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Abstract

Detecting contradictions in text is essential in
determining the validity of the literature and
sources that we consume. Medical corpora are
riddled with conflicting statements. This is due
to the large throughput of new studies and the
difficulty in replicating experiments, such as
clinical trials. Detecting contradictions in this
domain is hard since it requires clinical exper-
tise. In this work, we present a distant supervi-
sion approach that leverages a medical ontology
to build a seed of potential clinical contradic-
tions over 22 million medical abstracts. As a
result, we automatically build a labeled training
dataset consisting of paired clinical sentences
that are grounded in an ontology and represent
potential medical contradiction. The dataset is
used to weakly-supervise state-of-the-art deep
learning models showing significant empirical
improvements across multiple medical contra-
diction datasets.

1 Introduction

Determining whether a pair of statements is con-
tradictory is foundational to fields including sci-
ence, politics, and economics. Detecting that state-
ments contradict can shed light on fundamental
issues. For instance, mammography is an integral
routine in modern cancer risk detection, but there is
conflicting material about its efficacy (Boyd et al.,
1984). Recognizing that a certain topic has op-
posing points of view, signifies that this issue may
deserve further investigation. Medicine is a par-
ticularly interesting domain for contradiction de-
tection, as it is rapidly developing, of high impact,
and requires an above-superficial understanding
of the text. According to the National Library of
Medicine, the PubMed (Canese and Weis, 2013)
database averaged 900k citations for the years
2018-2021, with a quickly growing trajectory (med,
2006). The publication of contradictory papers is
not uncommon in scientific research, as it is part

of the process of validating or refuting hypothe-
ses and advancing knowledge in a field. A study
on highly impactful clinical research found that
that 16% of established interventions were refuted
(Ioannidis, 2005). Extrapolating these statistics to
PubMed, over 5 million articles would disagree
with a previous finding.

The problem of contradiction detection in text
has been studied in the task of natural language
inference (NLI). This task was developed to tackle
the problem of recognizing whether a pair of sen-
tences are contradictory, entailing, or neutral in text.
Deep learning approaches have reached impressive
results for this task. Specifically, large models with
hundreds of millions of parameters such as De-
BERTa (He et al., 2020) and BioELECTRA (raj
Kanakarajan et al., 2021), are considered today the
state-of-the-art (SOTA) for this task. However, in
clinical text, defining and detecting a contradiction
is more difficult. Sometimes more context may
be needed in order to detect contradiction due to
the high difficulty of the material. Consider the
following example:

1. “However, in the valsartan group, significant
improvements in left ventricular hypertro-
phy and microalbuminuria were observed.”

2. “Although a bedtime dose of doxazosin can
significantly lower the blood pressure, it can
also increase left ventricular diameter, thus
increasing the risk of congestive heart fail-

ER]

ure.

Detecting that this pair contradicts requires
knowing that improvements in left ventricular hy-
pertrophy is a positive outcome, whereas an in-
crease [in] left ventricular diameter is negative
outcome with regards to heart failure.

To tackle contradiction detection using deep
learning methods, large contradiction datasets are
required. However, very few datasets exist to train
such algorithms in the clinical contradiction do-
main. One reason for this could be due to the time



and cost of labeling complex medical corpora. The
MedNLI dataset (Romanov and Shivade, 2018) for
instance, required the expert labeling of 4 clinicians
over the course of 6 weeks . Yet, MedNLI is fab-
ricated in the sense that each of the clinicians was
given a clinical description of a patient and came up
with a contradicting, entailing, and neutral sentence
to pair up with that description. However, in this
work we are more interested in naturally-occurring
sentences in clinical literature as opposed to man-
ually curated texts that will not be representative.
Specifically, we focus on sentences representing
clinical outcomes and attempt to identify whether
they are contradictory.

