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Abstract001

Large Language Models (LLMs), such as the002
GPT-4 and LLaMA families, have demon-003
strated considerable success across diverse004
tasks, including multiple-choice questions005
(MCQs). However, these models exhibit a006
positional bias, particularly an even worse007
“anchored bias” in the GPT-2 family, where008
they consistently favour the first choice ‘A’ in009
MCQs during inference. This anchored bias010
challenges the integrity of GPT-2’s decision-011
making process, as it skews performance based012
on the position rather than the content of the013
choices in MCQs. In this study, we utilise the014
mechanistic interpretability approach to iden-015
tify the internal modules within GPT-2 models016
responsible for this bias. We focus on the Multi-017
Layer Perceptron (MLP) layers and attention018
heads, using the “logit lens” method to trace019
and modify the specific value vectors that con-020
tribute to the bias. By updating these vectors021
within MLP and recalibrating attention patterns022
to neutralise the preference for the first choice023
‘A’, we effectively mitigate the anchored bias.024
Our interventions not only mitigate the bias025
but also improve the overall MCQ prediction026
accuracy for the GPT-2 family across various027
datasets. This work represents the first compre-028
hensive mechanistic analysis of anchored bias029
in MCQs within the GPT-2 models, introducing030
targeted, minimal-intervention strategies that031
significantly enhance GPT2 model robustness032
and accuracy in MCQs.033

1 Introduction034

Large Language Models (LLMs) exhibit remark-035

able capabilities across a wide array of tasks, in-036

cluding multiple-choice question (MCQ) (Robin-037

son and Wingate, 2022), which are largely at-038

tributed to the advancements in the Transformer039

backbone. These models not only excel at rea-040

soning but also demonstrate significant inductive041

capabilities, which make them highly effective in042

different domains (Chen et al., 2023; Team et al., 043

2023; Anil et al., 2023). 044

Despite their success, recent studies have uncov- 045

ered a notable flaw: LLMs exhibit a positional bias 046

when tasked with MCQs. Specifically, the perfor- 047

mance of these models (e.g., LLaMA (Touvron 048

et al., 2023a), LLaMA2 (Touvron et al., 2023b), 049

GPT-4 (Achiam et al., 2023)) varies significantly 050

depending on the position of the correct answer 051

within the given choices (Pezeshkpour and Hr- 052

uschka, 2023; Zheng et al., 2024a). We further 053

observe that this vulnerability to positional bias 054

is even worse in the GPT-2 family, ranging from 055

GPT2-Small-124M to GPT2-XL-1.5B (Radford 056

et al., 2019). Our investigations reveal that GPT-2 057

models consistently favour the first choice ‘A’, re- 058

gardless of the actual position in the input MCQ 059

prompt where the correct answer choice is placed, 060

which we term as “anchored bias” in Fig. 1. 061

Previous work primarily mitigated positional 062

bias in MCQ by analysing the impact of differ- 063

ent prompt structures (Pezeshkpour and Hruschka, 064

2023) or by estimating different datasets’ prior bias 065

based on test samples (Zheng et al., 2024a). Such 066

approaches often remain superficial, merely alter- 067

ing the prompt presentation, or lacking a compre- 068

hensive analysis of fundamental reasons. Remark- 069

ably, there has been a lack of investigation into 070

the internal mechanisms of LLMs that contribute 071

to the anchored bias and strategies to mitigate it 072

without the need for prompt engineering or prior 073

estimation. 074

We apply mechanistic interpretability to reverse- 075

engineer the internal workings of the GPT-2 family 076

to understand the origins and extent of the anchored 077

bias. We quantitatively demonstrate that the GPT- 078

2 Small, Medium, Large, and XL models exhibit 079

this anchored bias with significant regularity across 080

various MCQ datasets, ranging from 2 choices to 081

5 choices settings. Our detailed analysis using 082

the “logit lens” (Nostalgebraist, 2020) approach lo- 083
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Question:
On a shelf, there are three books: a black book, an orange book, and 
a blue book. The blue book is to the right of the orange book. The 
orange book is to the right of the black book?
Answer Choices:
A: The blue book is the leftmost 
B: The black book is the leftmost 
C: The orange book is the leftmost
Answer:

Performance on correct answer token:
Rank: 20 Logit: 13.34 Prob: 0.91% Token: B

Top 0th token. Logit: 16.28 Prob: 17.09% Token: A
Top 1st token. Logit: 15.61 Prob:  8.80% Token: The 
Top 2nd token. Logit: 14.68 Prob:  3.47% Token: On 
Top 3rd token. Logit: 14.53 Prob:  2.97% Token: I

Rankings:

A: The orange book is the leftmost.
B: The blue book is the leftmost. 
C: The black book is the leftmost. 

