# MOTION-R1: LATENT-INTENT MOTION GENERATION WITH PHYSICAL CONSISTENCY

**Anonymous authors**Paper under double-blind review

000

001

002003004

006

008 009

010 011

012

013

014

015

016

018

019

021

024

025

026

027

028

031

033

034

037

038

040

041

042 043

044

046

047

051

052

#### **ABSTRACT**

Human motion synthesis serves as a foundational component in computer graphics, embodied AI, and robotics. Despite progress has elevated motion quality and physical plausibility, prevailing methods remain constrained by their reliance on explicit and hand-crafted control cues. More importantly, they rarely exhibit the capacity to infer users' implicit intentions—posing a major barrier to human-aligned motion generation. Inspired by DeepSeek-R1's success in eliciting reasoning abilities through rule-based reinforcement learning (RL), we propose **Motion-R1** as the first attempt to explore the R1 paradigm for physically consistent latent-intent motion generation. However, the naïve adoption of Group Relative Policy Optimization (GRPO) to motion synthesis encounters two limitations: (1) the scarcity of motionreasoning dataset, and (2) a lack of motion reasoning abilities. Towards these issues, we first construct a newly curated Motion2Motion benchmark dataset, comprising text-to-motion dialogues for RL training. Further, our proposed Motion-R1 integrates a JS-divergence constrained policy optimization, achieving improved reasoning capabilities on both motion generation and mathematical computation benchmarks. In addition, we utilize a low-level RL-based optimization strategy to enforce strict adherence to kinematic constraints. Experimental results showcase that Motion-R1 delivers contextually appropriate, lifelike motions and surpasses strong baselines in both accuracy and interpretability. Code will be released.

#### 1 Introduction

Human motion generation has garnered significant research attention, with numerous methods proposed to tackle various challenges in this domain Tevet et al. (2022); Zhang et al. (2024a); Dabral et al. (2022); Zhang et al. (2023b); Chen (2024); Andreou et al. (2024); Zhang et al. (2023c); Barquero et al. (2024); Meng et al. (2024). A substantial body of work focuses on synthesizing actions from long textual descriptions, revealing the intrinsic complexity of semantic-to-motion mapping Jing et al. (2023); Jiang et al. (2023); Wang et al. (2024a); Lee et al. (2024); Sun et al. (2024). Nevertheless, existing approaches predominantly address single-turn or isolated commands and lack the capacity to effectively interpret and generate coherent motions from multi-turn or multi-round dialogue inputs. This limitation significantly restricts their applicability in realistic, complex scenarios where contextual continuity and nuanced intent understanding are essential.

Recently, there has been growing interest in bridging the gap between motion generation and its application within physical or simulated environments Cui et al. (2024a); He et al. (2025; 2024); Cheng et al. (2024). However, most Text-to-Motion (T2M) techniques face difficulties in ensuring physical consistency while simultaneously adapting to dynamic environmental constraints and kinematic feasibility, thereby limiting their practicality for deployment beyond controlled simulations.

As illustrated in Fig. 1, prior methods can be broadly divided into two categories: those generating motions without enforcing physical constraints, which often produce visually plausible but physically unrealistic movements; and those incorporating physical constraints but failing to capture the complexity of semantic contexts inherent in multi-turn dialogues. For instance, simple instructions such as "a person is walking around casually" may be reasonably handled by physics-agnostic methods, whereas commands involving detailed postures, gait variations, or context-dependent nuances often lead to motions that are either physically implausible or semantically inconsistent. This dichotomy

exposes a critical research gap, as neither approach sufficiently balances the demands of physical realism and rich contextual comprehension.

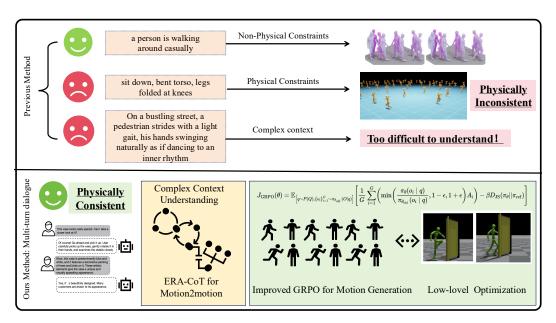


Figure 1: Comparison between prior Text-to-Motion methods and our proposed approach. Existing methods either neglect physical constraints or struggle with understanding complex multi-turn dialogues, resulting in physically inconsistent or semantically inadequate motions. Our approach integrates ERA-CoT for nuanced motion-to-motion reasoning, enhanced GRPO for robust motion policy optimization, and a reinforcement learning-based low-level trajectory refinement to generate physically consistent and semantically coherent motions suitable for deployment in physically constrained simulation environments.

To address these challenges, we propose a novel *text-to-motion policy* generation task, aiming to synthesize motion policies that are both semantically faithful and physically consistent, thereby enabling more realistic application within simulation settings. Our method, **Motion-R1**, contributes in three key aspects: (1) We systematically analyze the effects of semantic ambiguity on motion generation, demonstrating that conventional models often fail to resolve underspecified intentions, resulting in contextually inappropriate motions. (2) We construct a newly curated large-scale **Motion2Motion** (M2M) benchmark dataset consisting of text-to-motion dialogues annotated with latent intent reasoning chains, enabling reinforcement learning-based policy training that integrates a JS-divergence constrained Group Relative Policy Optimization (GRPO) scheme to enhance reasoning and generation capabilities. (3) We design a reinforcement learning-driven low-level optimization framework that explicitly enforces kinematic feasibility and environmental dynamics during motion synthesis within a physically constrained simulation environment, achieving superior performance under such conditions.