One of the approaches to overcome the lack of
large enough data is distant supervision (Mintz
et al., 2009). Distant supervision is a technique
for training machine learning models on a large
corpus of data without manual annotation. It works
by using existing knowledge sources (such as a
database of facts) to automatically label a large
amount of data. The quality of the labels can be
noisy, so the goal is to train models that are ro-
bust and can still learn meaningful patterns. We
propose a novel methodology leveraging distant
supervision and a clinical ontology - the System-
atized Nomenclature of Medicine Clinical Terms
(SNOMED-CT or SNOMED for short) (Stearns
etal., 2001). SNOMED is developed by a large and
diverse group of medical experts (Donnelly et al.,
2006) and it contains extensive information about
clinical terms and their relationships. Our method-
ology uses knowledge extracted from SNOMED
to classify pairs of “naturally-occurring”, poten-
tially contradictory sentences. PubMed’s database
of medical abstracts is our source for naturally-
occurring sentences.

We perform empirical evaluation over mul-
tiple manually labeled clinical contradiction
datasets. We fine tune SOTA deep learning mod-
els on the aforementioned ontology-driven created
dataset. The results demonstrate that the distant-
supervision-based methodology we propose yields
statistically significant improvements of the models
for contradiction detection. The average results of
8 different models see an improvement on our main
evaluation set (Section 4.1.1) over previous SOTA.
Specifically, we find that the improvement is con-
sistent across both small models and those that are
considered to be SOTA on NLI tasks, which is the
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closest task to that of contradiction detection.

The contribution of our work is threefold: (1) We
present the novel problem of contradiction analysis
of naturally-occurring sentences in clinical data. (2)
We create a clinical contradiction dataset through
the use of distant supervision over a clinical on-
tology which yields improvements of SOTA deep
learning models when fine-tuning on it. (3) We
perform empirical evaluation over numerous manu-
ally labeled clincal contradiction datasets showing
improvements of SOTA models when fine-tuned
on the ontology-driven dataset.

2 Related Work

The field of natural language inference has primar-
ily focused on textual entailment with the RTE
challenges proposed by Dagan et al. (2013) and
Dagan et al. (2005). The task involves determining
if the meaning of one sentence can be inferred from
another. Over time, new data and classification cri-
teria have been introduced, including the labeling
of contradictions in the third challenge (Giampic-
colo et al., 2007). However, the medical domain
brings additional challenges for contradiction de-
tection requiring clinical expertise.

Despite the complexity of the medical literature
and the reality of contradictions amongst publica-
tions, there has been surprisingly little work in this
area. Large NLI corpora contain relatively easy
contradiction pairs, partly due to the cost of anno-
tating complex contradictions. The contradiction is
often a negation through words like ‘not’. An exam-
ple from a large NLI corpus, MultiNLI (Williams
etal., 2017) is:

1. “Met my first girlfriend that way.”

2. “I didn’t meet my first girlfriend until later.”

Alamri and Stevenson (2016) developed a
dataset labeled for contradictory research claims in
abstracts related to cardiovascular medicine. This
corpus has more complex sentence-pairings and is
annotated by experts in the field.

Some works addressed contradiction of a clinical
query and a claim. Given a sentence and a ques-
tion, Tawfik and Spruit (2018) use a combination of
hand-crafted features to build a classifier, whereas
(Yazi et al., 2021) use pure deep neural network
(DNN) techniques. Unlike these approaches, we
focus on classifying any given pair of medical sen-
tences representing a clinical outcome. To the best
of our knowledge no work addresses contradiction
detection between naturally-occurring sentences in



clinical literature.

This works leverages distant supervision (Mintz
et al., 2009) to address the task of identifying con-
tradiction detection between clinical sentence-pairs
representing clinical outcomes. We propose to
weakly-supervise SOTA deep learning models dur-
ing fine-tuning by utilizing the relational knowl-
edge of a clinical ontology. Unlike common dis-
tant supervision approaches (Smirnova and Cudré-
Mauroux, 2018; Purver and Battersby, 2012), we
do not use a database with known relationship la-
bels, but instead use the structure and attributes
of the clinical ontology to infer whether terms are
contradictory. To the best of our knowledge, our
work is the first time distant supervision is used for
contradiction detection in the clinical realm.

