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ABSTRACT

With the increasing number of omics data, there is a great need to incorporate
these datasets together to create a better and more robust understanding of the
underlying biological processes. We transform this problem into a noisy multi-
view independent component analysis (ICA) task by assuming that each observed
dataset (view) is a linear mixture of independent latent biological processes. Fur-
thermore, we assume that each view contains a mixture of shared and individual
sources. To computationally estimate the sources, we optimize a constrained form
of the joint log-likelihood of the observed data among all views. Finally, we ap-
ply the proposed model in a challenging real-life application, where the estimated
shared sources from two large transcriptome datasets (observed data) provided by
two different labs (two different views) lead to a more plausible representation of
the underlying graph structure than existing baselines.

1 INTRODUCTION

With the fast advancement of technology, growing medical and biological data from omics (e.g.,
genomics, transcriptomics, epigenomics, microbiomics) can be collected and combined to provide
valuable insights for disease development, to improve the performance of downstream tasks such
as gene regulation discovery, cancer prediction, etc. However, analyzing these datasets can be
very challenging and inefficient without considering measurement errors and batch effects (non-
biological noise in the data) in the data, and often missing ground truth knowledge, etc.

This work focuses on a specific task: unsupervised data integration from the same omics modality.
Our approach is based on two key assumptions. First, we adopt the paradigm of a linear mixture of
independent signals in molecular data analysis such as independent regulatory pathways in the data
(Sompairac et al., 2019; Avila Cobos et al., 2018; Fraunhoffer et al., 2022). Furthermore, we assume
that the different datasets contain shared and dataset (view)-specific information. For example, the
shared information could represent population-specific and the individual sources can correspond
to technical artefacts but also signals of medical/biological interest. In transcriptomics, the shared
sources could be the housekeeping genes activity and the individual ones - experiment-specific gene
activity due to knock-out experiments, stress conditions etc.

Independent component analysis (ICA) is often used for modeling omics data (Zheng et al., 2008;
Nazarov et al., 2019; Zhou & Altman, 2018; Tan et al., 2020; Sastry et al., 2021; 2019; Urzúa-
Traslaviña et al., 2021; Rusan et al., 2020; Cary et al., 2020; Dubois et al., 2019; Aynaud et al.,
2020) and satisfies our first assumption. Its goal is to separate independent latent sources from mixed
observed signals and, thus, uncover essential data structures in various data types. In the multiview
scenarios, ICA based methods has been developed mainly for fMRI data analysis (MultiViewICA,
ShICA-ML,(Richard et al., 2020; 2021), Group ICA (Calhoun et al., 2001), independent vector
analysis (IVA) methods (Lee et al., 2008; Anderson et al., 2011; 2014; Engberg et al., 2016; Vı́a
et al., 2011)), where all views contain only shared sources and no view-specific ones. We propose
a novel multiview extension of ICA that models the different views (datasets) to have both shared
and view-specific sources in the presence of noise. Our method provides an identifiable model
with a known closed-form likelihood for estimating the parameters. The resulting framework is
applied to a transcriptome data integration task for the bacteria B.subtilis with a well-studied gene
regulatory network and boosts the data-driven gene regulation discovery compared to other omics
data integration approaches.
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2 PROBLEM FORMALIZATION

Consider the following D-view multivariate linear model

xd = Ad(s̃d + ϵd) = Ad0s0 +Ad1sd +Adϵd, d ∈ {1, . . . , D}, (1)

where we assume that for d = 1, . . . , D : 1. xd ∈ Rkd is a random vector of signals with
E[xd] = 0; 2. s̃d = (s⊤0 , s

⊤
d )

⊤ are latent random sources with and s0 ∈ Rc and sd ∈ Rkd−c

being the shared and individual sources and E[s̃d] = 0 and Var[s̃d] = Ikd
; 3. Ad ∈ Rkd×kd

is a mixing matrix with full column rank, Ad0 and Ad1 are the columns corresponding to the
shared and individual sources; 4. ϵd ∼ N (0, σ2Ikd

) is Gaussian noise, or measurement error,
on the sources (similar to (Richard et al., 2020; 2021)). Additionally, we assume that the vari-
ables s01, . . . , s0c, s11, . . . , s1(k1−c), . . . , sD1, . . . , sD(kD−c), ϵ11, . . . , ϵ1k1

, . . . , ϵD1, . . . , ϵDkD
are

mutually independent. Thus, we require that the noise variables do not influence the latent signal
and vice versa. The imposed model assumptions guarantee the identifiability of the proposed data
generation model as defined by Comon (1994), i.e. we can reconstruct the mixing matrices Ad up
to scale and permutation from the observed data.

In this work, we aim to estimate the mixing matrices Ad from observed random matrices of Xd ∈
Rkd×N , d = 1, . . . , D. Translated to our data integration task kd refers to the number of observed
experimental outcomes in dataset d and N to the measured entities of interest, such as gene expres-
sions in transcriptomics. Thus, from kd observed samples in dataset d, we estimate kd latent sources
that represent independent biological pathways with respect to the data. In addition, the noise vari-
able represents non-biological noise. The identifiability of the proposed model guarantees that the
reconstructed (noisy) latent representations are the true ones up to scaling and permutation under
the paradigm of linear mixture of signals.