## 2 RELATED WORK

#### 2.1 Human Motion Synthesis

How to synthesize realistic human behavior is a long-standing topic. Recent human motion generation research focuses on diffusion models and transformers for diverse, high-quality synthesis. Early methods Barsoum et al. (2018); Kania et al. (2021); Martinez et al. (2017); Petrovich et al. (2022) using GANs Goodfellow et al. (2020)/VAEs Kingma et al. (2013) improve temporal coherence but face mode collapse. Emerging diffusion models and autoregressive models have significantly dominated the field of motion synthesis. The former, *e.g.*, MDM Tevet et al. (2022), MLD Chen et al. (2023), and Tender Wang et al. (2024b) propose conditional diffusion models to learn a powerful probabilistic mapping from texts to motion sequences for controllable text-driven motion generation.

In autoregressive-based methods, Zhang et al. (2023a); Guo et al. (2024); Pinyoanuntapong et al. (2024a;b) embeds human motions into a latent representation space, from which motion sequences are auto-regressively decoded conditioned on textual inputs. More recently, *e.g.*, MotionGPT Jiang et al. (2023); Zhang et al. (2024b), MotionGPT-2 Wang et al. (2024a), M3-GPT Luo et al. (2024), AvatarGPT Zhou et al. (2024), and MotionAgent Wu et al. (2024) have initiated the development of a unified motion-language model aimed at generating plausible human motions alongside along with textual descriptions driven by prompt instructions. However, these methods are typically inferior in physical plausibility and prone to synthesizing motions with artifacts, such as penetration, floating, and sliding. Recent advancements in physics-based methods Peng et al. (2021); Hassan et al. (2023); Xu et al. (2025); Pan et al. (2025); Cui et al. (2024b); Xiao et al. (2023) show promising potential in ensuring physical plausibility through the utilization of physics-aware simulators.

#### 2.2 REWARD MODELS FOR REASONING

Recent RL-based reasoning frameworks transition from supervised fine-tuning to reward-driven optimization, leveraging auxiliary reward models to evaluate intermediate reasoning quality and enhance generalization Schulman et al. (2017b); Raffel et al. (2020); Christiano et al. (2017). While PPO Schulman et al. (2017a) employs explicit value networks for advantage estimation, value-model-free methods like GRPO Shao et al. (2024) utilize rule-based group-relative mechanisms. Practical software engineering applications demonstrate that continuous rewards via lightweight similarity metrics Liu et al. (2024); Yu et al. (2023); Zhang et al. (2020) outperform binary alternatives by providing granular feedback. Resource-constrained environments reveal trade-offs: small LLMs achieve rapid reasoning gains through RL fine-tuning Team et al. (2024b); Devlin et al. (2019); Hu et al. (2021), albeit with increased computational costs. Emerging paradigms like pairwise preference reward models (PPRM) combine human feedback principles Christiano et al. (2017); Ziegler et al. (2019); Bai et al. (2022); Stiennon et al. (2020) with direct preference optimization techniques Rafailov et al. (2023); Azar et al. (2023); Ethayarajh et al. (2023).

## 2.3 LARGE LANGUAGE MODELS

Fueled by vast datasets and substantial model sizes, Large Language Models (LLMs) represented by GPTs OpenAI (2023b;a), T5 Raffel et al. (2020), PaLM Chowdhery et al. (2023), Gemma Team et al. (2024b; 2025), Qwen Yang et al. (2024a;b), and LLaMA Touvron et al. (2023); Dubey et al. (2024) have recently received extensive attention from researchers for their exceptional abilities showcased in both comprehension and generation task. Earlier models, such as BERT Devlin et al. (2019) and Google T5 Raffel et al. (2020); Chung et al. (2024), were designed for specific tasks like translation or sentiment analysis. The field has since evolved toward general-purpose foundation models, with representative open-sourced LLMs like LLaMA series Touvron et al. (2023); Dubey et al. (2024) and Vicuna family Chiang et al. (2023) have attracted much academic attention. Since these two LLMs are predominantly pre-trained on English corpus, they are limited in multi-language support. Recent years, models like GPT-4 OpenAI (2023a)/ChatGPT OpenAI (2023b), Gemini Team et al. (2024a), Deepseek Liu et al. (2024) benefit from their expansive training datasets (GPT4, for example, about 45 gigabytes) and vast parameter counts, which excel in following natural language instructions and complete real-world tasks. Recent advances in LLM, e.g., DeepSeek-R1 Guo et al. (2025), o3-mini OpenAI (2025), MetaMath Yu et al. (2023) have witnessed a growing emphasis on reasoning capabilities, particularly for complex tasks involving logical deduction, mathematical computation, and multi-step inference. In alignment with this paradigm, Motion-R1 empowers LLMs with strong motion reasoning via reinforcement fine-tuning, supporting both versatile skill learning and physical motion generation.

## 3 METHODS

We follow a coherent pipeline that systematically progresses from dataset construction to policy optimization, ensuring each phase builds upon the previous component's capabilities. The framework comprises three synergistic pillars: (1) *Motion2Motion Dataset* construction to capture multi-turn dialog patterns and motion semantics, (2) *Improved GRPO Algorithm* training for enhanced motion description generation, and (3) *Low-Level Kinematic Optimization* to translate textual descriptions into physically plausible motions. This tripartite architecture establishes a closed-loop system

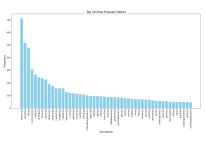
where the dataset informs model training, the optimized model generates motion specifications, and the low-level policy ensures physical realizability in simulation environments. The components' interdependence creates a virtuous cycle-high-quality data enables effective model training, which in turn produces motion descriptions that facilitate physically-consistent policy learning.

