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ABSTRACT

Multimodal Large Language Models (MLLMs) have demonstrated impressive
performance in general visual understanding tasks. However, their potential
for high-level, fine-grained comprehension, such as anomaly understanding, re-
mains unexplored. Focusing on traffic accident, a critical and practical sce-
nario within anomaly understanding, we investigate the advanced capabilities
of MLLMs and propose TABot, a multimodal MLLM specialized for accident-
related tasks. To facilitate this, we first construct TAU-106K, a large-scale multi-
modal dataset containing 106K traffic accident videos and images collected from
academic benchmarks and public platforms. The dataset is meticulously anno-
tated through a video-to-image annotation pipeline to ensure comprehensive and
high-quality labels. Building upon TAU-106K, we train TABot using a two-step
approach designed to integrate multi-granularity tasks, including accident recog-
nition, spatial-temporal grounding, and an auxiliary description task to enhance
the model’s understanding of accident elements. Extensive experiments demon-
strate TABot’s superior performance in traffic accident understanding, highlight-
ing not only its capabilities in high-level anomaly comprehension but also the
robustness of the TAU-106K benchmark. Our code and data will be available at
https://github.com/cool-xuan/TABot.

1 INTRODUCTION

Traffic Accident Detection (TAD) has always been a crucial and practical task in public safety and
transportation management. The development of advanced technologies, such as computer vision
and deep learning, has enabled the automation of TAD, providing real-time accident alerts and anal-
ysis. Despite significant research on traffic accident detection (Shah et al., 2018} |Zhu et al., 2019
Kim et al.l |2019; |[Haresh et al., [2020; |Ghahremannezhad et al., |2022)), existing TAD methods often
rely on conventional visual feature extraction techniques that lack high-level comprehension and
multimodal alignment capabilities in interpreting intricate spatial-temporal dynamics.

Recent advancements in aligning large language models (LLMs) on visual-language datasets have
driven remarkable progress in multi-modal understanding tasks (Achiam et al.l [2023)). With exten-
sive pre-training and instruction tuning, multimodal LLMs (MLLMs) have demonstrated superior
performance in spatially visual understanding and logical reasoning for the general-purpose com-
prehension (Li et al. [2023; |Zhu et al., 2023} [Liu et al., 2024). However, due to the inherent gap
between general and specific tasks, MLLMs trained on general domains often underperform in spe-
cialized fields due to limited domain-specific data. For instance, as illustrated in Figure[I] the most
advanced MLLMs, such as GPT-4o0 (Achiam et al. 2023), Qwen2-VL (Yang et al. 2024), and
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Question: Do you notice any traffic accident scenarios in
this picture? Please respond with a ‘Yes’ or ‘No’. Following
that, describe the image in one sentence.

GPT-40: No, the image shows a busy city intersection with
vehicles and motorcycles waiting at a traffic light.
Qwen2-VL: No. The image shows a busy urban street with cars, scooters, and pedestrians, but
there is no visible accident.

Gemini-1.5-Pro: No. The image shows a sunny city street scene with several motorbikes and cars
at an intersection under a highway overpass.

TABot-Chat (Ours): Yes. Because a black car brake was not on time, it collided with a white coat
electric bicycle rider.

Figure 1: One example to illustrate the limitations of general MLLM in understanding traffic
accidents. In the scenario where a vehicle collision occurs due to a sudden lane change by the
leading vehicle, GPT-40, Qwen2-VL, and Gemini-1.5-Pro fail to detect this issue.

Gemini-1.5-Pro (Team et al.,[2024), may misinterpret the visual content of traffic accidents where
a vehicle collision occurs, leading to inaccurate responses. We argue that the failure of general
MLLMs to understand traffic accidents stems from the following two main reasons: (i) Traffic ac-
cident detection requires MLLMs to grasp ambiguous concepts like anomaly and accident, which
are context-dependent and defined by human criteria. However, existing MLLMs are trained on
general-purpose data focusing on fundamental semantics, lacking the specialized understanding of
such high-level semantics. (ii) The visual representations of accident occurrences differ significantly
from general scenes, necessitating realigning these visual representations with the semantic under-
standing towards traffic accidents. Both of these limitations highlight the need for infrastructure that
includes accident-specific annotations and specialized MLLM:s to understand traffic accidents.

To pioneer an MLLM specialized in traffic accident comprehension, we first created TAU-106K,
a large-scale multimodal traffic accident dataset containing 106K videos and images with detailed
accident-oriented annotations. In particular, we aggregate academic benchmarks and crawl traffic
accident videos from public platforms, building a diverse and high-quality visual foundation. To
ensure annotation quality and efficiency, we design a video-to-image annotation pipeline, resulting
in comprehensive annotations that are manually crafted by human labors. The annotations cover
accident recognition, description, temporal localization, and spatial grounding at both the image
and video levels, providing detailed and structured information for MLLMs to understand traffic
accidents.

