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Abstract

Detecting contradictions in text is essential in001
determining the validity of the literature and002
sources that we consume. Medical corpora are003
riddled with conflicting statements. This is due004
to the large throughput of new studies and the005
difficulty in replicating experiments, such as006
clinical trials. Detecting contradictions in this007
domain is hard since it requires clinical exper-008
tise. In this work, we present a distant supervi-009
sion approach that leverages a medical ontology010
to build a seed of potential clinical contradic-011
tions over 22 million medical abstracts. As a012
result, we automatically build a labeled training013
dataset consisting of paired clinical sentences014
that are grounded in an ontology and represent015
potential medical contradiction. The dataset is016
used to weakly-supervise state-of-the-art deep017
learning models showing significant empirical018
improvements across multiple medical contra-019
diction datasets.020

1 Introduction021

Determining whether a pair of statements is con-022

tradictory is foundational to fields including sci-023

ence, politics, and economics. Detecting that state-024

ments contradict can shed light on fundamental025

issues. For instance, mammography is an integral026

routine in modern cancer risk detection, but there is027

conflicting material about its efficacy (Boyd et al.,028

1984). Recognizing that a certain topic has op-029

posing points of view, signifies that this issue may030

deserve further investigation. Medicine is a par-031

ticularly interesting domain for contradiction de-032

tection, as it is rapidly developing, of high impact,033

and requires an above-superficial understanding034

of the text. According to the National Library of035

Medicine, the PubMed (Canese and Weis, 2013)036

database averaged 900k citations for the years037

2018-2021, with a quickly growing trajectory (med,038

2006). The publication of contradictory papers is039

not uncommon in scientific research, as it is part040

of the process of validating or refuting hypothe- 041

ses and advancing knowledge in a field. A study 042

on highly impactful clinical research found that 043

that 16% of established interventions were refuted 044

(Ioannidis, 2005). Extrapolating these statistics to 045

PubMed, over 5 million articles would disagree 046

with a previous finding. 047

The problem of contradiction detection in text 048

has been studied in the task of natural language 049

inference (NLI). This task was developed to tackle 050

the problem of recognizing whether a pair of sen- 051

tences are contradictory, entailing, or neutral in text. 052

Deep learning approaches have reached impressive 053

results for this task. Specifically, large models with 054

hundreds of millions of parameters such as De- 055

BERTa (He et al., 2020) and BioELECTRA (raj 056

Kanakarajan et al., 2021), are considered today the 057

state-of-the-art (SOTA) for this task. However, in 058

clinical text, defining and detecting a contradiction 059

is more difficult. Sometimes more context may 060

be needed in order to detect contradiction due to 061

the high difficulty of the material. Consider the 062

following example: 063

1. “However, in the valsartan group, significant 064

improvements in left ventricular hypertro- 065

phy and microalbuminuria were observed.” 066

2. “Although a bedtime dose of doxazosin can 067

significantly lower the blood pressure, it can 068

also increase left ventricular diameter, thus 069

increasing the risk of congestive heart fail- 070

ure.” 071

Detecting that this pair contradicts requires 072

knowing that improvements in left ventricular hy- 073

pertrophy is a positive outcome, whereas an in- 074

crease [in] left ventricular diameter is negative 075

outcome with regards to heart failure. 076

To tackle contradiction detection using deep 077

learning methods, large contradiction datasets are 078

required. However, very few datasets exist to train 079

such algorithms in the clinical contradiction do- 080

main. One reason for this could be due to the time 081
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and cost of labeling complex medical corpora. The082