# 3.1 MOTION2MOTION DATASET

#### 3.1.1 Dataset Overview

The Motion2Motion Dataset is central to our framework, offering structured conversational data crucial for training motion generation models. It consists of 7,132 annotated human motion samples, as illustrated below. The dataset is designed to support downstream tasks by capturing both explicit action sequences and implicit physical constraints within its annotations.





- (a) Word Cloud of Generated Skills
- (b) Top 50 Frequent Words

Figure 2: Visualizations of Skills and Frequent Words in the Motion2Motion Dataset

To offer a clearer understanding of the skills and frequent words in the Motion2Motion Dataset, we present visualizations in Figure 2. Figure 2a shows a word cloud highlighting the most prominent skills in the dialogues. This visualization provides a snapshot of the key skills frequently discussed. Figure 2b displays the 50 most frequent words in the dataset, offering insights into the common vocabulary used. These visualizations help identify the core concepts and themes, essential for grasping the structure and content of the dialogues.

## 3.1.2 Dataset Construction Methodology

To ensure both breadth and depth in multi-turn dialogic interactions, we first curated a diverse corpus and used GPT-4 to propose a taxonomic framework that highlights key conversational elements. Domain experts then refined this framework through human-in-the-loop validation, correcting entity—relationship mappings and adding pragmatic nuances that automated methods often miss. Finally, we introduced ERA-CoT (Entity Relationship Analysis with Chain-of-Thought), which decomposes dialogues into explicit and implicit relationships, yielding a corpus that is both ontologically consistent and transferable across domains. The resulting dataset captures surface-level exchanges as well as deeper contextual dependencies, advancing beyond existing resources.

#### 3.1.3 ERA-COT ANNOTATION AND ANALYSIS FRAMEWORK

The ERA-CoT framework is designed to precisely analyze and decompose dialogue structures. It aims to identify hierarchical relationships between entities, enhancing the dataset's ontological consistency and cross-modal transferability for diverse dialogue tasks. ERA-CoT captures both explicit relationships and implicit ones inferred from context. By integrating this framework into dataset construction, we ensured a comprehensive dataset that captures surface interactions while also representing underlying connections and nuances, ultimately creating a more granular and ecologically valid resource for advanced natural language understanding models.

**Entities Extraction:** We identified all relevant entities within the dialogues using the NER (Named Entity Recognition) capabilities of large language models. This step ensured that all significant elements within the dialogues were captured. The entities were then validated using a Self-Consistency (SC) approach, where multiple evaluations were conducted to confirm the accuracy of each entity.

**Explicit Relationship Extraction:** Based on the extracted entities, we identified all directly stated relationships within the dialogues. These relationships were represented as triplets  $(e_i, e_j, r)$ , where  $e_i$  and  $e_j$  are entities, and r is the relationship between them. The Self-Consistency method was again employed to ensure the reliability of these relationships.

**Implicit Relationships Inference:** Leveraging the explicit relationships and contextual information, we inferred potential implicit relationships between entities. This step involved generating multiple possible relationships for each pair of entities and scoring them based on their likelihood. The formula for this step can be represented as:

$$R' * i = (e_i, e_j, r_k) \mid i, j \in E$$
 (1)

where R' \* i represents the set of inferred implicit relationships.

**Relationship Discrimination:** To filter out unreliable relationships, we scored each inferred relationship using a scoring agent. Relationships with scores below a predefined threshold v \* th were discarded. This step ensured that only the most reliable relationships were retained, enhancing the overall quality of the dataset. The formula for this step is:

$$R_i = (e_i, e_j, r_k) \mid i, j \in E, V(i, j, k) \ge v * th$$
 (2)

where V(i, j, k) is the confidence score assigned to the relationship  $(e_i, e_j, r_k)$ .

**Skill Summarization:** Finally, we utilized the refined entities and relationships to summarize the dialogues into coherent and meaningful segments. This step involved integrating the extracted information to generate comprehensive summaries that captured the essence of the dialogues while considering both explicit and implicit relationships.

By following this methodology, we created a high-quality dataset that can effectively support advanced research and applications in dialogue systems and natural language understanding.

#### 3.2 Enhance GRPO for Motion Generation

Building upon the Motion2Motion Dataset's rich annotations, we enhance the GRPO algorithm to specialize in motion description generation. This phase transforms the dataset's structured dialog patterns into a model capable of producing physically-grounded motion specifications. Our improvements specifically address the unique challenges of motion generation, including temporal coherence and kinematic constraint preservation.

#### 3.2.1 GRPO ALGORITHM FOR EFFICIENT MODEL TRAINING

The Enhanced GRPO framework capitalizes on the Motion2Motion Dataset's structured entity-relationship annotations through a hierarchical attention mechanism that explicitly models action-semantic interdependencies.