Using TAU-106K, we reorganize the annotations into instructional data to unlock MLLMs’ potential
in traffic accident understanding and introduce TABot, an end-to-end MLLM specialized for traffic
accident comprehension across both image and video modalities. We adopt a two-step training ap-
proach: functional tuning to engage multi-granularity accident detection capabilities activation, and
instruction tuning to enhance contextual comprehension and instruction following capabilities. In
particular, during functional tuning, we propose two training strategies to serve temporal localiza-
tion, the most crucial task in traffic accident understanding: (i) Negative Segment Referring (NSR),
which utilizes contrastive learning to heighten the model’s sensitivity to accident boundaries, and (ii)
Video Spatial Alignment (VSA), which inserts spatial information into the training of video tasks,
serving as a fine-grained complement to temporal localization. Followed by the functional tuning,
we further generate multi-turn dialogues using an automated paradigm (Liu et al. [2024) and per-
form instruction tuning to enhance the dataset’s utility and capabilities of MLLMs for human-like
chatting and traffic accident understanding.

2 RELATED WORK

Multimodal Large Language Models. Extensive research has focused on enabling LLMs to pro-
cess visual information, typically by adding an adapter between pre-trained visual models and LLMs
to align features from different modalities (Li et al.||2023; Zhu et al., 2023} |Liu et al.,|2024). Some
advanced multimodal LLMs, such as Qwen2-VL (Yang et al., 2024)), unified image and video un-
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derstanding into a single model, but still struggle with more fine-grained tasks. On the side of image
modal, object grounding has been a key focus, with a series of works (Chen et al.| [2023D}; [Bai et all}
2023}, [Peng et al} [2023; [Chen et al,[2023¢}; [You et al, [2023) standardizing grounding coordinates to
text format and achieving robust grounding capabilities. On the other hand, videos, as a more com-
plex form of visual data, introduce greater challenges in aligning with video content
2023; 2023};/Chen et al}[2023a},[Zhang et al.} 2023} |Qian et al., 2024; He et al.| 2024} |Cheng
et al.,[2024; Xu et al.,[2024; Zhang et al., 2024; Chen et al.| 2023d;[2024). VTimeLLM (Huang et al.,
2024) and TimeChat (Ren et al.} address temporal localization by proposing time-aware atten-
tion mechanisms. GroundingGPT unified fine-grained capabilities across image and
video for comprehensive multimodal understanding. Despite these advancements, previous works
focus on general-purpose understanding, remaining largely unexplored in some specific scenarios,
such as traffic accident understanding.

Traffic Accident Detection and Understanding. Traditional Traffic Accident Detection (TAD)
methods are classified into single-stage (Hasan et al.| 2016) and two-stage paradigms
2019; [Fang et all, 2022b). Single-stage approaches often rely on frame-to-frame errors but under-
perform in forecasting non-ego accidents and are sensitive to dynamic backgrounds
[2016). Two-stage methods extract visual features, such as bounding boxes and optical flow, and ap-
ply TAD models to predict anomalies (Fang et al.} [2022b). However, these methods depend heavily
on the quality of feature extraction. Recent advances have integrated textual information into TAD,
with TTHF introducing text-driven attention mechanisms for anomaly detection
in videos, and SUTD-TrafficQA modeling fundamental question-answering and
reasoning tasks for traffic accident scenes. On the MLLM front, empirical studies 2023)
have validated GPT-4(V)’s effective recall and description capabilities for traffic accident images.
To this end, the potential of MLLMs in accident understanding remains unexplored, particularly in
spatial-temporal grounding and reasoning over traffic accident videos.

Data
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Accident Category Label : MV&nMV Accident Category Label : MV&nMV
Accident Temporal Label : {0.41, 0,53} Accident objects Label :
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Figure 2: The data collection and annotation pipeline for building TAU-106K.

3 TAU-106K FOR VIDEO-IMAGE TRAFFIC ACCIDENT UNDERSTANDING

To advance the development of MLLMs for traffic accident analysis, we introduce TAU-106K, a
comprehensive dataset integrating video and image data for traffic accident understanding, manually
labeled with multi-granularity annotations through a video-to-image annotation pipeline (Figure [2)).