3 JOINT DATA LIKELIHOOD

Here, we derive the joint log-likelihood of the observed views, which we use for estimating the
mixing matrices. We treat the D data matrices Xd ∈ Rkd×N , d = 1, . . . , D as a collection of N
independent observations of the kd experimental outcomes. Thus, we do not explicitly model the
dependence relationship between the N entities of interest. However, as we see empirically in the
next section, this dependency is still preserved in the constructed latent sources.

Let zd := Wdxd = s̃d + ϵd, and z
(1)
d := s0 + ϵd0 ∈ Rc and z

(2)
d := sd + ϵd1 ∈ Rkd−c, i.e. zd =

(z
(1)⊤
d , z

(2)⊤
d )⊤. Furthermore, let p

Z
(2)
d

be the probability distribution of z(2)d and |Wd| = |detWd|.
Then the data log-likelihood of 1 is given by

L(W1, . . . ,WD) =

N∑
i=1

log f(s̄i0) +

N∑
i=1

D∑
d=1

log p
Z

(2)
d

(z
(2)i
d ) +N

D∑
d=1

log |Wd| (2)

− 1

2σ2

( D∑
d=1

trace(Z
(1)
d Z

(1)⊤
d )− 1

D

D∑
d=1

D∑
l=1

trace(Z
(1)
d Z

(1)⊤
l )

)
+ C

where f(s̄0) =
∫
exp

(
− D∥s0 − s̄0∥2

2σ2

)
pS0

(s0)ds0, Z(1)
d ∈ Rc×N for d = 1, . . . , D is a data

matrix and s̄i0 =
∑D

d=1 z
(1)i
d /D. We further simplify the loss function by assuming that the data

matrices X1 ∈ Rk1×N , . . . , XD ∈ RkD×N are whitened. That consists of centering and linearly
transforming the random variables’ realizations xd such that the resulting variable x̃d = Kdxd has
unit variance, E[x̃dx̃

⊤
d ] = Ikd

, where Kd is the whitening matrix. Thus, from the last equation we
get that Ikd

= E[x̃dx̃
⊤
d ] = (1 + σ2)KdAdA

⊤
d K

⊤
d . It follows that the matrix (1 + σ2)

1
2KdAd is

orthogonal, which we estimate by the matrix Wd. After training we set Âd = K−1
d Wd which differs
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from the true one by (1 + σ2)
1
2 . Due to the orthogonal constraints the objective function becomes

L(W1, . . . ,WD) ∝
N∑
i=1

log fσ(s̄
i
0) +

N∑
i=1

D∑
d=1

log p
Z

(2)
d

(z
(2)i
d ) +

1 + σ2

2Dσ2

D∑
d=1

D∑
l=1

trace(Z
(1)
d Z

(1)⊤
l )

(3)

where here fσ(s̄0) =
∫
exp

(
− D∥s0 − (1 + σ2)

1
2 s̄0∥2

2σ2

)
pS0(s0)ds0. All proofs can be found in

Appendix A. Note that in our optimization procedure, both fσ(s̄0) and p
Z

(2)
d

, we approximate by
the negative of a nonlinear function g(s), e.g. g(s) = log cosh(s) for super-Gaussian or g(s) =

−e−s2/2 for sub-Gaussian sources. Moreover, since we do not estimate σ2 we treat it as a Lagrange
multiplier via the relation λ = 1+σ2

σ2 .

4 DATA FUSION OF TRANSCRIPTOME DATA

Model Implementation. Before running any ICA-based method, we whiten every single view by
performing PCA to speed up computation. To impose orthogonality constraints on the unmixing
matrices, we made use of the geotorch library, which is an extension of pytorch (Lezcano-
Casado, 2019). The optimization method applied for training is L-BFGS we initialize the unmixing
matrices with canonical correlation analysis (CCA) (Hotelling, 1936).

Figure 1: We compare the performance of
our method, ShICA, Infomax, GroupICA,
MultiViewICA and ShICA-ML Amari dis-
tance (the lower the better) for different
number of shared sources (x-axis). The error
bars correspond to 95% confidence intervals
based on 50 independent runs of the exper-
iment. The datasets come from two differ-
ent views with total number of sources 100
and sample size 1000. We vary the number
of shared sources from 10 to 100.

Motivational Example: Simulated Data. Here we ex-
emplify the advantages of our method compared to other
group ICA models and a naive ICA method (called In-
fomax), where we run Infomax-ICA on each view sep-
arately. We simulated the data using the Laplace dis-
tribution exp(− 1

2 |x|), and the mixing matrices are sam-
pled with normally distributed entries with mean 1 and
0.1 standard deviation. The realizations of the observed
views are obtained according to the proposed model with
σ = 0.1. The quality of the mixing matrix estimation is
measured with the Amari distance (Amari et al., 1995),
which cancels if the estimated matrix differs from the
ground truth one up to scale and permutation. In Figure 1
we vary the number of shared sources from 10 to 100 for
a total number of sources 100 and sample size 1000. We
can see that as soon as the ratio of shared sources to in-
dividual sources gets around 1:1 we can recover almost.
This is not the case for the baseline methods.

Data Integration Task. Based on transcriptome datasets,
scientists try to infer gene-gene interactions in the
genome. The goal of the data integration task is to ”de-
noise” the datasets, such that the transformed data can be
used as samples for a graph inference algorithm. More
precisely, in this application, we apply graphical lasso (glasso) (Friedman et al., 2007) on the com-
bined datasets to estimate an undirected graph with nodes referring to the genes and with edges con-
necting genes with a common regulator. We compare our method to IVA-L-SOS, PLS (a CCA-based
approach that extracts between-views correlated components and view-specific ones, provided by
the OmicsPLS R package Bouhaddani et al. (2018)) and naive ICA approach (Infomax as in the
previous example).