For each input question q, the GRPO algorithm samples a group of G outputs  $\{o_i\}_{i=1}^G$  from the old policy  $\pi_{\theta_{\text{old}}}(O|q)$ . The optimization objective is then defined as:

$$J_{\text{GRPO}}(\theta) = \mathbb{E}_{[q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(O|q)]} \left[ \frac{1}{G} \sum_{i=1}^G \left( \min\left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{\text{old}}}(o_i|q)}, 1 - \epsilon, 1 + \epsilon\right) A_i \right) - \beta D_{\text{JS}}(\pi_{\theta} \| \pi_{\text{ref}}) \right]$$
(3)

Here,  $\pi_{\theta}(o_i|q)$  represents the probability of generating output  $o_i$  for question q under the current policy  $\pi_{\theta}$ , and  $\pi_{\theta_{\text{old}}}(o_i|q)$  is the probability under the old policy. The clipping factor  $\epsilon$  controls the range for stable updates, preventing drastic policy changes in regions where the ratio of probabilities could be excessively large. The advantage term  $A_i$  is calculated for each output  $o_i$ , and it quantifies how much better (or worse) an output is compared to the mean of the sampled group. Specifically, the advantage  $A_i$  is computed as:

$$A_i = \frac{r_i - \text{mean}(\{r_1, r_2, \dots, r_G\})}{\text{std}(\{r_1, r_2, \dots, r_G\})}$$
(4)

 where  $r_i$  is the reward associated with output  $o_i$ , and the mean and standard deviation are taken over the group of rewards  $\{r_1, r_2, \dots, r_G\}$ .

The second term in the objective function involves the Jensen-Shannon (JS) divergence between the current policy  $\pi_{\theta}$  and a reference policy  $\pi_{\text{ref}}$ :

$$D_{\rm JS}(\pi_{\theta}||\pi_{\rm ref}) = \frac{1}{2} \left[ D_{\rm KL}(\pi_{\theta}||m) + D_{\rm KL}(\pi_{\rm ref}||m) \right]$$
 (5)

where  $D_{\rm KL}$  denotes the Kullback-Leibler (KL) divergence, and m represents the midpoint distribution between the two policies  $\pi_{\theta}$  and  $\pi_{\rm ref}$ . The JS-divergence term helps ensure that the policy update does not diverge excessively from a reference policy, thus maintaining stability during training. The parameter  $\beta$  serves as a hyperparameter that controls the strength of this regularization.

We employ Jensen-Shannon (JS) divergence instead of Kullback-Leibler (KL) divergence for three key advantages. First, JS-divergence's symmetric penalty mechanism (unlike KL's asymmetric approach) enables balanced policy adjustments crucial for structured generation tasks like XML/JSON formatting. Second, its inherent gradient stabilization prevents training instability during early phases, especially when handling irregular outputs. Third, the constrained update dynamics ensure stable convergence while maintaining strict syntactic compliance—vital for high-precision formatting requirements.

In conclusion, our integration of Group-based Reinforcement Policy Optimization (GRPO) with JS-divergence regularization constitutes a theoretically sound and empirically validated approach for large language model fine-tuning. This methodological synergy—simultaneously leveraging batch-level reward signals through group-based optimization while maintaining distributional stability via symmetric divergence measures—addresses both computational efficiency considerations and the structural fidelity requirements inherent in complex generation tasks.

## 3.2.2 REWARD FUNCTION DESIGN

The reward function bridges the dataset's semantic structure with motion generation requirements by: Effective reward shaping plays a pivotal role in reinforcement learning for motion generation, as it directly influences the policy's ability to produce high-fidelity motion sequences. We propose a tripartite reward function comprising three critical dimensions: action precision, skill coherence, and structural compliance. The composite reward function integrates these components as follows:

$$R(\tau) = \underbrace{\alpha R_{\rm action}}_{\text{Behavioral Fidelity}} + \underbrace{\beta R_{\rm skill}}_{\text{Contextual Relevance}} + \underbrace{\gamma R_{\rm format}}_{\text{Syntactic Integrity}}$$
(6)

where  $\alpha, \beta, \gamma \in \mathbb{R}^+$  denote component weights satisfying  $\alpha + \beta + \gamma = 1$ .

For each candidate response  $r_i \in \mathcal{R}$ , we define the action precision reward using a parametric mapping function:

$$R_{\text{action}}(r_i) = \mathcal{S}_{\text{cos}}\left(\Phi_{\text{action}}(r_i), a^{\star}\right) \tag{7}$$

where  $\Phi_{action}: \mathcal{R} \to \mathbb{R}^d$  is the action embedding operator that maps responses to d-dimensional action vectors,  $a^\star \in \mathbb{R}^d$  denotes the ground truth action vector, and  $\mathcal{S}_{cos}: \mathbb{R}^d \times \mathbb{R}^d \to [-1,1]$  represents the cosine similarity metric.

Skill alignment is quantified through semantic embedding comparison:

$$R_{\text{skill}}(r_i) = \frac{1}{|S^{\star}|} \sum_{s_j \in S^{\star}} \max_{s_k \in \Phi_{\text{skill}}(r_i)} \mathcal{S}_{\text{BERT}}(s_j, s_k)$$
(8)

where  $S^*$  denotes the ground truth skill set,  $|S^*|$  represents the cardinality of the set,  $\Phi_{\text{skill}}(\cdot)$  extracts skill embeddings from responses, and  $\mathcal{S}_{\text{BERT}}$  computes semantic similarity using pre-trained weights.