Performance on correct answer token:
Rank: 34 Logit: 12.54 Prob: 0.41% Token: C

Rankings:
Top 0th token. Logit: 16.27 Prob: 17.16% Token: A 
Top 1st token. Logit: 15.72 Prob: 9.88% Token: The 
Top 2nd token. Logit: 14.79 Prob:  3.89% Token: On 
Top 3rd token. Logit: 14.48 Prob:  2.87% Token: I

Figure 1: MCQ prompt paradigm used in GPT2-Small
and next token logit rankings with probability during
inference. Regardless of the order in which correct
answer choices are placed in the prompt except ‘A’,
GPT2-Small always give a higher logit score to the
choice immediately following the Answer Choices:,
i.e., A, where represents the anchored bias for the
incorrect choices (the correct choices should be B and C
for this example).

calises Multi-Layer Perceptron (MLP) layers with084

specific dimensionality and attention heads that dis-085

proportionately influence this anchored bias. We086

find that certain value vectors in the MLP, which087

inherently harbour this bias, and specific attention088

heads pay more weight on the ‘A’ position over089

the correct answer choice positions in the input090

prompt.091

Inspired from (Geva et al., 2021, 2022) where092

MLPs can be treated as key-value memories, we093

use a straightforward yet potent method (Dai et al.,094

2022) to update these critical value vectors in the095

MLP, effectively mitigate the anchored bias. This096

adjustment not only mitigates the anchored bias097

but also enhances the overall MCQ prediction ac-098

curacy over 70% averaged across various MCQ099

datasets and all GPT-2 family. Additionally, we100

propose a novel strategy to recalibrate the attention101

patterns by swapping the attention weight between102

the anchored position and the correct answer choice103

position. This strategy also mitigates the anchored104

bias to a certain extent, especially for the classifica-105

tion accuracy improvement of the Indirect Obejct106

Identification (IOI) dataset (Wang et al., 2022) over107

90% on GPT2-Medium. Finally, we trace the full108

anchored bias circuit of each GPT2 model, which109

includes all attention heads and MLPs contributing110

to this bias. 111

In conclusion, to our best knowledge, this work 112

is the first comprehensive mechanistic analysis of 113

the intrinsic anchored bias in MCQ tasks across the 114

entire GPT-2 family. By identifying and rectifying 115

the critical value vectors within MLP and attention 116

heads responsible for this bias, we introduce novel, 117

minimal-intervention strategies that significantly 118

reduce GPT-2 models’ vulnerability and enhance 119

robustness against anchored bias in MCQ task. 120

2 Related Work 121

Several studies have documented the effects of 122

positional bias on LLM accuracy in MCQs. 123

Pezeshkpour and Hruschka (2023) found a "sensi- 124

tivity gap" in models like GPT-4, where positional 125

bias can decrease performance by up to 75% in 126

a zero-shot setting, and they improved accuracy 127

with new calibration strategies. Wang et al. (2023) 128

also noted the impact of option order on GPT-4’s 129

scores, enhancing accuracy through a calibration 130

framework including multiple evidence and bal- 131

anced position adjustments, along with human in- 132

volvement. Zheng et al. (2024a) addressed "selec- 133

tion bias" where LLMs disproportionately favour 134

certain options, introducing a debiasing method, 135

PriDe, that adjusts predictions during inference. 136

Wang et al. (2024) explored performance changes 137

from reordering answer options, confirming that 138

this impacts understanding. Turpin et al. (2024) 139

and Zheng et al. (2024b) explore the effects of posi- 140

tional bias in LLMs, showing how it skews Chain- 141

of-Thought generation and evaluator judgments, 142

and emphasize the need for strategies to detect and 143

mitigate these biases. However, those studies did 144

not analyse such bias inside of models and further 145

identify which component is relevant. Recently, 146

Lieberum et al. (2023) analyse final-token attention 147

heads and identify a subset “correct letter heads”, 148

which focus on earlier answer symbols to promote 149

the correct choice based on its order (mainly for 150

A/B/C/D). However, their findings are based solely 151

on MMLU task using the closed-source Chinchilla- 152

70B. Wiegreffe et al. (2025) investigates how suc- 153

cessful models perform formatted MCQs with sym- 154

bol binding internally rather than focusing on the 155

failure cases when models have positional bias. 156

3 Background: Large Language Models 157

and Mechanistic Interpretability 158

Architecture of LLMs. We focus on the au- 159

toregressive Transformer-based LLM architec- 160
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Figure 2: Left: the MLP and attention modules of LLMs, where the input prompt is encoded via WE , and then the
processed information via attention and MLP layer is accumulated back to the residual stream Xℓ at layer ℓ. Finally,
the residual stream at L layer is unembedded as logits and normalised as a probability distribution for next token
prediction. Right: logit lens (Nostalgebraist, 2020) is used to investigate the contribution of attention pattern and
MLP module for the next token prediction.

ture (Vaswani et al., 2017) based on prior161

works (Geva et al., 2021; Elhage et al., 2021; Geva162

et al., 2022; Dai et al., 2022; Meng et al., 2022a,b;163

Yuksekgonul et al., 2024) with simplifications in164

certain explanations. Given an input prompt con-165

taining T tokens (t1, . . . , tT ) and each token ti166

belonging to a vocabulary V , tokens are initially167

encoded by d-dimensional vectors x0
i ∈ Rd using168

an embedding matrix WE ∈ R|V|×d.169

As shown in Fig. 2, the architecture has L layers,170

and each layer consists of attention and MLP mod-171

ules, which transform token embeddings to resid-172

ual streams (xℓ
1, . . . ,x

ℓ
T ) ∈ Xℓ at layer ℓ, where173

xℓ
i ∈ Rd. The residual stream at layer ℓ is a place174

where all attention and MLP modules at layer ℓ175

read from and write to (Elhage et al., 2021), and it176

is updated by the following equation for token i at177

layer ℓ:178

xℓ
i = xℓ−1

i + aℓi +mℓ
i (1)179

Here, aℓi is the attention contribution for token i180

and mℓ
i is the MLP contribution at layer ℓ1. At L181

layer, the predicted probability distribution for the182

next token P(tT+1|t1:T ) is produced following:183

P(tT+1|t1:T ) = Softmax
(
WUσ(x

L
T )
)