Experiment on B. subtilis. In this example, we consider the bacterium B. subtilis, for which a very
rich collection of the discovered gene-gene interactions are publicly available, which we use as our
ground truth model. For this data integration task we use two publicly available datasets (Arrieta-
Ortiz et al., 2015; Nicolas et al., 2012). Each of the datasets contain gene expression levels of
about 4000 genes measured across more than 250 experimental outcomes. 1 As in most real-life

1For detailed description of the datasets and procedure we refer to Appendix B.
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Figure 2: Absolute Value of Gene Expressions from the three ”strongest” shared latent sources. The red markers
are outliers and can be related to functional groups (see titles).

applications, the number of latent sources per dataset is unknown. We treat it as a hyperparameter for
each model, i.e., we perform grid search on {50, 60, 70, . . . , 200}2, for the total number of sources
for both datasets. Note that for IVA-L-SOS the number of sources in both datasets should coincide.
The number of shared sources for our method and PLS varies between 10, 20, 30, and 40. We fit
30 graphical lasso models for different penalization parameters on the estimated components. We
select the top 10 models by employing a statistical goodness-of-fit measure, called EBIC, for each
combination of hyperparameters. Then, the hyperparameter setting is selected, yielding the best true
positive/false positive ratio curves (as the ones shown in Figure 3). The resulting hyperparameter
settings are IVA-L-SOS (130 latent sources), Our Method (50 for dataset 1, 60 for dataset 2, 40
shared sources), PLS (180 for dataset 1, 80 for dataset 2, 10 shared sources), and Infomax (200 for
dataset 1, 50 for dataset 2).

Figure 3: We compare the top ten models
with our model, PLS, Infomax, and IVA-L-
SOS. We order the edges from the selected
networks according to their strength. We
count the true positives (y-axis) and possibly
false positive edges in the first 100, 200,...
edges (x-axis). Our method and PLS out-
perform the other two methods, and for our
method, the true positive/false positive rate
increases faster than for PLS.

True Positives vs False Positives. The below-described
evaluation is used for our hyperparameter selection. The
output graph from the graphical lasso for each pre-
processing method is compared to the ground truth one.
For each estimated graph, we order the edges according
to their strength. Then we count the true positive and
false positive edges in the first 100, 200, . . . edges. Then
for each method separately, we select the hyperparam-
eter combination for which the graphical lasso has the
best true positive/false positive ratio curves. The results
are depicted in Figure 3, where the best models for each
method are compared. We can conclude that our model
boosts the graphical lasso’s performance compared to the
others. We also run the graphical lasso on the pooled data
without any pre-processing. Surprisingly, the method out-
puts an empty graph, i.e., the goodness-of-fit measure we
use evaluates the empty graph as the best model describ-
ing the data.

Qualitative Interpretation of the shared sources. Fig-
ure 2 visualizes the ”gene expression levels” of the shared
sources with the highest correlation. Each marker repre-
sents one gene, and the red markers annotate the outliers.
We can provide a meaningful interpretation of all outliers. All red markers from the first source be-
long to prophage genes, and the ones from the second and the third latent sources are regulated by
the pyrR and fur regulators, respectively.

5 DISCUSSION

We suggested a novel strategy for combining omics data by assuming that the observed data follows
a noisy multiview linear ICA model with both shared and view-specific latent sources. We adopted
a maximum likelihood strategy for estimating the unmixing matrices by maximizing the joint log-
likelihood of the observed views and showed empirically that our procedure improves the perfor-
mance of a graph inference algorithm. In future work, we would like to investigate how to choose
the number of shared sources and apply our method to other omics data.
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A OPTIMIZATION

Lemma A.1. Let W ∈ Rc×k such that WW⊤ = Ic and x1, . . . , xN ∈ Rk such that for every
j = 1, . . . , k, we have

∑N
i=1(x

i
j)

2 = 1 and for every j ̸= k, we have
∑N

i=1 x
i
jx

i
k = 0. Then for

every j = 1, . . . , c, it also holds that
∑N

i=1((Wxi)j)
2 = 1.

Proof. Let Wj be the j−th row of W . Then
N∑
i=1

((Wxi)j)
2 =

N∑
i=1

(

k∑
l=1

Wjlx
i
l)

2 =

N∑
i=1

k∑
l=1

k∑
r=1

Wjlx
i
lWjrx

i
r

=

k∑
l=1

k∑
r=1

WjlWjr

N∑
i=1

xi
lx

i
r =

k∑
l=1

k∑
r=1

WjlWjrδlr =

k∑
r=1

W 2
jr = 1

where δlr = 1 if l = r and 0 otherwise. For the fourth equation we used that
∑N

i=1(x
i
j)

2 = 1 and∑N
i=1 x

i
jx

i
k = 0 for all j ̸= k; and for the last one we used WW⊤ = Ic.

