cmp. ratio 36.6% 38.0% 14.4% 6.6%

APC-50-opt (51.7%) compression MLM / NSP Accuracy: 0.257 / 0.911

cmpe - 767 654 669
cmpa - 768 252 732

cmpf - 3072 171 421

Cmp. ratio 0% 4.9% 78.1% 61.1%

APC-90-opt (88.8%) compression MLM / NSP Accuracy: 0.121 / 0.541

cmpe 631 159 113 102
cmpa 720 72 252 46

cmpf 200 2418 1636 468

Cmp. ratio 70.7% 88.4% 93.1% 97.1%

APC-50-ff (50.9%) compression MLM / NSP Accuracy: 0.308 / 0.924

cmpe - - - -
cmpa - - - -

cmpf - 256 256 256

Cmp. ratio 0% 61.1% 61.1% 61.1%

Table 4: APC architectures returned by a hyperparameter search. The original values for embedding, attention and
feed-forward dimensions were 768, 768, and 3072, respectively. Further, we include the compression ratio of each
layer group, excluding pre- and post-scalings. Lastly, we report the MLM- and NSP accuracy after 100 steps of
training as performed by the hyperparameter search.

Initialization Strategy Average
Reconstruction Error

Random 1.067 · 103

Reconstructive
Random

0.627 · 103

Reconstructive SVD 0.637 · 103

Neuron Sensitivity
Pruning

0.900 · 103

k-Means 0.856 · 103

Table 5: Comparing reconstruction errors of all com-
pressed layers of APC-50-ff. Reconstruction errors have
been averaged over all compressed layers.
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Initialization Strategy CE KD actKD

Random 0.045 / 0.479 0.044 / 0.484 0.122 / 0.567
Reconstructive Random 0.044 / 0.484 0.044 / 0.484 0.046 / 0.484
Sensitivity Neuron Pruning 0.044 / 0.516 0.044 / 0.484 0.000 / 0.516
Reconstructive SVD 0.044 / 0.516 0.044 / 0.484 0.045 / 0.484
k-Means 0.044 / 0.484 0.044 / 0.484 0.000 / 0.516

Table 6: With the same format as in Table 1, we report the MLM- / NSP-accuracies after 100 steps of APC-15-opt
training.

Initialization Strategy CE KD actKD

Random 0.257 / 0.847 0.254 / 0.875 0.259 / 0.737
Reconstructive Random 0.044 / 0.484 0.044 / 0.484 0.045 / 0.490
Sensitivity Neuron Pruning 0.044 / 0.516 0.044 / 0.516 0.000 / 0.516
Reconstructive SVD 0.136 / 0.906 0.043 / 0.516 0.220 / 0.947
k-Means 0.044 / 0.484 0.044 / 0.516 0.000 / 0.516

Table 7: With the same format as in Table 1, we report the MLM- / NSP-accuracies after 100 steps of APC-50-opt
training.

Initialization Strategy CE KD actKD

Random 0.119 / 0.484 0.125 / 0.484 0.116 / 0.484
Reconstructive Random 0.044 / 0.484 0.044 / 0.484 0.045 / 0.516
Sensitivity Neuron Pruning 0.044 / 0.516 0.044 / 0.484 0.000 / 0.516
Reconstructive SVD 0.044 / 0.484 0.044 / 0.484 0.045 / 0.516
k-Means 0.047 / 0.484 0.044 / 0.484 0.000 / 0.516

Table 8: With the same format as in Table 1, we report the MLM- / NSP-accuracies after 100 steps of APC-90-opt
training.
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Finalized Compr. only All Params FT + Compr.

SST2

APC-90-opt 0.837 0.839 0.838 0.825
APC-50-opt 0.877 0.876 0.882 0.825

MNLI (m. / mm. acc.)

APC-90-opt 0.616 / 0.612 0.652 / 0.658 0.658 / 0.665 0.443 / 0.468
APC-50-opt 0.727 / 0.733 0.721 / 0.732 0.737 / 0.744 0.354 / 0.352

RTE

APC-90-opt 0.552 0.578 0.592 0.563
APC-50-opt 0.621 0.621 0.610 0.542

MRPC (acc. / F1)

APC-90-opt 0.686 / 0.790 0.689 / 0.797 0.684 / 0.781 0.684 / 0.812
APC-50-opt 0.760 / 0.843 0.767 / 0.850 0.757 / 0.841 0.723 / 0.825

Table 9: Fine-tuning results of multiple APC architectures on various GLUE tasks with different fine-tuning
strategies. The scores of the best fine-tuning strategy per architecture are highlighted in bold. The scores are
reported over dev sets.
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