(2)184

where WU ∈ Rd×|V| is unembedding matrix, σ(·)185

is pre-unembedding layer normalisation.186

The attention module mainly updates each token187

residual stream xl−1
i by attending to all previous to-188

kens in parallel. Specifically, the attention module189

contains QK and OV circuits, where the former190

operates WQ,WK ∈ Rd×d matrices and the latter191

operates WO,WV ∈ Rd×d matrices, respectively.192

Normally, QK circuit determines the attention pat-193

tern Aℓ, i.e., where information is moved to and194

from the residual stream. OV circuit further de-195

termines the attention output aℓi based on the fixed196

1We omit the layer normalisation of attention and MLP
modules at layer ℓ for simplification.

attention pattern, i.e., what information is from 197

the previous tokens’ position to the current token 198

position (Elhage et al., 2021): 199

aℓi,j =
H∑

h=1

Aℓ,h
i,j (x

ℓ−1
j W ℓ,h

V )W ℓ,h
O =

H∑
h=1

rℓ,hi,j (3) 200

where aℓi,j indicates the attention contribution from 201

token i to token j, and aℓi =
∑T

j=1 a
ℓ
i,j . rl,hi,j in- 202

dicates the weighted average values where token 203

i attend to token j by head h at the layer ℓ, and 204

rℓ,hi =
∑T

j=1 r
ℓ,h
i,j (See Appendix B for detailed 205

explanations about attention module). 206

MLP module is normally treated as key-value 207

memories (Geva et al., 2021; Elhage et al., 2021; 208

Geva et al., 2022; Dai et al., 2022), where columns 209

of W ℓ
in[:,i] and rows of W ℓ

out[i,:] are viewed as keys 210

and values in Fig. 2, respectively. Given the in- 211

put xℓ−1
i , the keys of MLP produce a vector of 212

cofficients kℓ
i = γ(W ℓ

inx
ℓ−1
i ) ∈ Rdm , and they 213

weights the corresponding values vℓ
i in W ℓ

out (See 214

Appendix B for detailed introduction about MLP): 215

mℓ
i =

dm∑
n=1

kℓ,n
i vℓ,n

i (4) 216

Logit lens. Logit lens is a mechanistic inter- 217

pretability approach to investigate the contribution 218

of the intermediate layer representation in the au- 219

toregressive Transformer-based LLMs (Nostalge- 220

braist, 2020). Based on the architecture of LLMs 221

above, the P(tT+1|t1:T ) at layer L is the produc- 222

tion of linear softmax of logits unembedded via 223

WU , which is the sum of input x0
i and attention and 224

MLP contributions at each layer ℓ. Therefore, logit 225

lens can be used to measure the weighted atten- 226

tion value of each head rℓ,hi ∈ Rd, each weighted 227

value vector kℓ,n
i vℓ,n

i ∈ Rd at n-th dimensionality 228

in MLP and intermediate residual stream xℓ
i ∈ Rd 229

for token i: 230

3



Datasets Train Test A (%) B (%) C (%) D (%) E (%)

IOI (2) - 1000 0 100 - - -
LD (3) - 200 0 50 50 - -
Greater (4) - 1000 0 33.33 33.33 33.33 -
ARC (4) 1.12k 907 20.82 26.18 25.65 25.29 -
CSQA (5) 9.74k 982 19.60 20.25 19.98 20.38 19.79

Table 1: The distribution of correct choices on each
training dataset. IOI, LD, and Greater-than datasets are
manual-synthesised and we did not choose or place the
correct choice at A. For test datasets, we only select sam-
ples whose correct choices are not ‘A’ to avoid overlap
between anchored predictions from GPT2 models and
the correct choice. (·) indicates the number of choices.

logitℓ,hi (rℓ,hi ) = WUσ(r
ℓ,h
i )

logitℓ,ni (mℓ,n
i ) = WUσ(k

ℓ,n
i vℓ,n

i )

logitℓi(x
ℓ
i) = WUσ(x

ℓ
i)

(5)231

4 Preliminaries: Zero-shot Learning with232

MCQs233

Zero-shot learning. We mainly focus on the234

zero-shot learning regarding each GPT2 model,235

i.e., the input prompt is formatted as “Question:236

<Question sample> Answer Choices: <Multiple237

Choices> Answer:”, which is explained in Fig. 1.238

After encoding the input prompt, GPT2 model will239

decode the next token prediction, which is expected240

as the correct answer choice.241

Datasets and models. To comprehensively ver-242

ify and evaluate the anchored bias of GPT2 family,243

we consider 5 datasets, which include different244

numbers of choices from 2 to 5. Indirect Object245

Identification (IOI) (Wang et al., 2022) and Greater-246

than task (Greater) (Hanna et al., 2024): These247

two datasets have been verified that GPT2 fam-248

ily works well (Wang et al., 2022; Merullo et al.,249

2024; Hanna et al., 2024). However, we found250

that GPT2 family immediately fails these tasks if251

the input prompt is formatted as MCQ in Fig. 1,252

where the incorrect subject of the last clause or253

incorrect years is placed in the ‘A’ choice and the254

prediction is always anchored at incorrect choice255

‘A’. Logical Deduction of the Big-Bench (LD)2 (Sri-256

vastava et al., 2023): LD is a subtask which eval-257

uates three-object logical deduction tasks, and it258

is used to measure whether model can parse in-259

formation about multiple choices and their mutual260

relationships. ARC-Challenge (ARC) (Clark et al.,261

2018) and CommensenseQA (CSQA) (Talmor et al.,262

2https://github.com/google/BIG-bench/blob/
main/bigbench/benchmark_tasks/logical_deduction/
three_objects/task.json

