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Abstract

Many real world scientific and industrial applica-
tions require optimizing multiple competing black-
box objectives. When the objectives are expensive-
to-evaluate, multi-objective Bayesian optimization
(BO) is a popular approach because of its high sam-
ple efficiency. However, even with recent method-
ological advances, most existing multi-objective
BO methods perform poorly on search spaces
with more than a few dozen parameters and rely
on global surrogate models that scale cubically
with the number of observations. In this work we
propose MORBO, a scalable method for multi-
objective BO over high-dimensional search spaces.
MORBO identifies diverse globally optimal solu-
tions by performing BO in multiple local regions
of the design space in parallel using a coordinated
strategy. We show that MORBO significantly ad-
vances the state-of-the-art in sample efficiency for
several high-dimensional synthetic problems and
real world applications, including an optical dis-
play design problem and a vehicle design prob-
lem with 146 and 222 parameters, respectively. On
these problems, where existing BO algorithms fail
to scale and perform well, MORBO provides prac-
titioners with order-of-magnitude improvements in
sample efficiency over the current approach.

1 INTRODUCTION

The challenge of identifying optimal trade-offs between
multiple complex objective functions is pervasive in many
fields, including machine learning [Sener and Koltun, 2018],
science [Gopakumar et al., 2018], and engineering [Marler
and Arora, 2004, Mathern et al., 2021]. For instance, Mazda
recently proposed a vehicle design problem in which the
goal is to optimize the widths of 222 structural parts in order

to minimize the total weight of three different vehicles while
simultaneously maximizing the number of common gauge
parts [Kohira et al., 2018]. Additionally, this problem has 54
black-box constraints that enforce important performance
requirements such as collision safety. Evaluating a design
requires either crash-testing a physical prototype or running
computationally demanding simulations. In fact, the origi-
nal problem was solved on what at the time was the world’s
fastest supercomputer and took around 3,000 CPU years
to compute [Oyama et al., 2017]. Another example is de-
signing optical components for AR/VR applications, which
requires optimizing complex geometries described by hun-
dreds of parameters in order to identify designs that yield
optimal trade-offs between image quality and efficiency of
the optical device. Evaluating a design involves either fabri-
cating and measuring prototypes or running computationally
intensive simulations. For such problems, sample-efficient
optimization is paramount.

Bayesian optimization (BO) has emerged as an effective,
general, and sample-efficient approach for “black-box” opti-
mization [Jones et al., 1998] and is highly effective for ma-
chine learning hyperparameter tuning [Turner et al., 2021].
However, in its basic form, BO is subject to important lim-
itations. In particular, (i) successful applications typically
consider low-dimensional search spaces, usually with less
than 20 tunable parameters [Frazier, 2018], (ii) inference
with the typical Gaussian Process (GP) surrogate models
incurs cubic time complexity with respect to the number of
data points, which prevents usage in the large-sample regime
that is often necessary for high-dimensional problems, and
(iii) most methods focus on single objective unconstrained
problems. As a result, BO cannot easily be applied to ei-
ther of the aforementioned Mazda vehicle design or the
AR/VR optical design problems. Moreover, high dimen-
sional multi-objective problems requiring sample-efficient
optimization are prevalent in many real-world settings such
as groundwater remediation [Akhtar and Shoemaker, 2015],
cell network configuration [Dreifuerst et al., 2021], and
water resource management [Bai et al., 2017]. The state-of-
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the-art approach for this class of problems is NSGA-II [Deb
et al., 2002], a popular evolutionary strategy, but with poor
sample-efficiency, which hinders the progress of the scien-
tists running these experiments.

In this paper, we close this gap by making BO applica-
ble to challenging high-dimensional multi-objective prob-
lems. To do so, we propose an algorithm called MORBO
(“Multi-Objective Regionalized Bayesian Optimization”)
that optimizes diverse parts of the global Pareto frontier
in parallel using a coordinated set of local trust regions
(TRs). As shown in Figure 1 (left), TRs are located at dif-
ferent solutions with diverse trade-offs between objectives.
MORBO performs local BO in each TR to mitigate over-
exploration, a phenomenon that plagues many algorithms
in high-dimensional settings [Eriksson and Poloczek, 2021].
To enable scaling to large evaluation budgets, MORBO
leverages local GP surrogate models of the objective func-
tion, which reduces the time complexity for GP inference
from O(n3), where n is the number of data points, to
O(n3T ), where nT � n is the number of local data points
for a TR T . To facilitate efficient and collaborative global op-
timization, MORBO passes information between TRs in the
following two ways: (1) Observations collected by one TR
are shared with the others—which is particularly important
when the TRs overlap as shown in Figure 1, (2) MORBO
selects a batch of candidates by leveraging the TRs to col-
laboratively maximize a global utility. To ensure efficient
global optimization, MORBO terminates under-performing
TRs and allocates new TRs according to a global policy
with a theoretical performance guarantee—a property that
sets MORBO apart from most existing methods.