3.1 VIDEO-BASED DATA COLLECTION AND ANNOTATION

Video Data Collection and Preprocessing. While traffic accident understanding is a critical public
safety task and has been extensively studied, the available open-source benchmarks are limited in
both scale and diversity, often featuring low-resolution video data. To address this, we aggregate
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established traffic accident benchmarks such as TAD (Xu et al., 2022), DoTA (Yao et al., 2022),
and CCD (Bao et al.l 2020), selecting high-quality video clips as the data foundation for further
annotation. We further expand the dataset by crawling road surveillance and dashcam footage from
platforms like YouTube and BiliBili, capturing diverse real-world traffic conditions. Despite the
abundance of traffic accident videos on the Internet, they are often unstructured and lack annota-
tions. For the crawled raw videos, we first crop them into individual clips using the scene change
detection toolkit PySceneDetect, and then manually filter out irrelevant or low-quality videos.
Consequently, we obtain a collection of 51.5K traffic-focused video clips sourced from academic
benchmarks and social media platforms, as illustrated in the upper part of Figure[2]

Video-based Accident Annotations. All existing benchmarks for traffic accident understanding
lack comprehensive annotations, especially in terms of accident descriptions, which are crucial for
enabling MLLMs to understand accident events in detail. To bridge this gap, we annotate from
scratch or supplement existing annotations in three key aspects:

1. Accident Category: accident occurrence and detailed accident types. Each clip is reviewed to de-
termine if an accident is present, labeled either as Accident or Normal. For Accident clips, we further
categorize the accident type into five subcategories: single motor vehicle (SMV) accident, multiple
motor vehicle (MMYV) accident, multiple non-motor vehicle (MnMYV) accident, motor vehicle and
non-motor vehicle (MV&nMV) accident, and vehicle and pedestrian (V&P) accident.

2. Accident Duration: the specific time points of the accident occurrence. Annotators precisely
identify the start and end timestamps of the accident within each clip, yielding the time points
{tstart, tend}- In particular, the start time ¢4+ should be the exact frame when the accident event
begins, such as the moment of collision, while the end time t.,,4 is marked when the event concludes
(e.g., stopping). Both timestamps are normalized within the clip duration to ensure consistency.

3. Accident Description: a detailed textual description of the nature of the accident, which is absent
in all existing traffic accident benchmarks while being substantial for MLLMs to understand the
accident event in detail. To ensure consistency and precision, we design a structured annotation
template, guiding annotators to provide detailed and structured descriptions of the accident events.

The description template for Accident is structured to depict the Traffic Scenario (urban, highway,
etc.), Accident Content including the objects involved in the accident (vehicles, pedestrians, etc.)
and the nature of the accident (collision, scrape, etc.), and Aftermath, ensuring comprehensive and
structured annotations. The labeled start and end timestamps are also incorporated into the descrip-
tion to provide temporal context for the accident event. Beyond the accident event itself, annotators
are also encouraged to infer the Potential Causes, such as traffic rule violations or improper driv-
ing behaviors. The detailed template is also dependent on the Footage Source, either Dashcam or
Surveillance camera. For intuitive understanding, we decompose the example shown in Figure 2]
into the structured format in the gray block.

[Footage Source: Current vehicle is driving on] [Traffic Scenario: crossroads]. At the moment
of 0.41, [Potential Causes: since an electric bike with two people did not follow traffic rules and
crossed the road abruptly], [Accident Content: the current vehicle collided with the electric bike
with two people], at the moment of 0.53, [Aftermath: the accident concludes with that the electric
bike was hit to the ground.]

In practice, these three annotation tasks are performed simultaneously, with multiple rounds of re-
view and correction to ensure quality and consistency. This integrated approach ensures coherence
in annotations, reflecting the interconnected nature of these tasks.

3.2 IMAGE-BASED DATA COLLECTION AND ANNOTATION

The above video annotations are multi-granularity while lacking spatial details, which are crucial for
MLLMs to understand fine-grained visual features. To address this, we further derive images from
the video clips and label them with detailed spatial information, whose detailed annotation pipeline
is illustrated in the bottom right part of Figure[2]

Image Data Collection and Selection. Besides a few image-only accident datasets (e.g., Task-
Fix (Juan et al.| [2021))), most of the image data in our TAU-106K is sampled from the video clips.
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Figure 3: Data source distribution, accident type distribution, and word cloud of accident descrip-
tions in TAU-106K dataset.

Guided by the temporal localization annotations in the video clips, we first extract candidate frames
by uniformly sampling frames within the labeled accident duration. These frames are then evaluated
by annotators to select keyframes that best represent the accident events, based on the Accident De-
scription in the video annotations. Notably, the time points of the selected keyframes are preserved
to keep the temporal connection between the video and image data, which also enables our video
spatial alignment strategy in model training. In addition to accident-related frames, we randomly
sample accident-free frames to maintain data balance and prevent model bias.