Structural compliance reward is enforced via deterministic pattern matching:

$$R_{\text{format}}(r_i) = \frac{1}{2} \cdot \mathbb{I}_{\text{XML-valid}}(r_i) + \frac{1}{2} \cdot \mathcal{S}_{\text{tree}} \left( \Psi(r_i), \Psi^{\star} \right) \tag{9}$$

where  $\Psi(\cdot)$  denotes XML parse tree construction and  $\mathcal{S}_{tree}$  measures normalized tree edit distance in [0,1]. The final response quality score combines component rewards via calibrated aggregation:

$$\mathcal{J}(\theta) = \mathbb{E}_{r_i \sim \pi_\theta} \left[ \sum_{t=1}^{T} \left( \alpha_t R_{\text{action}}^{(t)} + \beta_t R_{\text{skill}}^{(t)} + \gamma_t R_{\text{format}}^{(t)} \right) \right]$$
 (10)

#### 3.3 LOW-LEVEL KINEMATIC AND DYNAMIC OPTIMIZATION

The final component translates GRPO-generated motion descriptions into executable policies, completing the pipeline from dialog understanding to physical realization. This stage addresses the sim-to-real gap by enforcing dynamic constraints that maintain consistency between textual descriptions and physical plausibility.

This final stage operationalizes the motion plans generated by the GRPO-enhanced model into physically executable policies, creating a closed-loop system that reconciles high-level intent from the dataset with low-level dynamic feasibility. In our approach, we employ a low-level optimization strategy grounded in reinforcement learning to generate motion trajectories that adhere to kinematic constraints and environmental dynamics. This policy is trained to ensure that the generated movements are not only task-compliant but also physically feasible, respecting joint limits and avoiding collisions.

The total reward function  $r_t$  at each time step t is composed of two components:

$$r_t = w_G r_G(s_t, a_t, s_{t+1}, g) + w_S r_S(s_t, s_{t+1})$$
(11)

where:  $-r_G(s_t, a_t, s_{t+1}, g)$  is the task-specific reward, guiding the agent to achieve the desired goal g,  $-r_S(s_t, s_{t+1})$  is the style reward, ensuring the motion adheres to the desired movement style,  $-w_G$  and  $w_S$  are the respective weights for the task and style rewards.

The style reward is derived from an adversarial discriminator D, which aims to distinguish between real state transitions observed in expert demonstrations and generated state transitions. The discriminator's objective is to maximize the log-likelihood of correctly classifying real transitions and minimizing the log-likelihood of classifying generated transitions:

$$\mathcal{L}_D = -\mathbb{E}_{(s_t, s_{t+1}) \sim D}[\log D(s_t, s_{t+1})] - \mathbb{E}_{(s_t, s_{t+1}) \sim \pi}[\log(1 - D(s_t, s_{t+1}))]$$
(12)

The style reward  $r_S(s_t, s_{t+1})$  is then computed as the negative log-probability of the discriminator's output. Formally, it is defined as:

$$r_S(s_t, s_{t+1}) = -\log(1 - D(s_t, s_{t+1})) \tag{13}$$

This reward encourages the policy to generate motions that are indistinguishable from the reference data, thereby capturing the desired style.

The low-level policy is trained using reinforcement learning, where the objective is to maximize the expected cumulative reward over time:

$$J(\pi) = \mathbb{E}_{g \sim p(g)} \mathbb{E}_{\tau \sim p(\tau \mid \pi, g)} \left[ \sum_{t=0}^{T-1} \gamma^t r_t \right]$$
 (14)

Here,  $\gamma$  is the discount factor, p(g) is the distribution over goals, and  $p(\tau|\pi,g)$  is the trajectory distribution under policy  $\pi$  for goal g. The policy  $\pi$  learns to generate motions that not only achieve the task objectives but also exhibit the desired style, facilitating the synthesis of diverse and naturalistic behaviors in physically simulated characters.

## 4 EXPERIMENTS

We evaluate the proposed fine-tuned Qwen2.5-3B models on action and skill generation tasks, comparing them with both non-fine-tuned variants and strong baselines (Qwen2.5 Yang et al. (2024b), Llama3.2 Dubey et al. (2024)). Model performance is assessed using two divergence-based objectives, Jensen–Shannon (JS) and Kullback–Leibler (KL). Additional experiments on GSM8K (Appendix B) further corroborate the effectiveness of JS divergence.

#### 4.1 ACTION GENERATION EVALUATION

We compare original and fine-tuned models under four metrics: Semantic Similarity (SS), Keyword Matching Rate (KMR), Information Completeness (IC), and Comprehensive Performance Score (CPS).

Table 1 shows that fine-tuning improves all models across metrics. In particular, SS and KMR gains indicate that fine-tuned models generate actions that are semantically closer to the references

while better capturing key entities. Improvements in IC suggest that the generated actions contain more of the necessary details, leading to higher CPS overall. Furthermore, JS divergence consistently outperforms KL, highlighting its advantage in balancing semantic alignment and information coverage.

Table 1: Action generation performance (original vs. fine-tuned).

| Model       | SS     | KMR    | IC     | CPS    |
|-------------|--------|--------|--------|--------|
| Qwen2.5 3B  | 0.1701 | 0.2673 | 0.2911 | 0.1774 |
| Qwen2.5 7B  | 0.0330 | 0.1186 | 0.1287 | 0.0616 |
| Llama3.2 3B | 0.1634 | 0.2131 | 0.2309 | 0.1524 |
| Llama3.2 8B | 0.0330 | 0.1186 | 0.1287 | 0.0616 |
| Our (JS)    | 0.2178 | 0.3191 | 0.3470 | 0.2176 |
| Our (KL)    | 0.2111 | 0.3112 | 0.3388 | 0.2117 |

## 4.2 SKILLS GENERATION EVALUATION

We evaluate skill generation by comparing original and fine-tuned models, using **Jaccard similarity**, **precision**, and **recall** as metrics. Fine-tuning is applied with either KL or JS divergence.