The significance of MORBO is that it is the first multi-
objective BO method that scales to hundreds of tunable
parameters and thousands of evaluations, a setting where
practitioners have previously had to fall back on alterna-
tive methods with much lower sample-efficiency, such as
NSGA-II. Our comprehensive evaluation demonstrates that
MORBO yields order-of-magnitude savings in terms of time
and resources compared to state-of-the-art methods on chal-
lenging high-dimensional multi-objective problems.

2 BACKGROUND

2.1 PRELIMINARIES

2.1.1 Multi-Objective Optimization

In multi-objective optimization (MOO), the goal is to max-
imize (without loss of generality) a vector-valued objec-
tive function f(x) = [f (1)(x), ..., f (M)(x)] ∈ RM , where
M ≥ 2 while satisfying black-box constraints g(x) ≥ 0 ∈
RV where V ≥ 0, x ∈ X ⊂ Rd, and X is a compact set.
Usually, there is no single solution x∗ that simultaneously
maximizes all M objectives and satisfies all V constraints.

Hence, objective vectors are compared using Pareto domi-
nation.

Definition 2.1. An objective vector f(x) Pareto-dominates
f(x′), denoted as f(x) � f(x′), if f (m)(x) ≥ f (m)(x′)
for all m = 1, ...,M and there exists at least one m ∈
{1, . . . ,M} such that f (m)(x) > f (m)(x′).

Definition 2.2. The Pareto frontier (PF) is the set of optimal
trade-offs P(X) over a set of designs X ⊆ X :

P(X) = {f(x) : x ∈ X,@ x′ ∈ X s.t. f(x′) � f(x)}

Under black-box constraints, the feasible Pareto frontier is
defined as Pfeas(X) = P({x ∈ X : g(x) ≥ 0}).

The goal of a MOO algorithm is to identify an approximate
PF P(Xn) of the true PF P(X ) within a pre-specified bud-
get of |Xn| = n function evaluations. The quality of a PF is
often evaluated using the hypervolume (HV) indicator.

Definition 2.3. The hypervolume indicator, HV(P(X)|r)
is the M -dimensional Lebesgue measure λM of the region
dominated byP(X) and bounded from below by a reference
point r ∈ RM .

The reference point is typically provided by the practitioner
based on domain knowledge [Yang et al., 2019]. MOO
problems are often addressed using evolutionary algorithms
(EA) such as NSGA-II [Deb et al., 2002]. However, EAs
generally suffer from high sample-complexity, rendering
them inapplicable under small evaluation budgets.

2.1.2 Bayesian Optimization

When high sample-efficiency is required, Bayesian opti-
mization (BO) is a popular approach [Frazier, 2018]. BO
relies on a probabilistic surrogate model and an acquisition
function that uses the surrogate model to provide the utility
of evaluating a set of design points on the black-box func-
tion. The acquisition function is responsible for balancing
exploration and exploitation. In the multi-objective setting,
a common approach is to optimize random scalarizations
of the objectives [Knowles, 2006, Paria et al., 2020] using
a single-objective acquisition function. A more principled
approach is to directly optimize the Pareto frontier by select-
ing candidates with maximum hypervolume improvement
either in expectation under the GP posterior [Emmerich
et al., 2006] or using Thompson sampling (TS) [Bradford
et al., 2018].

2.2 RELATED WORK

2.2.1 Multi-objective Bayesian optimization

There have been many recent contributions to multi-
objective BO, e.g., Konakovic Lukovic et al. [2020],
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Figure 1: An illustration of MORBO on: 2-objective benchmark problem with 2 parameters and 2 constraints called MW7
[Ma and Wang, 2019] with 3 TRs. The left-most plot illustrates how MORBO’s center selection technique centers the TRs
at Pareto optimal points across different parts of the Pareto frontier. This encourages MORBO to explore diverse parts of
the Pareto Frontier, which is important to identifying the multiple disconnected regions on this MW7 problem. The three
right-most plots illustrate the TRs over the design space along with contours of, respectively, the 2 objective metrics and the
feasibility metric indicating whether all black-box constraints are satisfied. Note that the TRs overlap with one another and
contain data points that were collected by other TRs. Hence, sharing observations collected by different TRs provides local
models with more observations than if each local model were only fitted to data collected by its corresponding TR.