Image Annotations Derived from Video Annotations. For the images sourced from existing
benchmarks, we adopt the available annotations and extend them to our multi-granularity anno-
tations. On the other hand, for the images derived from video data, we inherit the accident-related
annotations from the video clips, including the Accident Category and Accident Description, where
the latter extracted from the content of the accident part in the video-based accident description to
maintain annotation consistency and reduce workload. In particular, labels for the involved objects
are derived directly from the accident descriptions, ensuring that the annotated objects are those
explicitly mentioned. For instance, given the accident description as “A blue car collides with a
pedestrian in white clothes”, the corresponding objects will be labeled as blue car and pedestrian
in white clothes, respectively. This instance-specific labeling helps MLLMs focus on the objects di-
rectly involved in the accident, minimizing distractions from irrelevant objects of the same category
that may appear in the scene.

Table 1: The comparison of TAU-106K with other accident-specific or general-purpose benchmarks.
CLS’: Accident Categories, ‘“TL’: Temporal Annotation, ‘Bbox’: Object Grounding Annotation,
‘CAP’: Caption Annotation, and ‘QA’: Question-Answer Pairs.

Dataset Years Domain # Videos Annotations Avg. Words  Avg. Duration
Dashcam (Chan et al./|2017) 2016  Traffic 3,000 TL; - 5.0 seconds
A3D (Yao et al.||2019) 2019  Traffic 1,500 TL; - 8.5 seconds
CCD (Bao et al.[[2020) 2021  Traffic 1,500 TL; - 5.0 seconds
TAD (Lv et al.|2021) 2021  Traffic 500 CAP; TL; - 35.8 seconds
DADA (Fang et al.[[2021) 2021  Traffic 200 CAP; TL; Driver Attention - 11.0 seconds
SUTD-TrafficQA (Xu et al.][2021) 2021  Traffic 10,080 QA pairs - 13.6 seconds
DoTA (Yao et al.|[2022) 2022  Traffic 4,677 CAP; TL; Bbox - 15.6 seconds
CAP (Fang et al.|[2022a) 2023  Traffic 11,727 CAP; TL; Fixed-Form CAP 6.3 6.2 seconds
TAD-106K (Ours) 2024  Traffic 51,544 CAP; TL; Bbox; Free-Form CAP  32.1 10.3 seconds
Charades-STA (Gao et al.[2017) 2017  Daily 9,848 TL; Free-Form CAP 6.3 31 seconds
DiDeMo (Anne Hendricks et al.|[2017) 2017  Open 10,464 TL; Free-Form CAP 7.5 30 seconds
ActivityNet-Captions (Krishna et al.[[2017) | 2017  Open 19,209 TL; Free-Form CAP 13.5 180 seconds

3.3 DATA STATISTICS AND ANALYSIS

TAU-106K comprises 106K multimodal data instances, including 51.5K video clips and 54.8K im-
ages, all with high-quality annotations. The majority of the video clips and images are in 720p res-
olution and are sourced from both open-source benchmarks and social media platforms, as shown
in Figure[3(a)} Among the TAU-106K, 56% of instances are labeled as Accident and 44% as Nor-
mal, with detailed category distribution shown in Figure[3(b)] The balanced distribution of accident-
related and accident-free instances ensures that the model is trained robustly, avoiding biases towards
accident occurrences. The average video duration of processed and filtered clips is 10.3 seconds,
with annotated accidents lasting an average of 3 seconds (approximately 25% of the video clip). As
for the image data, 45K accident-involved objects are grounded, with an average of 1.6 bounding
boxes per image and an average bounding box area covering 7.9% of the image. Our accident de-
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[Image] [RD] Is there an accident in the image? If yes, please describe the accident and
related objects.

[Image] [SG] Please provide the region where the accident located at, and the location of
the instances involved in the accident.

[Video] [RD] Is there an accident in the video? If yes, please describe the accident and its
reason.

[Video] [TL] Please identify when the accident happened.

Figure 4: The model architecture and functional capabilities of the TABot.

scriptions are detailed and diverse, covering a broad range of traffic scenarios, accident types, and
objects involved, as shown in the word cloud of accident descriptions in Figure

We provide a more comprehensive comparison between TAU-106K and other datasets, focusing on
key features such as size, domain, annotation types, and the characteristics of the textual captions,
depicted in Table [T} According to the comparison, our TAU-106K is the largest dataset in terms
of the number of videos and the diversity of annotations, supporting a wide range of tasks. In
particular, benefiting from our manual annotation process that is labor-intensive yet worthy, the
labeled free-form accident captions in TAU-106K are much more diverse and detailed than other
datasets, achieving a largest average length of 32.1 words per caption. This makes TAU-106K a
valuable resource for training and evaluating accident-aware models in traffic video understanding.