Dist. (%) GPT2-Small GPT2-Medium GPT2-Large GPT2-XL

IOI (2) 45.5 97.4 100.0 85.8
LD (3) 63.0 94.0 100.0 17.0
Greater (4) 32.1 95.0 99.5 98.0
ARC (4) 54.6 91.6 97.6 69.9
CSQA (5) 34.8 81.5 99.6 97.7

Table 2: The distribution of anchored bias ‘A’ happened
for GPT2 family across different datasets.

2019) are commonly-used MCQ benchmarks to 263

evaluate LLMs. For each dataset, we split into 264

90% Infer. set for anchored bias discovering and 265

mitigation, and 10% Eva. set to evaluate the mod- 266

ified GPT2 model performance. For models, we 267

comprehensively evaluate the GPT2 family, i.e., 268

GPT2-Small-124M, GPT2-Medium-355M, GPT2- 269

Large-774M, and GPT2-XL-1.5B (Radford et al., 270

2019) (See Appendix C for detailed introduction 271

of each dataset). 272

Evaluation metrics. We use logit lens (Nostal- 273

gebraist, 2020) introduced in § 3 to localise the 274

specific layer of MLP and specific attention head 275

which contribute to the anchored bias (more details 276

in § 5). Moreover, we use MLP contribution (Geva 277

et al., 2022) to locate the specific dimensionality 278

from W ℓ
out which leads to anchored bias. Regard- 279

ing mitigating anchored bias, we use classification 280

accuracy to evaluate whether the anchored bias can 281

be mitigated and GPT2 family can successfully 282

predict correct choices in MCQ. 283

5 Discovering Anchored Bias in MCQs 284

Frequency of anchored bias in GPT2 family 285

across all datasets. As introduced in § 4, we 286

use 5 different datasets with choices from 2 to 5 287

to investigate the anchored bias. Table 1 shows 288

that the correct choices distribution of ARC and 289

CSQA training dataset is balanced from ‘A’ to ‘E’. 290

In addition, IOI, LD and Greater test datasets are 291

manually synthesised, and we did not choose or 292

place the correct choice at ‘A’. For all test datasets, 293

we only select samples whose correct choice is not 294

‘A’ to avoid introducing extra bias, i.e., the mix-up 295

between correct prediction and anchored bias of 296

GPT2 family. Based on the randomly sampled test 297

datasets in Table 1, we further calculate the distri- 298

bution of anchored bias ‘A’ happened within each 299

test dataset when different GPT2 model is used in 300

Table 2. We can find that GPT2-Large and GPT2- 301

Medium have the most serious anchored bias, and 302

GPT2-XL and GPT2-Small have relatively less se- 303

rious issues. Based on this situation, we mainly 304

4
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focus on investigating test samples which have an-305

chored bias for each dataset. Table 7 in Appendix D306

shows the number of test samples for each dataset307

and GPT2 model, where Infer. is used to localise308

and mitigate anchored bias and Eva. is used to309

verify the performance of mitigation.310

Locating MLP of GPT2 family for anchored311

bias. We first investigate MLP modules within312

GPT2 family for anchored bias. Inspired313

from (Geva et al., 2021, 2022), the MLP modules314

can be regarded as key-value memories. As intro-315

duced in § 3 and Fig. 2, the keys of MLP module is316

a vector of coefficients kℓ
i = γ(W ℓ

inx
ℓ−1
i ) ∈ Rdm ,317

which dynamically controls the contributions of the318

corresponding values vℓ
i in W ℓ

out based on different319

input prompts. The value vℓ
i is treated as a mem-320

ory bank which stores knowledge after the model321

pertaining.322

Based on the consensus about MLP module, we323

aim to solve these research questions: 1) Is MLP324

responsible for the anchored bias in GPT2 family?325

2) Which layer and dimensionality of MLP is an-326

chored bias relevant to? 3) Is this bias stored as327

knowledge in a specific value vector of W ℓ
out?328

We use logit lens (Nostalgebraist, 2020) to calcu-329

late logit of the final input prompt token contribut-330

ing to incorrect choice token ‘A’ and correct choice331

token ‘B/C/D/E’ based on different datasets using332

Eq. 4 and Eq. 53:333

logitℓT (m
ℓ
T )[A] = WU [A]σ(m

ℓ
T )

logitℓT (m
ℓ
T )[B/C/D/E] = WU [B/C/D/E]σ(m

ℓ
T )

(6)
334

where WU [A] ∈ Rd×|A|,WU [B/C/D/E] ∈335

Rd×|B/C/D/E|, and |A|, |B/C/D/E| represents the to-336

ken number index of ‘A’ and one of token number337

index of ‘B/C/D/E’, respectively.338

We calculate the MLP logit difference between339

anchored bias token ‘A’ and correct choice token340

B/C/D/E averaged across all layers and datasets for341

each GPT2 model using Infer. test samples. As342

shown in Fig. 3, layer 9 in GPT2-Small, layer 20343

in GPT2-Medium, layer 34 in GPT2-Large, and344

layer 37/38/44 in GPT2-XL are dominant layers4345

related to anchored bias. In addition, these lay-346

ers are much closer to the final layer of GPT2,347

3The reason why we focus on the final input token is that
the information inside of autoregressive transformer-based
model will accumulate to the final input token for the next
token prediction.