Daulton et al. [2020, 2022], Bradford et al. [2018]), but very
few methods consider the high-dimensional setting and with
large evaluation budgets. All of these methods described
below rely on global GP models. As a result, these methods
have mostly been evaluated on low-dimensional problems,
typically d � 10 [Konakovic Lukovic et al., 2020, Brad-
ford et al., 2018]. In the multi-objective BO literature, the
largest search space we have found consists of 27 parame-
ters [Paria et al., 2020]. Nevertheless, for completeness we
review multi-objective BO methods that support generat-
ing large batches of designs. DGEMO [Konakovic Lukovic
et al., 2020] uses a hypervolume-based objective with heuris-
tics to encourage diversity while exploring the PF.

Parallel expected hypervolume improvement
(qEHVI) [Daulton et al., 2020] has strong empirical
performance, but its computational complexity scales
exponentially with the batch size. qNEHVI [Daulton et al.,
2021] improves scalability with respect to the batch size, but
like DGEMO and qEHVI, qNEHVI has only been evaluated
on low-dimensional search spaces. TSEMO [Bradford
et al., 2018] optimizes approximate GP function samples
using NSGA-II and uses a hypervolume-based objective for
selecting a batch of points from the NSGA-II population.
ParEGO [Knowles, 2006] and TS-TCH [Paria et al.,
2020] use random Chebyshev scalarizations with parallel
expected improvement [Jones et al., 1998] and Thompson
sampling—where a design is sampled with probability
proportional to a design being optimal [Thompson, 1933]—
respectively. ParEGO has been extended to the batch setting
in various ways including: (i) MOEA/D-EGO [Zhang et al.,
2010], an algorithm that optimizes multiple scalarizations
in parallel using MOEA/D [Zhou et al., 2012], and (ii)
qParEGO [Daulton et al., 2020], which uses composite

objectives with sequential greedy batch selection under
different scalarization weights. Information-theoretic
methods, e.g., Hernández-Lobato et al. [2015], Suzuki et al.
[2020] have also garnered recent interest.

LaMOO [Zhao et al., 2021] is a recent work that partitions
the search space into “good“ and “bad“ regions and samples
new designs from “good“ regions using qEHVI or CMA-ES
[Hansen, 2007]. However, LaMOO-qEHVI relies on global
GPs and is therefore prohibitively time-consuming with
large evaluation budgets. In addition, the authors propose to
use rejection sampling to enforce that samples are from the,
typically non-rectangular, "good" region, but rejection sam-
pling is prohibitively time-consuming in high-dimensional
search spaces (see Appendix D.1.1 for further discussion).

2.2.2 High-dimensional Bayesian optimization

Two popular approaches for high-dimensional BO are (1)
mapping the high-dimensional inputs to a low-dimensional
space via a random embedding [Wang et al., 2016,
Munteanu et al., 2019, Letham et al., 2020] and (2) ex-
ploiting additive structure [Kandasamy et al., 2015, Gardner
et al., 2017]. However, both families of methods require
strong assumptions on the structure of the problem (low-
dimensional linear or additive structure, respectively), and
often perform poorly if the assumptions do not hold [Eriks-
son and Jankowiak, 2021]. This is especially problematic
when optimizing multiple objectives since all objectives
need to have the same assumed structure, which is un-
likely in practice. Eriksson and Jankowiak [2021] leverage
a weaker assumption that the objective only depends on a
small subset of the parameters and Eriksson et al. [2021]
extended this approach to the multi-objective setting, but



this approach requires using computationally-demanding
Markov Chain Monte Carlo methods for fitting the model,
which is only feasible in the small data regime.

2.2.3 Trust Region Bayesian Optimization

Another popular method for high-dimensional BO is
TuRBO [Eriksson et al., 2019], which performs BO in lo-
cal trust regions (TRs) to avoid over-exploration. In con-
trast with [Zhao et al., 2021] which uses non-rectangular
"good" regions, TuRBO uses hyperrectangular TRs, where
each TR T has a center point xcenter and an edge-length
L ∈ [Lmin, Lmax]. Each TR maintains success and failure
counters that record the number of consecutive samples
generated from the TR that improved or failed to improve
(respectively) the objective. If the success counter exceeds
a predetermined threshold τsucc, the TR length is increased
to min{2L,Lmax} and the counter is reset to zero. Simi-
larly, after τfail consecutive failures the TR length is set to
L/2 and the failure counter is set to zero. Finally, if the
length L drops below a minimum edge length Lmin, the TR
is terminated and a new TR is initialized.

In contrast with aforementioned methods, TuRBO makes no
strong assumptions about the objectives. Although TuRBO
has been extended to handle black-box constraints [Eriksson
and Poloczek, 2021], to our knowledge, all existing TR-
based BO methods target single-objective optimization. In
addition, TuRBO does not pass information between TRs,
which results in an inefficient use of the evaluation budget;
these methods have not observed significant improvement
from using multiple TRs. Lastly, even though optimization
is restricted to a local TR, TuRBO fits GP models to the
entire history of data collected by a single TR which can lead
to poor scalability in settings where TRs restart infrequently.