MedNLI dataset (Romanov and Shivade, 2018) for083

instance, required the expert labeling of 4 clinicians084

over the course of 6 weeks 1. Yet, MedNLI is fab-085

ricated in the sense that each of the clinicians was086

given a clinical description of a patient and came up087

with a contradicting, entailing, and neutral sentence088

to pair up with that description. However, in this089

work we are more interested in naturally-occurring090

sentences in clinical literature as opposed to man-091

ually curated texts that will not be representative.092

Specifically, we focus on sentences representing093

clinical outcomes and attempt to identify whether094

they are contradictory.095

One of the approaches to overcome the lack of096

large enough data is distant supervision (Mintz097

et al., 2009). Distant supervision is a technique098

for training machine learning models on a large099

corpus of data without manual annotation. It works100

by using existing knowledge sources (such as a101

database of facts) to automatically label a large102

amount of data. The quality of the labels can be103

noisy, so the goal is to train models that are ro-104

bust and can still learn meaningful patterns. We105

propose a novel methodology leveraging distant106

supervision and a clinical ontology - the System-107

atized Nomenclature of Medicine Clinical Terms108

(SNOMED-CT or SNOMED for short) (Stearns109

et al., 2001). SNOMED is developed by a large and110

diverse group of medical experts (Donnelly et al.,111

2006) and it contains extensive information about112

clinical terms and their relationships. Our method-113

ology uses knowledge extracted from SNOMED114

to classify pairs of “naturally-occurring”, poten-115

tially contradictory sentences. PubMed’s database116

of medical abstracts is our source for naturally-117

occurring sentences.118

We perform empirical evaluation over mul-119

tiple manually labeled clinical contradiction120

datasets. We fine tune SOTA deep learning mod-121

els on the aforementioned ontology-driven created122

dataset. The results demonstrate that the distant-123

supervision-based methodology we propose yields124

statistically significant improvements of the models125

for contradiction detection. The average results of126

8 different models see an improvement on our main127

evaluation set (Section 4.1.1) over previous SOTA.128

Specifically, we find that the improvement is con-129

sistent across both small models and those that are130

considered to be SOTA on NLI tasks, which is the131

1To access MedNLI, users must be MIMIC-III certified.

closest task to that of contradiction detection. 132

The contribution of our work is threefold: (1) We 133

present the novel problem of contradiction analysis 134

of naturally-occurring sentences in clinical data. (2) 135

We create a clinical contradiction dataset through 136

the use of distant supervision over a clinical on- 137

tology which yields improvements of SOTA deep 138

learning models when fine-tuning on it. (3) We 139

perform empirical evaluation over numerous manu- 140

ally labeled clincal contradiction datasets showing 141

improvements of SOTA models when fine-tuned 142

on the ontology-driven dataset. 143

2 Related Work 144

The field of natural language inference has primar- 145

ily focused on textual entailment with the RTE 146

challenges proposed by Dagan et al. (2013) and 147

Dagan et al. (2005). The task involves determining 148

if the meaning of one sentence can be inferred from 149

another. Over time, new data and classification cri- 150

teria have been introduced, including the labeling 151

of contradictions in the third challenge (Giampic- 152

colo et al., 2007). However, the medical domain 153

brings additional challenges for contradiction de- 154

tection requiring clinical expertise. 155

Despite the complexity of the medical literature 156

and the reality of contradictions amongst publica- 157

tions, there has been surprisingly little work in this 158

area. Large NLI corpora contain relatively easy 159

contradiction pairs, partly due to the cost of anno- 160

tating complex contradictions. The contradiction is 161

often a negation through words like ‘not’. An exam- 162

ple from a large NLI corpus, MultiNLI (Williams 163

et al., 2017) is: 164

1. “Met my first girlfriend that way.” 165

2. “I didn’t meet my first girlfriend until later.” 166

Alamri and Stevenson (2016) developed a 167

dataset labeled for contradictory research claims in 168

abstracts related to cardiovascular medicine. This 169

corpus has more complex sentence-pairings and is 170

annotated by experts in the field. 171

Some works addressed contradiction of a clinical 172

query and a claim. Given a sentence and a ques- 173

tion, Tawfik and Spruit (2018) use a combination of 174

hand-crafted features to build a classifier, whereas 175

(Yazi et al., 2021) use pure deep neural network 176

(DNN) techniques. Unlike these approaches, we 177

focus on classifying any given pair of medical sen- 178

tences representing a clinical outcome. To the best 179

of our knowledge no work addresses contradiction 180

detection between naturally-occurring sentences in 181
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clinical literature.182