4In this work, the layer number and head number start
from 0.

Model Vector Top-10 Tokens

GPT2-Small
v9,1853 (100%) ␣The, ␣This, ␣A, ␣There, ␣It, ␣In, ␣We, ␣If, ␣When, ␣An
v9,2859 (61.8%) ␣A, ␣In, ␣The, ␣(, \n, -, ␣", ␣To, ␣No, ‘

GPT2-Medium v20,3713 (79.3%) ␣a, ␣an, a, an, ␣another, ␣something, A, ␣the, ␣some, ␣any

GPT2-Large v34,1541 (100%) ␣A, A, ␣An, ␣Aires, ␣Ae, ␣An, ierrez, AAF, Aim, ␣Aus

GPT2-XL
v44,4967 (98.0%) A, ␣A, a, AIN, aic, acebook, aa, An, AAAA, ae
v38,4191 (100%) ␣a, ␣an, a, ␣of, „ ␣and, ., ␣in, an, ␣the

Table 3: Identified anchored-bias value vectors vℓ,n of
n-row of W ℓ

out at layer ℓ for each GPT2 model, where the
percentage indicates how frequently the specific vℓ,n is
detected as an anchored-bias vector across all datasets,
and ␣ represents single space within the token because
GPT2 tokeniser encodes same word with or without
␣ as different token numbers. For each value vector,
we further unembedded the top-10 tokens, and most of
them are human-interpretable words, which also verify
that pretrained GPT2 family has intrinsic anchored bias
within Wout (See Appendix E for more unembedded
tokens for each GPT2 model).

which agrees with (Geva et al., 2022; Gurnee et al., 348

2023)’s finding that higher layers in GPT2 are rel- 349

evant to semantic concepts or complicated tasks. 350

We also notice that the last one or two layers in 351

each GPT2 model do not have anchored bias at all, 352

and they contribute more logits to correct choice 353

token ‘B/C/D/E’ to ‘A’. However, as the anchored 354

bias logits are accumulated from previous layers, 355

the final one or two layers cannot totally correct 356

this bias. 357

Based on the pattern from Fig. 3, we further use 358

MLP contribution (Geva et al., 2022) to localise the 359

specific dimensionality from W ℓ
out in these identi- 360

fied layers leading to anchored bias: 361

Contrib(vℓ,n
T ) = |kℓ,n

T |||vℓ,n
T || (7) 362

where |kℓ,n
T | is the absolute value of the coefficient 363

kℓ,n
T , and n ∈ dm. After using Eq. 7, we can locate 364

the top-10 most dominant weighted value vector 365

kℓ,n
T vℓ,n

T and dimensionality with the largest contri- 366

bution of the final input prompt token. We further 367

calculate logit difference of these identified layers 368

and dominant dimensionality in MLP of the final in- 369

put token contributing anchored bias token ‘A’ and 370

correct choice tokens B/C/D/E using Eq. 5, i.e., 371

logitℓ,nT [A](mℓ,n
T )− logitℓ,nT [B/C/D/E](mℓ,n

T ). Then 372

we select candidates among the top-10 dominant di- 373

mensionality where difference score is larger than 4. 374

In the Table 3, vector column demonstrates the spe- 375

cific value vectors vℓ,n which are responsible for 376

anchored bias. For each value vector, we also calcu- 377

late how frequently it is recognised as an anchored- 378

bias vector across all datasets for each GPT2 model. 379

We can find that most identified value vectors have 380

more than 50% chance with anchored bias happen- 381

5



Layer

IOI

LD

Greater

ARC

CSQA

GPT2-Small

Layer

IOI

LD

Greater

ARC

CSQA

GPT2-Medium

IOI

LD

Greater

ARC

CSQA

Layer

GPT2-Large

GPT2-XL

IOI

LD

Greater

ARC

CSQA

Layer

Figure 3: MLP logit difference between anchored bias token ‘A’ and correct tokens (one of B,C,D,E), i.e.,
logitℓT [A](m

ℓ
T )− logitℓT [B/C/D/E](m

ℓ
T ) which is averaged within GPT-2 family across all layers and all datasets.

The deeper the blue blocks are at each layer, the more serious the anchored bias is, and vice versa.