4 TABOT: A CHATBOT FOR TRAFFIC ACCIDENT UNDERSTANDING

We introduce TABot, a multimodal fine-grained MLLM developed by leveraging instructional data
constructed from the TAU-106K dataset. TABot is compatible with both video and image modalities,
enabling it to perform fine-grained understanding and reasoning tasks in traffic accident scenarios.
The proposed TABot integrates a suite of traffic accident-related tasks, as depicted in Figure [

4.1 MODEL OVERVIEW

We advance the TABot upon GroundingGPT 2024), a model known for its strong perfor-
mance in fine-grained image and video understanding. By fine-tuning this general-purpose MLLM
on our annotated TAU-106K dataset, we enhance its capabilities for traffic accident comprehen-
sion on several functional tasks including Accident Recognition, Accident Description Genera-
tion, Accident Temporal Localization, and Accident Spatial Grounding, as illustrated in Figure 4]
It is notable that we normalize the responses to the temporal localization and spatial grounding
tasks to the video duration and image size, respectively, to ensure consistency and facilitate model
training. The normalized responses are denoted as {tsiqrt, tend} for temporal localization and
[Tmin, Ymin, Tmaz, Ymaz) fOr spatial grounding, enclosed in specific tokens to indicate the temporal
boundaries and spatial regions.

Following previous works 2024), we adopt a two-stage fine-tuning approach: Firstly, dur-
ing the functional tuning stage, TABot is jointly fine-tuned on both image and video data, focusing
on the four key tasks mentioned above. We generate structured single-round conversations for each
task to facilitate the model’s understanding of traffic accidents from different perspectives. Two
additional training strategies are proposed to further improve performance in temporal localization:
Negative Segment Referring (NSR) and Video Spatial Alignment (VSA), which promote the per-
formance from the perspective of contrastive learning and spatial understanding, respectively. NSR
samples accident-free segments before the occurrence of an accident and trains the model by re-
ferring to the sample segments containing no accidents, serving as negative data to highlight the
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perception of accident occurrences. On the other hand, benefiting from the unified video-to-image
annotation pipeline, VSA involves the spatial grounding annotations into the video training process,
complementing spatial information from images into the temporal localization task. As for the im-
plementation details, we extend the answer to the temporal localization task to include the spatial
grounding annotations. For example, the response to the temporal localization task ‘{0.30, 0.45}
may be further extended with “At the timestamp 0.38, an accident occurs at the region of [0.21,
0.35, 0.87, 0.57].” This alignment improves TABot’s fine-grained spatial understanding of acci-
dents in video contexts. Additionally, to ensure the model’s flexibility in handling multiple tasks,
task-specific flag tokens (Accident Recognition & Description [RD], Temporal Localization [TL],
and Spatial Grounding [SG]) are inserted at the start of each query to guide TABot’s responses.

With the above functional tuning, TABot is endowed with the capabilities to perform coarse- and
fine-grained traffic accident understanding tasks. To further advance the TABot’s comprehensive
understanding and conversational skills, we utilize the textual captions of the video clips and images
as the abstracts to prompt the powerful LLMs (Achiam et al., 2023), to conclude the above func-
tional tasks and generate additional accident-oriented dialogue, such as the causes of accidents or
prevention suggestions. The generated multi-round dialogue set is then used to instruct the TABot
model. Through such instruction tuning, TABot is upgraded to a chat version (TABot-Chat) with
enhanced instruction-following capabilities and a more comprehensive understanding of traffic ac-
cidents. In particular, the task flag tokens are maintained in the instruction tuning stage to guide
the model’s responses to specific tasks, ensuring the functional capabilities of the model towards
multiple accident-oriented tasks.

5 EXPERIMENTS

We set GroundingGPT-7B (L1 et all 2024), a pre-trained general-purpose MLLM with temporal
and spatial grounding capabilities, as the baseline model for our TABot. The detailed experimental
settings of the two-step approach are described as follows:

Functional Tuning. We train LLM and both visual adapters of the GroundingGPT model through
our TAU-106K dataset for 3 epochs using 8 x H800 GPUs. The initial learning rate is set to 2e-5
with a batch size of 32, requiring about 20 hours to complete.

Instruction Tuning. We extend training with the instruction-tuning dataset generated by LLaMA-
70B (Dubey et al., 2024), leading to our TABot-Chat model. To avoid catastrophic forgetting, we
combine the single-round and multi-round dialogue conversations during this stage, further training
the model for 1 epoch on 8 x H800 GPUs for about 9 hours with the learning rate and batch size
unchanged.

Evaluation Metrics. For evaluation purposes, the TAU-106K dataset was split into training and
testing sets in a 9:1 ratio, ensuring the same distribution of normal/accident instances and scene
continuity across both. We evaluate the TABot on four functional tasks for both image and video
data. The evaluation metrics are as follows:

1) Accident Recognition. Recall, Precision, and F1 scores are used to assess the model’s accuracy in
distinguishing accidents from normal scenes in both image-level and video-level contexts.

2) Accident Description. BLEU-1 score, Rouge-L F1 score, and BERT F1 score are employed to
measure the model’s ability to generate coherent and accurate accident descriptions. We further
leverage GPT-4o0 to estimate the quality of the generated descriptions, referred to as GPT-4 score.