This works leverages distant supervision (Mintz183

et al., 2009) to address the task of identifying con-184

tradiction detection between clinical sentence-pairs185

representing clinical outcomes. We propose to186

weakly-supervise SOTA deep learning models dur-187

ing fine-tuning by utilizing the relational knowl-188

edge of a clinical ontology. Unlike common dis-189

tant supervision approaches (Smirnova and Cudré-190

Mauroux, 2018; Purver and Battersby, 2012), we191

do not use a database with known relationship la-192

bels, but instead use the structure and attributes193

of the clinical ontology to infer whether terms are194

contradictory. To the best of our knowledge, our195

work is the first time distant supervision is used for196

contradiction detection in the clinical realm.197

3 Methods198

We aim to create a model for accurately classify-199

ing whether two clinical outcomes contradict. In200

particular, we focus on examples which are non-201

trivial and require a deeper understanding of the202

subject area or text. This model brings awareness203

to conflicting literature and findings, specifically in204

the medical domain. Understanding where there is205

disagreement, can help elicit further investigations206

or general consciousness.207

3.1 SNOMED CT Ontology208

Figure 1: The group with Cardiac output as its root. The
children depicted have contradicting interpretations.

SNOMED is an ontology containing over209

350,000 clinical terms (Stearns et al., 2001). The210

terminology contains information about a plethora211

of health concepts, often containing useful at-212

tributes such as relationships to other terms and213

various interpretations. The structure of SNOMED214

allows us to group terms based on their relation-215

ships. We hypothesize that that using this structure216

coupled with synonyms and antonyms, will enable217

us to create a corpora of contradicting and non-218

contradicting clinical terms.219

3.1.1 SNOMED Node Attributes 220

Each term in the SNOMED ontology is a node in 221

a tree-like structure. A subset of these nodes have 222

useful attributes which we use to determine their 223

inter-relationships. Each of these nodes belongs to 224

a group which is parented by the group root. In 225

addition, each node has a simple interpretation. In 226

Figure 1, the group consists of nodes describing the 227

group root cardiac output. The green (left) node, 228

increased cardiac output, has the interpretation - 229

increased. 230

We claim that every grouping of terms which has 231

these attributes has a logical connection. We argue 232

that pairing up child nodes yields a natural combi- 233

nation of contradicting and non-contradicting pairs 234

of phrases. Determining the relationship between a 235

pair of SNOMED terms is done partially through 236

comparing their interpretations. In Figure 1 the 237

blue (left) node has the interpretation decreased, 238

whereas the green (right) node has the interpreta- 239

tion increased. Since the values of these fields are 240

different, we assign the pair an attribute label (Ai,j) 241

of contradiction. In Algorithm 1, Ai,j is assigned 242

on Line 12. 243

The size of the groupings can get large. For in- 244

stance, the group root Cardiac function has 275 245

children. Since cardiac function is very general, its 246

child terms may not be related - for example the 247

terms aortic valve regurgitation due to dissection 248

and dynamic subaortic stenosis. Both terms are 249

impairments of cardiac function, but it would not 250

be fair to claim that the two are related outcomes. 251

Though these large groupings can yield many pair- 252

ings of phrases, we see why they may also be less 253

accurate. Some of this testing is in Section 5.2, 254

where we investigate the effects of group sizes. 255

Below we include pairings of contradictions in 256

various medical domains that our methodology 257

yields: 258

• suppressed urine secretion↔ polyuria 259

• elevation of SaO2↔ oxygen saturation within 260

reference range 261

• joint stable↔ chronic instability of joint 262

3.1.2 Synonyms 263

After exploiting ontological structure, we con- 264

sider linguistic elements. Although synonyms 265

and antonyms do not always indicate whether se- 266

quences of words are contradictory, they provide a 267

strong signal in our structural construction. Since 268

clinical terms are already grouped, we know that 269

all the terms in a grouping share a context, thereby 270
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Algorithm 1 SNOMED Traversal
1: function TRAVERSE(root)
2: for n ∈ root.children do
3: if n.num childs ≤ group size
4: pairs← DET RELATION(n)
5: end if
6: end for
7: return pairs
8: end function

9: function DET RELATION(n)
10: pairs← {}
11: for ci, cj ∈ n.child pairs do
12: Ai,j ← GET ATTR LABEL(ci, cj)
13: Si,j ← GET SYN LABEL(ci, cj)
14: labeli,j ← Ai,j

15: if Si,j = no-contra &Ai,j = contra
16: labeli,j ← contra
17: else if Si,j = contra &Ai,j = no-contra
18: labeli,j ← contra
19: end if
20: pairs← pairs ∪ {(labeli,j , ci, cj)}
21: end for
22: return pairs
23: end function