Model Updated Vector New Top-10 Tokens

GPT2-Small
v9,1853 (100%) ␣B, B, ␣b, ␣C, ␣D, ␣P, ␣L, ␣R, ␣H, ␣F
v9,2859 (61.8%) ␣B, B, ␣b, ␣C, ␣D, ␣L, ␣P, ␣R, ␣G, ␣F

GPT2-Medium v20,3713 (79.3%) ␣C, C, ␣B, ␣c, ␣D, ␣G, ␣F, ␣P, ␣CS, ␣T

GPT2-Large v34,1541 (100%) ␣C, ␣A, ␣B, C, ␣c, ␣D, ␣F, ␣P, ␣G, ␣T

GPT2-XL
v44,4967 (98.0%) ␣C, ␣c, C, ␣A, ␣B, ␣D, ␣F, ␣P, ␣T, ␣G
v38,4191 (100%) ␣C, ␣c, C, ␣B, ␣D, ␣P, ␣F, ␣T, ␣L, ␣R

Table 4: The new top-10 tokens of each updated value
vector for each GPT2 model (See Appendix F for more
new unembedded tokens for each GPT2 model).

ing across all datasets and different GPT2 mod-382

els. To further verify whether these value vectors383

store anchored knowledge bias, we unembeded384

each value vector logit and selected the top-10 to-385

kens with the highest probability. As shown in386

Table 3, we can find that most top-10 tokens within387

each value vector are relevant to ‘A’, e.g., ␣A, A,388

␣a, a, etc. This finding proves that some value389

vectors in Wout of GPT2 family store knowledge390

bias after pertaining, and these knowledge biases391

will become anchored bias when the input prompt392

is formatted as MCQ. In addition, most unembe-393

ded tokens are stopwords, e.g., pronouns, articles,394

prepositions, etc, which also agrees with the find-395

ings that “stopwords/punctuation” are commonly396

distributed in the value vectors of MLP (Geva et al.,397

2022).398

Locating attention heads of GPT2 family for399

anchored bias. Following a similar method as lo-400

cating anchored bias in MLP, we also aim to solve401

these research questions: 1) Is the attention head402

also responsible for the anchored bias in GPT2 fam-403

ily? 2) Which layer and head of attention pattern is404

anchored bias relevant to?405

As explained in § 3, attention pattern rℓ,hi,j in-406

dicates the weighted average values where token 407

i attend to token j by head h at the layer ℓ. We 408

use logit lens to analyse the logit difference of fi- 409

nal input prompt token contribution between an- 410

chored bias ‘A’ and correct choices ‘B/C/D/E’, 411

i.e., logitℓ,hT [A](rℓ,hT )− logitℓ,hT [B/C/D/E](rℓ,hT ). As 412

shown in Fig. 4, L8H1 and L10H8 in GPT2-Small, 413

L18H12 and L20H5 in GPT2-Medium, L23H8 and 414

L30H0 in GPT2-Large, L31H9 and L34H145 in 415

GPT2-XL are dominant heads related to anchored 416

bias. Those heads are also distributed closer to the 417

final layer in each GPT2 model. We zoom in on 418

the L8H1 and L10H8 attention pattern of the final 419

input token in GPT2-Small using a sample from 420

IOI dataset. As shown in Fig. 5, the final token ‘:’ 421

attends more weights on the anchored bias token 422

‘A’ than the correct choice token ‘B’, which agrees 423

with our identified attention head using logit dif- 424

ference in Fig. 4. In addition, the full circuit of 425

anchored bias for each GPT2 model can be built 426

based on the MLP and attention logit difference in 427

Fig. 6. 428

6 Mitigating Anchored Bias in MCQs 429

Mitigating anchored bias in MLP. According 430

to findings in § 5, we localise the specific value vec- 431

tor in MLP related to the anchored bias. We further 432

aim to solve the following research question: Can 433

we fix the identified value vector in MLP by updat- 434

ing its values and editing the biased knowledge? 435

Following (Dai et al., 2022), we directly modify 436

5L34H14 indicates layer 34 and head 14 and both of them
start from 0.
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GPT2-Small GPT2-Medium GPT2-Large GPT2-XL

Figure 4: Attention pattern logit difference between anchored bias token ‘A’ and correct tokens (one of B,C,D,E),
i.e., logitℓ,hT [A](rℓ,hT ) − logitℓ,hT [B/C/D/E](rℓ,hT ) which is averaged within GPT-2 family across all layers and all
datasets. The deeper the blue blocks are at each layer, the more serious the anchored bias is, and vice versa.

L10H8

L8H1

Figure 5: The visualisation of identified anchored-bias attention head L8H1 and L10H8 in the GPT2-Small based on
Fig. 4, where the attention weight of final token ‘:’ mainly attends to ‘A’ rather than ‘B’.

and update the identified value vector as:437

vℓ,n = vℓ,n − λ1WU [A] + λ2WU [B/C/D/E] (8)438

where λ1 = 1, λ2 = 8. After updating the corre-439

sponding value vector in MLP, we utilise the up-440

dated GPT2 model to predict the next token of the441

same input MCQ prompts. We comprehensively442

evaluate each updated GPT2 model with the corre-443

sponding modified value vector using Infer. and444

Eva. across all datasets. As shown in Table 5,445

most updated value vectors achieve high classifi-446

cation accuracy regarding MCQ tasks, even with447

multiple near 100% or 100% accuracy in v9,1853448

of GPT2-Small, v34,1541 of GPT2-Large, v44,4967449

and v38,4191 of GPT2-XL. For those value vectors450

with around a 60-70% chance of anchored bias hap-451

pening across all datasets and different GPT2 mod-452

els (i.e., v9,2859 of GPT2-Small, v20,3713 of GPT2-453

Medium, v34,2103 of GPT2-Large, and v37,2966 of454

GPT2-XL in Appendix G), the classification ac-455

curacy still 68.09% averaged all datasets and all456

models. This means that the simple and straight-457

forward method (i.e., Eq. 8) is effective, and we458

do not need to fine-tune the whole GPT2 model459

to fix the anchored bias. We further unembedded460

the updated value vectors in Table 4, and it shows461

that the anchored bias token ‘A’ is significantly re-462

moved and the new top-10 tokens for each new463

value vector are replaced with the correct choices464

token ‘B/C/D/E’.465

Mitigating anchored bias in attention heads.466

Based on the located attention heads for each GPT2467

Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
v9,1853 (100%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
v9,2859 (61.8%) 44.6 44.2 100.0 100.0 58.8 92.3 93.7 96.2 60.1 56.4