3) Accident Temporal Localization. We reported the Intersection over Union (IoU) between pre-
dicted and true temporal intervals, along with Average Precision (AP@30, AP@50, AP@70).

4) Accident Spatial Grounding. We evaluate the model’s performance on accident region and object
grounding through reporting detection metrics: mean Intersection over Union (mloU) and Average
Precision (AP@30, AP@50, AP@70).

5.1 VIDEO-LEVEL TASKS

In this subsection, we present the results on video-level tasks of our proposed models, including
TABot, TABot-Chat, and their comparison with several existing methods: Video-LLaVA (Lin et al.,
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2023)), TimeChat (Ren et al.| [2024), VTimeLLM (Huang et al.l 2024)), GroundingGPT (Li et al.,
2024), Qwen2-VL (Wang et al.| 2024), and Gemini-1.5-Pro (Reid et al.| 2024).

Table 2: Experimental results on video accident recognition in traffic scenes. “@A” and “@N”
represent the class-wise results on accidents and normal scenes.

Video Accident Recognition

Methods Acc | Rec@A  Pre@A  F@A | Rec@N  Pre@N  FI@N
Video-LLaVA (Lin et al.|[2023) 5020 | 99.70 50.10  66.69 0.70 70.00 139
TimeChat (Ren et al.|[2024} 54.65 | 91.80 5267 6693 17.50 68.09 27.84
VTimeLLM (Huang et al.|[2024) 50.00 | 100.00 50.00  66.67 0.00 0.00 0.00
GroundingGPT (Li et al.| 2024) 50.00 | 100.00 50.00  66.67 0.00 0.00 0.00
Qwen2-VL (Wang et al.] 2024) 7265 | 53.46 8723 6629 | 92.08 66.16 77.00
Gemini-1.5-Pro (Reid et al.]2024) | 69.61 61.82 7418 6744 | 7770 66.25 71.52
TABot (Ours) 81.00 | 78.65 8510 8175 83.77 76.90 80.10
TABot-Chat (Ours) 82.05 | 79.70 86.00 8273 | 84.80 7810 8131

As presented in Table 2] most previous models struggle to recognize traffic accidents, with accu-
racies ranging from 50% to 54.65%. VTimeLLM and our baseline Grounding tend to classify all
videos as abnormal, indicating several false positives. Although Qwen2-VL and Gemini-1.5-Pro
show some improvement, they tend to classify the videos as normal, exhibiting a lack of accident
perception. In contrast, our TABot, trained on our TAU-106K dataset, demonstrates a significant
improvement, reaching an accuracy of 80.95% and outperforming all prior methods. Further instruc-
tion tuning with multi-round dialogue data, our TABot-Chat variant further presents an accuracy of
82.05% and improved overall performance for both accident and normal scenarios.

Table 3: Experimental results on video accident description and accident temporal localization.

Methods Video Accident Description Accident Temporal Localization
BLEU Rouge BERT GPT4 | AP@30 AP@50 AP@70 mloU
Video-LLaVA (Lin et al.]|[2023) 22.20 24.81 60.72 26.17 - - - -
TimeChat (Ren et al.[[2024) 7.12 18.16  58.77 12.67 23.00 7.90 2.50 18.07
VTimeLLM (Huang et al.[[2024) 2525 2332 60.84 18.62 - - - -
GroundingGPT (L1 et al.[|[2024) 9.77 1643 5570  14.00 4.60 2.40 0.90 3.79
Qwen2-VL (Wang et al.[[2024) 1538 23.64 61.61 39.80 3291 15.76 5.42 20.75
Gemini-1.5-Pro (Reid et al.|2024) | 12.83 19.57 60.79  23.66 13.87 5.14 1.64 9.31
TABot (Ours) i 5459 5794 8231 55.60 39.44 20.12 9.80 25.93
TABot-Chat (Ours) 55.70 5832 83.78 55.73 37.90 20.70 7.80 25.33

For the tasks of video accident description and temporal localization, the performance of our mod-
els is detailed in Table [3] TABot excels in generating accurate and contextually relevant accident
descriptions, achieving the highest BERT and GPT-4 scores, indicating high semantic alignment
with human judgments. As for the most challenging task of accident temporal localization, previous
models struggled to pinpoint the occurrence of accidents, and only Qwen2-VL demonstrated a cer-
tain capability in fine-grained localization within videos. Our TABot also significantly surpasses all
existing methods in this fine-grained task, establishing a new state-of-the-art in temporal localization
performance. After instruction tuning, the TABot-Chat variant shows improved description capabil-
ities as we expected, with a slight decrease in temporal localization performance. This decrease can
be attributed to the model’s enhanced conversational abilities, which may lead to a slight decline in
the model’s focus on temporal localization.