24: SNOMED ← TRAVERSE(root)
25: FINETUNE(Model, SNOMED)

allowing the use of simpler indicators to determine271

their relationship. We word-tokenize each clinical272

phrase, removing the intersection of the two sets of273

tokens, leaving each set with its unique tokens.274

Figure 2 illustrates this for the clinical terms275

shortened p wave and prolonged p wave. The276

respective unique tokens are shortened and pro-277

longed. Since the unique tokens are antonyms, the278

synonym label for the pair is a contradiction. In279

Algorithm 1, the synonym label (Si,j) is assigned280

on Line 13. Similarly, if the respective tokens are281

synonyms, then Si,j would be a non-contradiction.282

3.1.3 Combining Attributes and Synonyms283

To optimally combine Ai,j and Si,j to form a final284

labeli,j , we build a validation set of the publicly285

available SNOMED term-pairs. A human anno-286

tator with an advanced medical degree (M.D.) la-287

beled 149 SNOMED phrase-pairs - 70 of which288

were contradictory and 79 as non-contradictory.289

More details can be found in Appendix A.1. We290

find that when Ai,j indicates contradiction, then it’s291

Figure 2: The terms shortened p wave and prolonged p wave
are simplified to shortened and prolonged. The remaining
words are antonyms.

highly likely that labeli,j is a contradiction. The 292

same is true if Si,j indicates contradiction. We 293

define the explicit logic in Lines 15 through 19. 294

We reach 79% accuracy through using heuristics 295

on the human-labeled SNOMED term-pairs in the 296

validation dataset. 297

3.2 Ontology-Driven Distant Supervision 298

Using the relational knowledge extracted from 299

the SNOMED ontology, we weakly-supervise 300

naturally-occurring sentences in PubMed to build 301

our SNOMED dataset. We fine-tune on this dataset 302

to achieve significant improvements over exist- 303

ing baselines. Algorithm 1 summarizes the pro- 304

cedure. We search PubMed for sentences con- 305

taining the phrase-pairs discussed in Section 3.1, 306

resulting in a corpus of pairs of sentences. The 307

sentence-pairs are then labeled through distant su- 308

pervision as explained below. For a given pair 309

of SNOMED terms (p1, p2), we label sentences 310

(s1, s2) as formalized in Eq.1, where label ∈ 311

{contradiction, non-contradiction}. 312

(p1 ∈ s1) ∧ (p2 ∈ s2) ∧ ((p1, p2) ∈ label) (1) 313

Naively, we pair-up any sentences satisfying 314

Equation 1, independent of whether they appear in 315

the same text, when creating the SNOMED dataset. 316

Although two sentences contain their respective 317

clinical SNOMED terms, they may be unrelated. 318

The sentence-pair below exhibits this: 319

1. “The present results suggest that the upstream 320

changes in blood flow are transmitted by the 321

velocity pulse faster than by the pressure 322

pulse in the microvasculature.” 323

2. “His chest wall was tender and his pulse slow 324

but the remainder of his physical examination 325

was normal.” 326
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The bolded clinical terms are central to the meaning327