GPT2-Medium v20,3713 (79.3%) 99.4 98.1 97.1 88.5 30.6 70.2 56.8 60.4 26.9 27.5

GPT2-Large v34,1541 (100%) 100.0 100.0 100.0 100.0 100.0 100.0 96.7 96.7 99.7 100.0

GPT2-XL
v44,4967 (98.0%) 98.2 97.8 100.0 100.0 100.0 100.0 90.7 90.8 94.8 94.2
v38,4191 (100%) 100.0 100.0 100.0 100.0 94.9 100.0 97.4 96.9 96.5 95.2

Table 5: The classification accuracy of each MCQ infer-
ence (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using
λ2 = 8 (See Appendix G for the ablation study of λ2

with different values).

model in § 5, we follow the same pattern as fixing 468

anchored bias in MLP and further propose a recali- 469

bration approach to mitigate the anchored bias in 470

the attention head by swapping the attention weight 471

of rℓ,hT between the position of ‘A’ and ‘B/C/D/E’: 472

rℓ,hT,p(A) = rℓ,hT,p(B/C/D/E) rℓ,hT,p(B/C/D/E) = rℓ,hT,p(A)
(9) 473

where p(A) and p(B/C/D/E) indicate the actual 474

position of anchored bias token ‘A’ and correct 475

choices token ‘B/C/D/E’ in the input prompts. As 476

shown in Table 6, the attention recalibration works 477

in L18H12 of GPT2-Medium, especially for IOI 478

dataset. This finding means that MLP module plays 479

an important role than the attention head for the 480

anchored bias, and the performance of attention re- 481

calibration depends on the choice of GPT2 model 482

and dataset. 483

7 Discussion 484

Is Few-shot learning helpful? Based on the 485

comprehensive zero-shot learning MCQ across all 486

datasets, we have a good understanding of how im- 487
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Figure 6: The full circuit of anchored bias for GPT2-Small model, where each attention head and MLP module are
selected when MLP and attention pattern logit difference threshold is larger than 4. The percentage within each
module indicates the probability of anchored bias across different datasets for GPT2-Small model when threshold is
larger than 4 (See Appendix L for the full circuits of other GPT2 models).

Model Head
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Medium L18H12 92.47 90.72 21.76 27.78 3.39 3.16 24.33 21.69 1.67 1.25

GPT2-XL
L31H9 0.0 0.0 9.68 0.0 0.57 0.0 0.53 0.0 0.12 0.0
L34H14 0.0 0.0 12.90 0.0 0.57 0.0 3.33 1.67 0.46 0.0

Table 6: The Top-1 classification accuracy changes after
attention pattern recalibration for each GPT2 model
across all datasets (See Appendix H for other GPT2
model’s results).