Under the generative model assumptions and optimization constraints stated in 2 it holds

L(W1, . . . ,WD) =

N∑
i=1

log f(s̄i0) +

N∑
i=1

D∑
d=1

log p
Z

(2)
d

(z
(2)i
d ) +N

D∑
d=1

log |Wd| (4)

− 1

2σ2

( D∑
d=1

trace(Z
(1)
d Z

(1)⊤
d )− 1

D

D∑
d=1

D∑
l=1

trace(Z
(1)
d Z

(1)⊤
l )

)
(5)

Proof. Let x = (x⊤
1 , x

⊤
2 , . . . , x

⊤
D)⊤ ∈ RKD , s̃ = (s̃⊤1 , s̃

⊤
2 , . . . , s̃

⊤
D)⊤ ∈ RKD , ϵ =

(ϵ⊤1 , ϵ
⊤
2 , . . . , ϵ

⊤
D)⊤ ∈ RKD , where KD =

∑D
d=1 kd and for Wd = A−1

d define

W =


W1 0 . . . 0 0
0 W2 . . . 0 0

. . .
0 0 . . . WD−1 0
0 0 . . . 0 WD

 , A =


A1 0 . . . 0 0
0 A2 . . . 0 0

. . .
0 0 . . . AD−1 0
0 0 . . . 0 AD

 .

Furthermore, let zd := Wdxd = s̃d + ϵd, and z
(1)
d := s0 + ϵd0 ∈ Rc and z

(2)
d := sd + ϵd1 ∈ Rkd−c,

i.e. zd = (z
(1)
d , z

(2)
d )⊤. Let pX be the joint distribution of x1, . . . , xD, pZ the joint distribution of

z1, . . . , zD, pZ(1) the joint distribution of z(1)1 , . . . , z
(1)
D , pZ(2) the joint distribution of z(2)1 , . . . , z

(2)
D

and p
Z

(2)
d

the probability distribution of z(2)d .

Note that the model in 1 is equivalent to x = Az. By multiplying with the inverse of A (i.e. W)
from the left we get Wx = z. Then for the joint likelihood of x1, . . . , xD we get

pX(x) = pZ(z)|W|

= pz(z)

D∏
d=1

|Wd|

= pZ(1)(z
(1)
1 , . . . , z

(1)
D )pZ(2)(z

(2)
1 , . . . , z

(2)
D )

D∏
d=1

|Wd|

= pZ(1)(z
(1)
1 , . . . , z

(1)
D )

D∏
d=1

p
Z

(2)
d

(z
(2)
d )

D∏
d=1

|Wd|.

1. Second equation: W is a block diagonal matrix and for all d = 1, . . . , D, and Wd ∈
Rkd×kd .

8
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2. Third equation: z(1)1 , . . . , z
(1)
D |= z

(2)
1 , . . . , z

(2)
D .

3. Fourth equation follows from the fact that z(2)1 , . . . , z
(2)
D are mutually independent since

{s1i}k1−c
i=1 , . . . {sDi}kD−c

i=1 , {ϵ1i}k1
i=1, . . . , {ϵDi}kD

i=1 are mutually independent.

It follows that

pZ(1)(z
(1)
1 , . . . , z

(1)
D ) =

∫
pZ(1)|S0

(z
(1)
1 , . . . , z

(1)
D |s0)pS0(s0)ds0

=

∫ ( D∏
d=1

N (z
(1)
d ; s0, σ

2Ic)
)
pS0(s0)ds0

∝
∫

exp
(
−

D∑
d=1

∥z(1)d − s0∥2

2σ2

)
pS0

(s0)ds0

=

∫
exp

(
−

D∥s0 − s̄0∥2 +
∑D

d=1 ∥z
(1)
d − s̄0∥2

2σ2

)
pS0

(s0)ds0

= exp
(
−

∑D
d=1 ∥z

(1)
d − s̄0∥2

2σ2

)∫
exp

(
− D∥s0 − s̄0∥2

2σ2

)
pS0(s0)ds0

where s̄0 = 1
D

∑D
d=1 z

(1)
d .

• For the second and third equation recall that z(1)d = s0+ϵd0 ∈ Rc, where ϵd0 ∼ N (0, σ2Ic)
and s0 |= ϵd0. This means that z(1)d |s0 ∼ N (s0, σ

2Ic). From the following equations follow

pZ(1)|S0
(z

(1)
1 , . . . , z

(1)
D |s0) =

D∏
d=1

p
Z

(1)
d |s0

(z
(1)
d |S0)

=

D∏
d=1

N (z
(1)
d ; s0, σ

2Ic)

• The fourth equation results from

D∑
d=1

∥z(1)d − s0∥2 =

D∑
d=1

∥z(1)d − s̄0 + s̄0 − s0∥2 =

D∑
d=1

(
∥z(1)d − s̄0∥2 + 2⟨z(1)d − s̄0, s̄0 − s0⟩+ ∥s̄0 − s0∥2

)
=

D∑
d=1

∥z(1)d − s̄0∥2 + 2

D∑
d=1

⟨z(1)d − s̄0, s̄0 − s0⟩+D∥s̄0 − s0∥2

=

D∑
d=1

∥z(1)d − s̄0∥2 + 2
〈 D∑

d=1

z
(1)
d −D · 1

D

D∑
d=1

z
(1)
d , s̄0 − s0

〉
+D∥s̄0 − s0∥2

=

D∑
d=1

∥z(1)d − s̄0∥2 +D∥s̄0 − s0∥2.

We define f(s̄0) =
∫
exp

(
− D∥s0 − s̄0∥2

2σ2

)
pS0

(s0)ds0.

Note that

∥z(1)d − s̄0∥2 = ∥z(1)d ∥2 − 2

D

D∑
l=1

⟨z(1)d , z
(1)
l ⟩+ 1

D2

D∑
l=1

D∑
r=1

⟨z(1)r , z
(1)
l ⟩.

