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ABSTRACT

Human motion synthesis serves as a foundational component in computer graphics,
embodied Al and robotics. Despite progress has elevated motion quality and phys-
ical plausibility, prevailing methods remain constrained by their reliance on explicit
and hand-crafted control cues. More importantly, they rarely exhibit the capacity to
infer users’ implicit intentions—posing a major barrier to human-aligned motion
generation. Inspired by DeepSeek-R1’s success in eliciting reasoning abilities
through rule-based reinforcement learning (RL), we propose Motion-R1 as the first
attempt to explore the R1 paradigm for physically consistent latent-intent motion
generation. However, the naive adoption of Group Relative Policy Optimization
(GRPO) to motion synthesis encounters two limitations: (1) the scarcity of motion-
reasoning dataset, and (2) a lack of motion reasoning abilities. Towards these
issues, we first construct a newly curated Motion2Motion benchmark dataset, com-
prising text-to-motion dialogues for RL training. Further, our proposed Motion-R1
integrates a JS-divergence constrained policy optimization, achieving improved
reasoning capabilities on both motion generation and mathematical computation
benchmarks. In addition, we utilize a low-level RL-based optimization strategy to
enforce strict adherence to kinematic constraints. Experimental results showcase
that Motion-R1 delivers contextually appropriate, lifelike motions and surpasses
strong baselines in both accuracy and interpretability. Code will be released.

1 INTRODUCTION

Human motion generation has garnered significant research attention, with numerous methods
proposed to tackle various challenges in this domain (Tevet et al.| (2022)); Zhang et al.|(2024a); Dabral
et al[(2022)); [Zhang et al.| (2023b)); Chen/ (2024);/Andreou et al.|(2024); Zhang et al.|(2023c)); Barquero
et al.| (2024); Meng et al.| (2024). A substantial body of work focuses on synthesizing actions from
long textual descriptions, revealing the intrinsic complexity of semantic-to-motion mapping Jing et al.
(2023)); Jiang et al.|(2023); Wang et al.| (20244a); Lee et al.|(2024);|Sun et al.| (2024)). Nevertheless,
existing approaches predominantly address single-turn or isolated commands and lack the capacity
to effectively interpret and generate coherent motions from multi-turn or multi-round dialogue
inputs. This limitation significantly restricts their applicability in realistic, complex scenarios where
contextual continuity and nuanced intent understanding are essential.

Recently, there has been growing interest in bridging the gap between motion generation and its
application within physical or simulated environments |Cui et al.| (2024a); [He et al.| (2025} [2024);
Cheng et al.| (2024). However, most Text-to-Motion (T2M) techniques face difficulties in ensuring
physical consistency while simultaneously adapting to dynamic environmental constraints and
kinematic feasibility, thereby limiting their practicality for deployment beyond controlled simulations.

As illustrated in Fig. |1} prior methods can be broadly divided into two categories: those generating
motions without enforcing physical constraints, which often produce visually plausible but physically
unrealistic movements; and those incorporating physical constraints but failing to capture the com-
plexity of semantic contexts inherent in multi-turn dialogues. For instance, simple instructions such
as “a person is walking around casually” may be reasonably handled by physics-agnostic methods,
whereas commands involving detailed postures, gait variations, or context-dependent nuances often
lead to motions that are either physically implausible or semantically inconsistent. This dichotomy
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exposes a critical research gap, as neither approach sufficiently balances the demands of physical
realism and rich contextual comprehension.

e w
a person is walking Non-Physical Constraints . y B At W y B At |
around casually ‘ !i ij I 2 ij
] aN ¢ e Al X e
£
3
E sit down, bent torso, legs Physical Constraints m X
H folded at knees o e S Physicall
3 =1 # Inconsistent
3 <
A On a bustling street, a
pedestrian strides with a light Complex context
gait, his hands swinging Too difficult to understand!
naturally as if dancing to an
inner rhythm
-
: Complex Context . 1 &/ . [ mloilq)
T; Ph S{call skt Jarpo(6) = N“[uw(u),(o.)? 1 0] [E ; (mm(m,l =il s) A,) - BD)S(MHM»M)]
5 Consistent
E .
] ° ° [3 o o °
D Gmeee Ay APATAT B
= | 7\
= \.{.. o © o o o o :_'
e AL B Ed I
E Le
= ERA-CoT for ‘ _ N
g MisfeiB e Improved GRPO for Motion Generation ~ Low-lovel Optimization
\ J

Figure 1: Comparison between prior Text-to-Motion methods and our proposed approach. Existing
methods either neglect physical constraints or struggle with understanding complex multi-turn
dialogues, resulting in physically inconsistent or semantically inadequate motions. Our approach
integrates ERA-CoT for nuanced motion-to-motion reasoning, enhanced GRPO for robust motion
policy optimization, and a reinforcement learning-based low-level trajectory refinement to generate
physically consistent and semantically coherent motions suitable for deployment in physically
constrained simulation environments.