2.3 ISSUES WITH SCALARIZED TURBO

Since ParEGO is a well-established method (in low-
dimensional settings) that optimizes random Chebyshev
scalarizations, a reasonable approach would be to extend
TuRBO to the MOO setting by using multiple TRs in paral-
lel where each TR optimizes a different random Chebyshev
scalarization of the objectives. However, as we demonstrate
in the left subplot of Figure 2, this approach results in a PF
with very poor coverage. This is because a single scalariza-
tion is used for the lifetime of each TR in order to main-
tain a stable objective. Optimizing a single scalarization
per trust region often leads to better solutions with respect
to that scalarization than optimizing the entire PF using a
hypervolume-based acquisition functions, which requires ex-
ploration of different objective trade-offs. However, if TRs
are not restarted frequently (e.g. because TuRBO continues
to find better solutions with respect to that scalarization),
only a small number of scalarizations will be used, which

can lead to poor coverage of the PF. As shown in Figure 2,
we observe that MORBO yields PFs with better coverage
(diversity of trade-offs). In addition, the TRs in TuRBO are
independent; they do not pass information about evaluated
designs and observations, and they do not collaboratively
aim to optimize the global PF—rather, they act in isolation
to optimize their own objectives. Together, this leads to an
inefficient use of the sample budget.

3 MORBO

We now introduce MORBO, a collaborative multi-TR ap-
proach for constrained high-dimensional multi-objective
BO. Rather than following TuRBO’s approach of employ-
ing multiple independent TRs, MORBO shares observations
across TRs to provide each TR with all available informa-
tion about the objectives and constraints relevant for local
optimization in the TR. Moreover, MORBO further departs
from TuRBO by (1) selecting TR center points in a coor-
dinated fashion to encourage identifying Pareto frontiers
with good coverage, (2) choosing new candidate designs by
collaboratively optimizing a shared global utility, and (3)
employing local models to reduce computational complexity
and improve scalability in large data regimes. As shown in
the center plot of Figure 2, MORBO identifies a high qual-
ity PF with much better coverage than the aforementioned
simple TuRBO extension. For the remainder of this section,
we describe the core components of MORBO, which are
also summarized in Algorithm 1.

3.1 COLLABORATIVE BATCH SELECTION VIA
GLOBAL UTILITY MAXIMIZATION

Maximizing hypervolume improvement (HVI) has been
shown to produce high-quality and diverse PFs [Emmerich
et al., 2006]. Given a reference point, the hypervolume im-
provement from a set of points is the increase in HV when
adding these points to the previously selected points. Ex-
pected HVI (EHVI) is a popular acquisition function that
integrates HVI over the GP posterior. However, maximizing
EHVI directly requires re-computing the GP posterior and
sampling from it in each gradient step, which becomes pro-
hibitively slow as the number of objectives (and constraints)
and in-sample data points increases.

To allow scalability to large batch sizes q, we instead use
Thompson sampling (TS) to draw q posterior samples from
the GP and optimize HVI under each realization. This ap-
proach can be viewed as a single-sample approximation of
EHVI [Daulton et al., 2021]. We select q points x1, ...,xq
for the next batch in a sequential greedy fashion and con-
dition upon the previously selected points in the batch by
computing the HVI with respect to the current PF P . In
particular, to select the ith point from a set of r candidate
points x̂1, . . . , x̂r we draw a sample from the joint posterior
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Figure 2: Objective values achieved on a 2-objective DTLZ2 function with d = 100 after 600 evaluations, batch size 50, and
3 TRs. The scatter plot illustrates the search behavior. The grey circles indicate the initial space-filling design, which is the
same for both methods. The other marker shapes and colors indicate which of the 3 TRs obtained a given solution. The
black line indicates the approximate Pareto frontier identified by each method. (Left) A straightforward extension of TuRBO
where each TR optimizes a random Chebyshev scalarization of the objectives does not explore the trade-offs between the
objectives because the TRs are rarely terminated under this approach, which leads only a few scalarizations being used.
(Center) In contrast, MORBO employs a center selection strategy that actively targets under-explored regions of the Pareto
frontier and uses a hypervolume-based acquisition function that is known to reward to high quality Pareto frontiers [Zitzler
et al., 2003, Couckuyt et al., 2014, Yang et al., 2019] and explores the entirety of the PF. (Right) MORBO can discover
disconnected regions of global PF on the MW7 function (d = 10, with 2 constraints) by using 5 TRs to locally optimize
disjoint regions of PF collaboratively, in parallel. This is stark contrast with TuRBO with Chebyshev scalarizations which
the left plot shows yield approximate Pareto frontiers with poor coverage and diversity, even when the true PF is connected
and simple.