9
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Thus, it follows that

D∑
d=1

∥z(1)d − s̄0∥2 =

D∑
d=1

(
∥z(1)d ∥2 − 2

D

D∑
l=1

⟨z(1)d , z
(1)
l ⟩+ 1

D2

D∑
l=1

D∑
r=1

⟨z(1)r , z
(1)
l ⟩

)
=

D∑
d=1

∥z(1)d ∥2 − 2

D

D∑
d=1

D∑
l=1

⟨z(1)d , z
(1)
l ⟩+D

1

D2

D∑
l=1

D∑
r=1

⟨z(1)r , z
(1)
l ⟩

=

D∑
d=1

∥z(1)d ∥2 − 1

D

D∑
d=1

D∑
l=1

⟨z(1)d , z
(1)
l ⟩

Collecting all terms together we get

pX(x) = exp
(
−

∑D
d=1 ∥z

(1)
d ∥2 − 1

D

∑D
d=1

∑D
l=1⟨z

(1)
d , z

(1)
l ⟩

2σ2

)
f(s̄0)

D∏
d=1

p
Z

(2)
d

(z
(2)
d )

D∏
d=1

|Wd|

The data log-likelihood can be expressed as

N∑
i=1

log pX(xi
1, . . . , x

i
D) =

N∑
i=1

(
−

∑D
d=1 ∥z

(1)i
d ∥2 − 1

D

∑D
d=1

∑D
l=1⟨z

(1)i
d , z

(1)i
l ⟩

2σ2

+ log f(s̄i0) +

D∑
d=1

log p
Z

(2)
d

(z
(2)i
d ) +

D∑
d=1

log |Wd|
)

=

N∑
i=1

log f(s̄i0) +

N∑
i=1

D∑
d=1

log p
Z

(2)
d

(z
(2)i
d ) +N

D∑
d=1

log |Wd|

− 1

2σ2

( N∑
i=1

D∑
d=1

∥z(1)id ∥2 − 1

D

N∑
i=1

D∑
d=1

D∑
l=1

⟨z(1)id , z
(1)i
l ⟩

)
=

N∑
i=1

log f(s̄i0) +

N∑
i=1

D∑
d=1

log p
Z

(2)
d

(z
(2)i
d ) +N

D∑
d=1

log |Wd|

− 1

2σ2

( D∑
d=1

trace(Z
(1)
d Z

(1)⊤
d )− 1

D

D∑
d=1

D∑
l=1

trace(Z
(1)
d Z

(1)⊤
l )

)
In the case when the data is pre-whitened, it holds that the unknown unmixing matrices are orthog-
onal, i.e. WdW

⊤
d = W⊤

d Wd = Ikd
and |detWd| = 1, and xd and zd are uncorrelated. Making

similar observations as before we get for the joint probability of the multiple views:

pX(x) = pZ(1)(z
(1)
1 , . . . , z

(1)
D )

D∏
d=1

p
Z

(2)
d

(z
(2)
d )

Note that after whitening z
(1)
d = α(σ)(s0+ϵd0) with α(σ) = (1+σ2)−

1
2 . With similar observations

as above we get

pZ(1)|s0(z
(1)
1 , . . . , z

(1)
D |s0) = pZ(1)|s0(α(σ)(s0 + ϵ10), . . . , α(σ)(s0 + ϵD0)|s0) =

D∏
d=1

p
Z

(1)
d |S0

(α(σ)(s0 + ϵd0)|s0)

=

D∏
d=1

N (α(σ)(s0 + ϵd0); s0, σ
2Ic) =

D∏
d=1

N (z
(1)
d ;α(σ)s0, α(σ)

2σ2Ic)

10
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It follows that

pZ(1)(z
(1)
1 , . . . , z

(1)
D ) =

∫
pZ(1)|s0(z

(1)
1 , . . . , z

(1)
D |s0)pS0

(s0)ds0

=

∫ ( D∏
d=1

N (z
(1)
d ;α(σ)s0, α(σ)

2σ2Ic)
)
pS0

(s0)ds0

∝
∫

exp
(
−

D∑
d=1

∥z(1)d − α(σ)s0∥2

2α(σ)2σ2

)
pS0(s0)ds0

=

∫
exp

(
−

D∥α(σ)s0 − s̄0∥2 +
∑D

d=1 ∥z
(1)
d − s̄0∥2

2α(σ)2σ2

)
pS0

(s0)ds0

= exp
(
−

∑D
d=1 ∥z

(1)
d − s̄0∥2

2α(σ)2σ2

)∫
exp

(
− D∥α(σ)s0 − s̄0∥2

2α(σ)2σ2

)
pS0(s0)ds0

where s̄0 = 1
D

∑D
d=1 z

(1)
d . We define fσ(s̄0) =

∫
exp

(
− D∥α(σ)s0 − s̄0∥2

2α(σ)2σ2

)
pS0(s0)ds0 =∫

exp
(
− D∥s0 − (1 + σ2)

1
2 s̄0∥2

2σ2

)
pS0

(s0)ds0. For the data log-likelihood we get

N∑
i=1

log px(x
i
1, . . . , x

i
D) =

N∑
i=1

log fσ(s̄
i
0) +

N∑
i=1

D∑
d=1

log p
Z

(2)
d

(z
(2)i
d )−N ·D · 1

− D · c
2α(σ)σ2

+
1

2Dα(σ)2σ2

D∑
d=1

D∑
l=1

trace(Z
(1)
d Z

(1)⊤
l )

It be easily derived from 4 by making the following observations resulting from whitening

• N
∑D

d=1 log |Wd| = ND since ∀d Wd is orthogonal

• trace(Z
(1)
d Z

(1)⊤
d ) = c due to Lemma A.1

Remark. Let D = 1 and we have the following simple BSS model for k < p:

x = As with x ∈ Rp, s ∈ Rk, A ∈ Rp×k

It follows that s = (A⊤A)−1A⊤x. Define W = (A⊤A)−1A⊤. The density function of ps(s) is
given by (, https://math.stackexchange.com/users/491644/maxim)

ps(s) = det(WW⊤)−
1
2

∫
Wx=s

px(x)dS(x),

where we integrate over a p − k dimensional surface. Thus, in that case we use this representation
for our optimization.