5.2 IMAGE-LEVEL TASKS

In addition to the video-level tasks, we also evaluate our proposed models on image-level tasks. The
experimental results are presented in Tables [ and [5] where we compare our models against several
state-of-the-art methods (Zhu et al., [2023 [Li et al.| [2024; Bai et al.l 2023} Wang et al.| |2024; Reid
et al., [2024; |Achiam et al., 2023)).

Table [ presents the results of the image accident recognition. Our TABot outperforms all methods
in image accident recognition, demonstrating the quality of our dataset and the effectiveness of our
training strategies. As for accident description, the superior performance of our models is evident,
validating that our model excels in generating accurate and contextually relevant descriptions of
accidents. TABot-Chat, following instruction tuning, attains excellent values of 77.26 and 55.73 for
BERT and GPT-4 scores, indicating high semantic alignment with human judgments.
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Table 4: Experimental results on image accident recognition and description in traffic scenes.

Methods Image Accident Recognition Image Accident Description
) Acc [Rec@A Pre@A FI@A[Rec@N Pre@N FI@N|BLEU Rouge BERT GPT-4
MiniGPT4 (Zhu et al.||[2023) 64.05| 7557 6889 72.08 | 4573 54.06 4954 | 9.63 11.56 4584 11.67

GroundingGPT (Li et al.|[2024) 63.75| 79.15 6745 7284 | 3925 5420 4553 | 722 7.81 4500 21.08
Qwen-VL-Max (Bai et al.[2023) [69.95| 87.87 7048 7822 | 4145 6823 51.57 | 459 427 43.08 2846
Qwen2-VL (Wang et al.[|2024) 5835| 40.07 8353 54.16 | 87.44 4784 61.84 | 23.31 2453 66.12 32.01
Gemini-1.5-Pro (Reid et al.[[2024) | 80.99 |  0.00 0.00 0.00 80.99 1.00  89.50 | 16.28 21.53 64.44 24.54

GPT-40 (Achiam et al.|[2023) 63.65| 4544 90.73 60.55 | 92.62 5162 6630 | 478 518 43.05 35.71
TABot (Ours) 90.75 | 9438 90.31 92.30 | 8558 9145 8842 | 48.62 4331 7520 55.12
TABot-Chat (Ours) 90.50 | 9490 89.33 92.03 | 84.48 9236 8824 | 50.28 45.67 77.26 55.73

Table 5: Experimental results on accident region and object grounding in traffic images.

Methods Accident Region Grounding Accident Object Grounding
AP@30 AP@50 AP@70 mloU | AP@30 AP@50 AP@70 mloU
MiniGPT4 (Zhu et al.[|2023) 50.57 34.85 24.67 39.36 70.33 56.65 33.24 49.72
GroundingGPT (L1 et al.[[2024) 26.55 14.25 7.82 3.84 62.23 49.06 27.34 43.75
Qwen-VL-Max (Bai et al.][2023) 43.73 26.47 12.79 30.72 59.97 45.27 28.25 43.00
Qwen2-VL (Wang et al.|[2024) 60.21 47.52 29.70 43.02 71.66 57.48 35.66 50.38
Gemini-1.5-Pro (Reid et al.[|2024) 56.66 37.20 17.42 37.85 46.07 34.99 20.09 31.98
TABot (Ours) 80.05 70.03 45.52 57.83 78.05 65.86 39.88 54.95
TABot-Chat (Ours) 80.29 69.87 44.95 57.63 77.64 65.41 39.68 54.78

Table [5] showcases the results for region- and object-level grounding. Our TABot significantly out-
performs the baselines in terms of AP and mloU for both accident regions and objects. Similar to
the phenomenon observed in video tasks, instruction tuning slightly perturbs the model’s grounding
performance, but the overall performance remains competitive. The essential fine-grained ground-
ing performance gap compared to previous methods further highlights the necessity of collecting
traffic accident data and training models on this specific domain.

5.3 ABLATION STUDY

The Effectiveness of Joint Training. To evaluate the impact of joint training on image and video
data, we additionally train the TABot using a single modality (TABot-single trained on image or
video data only) and compare the results with our joint training model (TABot). According to the
main results in Tables [6] the joint training model outperforms the single modality models in most
tasks, especially for image-level tasks. The improvement in accident recognition and description
tasks is more pronounced than in spatial grounding tasks, indicating that the primary benefit of
video data is the scale-up in the amount of training data, which is particularly effective for tasks
requiring richer contextual information. On the other hand, incorporating image data into video
tasks leads to a minor performance drop, suggesting that the model’s focus on video data may have
slightly compromised its performance on image tasks.