To address these challenges, we propose a novel text-fo-motion policy generation task, aiming to
synthesize motion policies that are both semantically faithful and physically consistent, thereby
enabling more realistic application within simulation settings. Our method, Motion-R1, contributes
in three key aspects: (1) We systematically analyze the effects of semantic ambiguity on motion
generation, demonstrating that conventional models often fail to resolve underspecified intentions,
resulting in contextually inappropriate motions. (2) We construct a newly curated large-scale Mo-
tion2Motion (M2M) benchmark dataset consisting of text-to-motion dialogues annotated with latent
intent reasoning chains, enabling reinforcement learning-based policy training that integrates a JS-
divergence constrained Group Relative Policy Optimization (GRPO) scheme to enhance reasoning
and generation capabilities. (3) We design a reinforcement learning-driven low-level optimization
framework that explicitly enforces kinematic feasibility and environmental dynamics during motion
synthesis within a physically constrained simulation environment, achieving superior performance
under such conditions.

2 RELATED WORK

2.1 HUMAN MOTION SYNTHESIS

How to synthesize realistic human behavior is a long-standing topic. Recent human motion generation
research focuses on diffusion models and transformers for diverse, high-quality synthesis. Early
methods | Barsoum et al.|(2018)); [Kania et al.| (2021)); Martinez et al.|(2017)); Petrovich et al.| (2022))
using GANs (Goodfellow et al.| (2020)/VAEs Kingma et al.,| (2013) improve temporal coherence
but face mode collapse. Emerging diffusion models and autoregressive models have significantly
dominated the field of motion synthesis. The former, e.g., MDM [Tevet et al.| (2022)), MLD |Chen et al.
(2023)), and Tender [Wang et al.|(2024b) propose conditional diffusion models to learn a powerful
probabilistic mapping from texts to motion sequences for controllable text-driven motion generation.
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In autoregressive-based methods, Zhang et al.| (2023a); |Guo et al.| (2024); [Pinyoanuntapong et al.
(2024a:b) embeds human motions into a latent representation space, from which motion sequences
are auto-regressively decoded conditioned on textual inputs. More recently, e.g., MotionGPT Jiang
et al.| (2023); Zhang et al.| (2024b)), MotionGPT-2 Wang et al.|(2024a), M3-GPT Luo et al.|(2024)),
AvatarGPT Zhou et al.| (2024), and MotionAgent (Wu et al.|(2024)) have initiated the development of a
unified motion-language model aimed at generating plausible human motions alongside along with
textual descriptions driven by prompt instructions. However, these methods are typically inferior in
physical plausibility and prone to synthesizing motions with artifacts, such as penetration, floating,
and sliding. Recent advancements in physics-based methods Peng et al.| (2021)); Hassan et al.| (2023));
Xu et al.|(2025); |Pan et al.| (2025)); (Cui et al.| (2024b); [ Xiao et al.|(2023)) show promising potential in
ensuring physical plausibility through the utilization of physics-aware simulators.

2.2 REWARD MODELS FOR REASONING

Recent RL-based reasoning frameworks transition from supervised fine-tuning to reward-driven
optimization, leveraging auxiliary reward models to evaluate intermediate reasoning quality and
enhance generalization Schulman et al.|(2017b); Raffel et al.| (2020); Christiano et al.|(2017). While
PPO|Schulman et al.|(2017a)) employs explicit value networks for advantage estimation, value-model-
free methods like GRPO |Shao et al.|(2024) utilize rule-based group-relative mechanisms. Practical
software engineering applications demonstrate that continuous rewards via lightweight similarity
metrics [Liu et al|(2024); [Yu et al.| (2023); [Zhang et al.| (2020) outperform binary alternatives by
providing granular feedback. Resource-constrained environments reveal trade-offs: small LLMs
achieve rapid reasoning gains through RL fine-tuning Team et al.| (2024b); |Devlin et al.| (2019);
Hu et al.| (2021), albeit with increased computational costs. Emerging paradigms like pairwise
preference reward models (PPRM) combine human feedback principles |Christiano et al.| (2017);
Ziegler et al.[(2019); Bai et al.| (2022); |Stiennon et al.| (2020) with direct preference optimization
techniques |Rafailov et al.| (2023); |Azar et al.|(2023); |[Ethayarajh et al.| (2023).