3 Methods

We aim to create a model for accurately classify-
ing whether two clinical outcomes contradict. In
particular, we focus on examples which are non-
trivial and require a deeper understanding of the
subject area or text. This model brings awareness
to conflicting literature and findings, specifically in
the medical domain. Understanding where there is
disagreement, can help elicit further investigations
or general consciousness.

3.1 SNOMED CT Ontology

Group
Root

Cardiac output
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Children

Constrictive pericarditis
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Figure 1: The group with Cardiac output as its root. The
children depicted have contradicting interpretations.

Interpretations

SNOMED is an ontology containing over
350,000 clinical terms (Stearns et al., 2001). The
terminology contains information about a plethora
of health concepts, often containing useful at-
tributes such as relationships to other terms and
various interpretations. The structure of SNOMED
allows us to group terms based on their relation-
ships. We hypothesize that that using this structure
coupled with synonyms and antonyms, will enable
us to create a corpora of contradicting and non-
contradicting clinical terms.

3.1.1 SNOMED Node Attributes

Each term in the SNOMED ontology is a node in
a tree-like structure. A subset of these nodes have
useful attributes which we use to determine their
inter-relationships. Each of these nodes belongs to
a group which is parented by the group root. In
addition, each node has a simple interpretation. In
Figure 1, the group consists of nodes describing the
group root cardiac output. The green (left) node,
increased cardiac output, has the interpretation -
increased.

We claim that every grouping of terms which has
these attributes has a logical connection. We argue
that pairing up child nodes yields a natural combi-
nation of contradicting and non-contradicting pairs
of phrases. Determining the relationship between a
pair of SNOMED terms is done partially through
comparing their interpretations. In Figure 1 the
blue (left) node has the interpretation decreased,
whereas the green (right) node has the interpreta-
tion increased. Since the values of these fields are
different, we assign the pair an attribute label (A; ;)
of contradiction. In Algorithm 1, A; ; is assigned
on Line 12.

The size of the groupings can get large. For in-
stance, the group root Cardiac function has 275
children. Since cardiac function is very general, its
child terms may not be related - for example the
terms aortic valve regurgitation due to dissection
and dynamic subaortic stenosis. Both terms are
impairments of cardiac function, but it would not
be fair to claim that the two are related outcomes.
Though these large groupings can yield many pair-
ings of phrases, we see why they may also be less
accurate. Some of this testing is in Section 5.2,
where we investigate the effects of group sizes.

Below we include pairings of contradictions in
various medical domains that our methodology
yields:

* suppressed urine secretion <+ polyuria

* elevation of Sa02 <> oxygen saturation within

reference range

* joint stable <> chronic instability of joint

3.1.2 Synonyms

After exploiting ontological structure, we con-
sider linguistic elements. Although synonyms
and antonyms do not always indicate whether se-
quences of words are contradictory, they provide a
strong signal in our structural construction. Since
clinical terms are already grouped, we know that
all the terms in a grouping share a context, thereby



Algorithm 1 SNOMED Traversal

1: function TRAVERSE(root)

2 for n € root.children do

3 if n.num_childs < group_size
4: pairs <— DET_RELATION(n)
5: end if
6
7
8

end for
return pairs
: end function

9: function DET_RELATION(n)
10: pairs < {}

11: for c;, c; € n.child_pairs do

12: A; j < GET_ATTR_LABEL(c;, ¢;)
13: Si; < GET_SYN_LABEL(c;, ¢j)
14: labelm — Ai,j