Table 2 summarizes the results. Among the original models, Qwen attains higher Jaccard similarity and precision, while Llama achieves higher recall. Fine-tuning consistently improves performance, with JS divergence yielding the best results across all metrics.

Table 2: Skills generation performance: original vs. fine-tuned (KL and JS).

| Model       | Jaccard | Precision | Recall |
|-------------|---------|-----------|--------|
| Qwen2.5 3B  | 0.0349  | 0.0564    | 0.0580 |
| Qwen2.5 7B  | 0.0199  | 0.0335    | 0.0329 |
| Llama3.2 3B | 0.0579  | 0.0997    | 0.0826 |
| Llama3.2 8B | 0.0199  | 0.0329    | 0.0329 |
| Our (JS)    | 0.0616  | 0.0940    | 0.1013 |
| Our (KL)    | 0.0531  | 0.0840    | 0.0876 |

Table 3: long text input and skill extraction examples

| Long Text Input                                                          | Skill         |
|--------------------------------------------------------------------------|---------------|
| In the suffocating emergency situation, the security personnel quickly   | Kick the Door |
| assessed the circumstances before taking decisive action. With his       |               |
| body slightly leaning backward, his right leg suddenly exerted force,    |               |
| delivering an impact to the door lock with precisely calculated angle    |               |
| and power. With a crisp cracking sound, the wooden door frame split      |               |
| open, causing the door to swing violently inward, creating a life-saving |               |
| passage for those trapped inside. This tactical entry technique is known |               |
| as "forced entry" in special security training and represents a standard |               |
| procedure for emergency rescue operations in enclosed spaces.            |               |

Here we compare with the previous generation of Anyskill, specifically using the Long Text Input from Table 3 as input, testing both Anyskill and our method. The final results are shown in Figure 3, where we can see that Anyskill cannot understand long text, and therefore cannot perform the knocking action, while our model can effectively understand the knocking action.

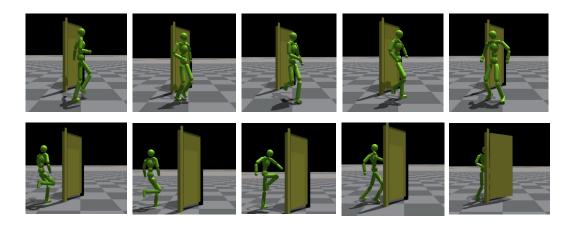
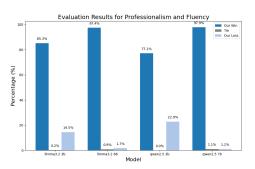


Figure 3: comparison of skill: alternative models (up) vs. our model (low)

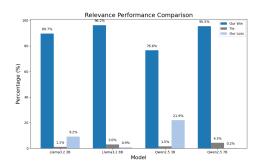
#### 4.3 ACTION AND SKILL EVALUATION: GPT-4 AS THE JUDGE

In this study, GPT-4 served as an impartial evaluator to assess the rationality and relevance of actions and skills generated by various models, including our proposed model. Evaluations were based on predefined criteria: (1) **Rationality**. Assesses whether actions are contextually appropriate and logically consistent with the given scenario. (2) **Relevance**: Evaluates whether skills align closely with the actions being performed.

Figures 4a and 4b present the comparative evaluation results:







(b) relevance performance comparison

The results demonstrate our model's superior performance in both dimensions. Our model generates more contextually coherent actions that align with common knowledge and situational appropriateness. Additionally, it ensures stronger correlation between listed skills and performed actions, enhancing semantic integrity.

# 5 CONCLUSION

We have presented **Motion-R1**, a novel framework for text-to-motion policy generation that effectively integrates semantic understanding with physical consistency. By utilizing a large-scale **Motion2Motion** dataset with latent intent annotations and employing Generalized Reinforcement Policy Optimization, our method addresses semantic ambiguity in multi-turn dialogues. The reinforcement learning-based low-level trajectory refinement enforces kinematic and environmental constraints within simulated physical settings.

Experimental results show that Motion-R1 surpasses prior approaches in generating motions that are both semantically coherent and physically plausible, advancing the applicability of text-to-motion models in realistic simulations. Future research will focus on real-world deployment and expanding the scope of interaction complexity. Our work provides a foundation for bridging semantic intent and physical feasibility in motion generation.