2.3 LARGE LANGUAGE MODELS

Fueled by vast datasets and substantial model sizes, Large Language Models (LLMs) represented
by GPTs|OpenAl| (2023ba), T5 Raffel et al.|(2020), PaLM [Chowdhery et al.|(2023), Gemma Team
et al.| (2024b; [2025)), Qwen |Yang et al.|(2024a3b)), and LLaMA Touvron et al.| (2023)); [Dubey et al.
(2024) have recently received extensive attention from researchers for their exceptional abilities
showcased in both comprehension and generation task. Earlier models, such as BERT Devlin et al.
(2019) and Google TS5 Raffel et al.| (2020); /Chung et al.| (2024), were designed for specific tasks like
translation or sentiment analysis. The field has since evolved toward general-purpose foundation
models, with representative open-sourced LLMs like LLaMA series [Touvron et al.| (2023)); Dubey
et al.|(2024) and Vicuna family (Chiang et al.[|(2023) have attracted much academic attention. Since
these two LLMs are predominantly pre-trained on English corpus, they are limited in multi-language
support. Recent years, models like GPT-4 |OpenAll (2023a)/ChatGPT |OpenAll (2023b)), Gemini [Team
et al.| (2024a), Deepseek |Liu et al.|(2024)) benefit from their expansive training datasets (GPT4, for
example, about 45 gigabytes) and vast parameter counts, which excel in following natural language
instructions and complete real-world tasks. Recent advances in LLM, e.g., DeepSeek-R1|Guo et al.
(2025), 03-mini [OpenAll (2025), MetaMath |Yu et al.| (2023)) have witnessed a growing emphasis
on reasoning capabilities, particularly for complex tasks involving logical deduction, mathematical
computation, and multi-step inference. In alignment with this paradigm, Motion-R1 empowers LLMs
with strong motion reasoning via reinforcement fine-tuning, supporting both versatile skill learning
and physical motion generation.

3 METHODS

We follow a coherent pipeline that systematically progresses from dataset construction to policy
optimization, ensuring each phase builds upon the previous component’s capabilities. The framework
comprises three synergistic pillars: (1) Motion2Motion Dataset construction to capture multi-turn
dialog patterns and motion semantics, (2) Improved GRPO Algorithm training for enhanced motion
description generation, and (3) Low-Level Kinematic Optimization to translate textual descriptions
into physically plausible motions. This tripartite architecture establishes a closed-loop system
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where the dataset informs model training, the optimized model generates motion specifications, and
the low-level policy ensures physical realizability in simulation environments. The components’
interdependence creates a virtuous cycle-high-quality data enables effective model training, which in
turn produces motion descriptions that facilitate physically-consistent policy learning.

3.1 MOTION2MOTION DATASET

3.1.1 DATASET OVERVIEW

The Motion2Motion Dataset is central to our framework, offering structured conversational data
crucial for training motion generation models. It consists of 7,132 annotated human motion samples,
as illustrated below. The dataset is designed to support downstream tasks by capturing both explicit
action sequences and implicit physical constraints within its annotations.
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Figure 2: Visualizations of Skills and Frequent Words in the Motion2Motion Dataset

To offer a clearer understanding of the skills and frequent words in the Motion2Motion Dataset, we
present visualizations in Figure 2] Figure[2a]shows a word cloud highlighting the most prominent
skills in the dialogues. This visualization provides a snapshot of the key skills frequently discussed.
Figure [2b| displays the 50 most frequent words in the dataset, offering insights into the common
vocabulary used. These visualizations help identify the core concepts and themes, essential for
grasping the structure and content of the dialogues.