15: if S; j = no-contra & A; ; = contra
16: label; j < contra

17: elseif S; ; = contra & A; ; = no-contra
18: label; j < contra

19: end if

20: pairs < pairs U {(label; ;, ¢;, c;)}
21: end for

22: return pairs

23: end function

24: SNOMED < TRAVERSE(r00t)
25: FINETUNE(Model, SNOMED)

allowing the use of simpler indicators to determine
their relationship. We word-tokenize each clinical
phrase, removing the intersection of the two sets of
tokens, leaving each set with its unique tokens.
Figure 2 illustrates this for the clinical terms
shortened p wave and prolonged p wave. The
respective unique tokens are shortened and pro-
longed. Since the unique tokens are antonyms, the
synonym label for the pair is a contradiction. In
Algorithm 1, the synonym label (S; ;) is assigned
on Line 13. Similarly, if the respective tokens are
synonyms, then S; ; would be a non-contradiction.

3.1.3 Combining Attributes and Synonyms

To optimally combine A; ; and S; ; to form a final
label; ;, we build a validation set of the publicly
available SNOMED term-pairs. A human anno-
tator with an advanced medical degree (M.D.) la-
beled 149 SNOMED phrase-pairs - 70 of which
were contradictory and 79 as non-contradictory.
More details can be found in Appendix A.1. We
find that when A; ; indicates contradiction, then it’s

P wave feature

LI Prolonged P'Wayé

antonyms >

Shortened P 'wavé

shortened < prolonged

Figure 2: The terms shortened p wave and prolonged p wave
are simplified to shortened and prolonged. The remaining
words are antonyms.

highly likely that label; ; is a contradiction. The
same is true if S;; indicates contradiction. We
define the explicit logic in Lines 15 through 19.
We reach 79% accuracy through using heuristics
on the human-labeled SNOMED term-pairs in the
validation dataset.

3.2 Ontology-Driven Distant Supervision

Using the relational knowledge extracted from
the SNOMED ontology, we weakly-supervise
naturally-occurring sentences in PubMed to build
our SNOMED dataset. We fine-tune on this dataset
to achieve significant improvements over exist-
ing baselines. Algorithm 1 summarizes the pro-
cedure. We search PubMed for sentences con-
taining the phrase-pairs discussed in Section 3.1,
resulting in a corpus of pairs of sentences. The
sentence-pairs are then labeled through distant su-
pervision as explained below. For a given pair
of SNOMED terms (p1,p2), we label sentences
(s1,s2) as formalized in Eq.1, where label €
{contradiction, non-contradiction}.

(p1 € s1) A (p2 € s2) A ((p1,p2) € label) (1)

Naively, we pair-up any sentences satisfying
Equation 1, independent of whether they appear in
the same text, when creating the SNOMED dataset.
Although two sentences contain their respective
clinical SNOMED terms, they may be unrelated.
The sentence-pair below exhibits this:

1. “The present results suggest that the upstream
changes in blood flow are transmitted by the
velocity pulse faster than by the pressure
pulse in the microvasculature.”

2. “His chest wall was tender and his pulse slow
but the remainder of his physical examination
was normal.”



The bolded clinical terms are central to the meaning
of the sentences and are independently contradic-
tory. However, when placed in context they may
be less relevant to each other as in the example
above. We experiment through imposing stricter
criteria for filtering sentence matches - namely
MeSH (Medical Subject Headings) terms criteria
(Lipscomb, 2000) and cosine similarity criteria.

MeSH terms are words used to categorize arti-
cles within PubMed. We hypothesize that if sen-
tences are drawn from articles with related MeSH
terms, then the likelihood that they discuss the same
topic increases. Equation 2 is the formulation we
use for filtering via MeSH terms. MeSH,; and
MeSHj are the sets of MeSH terms for articles
containing sent; and sent; respectively. Let ¢ be a
chosen threshold.

|[MeSH;UMeSH;| > ¢
min(IMeSH;[|[MeSH;1) = " ()

0 otherwise
Although MeSH terms are powerful, they are
not perfect. The following sentence-pair achieves
a score of 0.4 per the inequality in Equation 2.

1. “In dogs challenged with endotoxin, the inhi-
bition of nitric oxide production decreased
cardiac index and did not improve survival.”