#### REFERENCES

- Nefeli Andreou, Xi Wang, Victoria Fernández Abrevaya, Marie-Paule Cani, Y. Chrysanthou, and Vicky Kalogeiton. Lead: Latent realignment for human motion diffusion. *ArXiv*, abs/2410.14508, 2024.
- Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel D Guo, Paul Rubenstein, Simon Schmitt, Emma Brunskill, Alessandro Lazaric, Daniele Calandriello, and Michal Valko. A general theoretical paradigm for understanding learning from human preferences. *arXiv* preprint arXiv:2310.12036, 2023.
- Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Catherine McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.
- Germán Barquero, Sergio Escalera, and Cristina Palmero. Seamless human motion composition with blended positional encodings. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024.
- Emad Barsoum, John Kender, and Zicheng Liu. Hp-gan: Probabilistic 3d human motion prediction via gan. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition workshops, pp. 1418–1427, 2018.
- Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, and Gang Yu. Executing your commands via motion diffusion in latent space. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 18000–18010, 2023.
- Xingyu Chen. Text-driven human motion generation with motion masked diffusion model. *ArXiv*, abs/2409.19686, 2024.
- Xuxin Cheng, Yandong Ji, Junming Chen, Ruihan Yang, Ge Yang, and Xiaolong Wang. Expressive whole-body control for humanoid robots. *arXiv preprint arXiv:2402.16796*, 2024.
- Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing gpt-4 with 90%\* chatgpt quality, march 2023. *URL https://lmsys. org/blog/2023-03-30-vicuna*, 3(5), 2023.
- Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):1–113, 2023.
- Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. *Advances in Neural Information Processing Systems*, 30:4299–4307, 2017.
- Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models. *Journal of Machine Learning Research*, 25(70):1–53, 2024.
- Jieming Cui, Tengyu Liu, Nian Liu, Yaodong Yang, Yixin Zhu, and Siyuan Huang. Anyskill: Learning open-vocabulary physical skill for interactive agents. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024a.
- Jieming Cui, Tengyu Liu, Nian Liu, Yaodong Yang, Yixin Zhu, and Siyuan Huang. Anyskill: Learning open-vocabulary physical skill for interactive agents. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 852–862, 2024b.
- Rishabh Dabral, M. H. Mughal, Vladislav Golyanik, and C. Theobalt. Mofusion: A framework for denoising-diffusion-based motion synthesis. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9760–9770, 2022. doi: 10.1109/CVPR52729.2023.00941.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- Kawin Ethayarajh, Winnie Xu, Dan Jurafsky, and Yuhuai Wu. Kahneman-tversky optimization: Human alignability in language model training. *arXiv preprint arXiv:2312.17107*, 2023.

- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the ACM*, 63(11): 139–144, 2020.
  - Chuan Guo, Yuxuan Mu, Muhammad Gohar Javed, Sen Wang, and Li Cheng. Momask: Generative masked modeling of 3d human motions. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1900–1910, 2024.
  - D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, and Y. He. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
  - Mohamed Hassan, Yunrong Guo, Tingwu Wang, Michael Black, Sanja Fidler, and Xue Bin Peng. Synthesizing physical character-scene interactions. In *ACM SIGGRAPH 2023 Conference Proceedings*, pp. 1–9, 2023.
  - Tairan He, Zhengyi Luo, Xialin He, Wenli Xiao, Chong Zhang, Weinan Zhang, Kris Kitani, Changliu Liu, and Guanya Shi. Omnih2o: Universal and dexterous human-to-humanoid whole-body teleoperation and learning. 2024
  - Tairan He, Jiawei Gao, Wenli Xiao, Yuanhang Zhang, Zi Wang, Jiashun Wang, Zhengyi Luo, Guanqi He, Nikhil Sobanbabu, Chaoyi Pan, Zeji Yi, Guannan Qu, Kris Kitani, Jessica Hodgins, Linxi "Jim" Fan, Yuke Zhu, Changliu Liu, and Guanya Shi. Asap: Aligning simulation and real-world physics for learning agile humanoid whole-body skills. *arXiv preprint arXiv:2502.01143*, 2025.
  - Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*, 2021.
  - Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. Motiongpt: Human motion as a foreign language. *Advances in Neural Information Processing Systems*, 36:20067–20079, 2023.
  - Beibei Jing, Youjia Zhang, Zikai Song, Junqing Yu, and Wei Yang. Amd: Anatomical motion diffusion with interpretable motion decomposition and fusion. *Unknown Journal*, 2023.
  - Kacper Kania, Marek Kowalski, and Tomasz Trzciński. Trajevae: Controllable human motion generation from trajectories. *arXiv preprint arXiv:2104.00351*, 2021.
  - Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.
  - T. Lee, Fabien Baradel, Thomas Lucas, Kyoung Mu Lee, and Grégory Rogez. T2lm: Long-term 3d human motion generation from multiple sentences. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2024.
  - Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024.
  - Mingshuang Luo, Ruibing Hou, Hong Chang, Zimo Liu, Yaowei Wang, and Shiguang Shan. M3gpt: An advanced multimodal, multitask framework for motion comprehension and generation. *arXiv* preprint *arXiv*:2405.16273, 2024.
  - Julieta Martinez, Michael J Black, and Javier Romero. On human motion prediction using recurrent neural networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 2891–2900, 2017.
  - Zichong Meng, Yiming Xie, Xiaogang Peng, Zeyu Han, and Huaizu Jiang. Rethinking diffusion for text-driven human motion generation. *ArXiv*, 2024.
  - OpenAI. Gpt-4 technical report, 2023a.
  - OpenAI. Chatgpt (mar 14 version) [large language model]. https://chat.openai.com/chat/, 2023b.
  - OpenAI. Openai o3-mini: Pushing the frontier of cost-effective reasoning. https://openai.com/index/openai-o3-mini/, 2025. Accessed: February 9, 2025.
  - Liang Pan, Zeshi Yang, Zhiyang Dou, Wenjia Wang, Buzhen Huang, Bo Dai, Taku Komura, and Jingbo Wang. Tokenhsi: Unified synthesis of physical human-scene interactions through task tokenization. arXiv preprint arXiv:2503.19901, 2025.
  - Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. Amp: Adversarial motion priors for stylized physics-based character control. *ACM Transactions on Graphics (ToG)*, 40(4):1–20, 2021.

Mathis Petrovich, Michael J Black, and Gül Varol. Temos: Generating diverse human motions from textual descriptions. In *European Conference on Computer Vision*, pp. 480–497. Springer, 2022.

Ekkasit Pinyoanuntapong, Muhammad Usama Saleem, Pu Wang, Minwoo Lee, Srijan Das, and Chen Chen. Bamm: bidirectional autoregressive motion model. In *European Conference on Computer Vision*, pp. 172–190. Springer, 2024a.