over f({x1, . . . ,xi−1} ∪ {x̂1, . . . , x̂r}), which yields the
realization {f̃(x1), . . . , f̃(xi−1), f̃(x̂1), . . . , f̃(x̂r)}. We
select the ith point as the candidate point that maximizes
the HVI jointly with the realizations f̃(x1), . . . , f̃(xi−1)
of the previously selected points as shown in Figure 1. Con-
ditioning on the previously selected points and computing
the HVI under a sample from the joint posterior over the
previously selected points and the discrete set of candidates
leads to more diverse batch selection compared to selecting
each point independently. Moreover, this approach effec-
tively lets TRs collaboratively maximize the global HVI
utility function. Using this global utility, an individual TR
considers the iteration a success if at least one proposed
candidate improves the global HV and a failure otherwise.

Another benefit of HV-based acquisition functions is that
they naturally provide utility values for set of points, which
enables the TRs to target different parts of the PF. This is
particularly appealing in settings where the PF may be dis-
joint or may require exploring different parts of the search
space. As shown in the right plot of Figure 2, MORBO re-
covers diverse regions of a disconnected PF. Lastly, we note
that this batch selection strategy also allows to straightfor-
wardly implement fully asynchronous optimization, where
evaluations are dispatched to different “workers” and new
candidates are generated whenever there is capacity in the

worker pool. In the asynchronous setting, success/failure
counters and TRs can be updated after every q observations
are received, and intermediate observations can immediately
be used to update the local models.

3.2 COORDINATED TRUST REGION CENTER
SELECTION

In (constrained) single-objective optimization, previous
work centers the local TR at the best (feasible) observed
point. However, in the multi-objective setting, there is typ-
ically no single best solution. Assuming noise-free ob-
servations, MORBO selects the center to be the feasible
point on the PF with maximum hypervolume contribution
(HVC) [Beume et al., 2007, Loshchilov et al., 2011]. If
there is no feasible point, MORBO chooses the point with
the smallest total constraint violation (see Appendix B for
details on center selection with constraints). Given a refer-
ence point, the HVC of a point on the PF is the reduction in
HV if that point were to be removed; that is, the HVC of a
point is its exclusive contribution to the PF. Centering a TR
at the point with maximal HVC collected by that TR pro-
motes coverage across the PF, as points in crowded regions
will have lower contribution. MORBO selects TR centers
based on their HVCs in a sequential greedy fashion, exclud-



Algorithm 1: Summary of MORBO
Input: Objective functions f , Number of trust region nTR, Initial trust region length Linit, Maximum trust region length

Lmax, Minimum trust region length Lmin.
Output: Approximate Pareto frontier Pn

1 Evaluate an initial set of points and initialize the trust regions T1, ..., TnTR using the center selection procedure described
in Section 3.2 and mark center points as unavailable for other trust regions.

2 X0 ← ∅, Y0 = ∅, t← 1
3 while budget not exhausted do
4 Fit a local model within each trust region.
5 Select q candidates using the sequential greedy HVI procedure described in Section 3.1.
6 Evaluate candidates on the true objective functions and obtain new observations.
7 for j = 1, ..., nTR do
8 Update trust regions with new observations as described in Section 3.
9 Increment success/failure counters as described in Section 3 for observations from Tj .

10 Update edgelength Lj for Tj .
11 if Lj < Lmin then
12 Terminate Tj .
13 Fit GP to restart points Dt−1 = (Xt−1, Yt−1): ft−1 ∼ P (f |Dt−1).
14 Sample λ ∼ SM−1+ and f̃t−1 ∼ P (f |Dt−1), where SM−1+ = {w ∈ RM+ : ||w||2 = 1}.
15 xt ← argmaxx∈X sλ[f̃t−1(x)], where sλ[y] = minm(max( ymλm

, 0))M and ·i denotes the ith element.
16 Evaluate xt on the true objective functions and obtain new observation yt.
17 Reinitialize Tj with edgelength Linit centered at the xt.
18 Set Xt ← Xt−1 ∪ {xt}, Yt ← Yt−1 ∪ {yt}, t← t+ 1.

19 Update center to the available point with maximum HVC (globally if Tj was terminated otherwise within Tj).

20 return Approximate PF across observed function values.

ing points that have already been selected as the center for
another TR.

3.3 LOCAL MODELING

Most BO methods use a single global GP model, often
with a stationary kernel (e.g. Matérn-5/2) using automatic
relevance determination (ARD) fitted to all observations
collected so far. While a global model is necessary for most
BO methods, MORBO only requires each model to be ac-
curate within the corresponding TR. To increase scalability,
we employ local modeling where we only include the obser-
vations contained within a local modeling hypercube with
edge length 2L. The motivation for using the observations
from a slightly larger hypercube is to improve the model
close to the TR boundary.