2. “Intra-aortic balloon pumping increased car-
diac index and aortic distensibility by 24%
and 30%, respectively, and reduced myocar-
dial oxygen demand by 31% (P < .001 for
all alterations).”

Despite overlap in MeSH terms, they are very dif-
ferent - one discusses dogs and the other humans.

The second filtration method measures the co-

sine similarity between one-hot vectors. Topically
related sentences should have a higher one-hot vec-
tor cosine similarity. Let onehot; and onehot; be
the respective one-hot vectors of sent; and sent;.
Note vectors lengths are equal to the number of
unique words spanning the sentence-pair. We com-
pute the cosine similarities between the vectors as
shown in equation 3. For the dog example above,
cosine similarity yields a score of 0.2.

1a= 4t
A.—O

4 Empirical Evaluation

1 if

14 :=

if cossim(onehot;, onehot;) >t ,
otherwise

3)

In this section we discuss the medical corpora used
in our evaluation of 8 different models, spanning

Table 1: Cardiology Dataset Breakdown

Split | Total | Contra | Non-Contra

Train | 1347 571 776
Dev 198 100 98
Test 227 55 172

various model sizes and objective functions.

4.1 Evaluation Datasets

In determining whether our methodology can pro-
vide reliable results, we acquire and modify various
medically related corpora.

4.1.1 Cardiology Dataset

Due to the difficulty of labeling medical data, there
are few datasets labeled for medical contradictions.
To evaluate results and compare the quality of the
dataset we create in an automatic fashion, we tweak
an existing cardiology dataset. Alamri et al. de-
veloped ManConCorpus (Alamri and Stevenson,
2016) - a dataset of potentially contradictory re-
search claims in abstracts related to cardiovascular
medicine. The corpus is composed of question-
claims pairs. Each question has multiple ‘yes’,
‘no’ claims. The claims are naturally-occurring
sentences in PubMed, whereas the questions are
generated by expert labelers. We convert Man-
ConCorpus by pairing up the claims, since we are
strictly interested in naturally-occurring sentences
from PubMed. A pair is labeled as contradictory
if each constituent claim answers the question dif-
ferently. We coin this dataset as the Cardiology
Dataset (“Cardio”) (see Table 1 for details).

4.1.2 Hard Cardiology Dataset

Through our analysis, we find that models tend to
classify sentence-pairs as contradictory if negation
words appear. For example:

1. “Our results indicate that atorvastatin therapy
significantly improves BP control in hyperlipi-
demic hypertensive patients.”

2. “Administration of a statin in hypertensive pa-
tients in whom blood pressure is effectively re-
duced by concomitant antihypertensive treat-
ment does not have an additional blood pres-
sure lowering effect.”

Thus, we construct a version of Cardio through
rewriting the sentences without negation words. As
expected, this version exposes some of the weak-
nesses of the models, since negation words are no
longer deemed as important.



4.1.3 MedNLI

Inspired by SNLI (Bowman et al., 2015), MedNLI
was created similarly, but with a focus on the clin-
ical domain (Romanov and Shivade, 2018). The
dataset was curated over the course of six weeks,
borrowing the time of four doctors. MedNLI
consists of sentence-pairs which are grouped into
triples - a contradictory, entailing, and neutral pair.
The sentences are not naturally-occurring in exist-
ing medical literature. The premise is shared across
the three pairs, but each have a different hypothesis,
yielding a different label. Since MedNLI deals with
a 3-class problem, we relabel the dataset by making
{entailment, neutral} map to non-contradiction.

Our focus is to show that the SNOMED dataset,
which requires no expert intervention or expenses,
is as powerful as the curated MedNLI dataset. We
find that the baseline on the relabeled version of
MedNLI gives high results (0.974), so adding addi-
tional data makes little change. The largest labeled
datasets containing naturally-occurring sentences
are at most hundreds of sentences. Therefore, we
randomly sample 100 instances from MedNLI’s
train-split and report results on that.