3.1.2 DATASET CONSTRUCTION METHODOLOGY

To ensure both breadth and depth in multi-turn dialogic interactions, we first curated a diverse corpus
and used GPT-4 to propose a taxonomic framework that highlights key conversational elements.
Domain experts then refined this framework through human-in-the-loop validation, correcting en-
tity—relationship mappings and adding pragmatic nuances that automated methods often miss. Finally,
we introduced ERA-CoT (Entity Relationship Analysis with Chain-of-Thought), which decomposes
dialogues into explicit and implicit relationships, yielding a corpus that is both ontologically consis-
tent and transferable across domains. The resulting dataset captures surface-level exchanges as well
as deeper contextual dependencies, advancing beyond existing resources.

3.1.3 ERA-COT ANNOTATION AND ANALYSIS FRAMEWORK

The ERA-CoT framework is designed to precisely analyze and decompose dialogue structures. It
aims to identify hierarchical relationships between entities, enhancing the dataset’s ontological
consistency and cross-modal transferability for diverse dialogue tasks. ERA-CoT captures both
explicit relationships and implicit ones inferred from context. By integrating this framework into
dataset construction, we ensured a comprehensive dataset that captures surface interactions while
also representing underlying connections and nuances, ultimately creating a more granular and
ecologically valid resource for advanced natural language understanding models.

Entities Extraction: We identified all relevant entities within the dialogues using the NER (Named
Entity Recognition) capabilities of large language models. This step ensured that all significant ele-
ments within the dialogues were captured. The entities were then validated using a Self-Consistency
(SC) approach, where multiple evaluations were conducted to confirm the accuracy of each entity.
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Explicit Relationship Extraction: Based on the extracted entities, we identified all directly stated
relationships within the dialogues. These relationships were represented as triplets (e;, e;, ), where
e; and e; are entities, and 7 is the relationship between them. The Self-Consistency method was
again employed to ensure the reliability of these relationships.

Implicit Relationships Inference: Leveraging the explicit relationships and contextual information,
we inferred potential implicit relationships between entities. This step involved generating multiple
possible relationships for each pair of entities and scoring them based on their likelihood. The formula
for this step can be represented as:

R'xi=(ej,ej,rx)|i,j €F (1)
where R’ * i represents the set of inferred implicit relationships.

Relationship Discrimination: To filter out unreliable relationships, we scored each inferred rela-
tionship using a scoring agent. Relationships with scores below a predefined threshold v * th were
discarded. This step ensured that only the most reliable relationships were retained, enhancing the
overall quality of the dataset. The formula for this step is:

Ri:<eiaej7rk)|i7jEEaV(i7j7k)Zv*th (2)
where V' (4, j, k) is the confidence score assigned to the relationship (e;, e;, 7'%).

Skill Summarization: Finally, we utilized the refined entities and relationships to summarize the
dialogues into coherent and meaningful segments. This step involved integrating the extracted
information to generate comprehensive summaries that captured the essence of the dialogues while
considering both explicit and implicit relationships.

By following this methodology, we created a high-quality dataset that can effectively support advanced
research and applications in dialogue systems and natural language understanding.

3.2 ENHANCE GRPO FOR MOTION GENERATION

Building upon the Motion2Motion Dataset’s rich annotations, we enhance the GRPO algorithm to
specialize in motion description generation. This phase transforms the dataset’s structured dialog
patterns into a model capable of producing physically-grounded motion specifications. Our improve-
ments specifically address the unique challenges of motion generation, including temporal coherence
and kinematic constraint preservation.

3.2.1 GRPO ALGORITHM FOR EFFICIENT MODEL TRAINING

The Enhanced GRPO framework capitalizes on the Motion2ZMotion Dataset’s structured entity-
relationship annotations through a hierarchical attention mechanism that explicitly models action-
semantic interdependencies.

For each input question ¢, the GRPO algorithm samples a group of G outputs {oi}ic*':1 from the old
policy mg,,,(O|q). The optimization objective is then defined as:

G
1 . ( ma(oilg)
G Zl (mm (weomlq) 161+ E)Ai)

- ﬁDJS (7T9 ||7Tref)‘|

Jarpo(0) = By p(Q),{0:) &, ~ray, (Ol0)]

3)

Here, my(0;|q) represents the probability of generating output o; for question ¢ under the current
policy mg, and mg,, (0;]¢) is the probability under the old policy. The clipping factor € controls the
range for stable updates, preventing drastic policy changes in regions where the ratio of probabilities
could be excessively large. The advantage term A; is calculated for each output o;, and it quantifies
how much better (or worse) an output is compared to the mean of the sampled group. Specifically,
the advantage A; is computed as:

r; —mean({ry,re,...,rq})
Std({?"l,TQ, - 77“(;})

A = “)
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where r; is the reward associated with output o;, and the mean and standard deviation are taken over
the group of rewards {ry,r2,...,rg}.