11
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B REAL DATA EXPERIMENT

B.1 DATA ACQUISITION AND PREPROCESSING

Our analysis is primarily based on two large gene expression data sets, denoted by (in our code)
Dataset12 (Arrieta-Ortiz et al., 2015) with 265 transcriptome datasets obtained from 38 unique ex-
perimental designs and Dataset2 (Nicolas et al., 2012)3 containing 262 samples from 104 different
experimental conditions.

We removed genes with missing values from Dataset 1 and we selected 3994 genes that are present
in both datasets. To evaluate our results, we collect a ground truth network from the online database
SubtiWiki 4 which consists of 5,952 pairs of regulator and regulated gene. Since our method predicts
pairs of co-regulated genes, we transform the ground truth network into an undirected graph that
links genes with a common regulator. Thus, the ground truth network is stored in the form of an
adjacency matrix with entries 1 if the genes are co-regulated and 0 otherwise.

B.2 GENE-GENE INTERACTION PIPELINE

The main steps of our method are presented in Algorithm 1. We infer latent components from
the data as described in Appendix B.2.1. Afterward, we learn a sparse undirected graph from the
estimated independent components (see Appendix B.2.2).

B.2.1 DATA INTEGRATION

Let X ∈ Rn×p be a transcriptome data matrix with n samples (or experimental outcomes) and p
genes. We assume that the transcriptome matrix follows a linear latent model, i.e. there exist a
matrix A ∈ Rn×k and a matrix S ∈ Rk×p such that X = AS. The k components can be represent
gene expression. If a group of genes is either over or under-expressed in a specific component they
are usually assumed to share a functional property in the genome. Additionally, if the components
are independent (i.e. a BSS model) we assume that the components represent independent gene
pathways, i.e. the components’ groups of over/under-expressed genes act independently from each
other given the experimental conditions.

PLS (OmicsPLS) This baseline is not a BSS model, i.e. the estimated components are not neces-
sarily independent. We make an additional assumption that the view-specific sources are orthogonal
to the other views. The model is defined by

X1 = A1Y1 +B1Z1 + E1

X2 = A2Y2 +B2Z2 + E2,

where Y1 ∈ Rc×n Y2 ∈ Rc×n are the latent variables that are responsible for the joint variation
between X1 and X2, i.e. Y1 and Y2 are obtained by solving a CCA problem, and Zi ∈ Rki−c×n

represent the components that are orthogonal to Xj with j ̸= i, and Ei is the noise (or residuals). In
our application we define Si = (Yi, Zi) for the downstream task of interest.

B.2.2 GRAPHICAL LASSO

Graphical lasso (glasso) is a maximum likelihood estimator for inferring graph structure in a high-
dimensional setting (Friedman et al., 2007). This method uses l1 regularization to estimate the
precision matrix (or inverse covariance) of a set of random variables from which a graph structure
can be determined. The optimization problem which glasso solves can be formalized as follows

min
Θ≻0

− log det(Θ) + tr(Σ̂Θ) + λ∥Θ∥1, (6)

2The dataset is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE67023

3The dataset can be found at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE27219

4See http://www.subtiwiki.uni-goettingen.de/v4/exports
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Figure 4: Boxplots of the regulons F1 score for two groups of regulons depending on their size (between 10
and 50, and between 50 and 400).

where Σ̂ is the empirical covariance or correlation matrix and Θ := Σ−1 denotes the precision ma-
trix. In our setting, the input for the glasso is the Pearson’s correlation matrix of the gene represen-
tations retrieved with ICA at the preceding step. We can read graph structure from the estimated
matrix Θ̂ as follows: if the ij entry of Θ̂ is not 0 (i.e. Θ̂ij ̸= 0) there is an edge between the genes i
and j, i.e. the genes might be co-regulated. We used the huge5 R package for the implementation
of graphical lasso.

B.2.3 EXTENDED EBIC

There are various criteria for model selection and hyperparameter tuning of glasso models. Chen &
Chen (2008) propose an information criterion for Gaussian graphical models called extended BIC
(EBIC) that takes the form

− log det(Θ(E)) + tr(Σ̂Θ(E)) + |E| log n+ 4|E|γ log p, (7)

where E is the edge set of a candidate graph and γ ∈ [0, 1]. Models that yield low EBIC scores are
preferred. Note that positive values for γ lead to sparser graphs. Foygel & Drton (2010) suggest that
γ = 0.5 is a good choice when no prior knowledge is available. In our experiments, we select the λ
that minimizes the EBIC score with γ = 0.5.