To explore fields outside of cardiology, we cre-
ate versions of MedNLI focused on gynecology
(GN), endocrinology (Endo), obstetrics (OB), and
surgery. To filter the data, we use the help of the
same annotator introduced in Section 3.1.3. We
sample from the train-split in the same fashion as
explained above. Note that these datasets also have
the same 2-class label structure as explained in Sec-
tion 4.1.3. More details are found in Appendix
A2.

4.2 Baseline Models

Yazi et al. (2021) achieve the SOTA on the Man-
ConCorpus, which we turn into the Cardio cor-
pus as explained in Section 4.1.1. They concate-
nate BERT embeddings for their question and
claim, feeding this input into a multi-layer feed
forward network. All of our baselines do not
use a siamese network, instead we feed in our
sentence-pairs as input into the network. Our evalu-
ation consists of 8 baseline models and comparing
their performance when they are fine-tuned on the
SNOMED dataset versus without. The task of clas-
sifying contradiction is most similar to NLI, so
some of these baseline models are those that top
leaderboards for the MNLI and MedNLI datasets -
namely DeBERTaV3-Base (He et al., 2021), AL-

Table 2: Baseline Models Parameter Count

Model Parameter Count
ALBERT 11.7M
ELECTRA-Small 13.5M
BERT-Small 28.8M
ELECTRA-Base 109.5M
BERT-Base 109.5M
BioELECTRA 109.5M
DeBERTaV3-Small 141.9M
DeBERTaV3-Base 184.4M

BERT (Lan et al., 2019), and BioELECTRA (raj
Kanakarajan et al., 2021). ELECTRA (Clark et al.,
2020) and BERT (Devlin et al., 2018) are also in-
cluded as they are generally high-performing archi-
tectures. In addition, we are interested in seeing
the performance of small models. They require less
computing resources and may allow the SNOMED
dataset to have a stronger influence during fine-
tuning. Thus, we also include BERT-Small (Turc
et al., 2019), ELECTRA-Small, and DeBERTaV3-
Small (He et al., 2021). Table 2 contains a break-
down of the number of parameters per model.

All the baseline models are pre-trained on large
corpora. The high-level architecture of the mod-
els is the same, so we use the functionalities of
HuggingFace (Wolf et al., 2019) and the Sentence-
Transformer library (Reimers and Gurevych, 2019).
We add an uninitialized binary classification head
on top of the model body. We adopt all the hyper-
parameters from the Sentence-Transformer library
with the exception of training batch size, which is
set to 8 for models above 30M parameters and to
16 for models under 30M parameters.

Each baseline we tune with the SNOMED
dataset. The SNOMED dataset we create uses a
group size of 25, sampling 10 sentence-pairs from
PubMed for every SNOMED term-pair. These
hyperparameters are determined through ablation
tests on the Cardio validation set.

S Empirical Results

The following sections display the significance of
the SNOMED dataset we create via the method-
ology (Section 3). We explore additional insights
through ablation tests and qualitative examples.

5.1 Main Result

Table 3 summarizes our main findings. We com-
pare the performance of the baseline algorithms
when fine-tuned over the original training of each
dataset (marked as “base’) versus tuning using our



Table 3: Performance of Models tuned with SNOMED vs. Without

‘ Algorithm
Dataset Method | ALBERT | ELECTRA| BERT ELECTRA| BERT Bio- DeBERTa | DeBERTa | (Yazi
Base Small Small Base Base ELECTRA| Small Base et al.,

2021)

Cardio Base 0.911 0.877 0.858 0.863 0.914 0.880 0.885 0.861 0.858
Ours 0.928 0.947* 0.958* 0.892 0.878 0.925 0.931* 0.942%* -

Hard- Base 0.876 0.785 0.717 0.847 0.803 0.850 0.842 0.845 0.687
Cardio Ours 0.925* 0.853* 0.794* 0.873 0.791 0.925% 0.917* 0.936* -