The second term in the objective function involves the Jensen-Shannon (JS) divergence between the
current policy 7y and a reference policy ms:

1
Dys(mol|mier) = 5 [Dxe(mol[m) + Dxr (et )] ®)

where Dk denotes the Kullback-Leibler (KL) divergence, and m represents the midpoint distribution
between the two policies 7y and 7. The JS-divergence term helps ensure that the policy update
does not diverge excessively from a reference policy, thus maintaining stability during training. The
parameter [3 serves as a hyperparameter that controls the strength of this regularization.

We employ Jensen-Shannon (JS) divergence instead of Kullback-Leibler (KL) divergence for three
key advantages. First, JS-divergence’s symmetric penalty mechanism (unlike KLs asymmetric
approach) enables balanced policy adjustments crucial for structured generation tasks like XML/JSON
formatting. Second, its inherent gradient stabilization prevents training instability during early phases,
especially when handling irregular outputs. Third, the constrained update dynamics ensure stable
convergence while maintaining strict syntactic compliance—vital for high-precision formatting
requirements.

In conclusion, our integration of Group-based Reinforcement Policy Optimization (GRPO) with
JS-divergence regularization constitutes a theoretically sound and empirically validated approach
for large language model fine-tuning. This methodological synergy—simultaneously leveraging
batch-level reward signals through group-based optimization while maintaining distributional stability
via symmetric divergence measures—addresses both computational efficiency considerations and the
structural fidelity requirements inherent in complex generation tasks.

3.2.2 REWARD FUNCTION DESIGN

The reward function bridges the dataset’s semantic structure with motion generation requirements
by: Effective reward shaping plays a pivotal role in reinforcement learning for motion generation, as
it directly influences the policy’s ability to produce high-fidelity motion sequences. We propose a
tripartite reward function comprising three critical dimensions: action precision, skill coherence, and
structural compliance. The composite reward function integrates these components as follows:

R(T) = aRaction  + B R +  YRformat (6)
Behavioral Fidelity =~ Contextual Relevance  Syntactic Integrity

where a, 8,y € RT denote component weights satisfying o + 8 +v = 1.

For each candidate response r; € R, we define the action precision reward using a parametric
mapping function:
Raction(ri) = Scos (q)action(ri); a*) @)

where ®,ci0n : R — R? is the action embedding operator that maps responses to d-dimensional
action vectors, a* € R? denotes the ground truth action vector, and S : RY x R4 — [—1,1]
represents the cosine similarity metric.

Skill alignment is quantified through semantic embedding comparison:

1

Ryin(r;) = — max S S5, 8 8
Sklu( Z) |S*‘ Z Sk EPin(ri) BERT( 7 k) ( )

Sj €S

where S* denotes the ground truth skill set, |S*| represents the cardinality of the set, @y (+) extracts

skill embeddings from responses, and Sggrr computes semantic similarity using pre-trained weights.

Structural compliance reward is enforced via deterministic pattern matching:

1 1
Reormai(13) = 3 - IxML-vatia (73) + 3 - Siree (¥(ri), ¥F) 9
where U (-) denotes XML parse tree construction and Sy measures normalized tree edit distance in

[0,1]. The final response quality score combines component rewards via calibrated aggregation:

T
J(6) =Ernr, [Z (@0 RGon + BRG + %Rﬁéllm)] (10)

t=1
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3.3 Low-LEVEL KINEMATIC AND DYNAMIC OPTIMIZATION

The final component translates GRPO-generated motion descriptions into executable policies, com-
pleting the pipeline from dialog understanding to physical realization. This stage addresses the
sim-to-real gap by enforcing dynamic constraints that maintain consistency between textual descrip-
tions and physical plausibility.