B.2.4 PRECISION AND RECALL

To evaluate the proposed method, we use two different evaluation strategies. First, we count the true
positive and false positive (or unknown) edges from the output undirected graph. Edges are anno-
tated as true positive if they connect pairs of co-regulated genes. In the second part of our evalua-
tion, we are interested in the regulon prediction power of our method. For each known regulon, we
compute precision and recall score in the following way:

5See https://CRAN.R-project.org/package=huge.
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Precision(R) =

∑
g∈R |N(g) ∩Ngt(g)|∑

g∈R |N(g)|
,

Recall(R) =
maxC∈C(R) |C|

|R|

where R denotes the set of regulon genes, N(g) and Ngt(g) are the sets of all neighbours of gene
g in the output network and ground truth network, respectively, and C(R) the set of all connected
components in the induced graph with vertices in R. From that we can compute the F1 score per
regulon. We evaluated each procedure and we aggregated all F1 scores in a boxplot Figure 4.

B.2.5 METHOD

All steps described above are summarized in the following pseudo code.

Algorithm 1 Algorithmic description of the data integration task.
1: Input:

X1,∈ Rn1×p, X2 ∈ Rn2×p is a data matrix with n1 and n2 samples and p
genes
Λ is a set of regularization parameters
γ EBIC selection parameter (7)

2: Perform a data integration method to obtain S1,∈ Rk1×p, S2 ∈ Rk2×p

3: Concatenate S = (S1, S2)
⊤ ∈ Rk1+k2×p

4: Compute the Pearson correlation matrix Σ̂ ∈ Rp×p of S.
5: Estimate the precision matrices {Θ̂λ}λ∈Λ which solves 6 for each λ from the set Λ
6: Select the final Θ̂out ∈ {Θ̂λ}λ∈Λ according to EBIC(γ) (see 7)
7: Output:

the selected Θ̂out

14
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Figure 5: We have the two view case again with number of total sources and observed signals 100 and number
of samples 1000. We consider three cases of noise standard deviation: σ = 0.1, 0.5, 1. As soon as enough
shared sources are present (around 60) our method lower value of Amari distance (the lower the better) in all
cases. In the the first two cases (σ = 0.1 or 0.5) the Amari distance gets closer to 0 when the shared sources
are 60. The error bars correspond to 95% confidence intervals based on 50 independent runs of the experiment.

(a) (b)

Figure 6: Comparison of MultiViewICA and our method on a two-view shared response model setting. In
Figure 6a we fix the sample size and measure the Amari distance for sources 60, 70, . . . 110. In Figure 6b the
number of sources is set to 100 and we conduct the experiments for different sample sizes (x-axis). It seems
that our method outperforms MultiViewICA in both scenarios.

C SYNTHETIC EXPERIMENTS

C.1 AMARI DISTANCE

The Amari distance (Amari et al., 1995) between two invertible matrices A,B ∈ Rn×n is defined by

amari(A,B) :=

n∑
i=1

( n∑
j=1

|cij |
maxk |cik|

− 1
)
+

n∑
j=1

( n∑
i=1

|cij |
maxk |ckj |

− 1
)
, C := A−1B.

C.2 ADDITIONAL EXPERIMENTS ON SYNTHETIC DATA

Noisy high-dimensional views. First, we investigate the effect of noise on the Amari distance in the
two-view experiment. We consider three cases when the noise’s standard variation is σ = 0.1, 0.5, 1.
The results are depicted in Figure 5. In the first two cases the results are close to the one discussed
in the main paper. As expected, by adding noise with high variance (σ = 1) our method does not
converge and affects the quality of the estimated mixing matrices measured with the Amari distance.
The whole procedure is repeated 50 times, and the error bars are the 95% confidence intervals based
on the independent runs.

Objective function motivation. In the following experiment, we compare MultiViewICA and our
method when the observed data is high-dimensional on a two-view shared response model applica-
tions, i.e. no individual sources. The experimental setup allows for comparing standard MLE (Mul-
tiViewICA) and MLE after whitening (Our Method). Figure 6a compares the two methods for fixed
sample size 1000. In Figure 6b we fixed the number of sources to be 100 and vary the sample size.
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Figure 7: Choice of Hyperparameter λ. The data comes from a two-view model with 50 shared and 50 individ-
ual sources per view. The x-axis is represents the noise standard deviation and the y-axis the Amari distance.

Study Application Observed Signals Latent Sources Views
Salman et al. (2019) Identifying biomarkers fMRI data brain functional networks multiple subjects
(Durieux & Wilderjans, 2019) Mental disorders detection fMRI data brain functional networks multiple subjects
(Long et al., 2020) subgroup detection fMRI data brain functional networks multiple subjects
(Huster et al., 2015) Denoising EEG data brain activity patterns multiple subjects
(Congedo et al., 2010) Diagnosis and assessment EEG data eyes-closed resting EEG patterns multiple subjects

of abnormal brain functioning
(Sompairac et al., 2019) extensive overview tumoral omics data gene/protein profiles heterogenous omics data
(Avila Cobos et al., 2018) cell type decomposition tissue/tumor samples cell type-specific expressions tissue/tumor samples
(Fraunhoffer et al., 2022) prognostic prediction transcriptomic profiles from PDAC epithelial gene profile three types of transcriptome data

and microenvironment cells

Table 1: List of recent studies that use ICA as a common data analysis tool. We also provide the application,
used data modalities latent sources and views interpetation.

For all experiments the noise standard deviation is 0.01. It seems that our method performs better in
the case of insufficient data. This could be empirical evidence that the trace has stronger regulariza-
tion properties than the MMSE term in the MultiViewICA objective.