of the sentences and are independently contradic-328

tory. However, when placed in context they may329

be less relevant to each other as in the example330

above. We experiment through imposing stricter331

criteria for filtering sentence matches - namely332

MeSH (Medical Subject Headings) terms criteria333

(Lipscomb, 2000) and cosine similarity criteria.334

MeSH terms are words used to categorize arti-335

cles within PubMed. We hypothesize that if sen-336

tences are drawn from articles with related MeSH337

terms, then the likelihood that they discuss the same338

topic increases. Equation 2 is the formulation we339

use for filtering via MeSH terms. MeSHi and340

MeSHj are the sets of MeSH terms for articles341

containing senti and sentj respectively. Let t be a342

chosen threshold.343

1A :=

{
1 if |MeSHi∪MeSHj |

min(|MeSHi|,|MeSHj |) ≥ t ,

0 otherwise
(2)344

Although MeSH terms are powerful, they are345

not perfect. The following sentence-pair achieves346

a score of 0.4 per the inequality in Equation 2.347

1. “In dogs challenged with endotoxin, the inhi-348

bition of nitric oxide production decreased349

cardiac index and did not improve survival.”350

2. “Intra-aortic balloon pumping increased car-351

diac index and aortic distensibility by 24%352

and 30%, respectively, and reduced myocar-353

dial oxygen demand by 31% (P < .001 for354

all alterations).”355

Despite overlap in MeSH terms, they are very dif-356

ferent - one discusses dogs and the other humans.357

The second filtration method measures the co-358

sine similarity between one-hot vectors. Topically359

related sentences should have a higher one-hot vec-360

tor cosine similarity. Let onehoti and onehotj be361

the respective one-hot vectors of senti and sentj .362

Note vectors lengths are equal to the number of363

unique words spanning the sentence-pair. We com-364

pute the cosine similarities between the vectors as365

shown in equation 3. For the dog example above,366

cosine similarity yields a score of 0.2.367

1A :=

{
1 if cossim(onehoti, onehotj) ≥ t ,

0 otherwise

(3)

368

4 Empirical Evaluation369

In this section we discuss the medical corpora used370

in our evaluation of 8 different models, spanning371

Table 1: Cardiology Dataset Breakdown

Split Total Contra Non-Contra

Train 1347 571 776
Dev 198 100 98
Test 227 55 172

various model sizes and objective functions. 372

4.1 Evaluation Datasets 373

In determining whether our methodology can pro- 374

vide reliable results, we acquire and modify various 375

medically related corpora. 376

4.1.1 Cardiology Dataset 377

Due to the difficulty of labeling medical data, there 378

are few datasets labeled for medical contradictions. 379

To evaluate results and compare the quality of the 380

dataset we create in an automatic fashion, we tweak 381

an existing cardiology dataset. Alamri et al. de- 382

veloped ManConCorpus (Alamri and Stevenson, 383

2016) - a dataset of potentially contradictory re- 384

search claims in abstracts related to cardiovascular 385

medicine. The corpus is composed of question- 386

claims pairs. Each question has multiple ‘yes’, 387

‘no’ claims. The claims are naturally-occurring 388

sentences in PubMed, whereas the questions are 389

generated by expert labelers. We convert Man- 390

ConCorpus by pairing up the claims, since we are 391

strictly interested in naturally-occurring sentences 392

from PubMed. A pair is labeled as contradictory 393

if each constituent claim answers the question dif- 394

ferently. We coin this dataset as the Cardiology 395

Dataset (“Cardio”) (see Table 1 for details). 396

4.1.2 Hard Cardiology Dataset 397

Through our analysis, we find that models tend to 398

classify sentence-pairs as contradictory if negation 399

words appear. For example: 400

1. “Our results indicate that atorvastatin therapy 401

significantly improves BP control in hyperlipi- 402

demic hypertensive patients.” 403

2. “Administration of a statin in hypertensive pa- 404

tients in whom blood pressure is effectively re- 405

duced by concomitant antihypertensive treat- 406

ment does not have an additional blood pres- 407

sure lowering effect.” 408

Thus, we construct a version of Cardio through 409

rewriting the sentences without negation words. As 410

expected, this version exposes some of the weak- 411

nesses of the models, since negation words are no 412

longer deemed as important. 413
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4.1.3 MedNLI414