This final stage operationalizes the motion plans generated by the GRPO-enhanced model into
physically executable policies, creating a closed-loop system that reconciles high-level intent from
the dataset with low-level dynamic feasibility. In our approach, we employ a low-level optimization
strategy grounded in reinforcement learning to generate motion trajectories that adhere to kinematic
constraints and environmental dynamics. This policy is trained to ensure that the generated movements
are not only task-compliant but also physically feasible, respecting joint limits and avoiding collisions.

The total reward function r; at each time step ¢ is composed of two components:
Tt = wWarG(St, at, St41,9) + wsrs(st, Se41) (1)
where: -rg(s¢, at, St41, g) is the task-specific reward, guiding the agent to achieve the desired goal g,

-rg(st, st41) is the style reward, ensuring the motion adheres to the desired movement style, -w¢
and wg are the respective weights for the task and style rewards.

The style reward is derived from an adversarial discriminator D), which aims to distinguish between
real state transitions observed in expert demonstrations and generated state transitions. The dis-
criminator’s objective is to maximize the log-likelihood of correctly classifying real transitions and
minimizing the log-likelihood of classifying generated transitions:

Lp = —E(St;3t+1)ND[10gD(st7 8t+1)} - ]E(Suswrl)Nﬂ'[IOg(l - D(St’ 3t+1))] (12)

The style reward rg(s¢, $¢+1) is then computed as the negative log-probability of the discriminator’s
output. Formally, it is defined as:

TS(St, St-‘rl) = — 10g(1 — D(St, $t+1)) (13)

This reward encourages the policy to generate motions that are indistinguishable from the reference
data, thereby capturing the desired style.

The low-level policy is trained using reinforcement learning, where the objective is to maximize the
expected cumulative reward over time:

T—1
() = Egp(g)Ermp(rin,g) [Z ’Ytrt] (14)

t=0

Here, v is the discount factor, p(g) is the distribution over goals, and p(7|r, g) is the trajectory
distribution under policy 7 for goal g. The policy 7 learns to generate motions that not only achieve
the task objectives but also exhibit the desired style, facilitating the synthesis of diverse and naturalistic
behaviors in physically simulated characters.

4 EXPERIMENTS

We evaluate the proposed fine-tuned Qwen2.5-3B models on action and skill generation tasks,
comparing them with both non-fine-tuned variants and strong baselines (Qwen2.5|Yang et al.|(2024b)),
Llama3.2Dubey et al.|(2024)). Model performance is assessed using two divergence-based objectives,
Jensen—Shannon (JS) and Kullback—Leibler (KL). Additional experiments on GSM8K (Appendix
further corroborate the effectiveness of JS divergence.

4.1 ACTION GENERATION EVALUATION

We compare original and fine-tuned models under four metrics: Semantic Similarity (SS), Keyword
Matching Rate (KMR), Information Completeness (IC), and Comprehensive Performance Score
(CPS).

Table [T| shows that fine-tuning improves all models across metrics. In particular, SS and KMR
gains indicate that fine-tuned models generate actions that are semantically closer to the references
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while better capturing key entities. Improvements in IC suggest that the generated actions contain
more of the necessary details, leading to higher CPS overall. Furthermore, JS divergence consis-
tently outperforms KL, highlighting its advantage in balancing semantic alignment and information
coverage.

Table 1: Action generation performance (original vs. fine-tuned).

Model SS KMR IC CPS

Qwen2.5 3B 0.1701 0.2673 0.2911 0.1774
Qwen2.5 7B 0.0330 0.1186 0.1287 0.0616
Llama3.2 3B 0.1634 0.2131 0.2309 0.1524
Llama3.2 8B 0.0330 0.1186 0.1287 0.0616
Our (JS) 0.2178 0.3191 0.3470 0.2176
Our (KL) 0.2111 0.3112 0.3388 0.2117

4.2 SKILLS GENERATION EVALUATION
We evaluate skill generation by comparing original and fine-tuned models, using Jaccard similarity,
precision, and recall as metrics. Fine-tuning is applied with either KL or JS divergence.

Table [2 summarizes the results. Among the original models, Qwen attains higher Jaccard similarity
and precision, while Llama achieves higher recall. Fine-tuning consistently improves performance,
with JS divergence yielding the best results across all metrics.

Table 2: Skills generation performance: original vs. fine-tuned (KL and JS).