Ekkasit Pinyoanuntapong, Pu Wang, Minwoo Lee, and Chen Chen. Mmm: Generative masked motion model. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1546–1555, 2024b.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv preprint arXiv:2305.18290, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *The Journal of Machine Learning Research*, 21(1):5485–5551, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization:

An efficient reinforcement learning algorithm. arXiv preprint arXiv:1707.06347, 2017a

An efficient reinforcement learning algorithm. arXiv preprint arXiv:1707.06347, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. In *Advances in Neural* 

Information Processing Systems, volume 33, pp. 3008–3021, 2020.

 Haowen Sun, Ruikun Zheng, Haibin Huang, Chongyang Ma, Hui Huang, and Ruizhen Hu. Lgtm: Local-to-global text-driven human motion diffusion model. ACM SIGGRAPH 2024 Conference Papers, 2024.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. *arXiv* preprint arXiv:2403.05530, 2024a.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024b.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical report. arXiv preprint arXiv:2503.19786, 2025.

Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano. Human motion diffusion model. *arXiv preprint arXiv:2209.14916*, 2022.

> Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models, 2023.

Yuan Wang, Di Huang, Yaqi Zhang, Wanli Ouyang, Jile Jiao, Xuetao Feng, Yan Zhou, Pengfei Wan, Shixiang Tang, and Dan Xu. Motiongpt-2: A general-purpose motion-language model for motion generation and understanding. *arXiv* preprint arXiv:2410.21747, 2024a.

Yuan Wang, Zhao Wang, Junhao Gong, Di Huang, Tong He, Wanli Ouyang, Jile Jiao, Xuetao Feng, Qi Dou, Shixiang Tang, et al. Holistic-motion2d: Scalable whole-body human motion generation in 2d space. *arXiv* preprint arXiv:2406.11253, 2024b.

Qi Wu, Yubo Zhao, Yifan Wang, Xinhang Liu, Yu-Wing Tai, and Chi-Keung Tang. Motion-agent: A conversational framework for human motion generation with llms. *arXiv preprint arXiv:2405.17013*, 2024.

Zeqi Xiao, Tai Wang, Jingbo Wang, Jinkun Cao, Wenwei Zhang, Bo Dai, Dahua Lin, and Jiangmiao Pang. Unified human-scene interaction via prompted chain-of-contacts. *arXiv preprint arXiv:2309.07918*, 2023.

- Sirui Xu, Hung Yu Ling, Yu-Xiong Wang, and Liang-Yan Gui. Intermimic: Towards universal whole-body control for physics-based human-object interactions. *arXiv preprint arXiv:2502.20390*, 2025.
- An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024a.
- An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024b.
- Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large language models. arXiv preprint arXiv:2309.12284, 2023.
- Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Shaoli Huang, Yong Zhang, Hongwei Zhao, Hongtao Lu, and Xi Shen. T2m-gpt: Generating human motion from textual descriptions with discrete representations. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023a.
- Mingyuan Zhang, Xinying Guo, Liang Pan, Zhongang Cai, Fangzhou Hong, Huirong Li, Lei Yang, and Ziwei Liu. Remodiffuse: Retrieval-augmented motion diffusion model. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 364–373, 2023b.
- Mingyuan Zhang, Huirong Li, Zhongang Cai, Jiawei Ren, Lei Yang, and Ziwei Liu. Finemogen: Fine-grained spatio-temporal motion generation and editing. *ArXiv*, 2023c.
- Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and Ziwei Liu. Motion-diffuse: Text-driven human motion generation with diffusion model. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(6):4115–4128, 2024a.
- Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating text generation with bert. In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=SkeHuCVFDr.
- Yaqi Zhang, Di Huang, Bin Liu, Shixiang Tang, Yan Lu, Lu Chen, Lei Bai, Qi Chu, Nenghai Yu, and Wanli Ouyang. Motiongpt: Finetuned llms are general-purpose motion generators. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 7368–7376, 2024b.
- Zixiang Zhou, Yu Wan, and Baoyuan Wang. Avatargpt: All-in-one framework for motion understanding planning generation and beyond. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1357–1366, 2024.
- Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, and Dario Amodei. Fine-tuning language models from human preferences. *arXiv* preprint arXiv:1909.08593, 2019.

# A Example of Motion2Motion Dataset

```
"action": "a person positioning their surfboard on the sand, scanning
        the waves",
    "skills": [
      "positioning surfboard",
      "scanning waves",
      "standing on sand"
    "id": "000000417261",
    "conversation": "Before participating in their beach activity, the
       group of people in the image, who have surfboards, should
       consider factors such as the current weather conditions, the surf
        report, and their skill levels. The weather conditions can
       impact the safety and enjoyment of surfing, including factors
       like the temperature, wind direction, and visibility. Checking
       the surf report ensures that the individuals are aware of the
       current and incoming swells and tides, which directly influence
       the quality of the surf. Additionally, the group members should
       assess their skill levels to ensure they can handle the surf
       conditions and avoid putting themselves or others at risk. It's
       also essential to practice proper surf etiquette, such as waiting
        for their turn to catch a wave and respecting others in the
       water. Keeping these factors in mind, the group can maximize
       their enjoyment and safety while participating in the beach
       activity."
}
```

## B PERFORMANCE ON GSM8K DATASET

Table 4: Quantization Method vs. Divergence Objective on GSM8K

| Configuration         | JS Divergence | KL Divergence |
|-----------------------|---------------|---------------|
| 4-bit Quantized       | 0.7263        | 0.7012        |
| 16-bit Full-Precision | 0.8180        | 0.7892        |