Choice of λ For this experiment we used data generated from 2 views with 50 individual and 50
shared sources with varying noise standard deviation σ ∈ {0.1, 0.5, 1, 2, 10} (x-axis). Each of the
lines in Figure 7 correspond to a fixed hyperparameter λ ∈ {0.1, 0.5, 1, 2, 10}. It can be deduced that
for this particular experiment for λ ≥ 0.5 there is no significant difference in the model performance.

C.3 IMPLEMENTATION

The code for GroupICA, ShICA, MultViewICA is distributed with BSD 3-Clause License. The
OmicsPLS R library has a GPL-3 license, the scikit-learn library is distributed with BSD
2-Clause License. Our code is available under https://anonymous.4open.science/r/
shindica-C497/

D MODEL JUSTIFICATION

Multiview ICA importance in the scientific community. As mentioned in our introduction, we
would like to point out that ICA has proven to be a successful approach for analyzing biomedical
data over the years since it solves blind source separation problems common in neuroscience and
biomedicine, as stated in the main paper. Furthermore, many biomedical applications can be ad-
dressed as multiview problems due to multiple subjects in a study (e.g., fMRI, EEG data) or data
coming from different modalities (e.g., omics data). This led to the development of multiview meth-
ods. Most of those approaches focus on shared response model setting (only shared sources), e.g.
Group ICA, ShICA, MultiviewICA, IVA methods and their corresponding variations. We list some
recent scientific applications where multiview ICA models were used in Table 1. We also provided
an interpretation of the used views and latent and observed signals.

The shared response models are restrictive. There is a growing interest in examining individ-
ual variability rather than shared signals in the above-mentioned areas of applications (Dubois &
Adolphs, 2016) , such as (Seghier & Price, 2018; Bartolomeo et al., 2017; Long et al., 2020). For
instance, one can be interested in the effect of individual brain patterns on brain activity to develop
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more robust biomarkers. Another application where shared response models (GroupICA, Multi-
viewICA, IVA, etc.) would not be a sensible choice is data integration of omics data. This is an im-
portant research direction in computational biology, where we are interested in preserving the shared
biological signal between datasets (views) and individual ones, as we illustrated in our example. Ex-
isting approaches for the tasks mentioned above consist of two steps: applying ICA/IVA on the data
followed by statistical analysis (as in (Long et al., 2020)) to separate the individual from the shared
sources (or vice versa). Thus, we believe our method is a valuable addition to this set of tools. In
the independent component analysis context, we are unaware of a similar model that both provides
identifiability results and an optimization procedure that maximizes the direct data log-likelihood
for given source priors.

Linearity assumption in the biomedical domain. The linear assumption can be explained by
the nature of the data in the targeted domains. More precisely, if we consider the examples from
above: the linear mixing of the components in the fMRI data context has been justified by various
studies, e.g. McKeown & Sejnowski (1998), and in the other applications, the linear assumption
can be achieved after data transformation, e.g. log-transforming the transcriptome data. Moreover,
the linearity assumption is valid in many real-life applications in the biomedical domain, where
often we have a high-dimensional setting (gene activity, experimental measurements, etc.) with a
low number of observed samples (participants, experiments). Moreover, in the low-data regime, if
we know too little about the underlying problem, the linear approach is often a better option than
eventually overparametrization it with a deep learning model. Event though a non-linear multiview
version will be a valuable addition to the current active research on non-linear ICA, e.g. (Hyvärinen
& Morioka, 2016; 2017; Monti et al., 2020), the identifiability justification of the proposed methods
has assumptions that are hard to satisfy in real-life data scenarios (e.g. the assumption of Variability
(Hyvärinen et al., 2019). In our linear version, we assure identifiability without any requirements
on how distinct the views should be. Moreover, there are other non-linear multi-view versions, as
stated in our work, that lack identifiability.

E MODEL ASSUMPTIONS

To prove the identifiability of the stated model, we require that four assumptions should be satisfied:

1. The mixing matrices have full-column rank. This implies that we require that the sources
have a minimal representation, i.e. the number of latent sources is minimal, which is a
realistic assumption.

2. The second assumption is additive noise on the sources. It can be interpreted as a measure-
ment error on the device with variance σ2AdA

⊤
d . We choose this setting compared to the

Adsd + ϵd because, in our case, we get a likelihood in a closed form which is not available
in the latter representation. Richard et al. (2020; 2021) make a similar assumption for the
shared response model setting.

3. The sources are mutually independent and non-Gaussian. This is a standard ICA assump-
tion (Comon, 1994). Gaussian random variables, called “white” noise represent noise vari-
ables, which besides location and scale, do not carry real information. Thus, If all sources
are Gaussian, either they cannot be identified (see, for example, Proposition 3 (Richard
et al., 2020)) or additional assumptions on the variance structure need to be made to assure
identifiability (Richard et al., 2021). The non-Gaussian random variables carry meaning
and are identifiable. This is not a restrictive assumption since the sources in real-life scenar-
ios are often non-Gaussian: fMRI, EEG, and omics data. The fixed mean and variance are
also assumptions often adopted in ICA (e.g. (Richard et al., 2021; Hyvärinen & Oja, 2000)).

4. The measurement error is independent of the latent signal. This is a common assumption
in measurement error models known as classical errors. It is a realistic assumption since
we usually do not expect the measurement error to influence the true signal and vice versa
Richard et al. (2020; 2021); Gresele et al. (2020).
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