Inspired by SNLI (Bowman et al., 2015), MedNLI415

was created similarly, but with a focus on the clin-416

ical domain (Romanov and Shivade, 2018). The417

dataset was curated over the course of six weeks,418

borrowing the time of four doctors. MedNLI419

consists of sentence-pairs which are grouped into420

triples - a contradictory, entailing, and neutral pair.421

The sentences are not naturally-occurring in exist-422

ing medical literature. The premise is shared across423

the three pairs, but each have a different hypothesis,424

yielding a different label. Since MedNLI deals with425

a 3-class problem, we relabel the dataset by making426

{entailment, neutral} map to non-contradiction.427

Our focus is to show that the SNOMED dataset,428

which requires no expert intervention or expenses,429

is as powerful as the curated MedNLI dataset. We430

find that the baseline on the relabeled version of431

MedNLI gives high results (0.974), so adding addi-432

tional data makes little change. The largest labeled433

datasets containing naturally-occurring sentences434

are at most hundreds of sentences. Therefore, we435

randomly sample 100 instances from MedNLI’s436

train-split and report results on that.437

To explore fields outside of cardiology, we cre-438

ate versions of MedNLI focused on gynecology439

(GN), endocrinology (Endo), obstetrics (OB), and440

surgery. To filter the data, we use the help of the441

same annotator introduced in Section 3.1.3. We442

sample from the train-split in the same fashion as443

explained above. Note that these datasets also have444

the same 2-class label structure as explained in Sec-445

tion 4.1.3. More details are found in Appendix446

A.2.447

4.2 Baseline Models448

Yazi et al. (2021) achieve the SOTA on the Man-449

ConCorpus, which we turn into the Cardio cor-450

pus as explained in Section 4.1.1. They concate-451

nate BERT embeddings for their question and452

claim, feeding this input into a multi-layer feed453

forward network. All of our baselines do not454

use a siamese network, instead we feed in our455

sentence-pairs as input into the network. Our evalu-456

ation consists of 8 baseline models and comparing457

their performance when they are fine-tuned on the458

SNOMED dataset versus without. The task of clas-459

sifying contradiction is most similar to NLI, so460

some of these baseline models are those that top461

leaderboards for the MNLI and MedNLI datasets -462

namely DeBERTaV3-Base (He et al., 2021), AL-463

Table 2: Baseline Models Parameter Count

Model Parameter Count
ALBERT 11.7M
ELECTRA-Small 13.5M
BERT-Small 28.8M
ELECTRA-Base 109.5M
BERT-Base 109.5M
BioELECTRA 109.5M
DeBERTaV3-Small 141.9M
DeBERTaV3-Base 184.4M

BERT (Lan et al., 2019), and BioELECTRA (raj 464

Kanakarajan et al., 2021). ELECTRA (Clark et al., 465

2020) and BERT (Devlin et al., 2018) are also in- 466

cluded as they are generally high-performing archi- 467

tectures. In addition, we are interested in seeing 468

the performance of small models. They require less 469

computing resources and may allow the SNOMED 470

dataset to have a stronger influence during fine- 471

tuning. Thus, we also include BERT-Small (Turc 472

et al., 2019), ELECTRA-Small, and DeBERTaV3- 473

Small (He et al., 2021). Table 2 contains a break- 474

down of the number of parameters per model. 475

All the baseline models are pre-trained on large 476

corpora. The high-level architecture of the mod- 477

els is the same, so we use the functionalities of 478

HuggingFace (Wolf et al., 2019) and the Sentence- 479

Transformer library (Reimers and Gurevych, 2019). 480

We add an uninitialized binary classification head 481

on top of the model body. We adopt all the hyper- 482

parameters from the Sentence-Transformer library 483

with the exception of training batch size, which is 484

set to 8 for models above 30M parameters and to 485

16 for models under 30M parameters. 486

Each baseline we tune with the SNOMED 487

dataset. The SNOMED dataset we create uses a 488

group size of 25, sampling 10 sentence-pairs from 489

PubMed for every SNOMED term-pair. These 490

hyperparameters are determined through ablation 491

tests on the Cardio validation set. 492

5 Empirical Results 493

The following sections display the significance of 494

the SNOMED dataset we create via the method- 495

ology (Section 3). We explore additional insights 496

through ablation tests and qualitative examples. 497

5.1 Main Result 498

Table 3 summarizes our main findings. We com- 499

pare the performance of the baseline algorithms 500

when fine-tuned over the original training of each 501

dataset (marked as “base”) versus tuning using our 502
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Table 3: Performance of Models tuned with SNOMED vs. Without

Algorithm

Dataset Method ALBERT
Base

ELECTRA
Small

BERT
Small

ELECTRA
Base

BERT
Base

Bio-
ELECTRA

DeBERTa
Small

DeBERTa
Base

(Yazi
et al.,
2021)

Cardio Base 0.911 0.877 0.858 0.863 0.914 0.880 0.885 0.861 0.858
Ours 0.928 0.947* 0.958* 0.892 0.878 0.925 0.931* 0.942* -