Model Jaccard Precision Recall
Qwen2.5 3B 0.0349 0.0564 0.0580
Qwen2.5 7B 0.0199 0.0335 0.0329
Llama3.2 3B 0.0579 0.0997 0.0826
Llama3.2 8B 0.0199 0.0329 0.0329
Our (JS) 0.0616 0.0940 0.1013
Our (KL) 0.0531 0.0840 0.0876

Table 3: long text input and skill extraction examples

Long Text Input Skill

In the suffocating emergency situation, the security personnel quickly Kick the Door
assessed the circumstances before taking decisive action. With his
body slightly leaning backward, his right leg suddenly exerted force,
delivering an impact to the door lock with precisely calculated angle
and power. With a crisp cracking sound, the wooden door frame split
open, causing the door to swing violently inward, creating a life-saving
passage for those trapped inside. This tactical entry technique is known
as "forced entry" in special security training and represents a standard
procedure for emergency rescue operations in enclosed spaces.

Here we compare with the previous generation of Anyskill, specifically using the Long Text Input
from Table [3|as input, testing both Anyskill and our method. The final results are shown in Figure 3]
where we can see that Anyskill cannot understand long text, and therefore cannot perform the
knocking action, while our model can effectively understand the knocking action.
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Figure 3: comparison of skill: alternative models (up) vs. our model (low)
4.3 ACTION AND SKILL EVALUATION: GPT-4 AS THE JUDGE

In this study, GPT-4 served as an impartial evaluator to assess the rationality and relevance of actions
and skills generated by various models, including our proposed model. Evaluations were based
on predefined criteria: (1) Rationality. Assesses whether actions are contextually appropriate and
logically consistent with the given scenario. (2) Relevance: Evaluates whether skills align closely
with the actions being performed.

Figures [4a] and [4b] present the comparative evaluation results:

Evaluation Results for Professionalism and Fluency Relevance Performance Comparison
5 =

5%

1]
e7e

Percentage (%)
Percentage (%)

limma3.2 36 limmas.2 ab quen2.s 3b quen2.s 75 Uama3.2 38 Lama3.2 88 Quen2.5 38 Quen2578
Model Model

(a) rationality performance comparison (b) relevance performance comparison

The results demonstrate our model’s superior performance in both dimensions. Our model generates
more contextually coherent actions that align with common knowledge and situational appropriateness.
Additionally, it ensures stronger correlation between listed skills and performed actions, enhancing
semantic integrity.

5 CONCLUSION

We have presented Motion-R1, a novel framework for text-to-motion policy generation that ef-
fectively integrates semantic understanding with physical consistency. By utilizing a large-scale
Motion2Motion dataset with latent intent annotations and employing Generalized Reinforcement
Policy Optimization, our method addresses semantic ambiguity in multi-turn dialogues. The re-
inforcement learning-based low-level trajectory refinement enforces kinematic and environmental
constraints within simulated physical settings.

Experimental results show that Motion-R1 surpasses prior approaches in generating motions that are
both semantically coherent and physically plausible, advancing the applicability of text-to-motion
models in realistic simulations. Future research will focus on real-world deployment and expanding
the scope of interaction complexity. Our work provides a foundation for bridging semantic intent and
physical feasibility in motion generation.
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A EXAMPLE OF MOTION2MOTION DATASET

"action": "a person positioning their surfboard on the sand, scanning
the waves",
"skills": [

"positioning surfboard",
"scanning waves",
"standing on sand"

1,

"id": "000000417261",

"conversation": "Before participating in their beach activity, the
group of people in the image, who have surfboards, should
consider factors such as the current weather conditions, the surf

report, and their skill levels. The weather conditions can
impact the safety and enjoyment of surfing, including factors
like the temperature, wind direction, and visibility. Checking
the surf report ensures that the individuals are aware of the
current and incoming swells and tides, which directly influence
the quality of the surf. Additionally, the group members should
assess their skill levels to ensure they can handle the surf
conditions and avoid putting themselves or others at risk. It’s
also essential to practice proper surf etiquette, such as waiting

for their turn to catch a wave and respecting others in the
water. Keeping these factors in mind, the group can maximize
their enjoyment and safety while participating in the beach
activity."

B PERFORMANCE ON GSM&K DATASET

Table 4: Quantization Method vs. Divergence Objective on GSM8K

Configuration JS Divergence KL Divergence
4-bit Quantized 0.7263 0.7012
16-bit Full-Precision 0.8180 0.7892
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