MedNLI- Base 0.598 0.526 0.537 0.587 0.651 0.616 0.585 0.696 0.528
General Ours 0.780* 0.615* 0.656* 0.789* 0.764* 0.798* 0.778* 0.876* -

MedNLI- Base 0.638 0.524 0.555 0.599 0.675 0.607 0.601 0.673 0.585
Cardio Ours 0.789* 0.668* 0.727* 0.780* 0.793* 0.795% 0.796%* 0.875% -

MedNLI- Base 0.642 0.492 0.608 0.692 0.683 0.575 0.592 0.633 0.615
GYN Ours 0.692* 0.633* 0.667* 0.800* 0.817* 0.775% 0.608 0.825%* -

MedNLI- Base 0.568 0.494 0.551 0.575 0.722 0.631 0.605 0.625 0.549
Endo Ours 0.801* 0.607* 0.702 0.811* 0.852* 0.893* 0.728* 0.909* -

MedNLI- Base 0.514 0.521 0.541 0.573 0.560 0.506 0.527 0.526 0.542
OB Ours 0.657* 0.545 0.557 0.693* 0.644* 0.698* 0.590 0.750%* -

MedNLI- Base 0.641 0.519 0.528 0.597 0.919 0.665 0.640 0.752 0.539
Surgery Ours 0.890* 0.739* 0.802* 0.860* 0.929* 0.903* 0.885%* 0.922%* -

novel SNOMED dataset and the training dataset
(marked as “base+SNOMED”’). We measure the
area under the ROC curve of each baseline, and
verify statistical significance through Delong’s
test (DeLong et al., 1988). Significant differences
are marked with an asterisk (*). We observe that
across all dataset the weak supervision over the
SNOMED dataset reached superior results com-
pared to fine tuning only on the original dataset
and outperforms the SOTA model for contradiction
detection (Yazi et al., 2021).

Cardio is a relatively difficult dataset of poten-
tially contradicting pairs of sentences naturally-
occurring in PubMed. The sentences are complex
and require a deep medical understanding. We
observe that fine tuning on the SNOMED dataset
improves the baselines for all 7 out of the 8 models
we evaluate over the Cardio dataset.

The performance on Hard-Cardio drops rela-
tively to Cardio as expected. This verifies our hy-
pothesis that removing negations makes the prob-
lem more difficult. Further, 7 out 8 models fine-
tuned on SNOMED outperform their baseline coun-
terparts.

We observe that even on synthetically created
common datasets, such as MedNLI sentences, our
methodology improves over all baselines for this
corpus. We observe a similar trend when focus-
ing on various sub-specialties. The improvements
are consistent across all models when fine-tuning

on SNOMED. This enables us to learn of the scal-
ability of our methods for clinical contradiction
detection through different fields within healthcare.

Analyzing our findings further, we see that there
is a trend that smaller models are generally more
affected by fine-tuning on SNOMED. All of the
evaluation datasets improve over the baseline on
every model under 30 million parameters.

5.2 Ablation Studies

In this section we review the ablation studies to de-
termine potential impact of the different parameters
of the system on performance.

5.2.1 Group and Sentence Samples Size

We explain SNOMED term grouping in Section 3.1
and illustrate in Figure 1. The size of a group and
the quality of the pairing may be closely related.
Larger groupings tend to have more terms which
are less directly related to each other as explained in
Section 3.1.1. Thus, we experiment with creating
SNOMED datasets based on terms belonging to
groups of at most 6, 12, 25, and 50 terms.

During dataset creation, we choose how many
sentence-pairs to sample per SNOMED pairing. In
Figure 3, each line with a different color/marker
represents a different number of samples averaged
across all 8 models. The ablations we perform
include 10, 25, and 50 samples per pairing.

Figure 3 shows 10 samples outperforms higher



sampling numbers for almost all group numbers.
Increased sampling results in over-saturation of
certain term-pairs. This may result in overfitting.
The best group size is 25 for small models and
12 for large models. These numbers strike the
balance of creating a large amount of SNOMED
phrase-pairings, while keeping their relationships
accurate (as discussed in Section 3.1.1). Smaller
models may benefit more from larger group sizes,
because they have a more limited base knowledge
than those of large models.