Hard- Base 0.876 0.785 0.717 0.847 0.803 0.850 0.842 0.845 0.687
Cardio Ours 0.925* 0.853* 0.794* 0.873 0.791 0.925* 0.917* 0.936* -

MedNLI- Base 0.598 0.526 0.537 0.587 0.651 0.616 0.585 0.696 0.528
General Ours 0.780* 0.615* 0.656* 0.789* 0.764* 0.798* 0.778* 0.876* -

MedNLI- Base 0.638 0.524 0.555 0.599 0.675 0.607 0.601 0.673 0.585
Cardio Ours 0.789* 0.668* 0.727* 0.780* 0.793* 0.795* 0.796* 0.875* -

MedNLI- Base 0.642 0.492 0.608 0.692 0.683 0.575 0.592 0.633 0.615
GYN Ours 0.692* 0.633* 0.667* 0.800* 0.817* 0.775* 0.608 0.825* -

MedNLI- Base 0.568 0.494 0.551 0.575 0.722 0.631 0.605 0.625 0.549
Endo Ours 0.801* 0.607* 0.702 0.811* 0.852* 0.893* 0.728* 0.909* -

MedNLI- Base 0.514 0.521 0.541 0.573 0.560 0.506 0.527 0.526 0.542
OB Ours 0.657* 0.545 0.557 0.693* 0.644* 0.698* 0.590 0.750* -

MedNLI- Base 0.641 0.519 0.528 0.597 0.919 0.665 0.640 0.752 0.539
Surgery Ours 0.890* 0.739* 0.802* 0.860* 0.929* 0.903* 0.885* 0.922* -

novel SNOMED dataset and the training dataset503

(marked as “base+SNOMED”). We measure the504

area under the ROC curve of each baseline, and505

verify statistical significance through Delong’s506

test (DeLong et al., 1988). Significant differences507

are marked with an asterisk (*). We observe that508

across all dataset the weak supervision over the509

SNOMED dataset reached superior results com-510

pared to fine tuning only on the original dataset511

and outperforms the SOTA model for contradiction512

detection (Yazi et al., 2021).513

Cardio is a relatively difficult dataset of poten-514

tially contradicting pairs of sentences naturally-515

occurring in PubMed. The sentences are complex516

and require a deep medical understanding. We517

observe that fine tuning on the SNOMED dataset518

improves the baselines for all 7 out of the 8 models519

we evaluate over the Cardio dataset.520

The performance on Hard-Cardio drops rela-521

tively to Cardio as expected. This verifies our hy-522

pothesis that removing negations makes the prob-523

lem more difficult. Further, 7 out 8 models fine-524

tuned on SNOMED outperform their baseline coun-525

terparts.526

We observe that even on synthetically created527

common datasets, such as MedNLI sentences, our528

methodology improves over all baselines for this529

corpus. We observe a similar trend when focus-530

ing on various sub-specialties. The improvements531

are consistent across all models when fine-tuning532

on SNOMED. This enables us to learn of the scal- 533

ability of our methods for clinical contradiction 534

detection through different fields within healthcare. 535

Analyzing our findings further, we see that there 536

is a trend that smaller models are generally more 537

affected by fine-tuning on SNOMED. All of the 538

evaluation datasets improve over the baseline on 539

every model under 30 million parameters. 540

5.2 Ablation Studies 541

In this section we review the ablation studies to de- 542

termine potential impact of the different parameters 543

of the system on performance. 544

5.2.1 Group and Sentence Samples Size 545

We explain SNOMED term grouping in Section 3.1 546

and illustrate in Figure 1. The size of a group and 547

the quality of the pairing may be closely related. 548

Larger groupings tend to have more terms which 549

are less directly related to each other as explained in 550

Section 3.1.1. Thus, we experiment with creating 551

SNOMED datasets based on terms belonging to 552

groups of at most 6, 12, 25, and 50 terms. 553

During dataset creation, we choose how many 554

sentence-pairs to sample per SNOMED pairing. In 555

Figure 3, each line with a different color/marker 556

represents a different number of samples averaged 557

across all 8 models. The ablations we perform 558

include 10, 25, and 50 samples per pairing. 559

Figure 3 shows 10 samples outperforms higher 560
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sampling numbers for almost all group numbers.561

Increased sampling results in over-saturation of562

certain term-pairs. This may result in overfitting.563

The best group size is 25 for small models and564

12 for large models. These numbers strike the565

balance of creating a large amount of SNOMED566

phrase-pairings, while keeping their relationships567

accurate (as discussed in Section 3.1.1). Smaller568

models may benefit more from larger group sizes,569

because they have a more limited base knowledge570

than those of large models.571

Figure 3: Small and large model performance across group
sizes and sample numbers. Reported on Cardio.