In previous trust region BO works [Eriksson et al., 2019,
Eriksson and Poloczek, 2021, Wan et al., 2021], each TR
uses a GP that is fitted to the all observations collected by
that TR (rather than only a set of local observations in or
near the TR), which leads to scalability issues due to the
cubic time complexity of GP inference if the TR collects
many observations. In addition, fitting a GP solely to data
collected by a single TR ignores observations collected
by other TRs and makes inefficient use of the sampling

budget. In contrast, MORBO shares observations across
TRs and employs local models, where models are fit to all
observations within a hypercube with edge length 2L. This
significantly reduces the computational cost since exact GP
fitting scales cubically with the number of data points. Under
limited assumptions on the distribution of data across TRs,
using local models results in speedups ofO(n2TR/η

3), where
η is the average number of TR modeling spaces a data point
resides in. Empirically, we demonstrate (see Figure 3 in
Appendix F) that η < 1 as the optimization progresses and
the TRs shrink, and we find that this translates into speedups
of two orders of magnitude relative to global modeling as
shown in Appendix F.2. See Appendix E for more details
on the complexity.

3.4 RE-INITIALIZATION STRATEGY

Although MORBO performs local optimization within a
TR, we ensure global optimization by re-initializing TRs
using a principled technique based on hypervolume scalar-
izations [Zhang and Golovin, 2020]. A HV scalarization
is defined as sλ[y] = minm(max( ymλm

, 0))M , where ·m de-
notes the mth component [Zhang and Golovin, 2020]. Let
Dt−1 = (Xt−1, Yt−1) be the set of previous re-initialization
(restart) points Xt−1 = {xi}t−1i=1 and corresponding obser-
vations Yt−1 = f(Xt−1), where X0 = ∅ and Y0 = ∅.



Given Dt−1, we determine the center point xt of the new
TR by maximizing a random HV scalarization of the objec-
tives under a posterior sample from a global GP posterior
conditioned on Dt−1: f̃ ∼ P (f |Dt−1). This ensures that
TRs are initialized in diverse parts of the objective space
and yields a global optimization performance guarantee
(Section 4).

4 THEORETICAL ANALYSIS

We analyze the performance of MORBO in terms of its
cumulative HV regret. The instantaneous HV regret R(Pt)
after t TR restarts is defined as the difference in HV dom-
inated by the true Pareto frontier P∗ and the approximate
Pareto frontier Pt: R(Pt) = HV(P∗)− HV(Pt). The (cu-
mulative) HV regret after T restarts is the sum of the instan-
taneous regret over all restarts: RT =

∑T
t=1R(Pt). First,

we show that a TR will only evaluate a finite number of
samples before restarting.

Lemma 4.1. Let f ∈ [0, B]M , and assume that MORBO
only considers a newly evaluated sample to be an improve-
ment (for updating the corresponding TR’s success and
failure counters) if it increases the HV by at least δ ∈ R+

and assume that success counter threshold τsucc = ∞.1

Then each TR will only evaluate a finite number of samples.

The proof is given in Appendix C. Having established that
TRs only evaluate a finite number of designs, we now
bound the hypervolume regret with respect to the number
of restarted TRs. The bound leverages the kernel-dependent
maximum information gain γT—which measures the de-
crease in uncertainty after T observations —and is com-
monly used to analyze regret in BO [Srinivas et al., 2010].

Theorem 4.1. Let f ∈ [0, B]M for B > 0 and let
each component f (m) for m = 1, ...,M follow a Gaus-
sian distribution with marginal variances σ ≤ 1 and in-
dependent observation noise εm ∼ N (0, σ2

m) such that
σ2
m ≤ σ2 ≤ 1. LetPt denote the Pareto frontier over f(Xt),

where Xt is the set of TR re-initialization points after t TRs
have been restarted. Suppose further that the conditions of
Lemma 4.1 hold. Then, the cumulative hypervolume regret
RT of MORBO after T restarts is bounded by:

RT ≤M2(
√
2eπB/2)M

√
dγTT ln(T ).

Up to logarithmic terms, this regret bound is on the order
of Õ(

√
T ). This bound is significant because, to our knowl-

edge, Zhang and Golovin [2020] is the only other work
to bound the HV regret of multi-objective BO algorithms.
This makes MORBO the first sample-efficient large-scale,
MOO algorithm with bounded regret. The proof, given in

1As stated in Appendix D, we use τsucc = ∞ in all of our
experiments.