—-- Yazietal —— Small Models
0947 _p 50 Samples 7\ e Large Models
—&— 25 Samples
—#— 10 Samples

0.92 1
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0.88
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Group Size

Figure 3: Small and large model performance across group
sizes and sample numbers. Reported on Cardio.

5.2.2 Filtering Based on Similarity

To increase the chances that sentences are related,
when sampling phrases from PubMed, we exper-
iment with keeping pairs that exhibit high MeSH
term or cosine similarity as explained in Section
3.2. Figure 4 shows the relationship between the fil-
tration methods discussed above. As a continuation
of the ablation visualized in Figure 3, we fix the
number of samples to be 10 and the group size to be
25. The cosine methodology outperforms both the
naive version (no filtering) and MeSH. Although
MeSH terms are useful, it is possible that since they
are tagged on an article-level, they cannot provide
the same topic granularity as the one-hot vectors.

6 Conclusions

Contradiction detection is central to many fields,
but it is especially important in medicine due to
direct human impact. With the rapid growth of
the field, clinical research is exploding with new
findings as demonstrated by the growth of PubMed.
Although contradictions are a subfield of NLI, there
is much less exploration in the clinical domain. Of-
ten times, contradictions within medicine are more
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Figure 4: Model performance across varying filtration meth-
ods. Number of samples is 10 and group size is 25 for plotted
results. Reported on Cardio.

complex than other fields due to the need of addi-
tional context and domain knowledge. Labeling
datasets which could produce high performing re-
sults with deep learning models are time and re-
source costly.

We introduced a novel methodology of using a
clinical ontology to weakly-supervise the creation
of a contradiction dataset with naturally-occurring
sentences. We coin this dataset as the SNOMED
dataset. The empirical results suggest that fine-
tuning on the SNOMED dataset results in consis-
tent improvement across multiple SOTA models
over diverse evaluation datasets spanning multi-
ple medical specialties. We showed that a balance
exists between the group size of the number of
terms and the number of sentences sampled from
PubMed per term-pairing. In addition, we find
that we can further improve results through filter-
ing which PubMed sentences we include in our
dataset.

For future exploration we suggest investigating
more robust sentence filtration methods, such as
topic modeling or sentence embedding similarity.
Looking into how other clinical ontologies can be
paired with SNOMED may also be fruitful.

Limitations

The methodology proposed is limited to using clin-
ical terms which are located within SNOMED. In
addition, many SNOMED terms do not appear ex-
actly within PubMed, so not all of the terms are
used. Finally, the relationships we extract from
the clinical ontology are not ground-truth, yielding
noise during dataset creation.



Ethical Considerations

Whenever working within the clinical domain, eth-
ical considerations are crucial. The data that we
work with is all rooted in already publicly available
corpora and PubMed. To the best of our knowledge
the data we use does not contain any personal in-
formation of any humans involved in clinical trials.
There is a potential risk of over representing com-
mon diseases and outcomes in our dataset, thereby
not including enough data about other outcomes.
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A Appendix: Annotation

As mentioned in Section 3.1.3, we work with an
annotator with a degree in medicine. The annotator
was recruited due to their expertise in the field.

A.1 SNOMED Term-Pairs

The annotator labeled 149 SNOMED term-pairs
as either contradictory or non-contradictory. They
were provided with a list of pairs, without any ad-
ditional information about the ontological structure
they came from. This was done in order to preserve
fairness and integrity during the labeling process.
The instructions were to come up with a binary
label for each of the pairs.

A.2 Filtering MedNLI

The human annotator also helped with coming up
with a list of sub-words which served as indicators
for particular fields of medicine. For example, the
sub-words vulv and gyno, are indicative of gyne-
cology. These word lists were used to create the
variations of MedNLI discussed in Section 4.1.3.
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