5.2.2 Filtering Based on Similarity572

To increase the chances that sentences are related,573

when sampling phrases from PubMed, we exper-574

iment with keeping pairs that exhibit high MeSH575

term or cosine similarity as explained in Section576

3.2. Figure 4 shows the relationship between the fil-577

tration methods discussed above. As a continuation578

of the ablation visualized in Figure 3, we fix the579

number of samples to be 10 and the group size to be580

25. The cosine methodology outperforms both the581

naive version (no filtering) and MeSH. Although582

MeSH terms are useful, it is possible that since they583

are tagged on an article-level, they cannot provide584

the same topic granularity as the one-hot vectors.585

6 Conclusions586

Contradiction detection is central to many fields,587

but it is especially important in medicine due to588

direct human impact. With the rapid growth of589

the field, clinical research is exploding with new590

findings as demonstrated by the growth of PubMed.591

Although contradictions are a subfield of NLI, there592

is much less exploration in the clinical domain. Of-593

ten times, contradictions within medicine are more594

Figure 4: Model performance across varying filtration meth-
ods. Number of samples is 10 and group size is 25 for plotted
results. Reported on Cardio.

complex than other fields due to the need of addi- 595

tional context and domain knowledge. Labeling 596

datasets which could produce high performing re- 597

sults with deep learning models are time and re- 598

source costly. 599

We introduced a novel methodology of using a 600

clinical ontology to weakly-supervise the creation 601

of a contradiction dataset with naturally-occurring 602

sentences. We coin this dataset as the SNOMED 603

dataset. The empirical results suggest that fine- 604

tuning on the SNOMED dataset results in consis- 605

tent improvement across multiple SOTA models 606

over diverse evaluation datasets spanning multi- 607

ple medical specialties. We showed that a balance 608

exists between the group size of the number of 609

terms and the number of sentences sampled from 610

PubMed per term-pairing. In addition, we find 611

that we can further improve results through filter- 612

ing which PubMed sentences we include in our 613

dataset. 614

For future exploration we suggest investigating 615

more robust sentence filtration methods, such as 616

topic modeling or sentence embedding similarity. 617

Looking into how other clinical ontologies can be 618

paired with SNOMED may also be fruitful. 619

Limitations 620

The methodology proposed is limited to using clin- 621

ical terms which are located within SNOMED. In 622

addition, many SNOMED terms do not appear ex- 623

actly within PubMed, so not all of the terms are 624

used. Finally, the relationships we extract from 625

the clinical ontology are not ground-truth, yielding 626

noise during dataset creation. 627
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Ethical Considerations628

Whenever working within the clinical domain, eth-629

ical considerations are crucial. The data that we630

work with is all rooted in already publicly available631

corpora and PubMed. To the best of our knowledge632

the data we use does not contain any personal in-633

formation of any humans involved in clinical trials.634

There is a potential risk of over representing com-635

mon diseases and outcomes in our dataset, thereby636

not including enough data about other outcomes.637
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A Appendix: Annotation761

As mentioned in Section 3.1.3, we work with an762

annotator with a degree in medicine. The annotator763

was recruited due to their expertise in the field.764

A.1 SNOMED Term-Pairs765

The annotator labeled 149 SNOMED term-pairs766

as either contradictory or non-contradictory. They767

were provided with a list of pairs, without any ad-768

ditional information about the ontological structure769

they came from. This was done in order to preserve770

fairness and integrity during the labeling process.771

The instructions were to come up with a binary772

label for each of the pairs.773

A.2 Filtering MedNLI774

The human annotator also helped with coming up775

with a list of sub-words which served as indicators776

for particular fields of medicine. For example, the777

sub-words vulv and gyno, are indicative of gyne-778

cology. These word lists were used to create the779

variations of MedNLI discussed in Section 4.1.3.780
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