Appendix C, leverages the hypervolume regret bound from
Zhang and Golovin [2020]. However, our regret bound is
with respect to the number of restart points (rather than
evaluations)—a difference that can be viewed as a cost of
focusing on large-scale problems which BO with global GPs
cannot address. Moreover, our regret analysis in terms of the
number of restarts is similar to the convergence guarantees
of gradient-based TR optimization methods [Yuan, 1999]
and can be viewed as a multi-objective analogue of the per-
formance guarantees of recent single-objective BO-based
TR methods [Wan et al., 2021].

5 EXPERIMENTS

We evaluate MORBO on an extensive suite of benchmarks
with various numbers of input parameters (d), objectives
(M ), and constraints (V ). In Appendix F.1, we consider a
vehicle (d = 5) and a welded beam (d = 4, V = 4) design
problem to show that MORBO is competitive with other
algorithms on problems it was not designed for. We consider
three challenging real-world problems: a trajectory planning
problem (d = 60), a problem of designing optical systems
for AR/VR applications (d = 146), and an automotive de-
sign problem (d = 222, V = 54) . In addition, we evaluate
MORBO on DTLZ3, DTLZ5, and DTLZ7 problems with
2/4 objectives (6 problems in total) in Appendix F.

We compare MORBO to multi-objective BO meth-
ods (qNEHVI, qParEGO, TS-TCH, TSEMO, DGEMO,
MOEA/D-EGO), recent work leveraging search space parti-
tioning (LaMOO-CMAES, LaMOO-qNEHVI), a widely
used evolutionary algorithm (NSGA-II), and Sobol—a
quasi-random baseline where designs are sampled from
a scrambled Sobol sequence [Owen, 2003] (see Appendix D
for more details on the methods). MORBO is implemented
using BoTorch [Balandat et al., 2020] and the code will be
made publicly available soon. We run all methods for 20
replications and initialize them using the same quasi-random
initial points for each replication. We use the same hyperpa-
rameters for MORBO on all problems and conduct analyze
the sensitivity of MORBO to its hyperparameters in Figure 4.
See Appendix D for details on the experiment setup. All
experiments used a Tesla V100 SXM2 GPU (16GB RAM).

5.1 LARGE-SCALE REAL-WORLD PROBLEMS

Trajectory Planning We consider a trajectory planning
problem similar to the rover trajectory planning problem
considered in [Wang et al., 2018]. As in the original prob-
lem, the goal is to find a trajectory that maximizes the re-
ward when integrated over the domain. The trajectory is
determined by fitting a B-spline to 30 design points in the
2-objective plane, which yields a 60-dimensional optimiza-
tion problem. In this experiment, we constrain the trajectory
to begin at the pre-specified starting location, but we do not
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Figure 3: (Left) MORBO outperforms other methods on the trajectory planning problem (d = 60). (Middle) Illustration of
the results on the Optical design problem (d = 146). NSGA-II performs better than the BO baselines but is not competitive
with MORBO. (Right) MORBO shows compelling performance on the Mazda vehicle design problem (d = 222) with 54
black-box constraints. For all plots, we show the mean and one standard error of the mean over 20 replications.

require it to end at the desired target location. In addition to
maximize the reward of the trajectory, we also minimize the
distance from the end of the trajectory to the intended target
location. Intuitively, these two objectives are expected to
be competing because reaching the exact end location may
require passing through areas with lower associated reward.
The results from 2,000 evaluations using batch size q = 50
and 200 initial points are presented in Figure 3, which shows
that MORBO performs the best and even state-of-the-art
methods such as qNEHVI do not out perform NSGA-II.

Optical design problem We consider the problem of de-
signing an optical system for an augmented reality (AR) see-
through display. This optimization task has 146 parameters
describing the geometry and surface morphology of multiple
optical elements in the display stack. Several objectives are
of interest in this problem, including display efficiency and
display quality. Each evaluation of these metrics requires a
computationally intensive physics simulation that takes sev-
eral hours to run. In this benchmark, the task is to explore the
Pareto frontier between display efficiency and display qual-
ity (both objectives are normalized w.r.t. the reference point).
We consider 250 initial points, batch size q = 50, and a to-
tal of 10,000 evaluations. This is out of reach for the other
BO baselines due to runtime considerations, and so we run
qNEHVI, qParEGO, TS-TCH, TSEMO, MOEA/D-EGO,
for 2,000 evaluations and DGEMO for 1,000 evaluations.
We were only able to run LaMOO-CMAES for 7, 600 eval-
uations before it overflowed GPU memory. Figure 3 shows
that MORBO achieves substantial improvements in sample
efficiency compared to NSGA-II. Furthermore, observe that
no other baselines are competitive with NSGA-II except in
the very small sample regime (less than 500 evaluations).