The Effectiveness of VSA and NSR. Benefiting from our unified video-image annotation pipeline,
VSA can explicitly incorporate spatial grounding annotations at specific time frames into the training
of video temporal localization. As shown in Table[7] our VSA strategy leads to a consistent improve-
ment in the model’s temporal localization capabilities, demonstrating its effectiveness in involving
spatial information as a complementary signal to enhance the model’s temporal perception. As for
NSR, it improves the model’s overall performance across both image and video tasks by enhancing
its capacity to differentiate accident events from normal content, as indicated in Table [/} However,
there is a marginal decline in spatial grounding performance, and we attribute this to the model’s
focus on temporal localization, which may have led to a slight trade-off in spatial understanding.
This drawback is compensated when the NSR is combined with the VSA, as all tasks achieve their
best performance, demonstrating the complementary nature of these two strategies.

Table 6: Ablation study of separate (TABot-single) or joint (TABot) training on image and video
data. “AG”, “OG” & “TL” denote the AP@50 of Accident region Grounding, accident Object
Grounding, and Temporal Localization.

Model Image Understanding Video Understanding
Acc BERT GPT-4 AG oG Acc BERT GPT-4 TL
TABot-single 77.95 74.16 48.22 68.97 64.70 80.95 82.62 54.63 20.28
TABot 90.75 75.20 55.12 70.03 65.86 81.00 82.31 55.60 20.12
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Table 7: Ablation study on the additional training strategies.

TABot Image Understanding Video Understanding
VSA NSR Acc BERT GPT-4 AG 0G Acc BERT GPT-4 TL
X X 88.45 75.09 54.28 68.57 64.06 80.50 82.08 55.23 19.30
X v 88.00 74.73 53.82 70.20 64.21 81.90 81.72 54.78 18.90
v X 88.60 74.83 5391 70.36 64.55 80.80 82.26 55.53 19.92
v v 90.75 75.20 55.12 70.03 65.86 81.00 82.31 55.60 20.12

Table 8: Ablation study on the training strategy of the instructing tuning.

TABot-Chat Image Understanding Video Understanding
Mixed Data | Task Flag Acc BERT GPT4 AG [e]€] Acc BERT GPT4 TL
84.55 7544 50.18  68.71 6452 | 79.50 82.43 53.32 5.10
85.50  75.59 5283  69.14 6476 | 7935 82.14 54.51 13.30
88.30  76.56 52.04 6922 6411 | 8020  83.10 55.40 18.90
9045 77.20 5573 69.46 6496 | 81.25 83.51 5573  19.50

NN X X
N XN X

Training Strategies for Chat Version In the TABot-Chat model, we observe that directly perform-
ing instruction tuning without additional recipes significantly degrades the model’s performance in
functional tasks, for example, the accuracy for image accident recognition decreased to 84.55%. To
maintain or even improve the functional performance, we took some data-centric approaches: (1)
mix the datasets used for Functional Tuning and Instruction Tuning. (2) introduce task flags to spec-
ify the target response for the model in a multi-task framework. As presented in Table 8] based on
our training data paradigm, we successfully improve the conversational performance of TABot-Chat
while maintaining excellent functional results.

Table 9: The ablation study of reasoning captions on the temporal localization task.

Model AP@30 AP@50 AP@70 mloU
TABot 39.44 20.12 9.80 25.93
- Reason Caption 34.20 16.90 6.60 21.67

Effectiveness of Reasoning Description In the application of MLLMs to traffic accident under-
standing, the most critical task is to achieve precise temporal localization of accidents in videos.
The labeled reason caption in our TAU-106K dataset is a portent of the content of the accident,
which makes accident detection and localization more trackable. Here we evaluate the effectiveness
of the reasoning caption in the temporal localization task by conducting an ablation study as shown
in Table 0] The results show that the removal of reasoning captions leads to a significant perfor-
mance drop in the temporal localization task, validating our claim that reasoning captions serve as
valuable cues for accident understanding. Our future work will focus on developing more reasoning
tasks based on the reasoning captions in TAU-106K to achieve accident forecasting and causality
analysis tasks.

6 DISCUSSION AND CONCLUSION

To advance the exploration of multimodal language learning models (MLLM) for traffic accident un-
derstanding, we introduced video-image-text joint dataset TAU-106K, which includes 51.5K video
clips and 54.8K images, with high-quality annotations covering coarse- and fine-grained accident-
oriented information. Upon our comprehensive dataset, we proposed TABot, a unified MLLM that is
compatible with video and image data and can handle various traffic accident understanding tasks in-
cluding accident recognition, description, temporal localization, and spatial grounding. Our method
and dataset lay the foundation for MLLM to infer and understand fine-grained representations of
traffic accident scenarios. Our publicly available data and code will facilitate further research on
MLLM for traffic accidents. Future work will include more detailed grounding and addressing the
hallucination problem.
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