Mazda vehicle design problem We consider the 3-car
Mazda benchmark problem [Kohira et al., 2018]. This chal-
lenging MOO problem involves tuning 222 decision vari-
ables that represent the thickness of different structural parts.
The goal is to minimize the total vehicle mass of the three
vehicles (Mazda CX-5, Mazda 6, and Mazda 3) as well as
maximizing the number of parts shared across vehicles. Ad-
ditionally, there are 54 black-box output constraints (evalu-
ated jointly with the two objectives) that enforce that designs
meet performance requirements such as collision safety stan-
dards. This problem is, to the best our knowledge, the largest
MOO problem considered by any BO method and requires
fitting 56 GP models to the objectives and constraints. The
original problem underlying the Mazda benchmark was
solved on what at the time was the world’s fastest supercom-
puter and took around 3,000 CPU years to compute [Oyama
et al., 2017]. We consider a budget of 10,000 evaluations
using batches of size q = 50 and 300 initial points.

Figure 3 demonstrates that MORBO clearly outperforms the
other methods. A feasible design satisfying the black-box
constraints was provided to all methods for all replications
as part of the initial 300 design points. However, in subse-
quent evaluations Sobol did not find another feasible design,
illustrating the challenge of satisfying the 54 constraints.
While NSGA-II made progress from the initial feasible so-
lution, it is not competitive with MORBO. NSGA-II and
Sobol are the only applicable baselines because standard
multi-objective BO methods are impractically slow with
56 global GPs and LaMOO does not support black-box
constraints.
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Figure 4: We investigate the sensitivity of MORBO with respect to its hyperparameters. We observe that using multiple TRs
performs significantly better than using a single TR and that data-sharing and the use of a hypervolume based acquisition
function are important components of MORBO.

5.2 ABLATION STUDY

Finally, we study the sensitivity of MORBO with respect
to the number of TRs (nTR), the failure tolerance (τfail),
and sharing observations across TRs, local modeling, HVI
acquisition function, and the re-initialization strategy. Using
several TRs allows MORBO to explore different parts of
the search space that potentially contribute to different parts
of the Pareto frontier. The failure tolerance controls how
quickly each TR shrinks: A large τfail leads to slow shrinkage
and potentially too much exploration, while a small τfail
may cause each TR to shrink too quickly and not collect
enough data. MORBO uses 5 TRs and τfail = max(10, d3 )
by default, similar to what is used by Eriksson et al. [2019].

We consider the DTLZ2 problem (d = 100, M = 2), the
trajectory planning problem (d = 60, M = 2), and the
optical design problem (d = 146, M = 2). Figure 4 shows
that MORBO with the default settings performs well on all
three problems. We observe that multiple TRs and the HVI
acquisition function are important as neither a single TR nor
a Chebyshev scalarization performs well. The performance
of MORBO is robust to the choice of failure tolerance except
for on the optical design problem where using a value of
10 is clearly worse than the default and causes the TRs to
shrink too quickly. Not sharing data between TRs results in
inferior results on the DTLZ2 and optical design problems.
While using a global GP model achieves good results on
the DTLZ2 and trajectory planning problems, it does not
perform as well on the optical design problem. A global GP
also comes at a high computational cost. Using a global GP,
running MORBO with a budget of 10,000 evaluations on the
optical design problem required 30 hours of computational
overhead, whereas MORBO did 10,000 evaluations in less
than an hour using local models. Lastly, we find consistently

strong performance for both our default HV scalarization-
based re-initialization strategy and a strategy that selects a
new design at random (denoted as "Random restart points").
The former allows us to bound MORBO’s regret.

6 DISCUSSION

We proposed MORBO, an algorithm for multi-objective
BO over high-dimensional search spaces. By using a co-
ordinated, collaborative multi-trust-region approach with
scalable local modeling, MORBO scales gracefully to high-
dimensional problems and high-throughput settings. In a
comprehensive experimental evaluation, we showed that
MORBO allows us to effectively tackle important real-world
problems that were previously out of reach for existing BO
methods. We showed that MORBO achieves substantial im-
provements in sample efficiency compared to existing state-
of-the-art methods such as evolutionary algorithms. Due to
the lack of alternatives, NSGA-II has been the method of
choice for many practitioners, and we expect MORBO to
provide practitioners with significant savings in terms of
time and resources across the many disciplines that require
solving challenging optimization problems.

However, there are some limitations to our method. Al-
though MORBO can handle a large number of black-box
constraints, using hypervolume-based acquisition means the
computational complexity scales poorly with the number
of objectives. Furthermore, MORBO is optimized for the
large-batch high-throughput setting and other methods may
be more suitable for and achieve better performance on
low-dimensional problems with small evaluation budgets.
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