portant the MLP and attention head are regarding488

the anchored bias in the GPT2 family. The follow-489

ing question might be whether few-shot learning490

can mitigate this anchored bias without updating491

specific value vectors in MLP or recalibrating the492

attention head. We conduct an experiment to eval-493

uate GPT2 family across all datasets using 1-shot494

and 2-shot learning settings. The initial finding495

is that the anchored bias could be relatively mit-496

igated and average MCQ classification accuracy497

across GPT2 family is 46.74%, 44.44%, 38.46%498

and 23.34% under 1-shot learning and 46.52%,499

45.70%, 43.22% and 32.62% under 2-shot learning500

(See Appendix I). This result indicates that GPT2501

family still struggles to predict correct choices, es-502

pecially for GPT2-XL, which needs more investi-503

gation in the future.504

Is direct value vector updating in MLP harmful505

to the general ability of GPT2 for other tasks?506

We conduct an experiment to evaluate whether di-507

rect value vector updating in MLP is harmful to the508

general ability of GPT2-Small for the original IOI509

and Greater-than tasks. The experiment shows that510

the modified GPT2 family can still achieve the aver-511

age 85.8%, 91.1%, 81.7% and 78.8% accuracy on512

the original IOI dataset, and 96.1%, 98.0%, 98.5%513

and 98.4% on the original Greater-than dataset (See514

Appendix J). Although direct value vector updating515

in MLP is harmful to the general ability of GPT2 516

on the original IOI and Greater-than datasets, this 517

model editing approach does not produce serious 518

damage, which matches the findings from Gu et al. 519

(2024). However, we need to develop a better and 520

minimal-harm model editing algorithm in the fu- 521

ture. 522

Is anchored bias sensitive to specific content 523

of input prompts? We construct two random 524

MCQ datasets which include random concatenated 525

characters and random vocabulary words (see Ta- 526

ble 18 and Table 19 in Appendix K). The result 527

shows that anchored bias still happens across dif- 528

ferent GPT2 models, especially for GPT2-Large 529

and GPT2-XL. This indicates that anchored bias 530

is insensitive to MCQ input prompts, which also 531

confirms our findings that GPT2 family exhibit the 532

anchored bias with significant regularity across var- 533

ious MCQ datasets. 534

8 Conclusion 535

In this work, we identify the anchored bias of GPT2 536

family, where GPT-2 models consistently favour 537

the first choice ‘A’ in the MCQ task. Based on 538

this observation, we comprehensively conduct a 539

mechanistic analysis of the internal workings of 540

GPT2 family. We find that some value vectors in 541

MLP modules with specific layers and dimension- 542

ality play a significant role in the anchored bias, 543

and we further use a straightforward but potent 544

approach to update the corresponding value vec- 545

tors, which effectively mitigate the anchored bias 546

in GPT2 family. In addition, some attention heads 547

also play auxiliary roles in this bias, and the recali- 548

bration approach works well for the IOI dataset in 549

GPT2-Medium. 550

8



Limitations551

This work mainly focuses on the mechanistic analy-552

sis of GPT2 family with the model size from 124M553

to 1.5B. It is worth comprehensively investigating554

whether larger open-source LLMs have similar an-555

chored biases, such as LLaMA-7B-65B, LLaMA2-556

7B-70B, LLaMA3-8B-71B, etc. In addition, dif-557

ferent LLM architectural backbones might have558

different extents of anchored bias, e.g., Mixture559

of Experts (MoE) and Mamba with selective state560

spaces. It is meaningful to compare how differ-561

ent MLPs and attention heads are across different562

LLMs above and why anchored bias disappears563

if larger LLMs do not have such an issue. More-564

over, the knowledge editing approach by directly565

updating value vectors from MLPs is not optimal566

as it will introduce some extent of damage to the567

general ability of GPT2 models. However, how to568

develop a better and minimal-harm model editing569

algorithm is an open question (Gu et al., 2024),570

which is worth exploring in the future.571
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Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 738
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 739
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024b. 740
Judging llm-as-a-judge with mt-bench and chatbot 741
arena. Advances in Neural Information Processing 742
Systems, 36. 743

A Broader Impacts 744

Mechanistic interpretability of anchored bias for 745

the GPT2 family under the MCQ setting is worth 746

investigating, as it can help us better understand 747

the inner working mechanism of MLPs and atten- 748

tion heads for autoregressive Transformer-based 749

LLMs. The identified MLPs and attention heads 750

leading to the anchored bias can be used to guide 751

the larger LLMs development for safer, less biased 752

and more trustworthy LLMs. Such a mechanistic 753

analysis approach can be extended to other tasks, 754

such as LLMs mathematical reasoning, dialogue 755

generation, and different training methods, such as 756

chain-of-thoughts (CoTs), reinforcement learning 757

from human feedback (RLHF), direct preference 758

optimization. In addition, an adversarial attack 759

might be used for commercial LLM products when 760

this anchored bias is analysed. This also encour- 761

ages researchers to develop much safer and robust 762

LLMs. 763
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B Detailed Explanations of LLMs764

Architecture765

We focus on the autoregressive Transformer-based766

LLM architecture (Vaswani et al., 2017) based on767

prior works (Geva et al., 2021; Elhage et al., 2021;768

Geva et al., 2022; Dai et al., 2022; Meng et al.,769

2022a,b; Yuksekgonul et al., 2024) with simpli-770

fications in certain explanations. Given an input771

prompt containing T tokens (t1, . . . , tT ) and each772

token ti belonging to a vocabulary V , tokens are ini-773

tially encoded by d-dimensional vectors x0
i ∈ Rd774

using an embedding matrix WE ∈ R|V|×d.775

The architecture has L layers, and each layer776

consists of attention and MLP modules, which777

transform token embeddings to residual streams778

(xℓ
1, . . . ,x

ℓ
T ) ∈ Xℓ at layer ℓ, where xℓ

i ∈ Rd. The779

residual stream at layer ℓ is a place where all at-780

tention and MLP modules at layer ℓ read from and781

write to (Elhage et al., 2021), and it is updated by782

the following equation for token i at layer ℓ:783

xℓ
i = xℓ−1

i + aℓi +mℓ
i (10)784

Here, aℓi is the attention contribution for token i785

and mℓ
i is the MLP contribution at layer ℓ6. At L786

layer, the predicted probability distribution for the787

next token P(tT+1|t1:T ) is produced following:788

P(tT+1|t1:T ) = Softmax
(
WUσ(x

L
T )
)

(11)789

where WU ∈ Rd×|V| is unembedding matrix, σ(·)790

is pre-unembedding layer normalisation.791

The attention module mainly updates each token792

residual stream xl−1
i by attending to all previous to-793

kens in parallel. Specifically, the attention module794

contains QK and OV circuits, where the former795

operates WQ,WK ∈ Rd×d matrices and the latter796

operates WO,WV ∈ Rd×d matrices, respectively.797

Normally, QK circuit determines the attention pat-798

tern Aℓ, i.e., where information is moved to and799

from the residual stream. OV circuit further de-800

termines the attention output aℓi based on the fixed801

attention pattern, i.e., what information is from802

the previous tokens’ position to the current token803

position (Elhage et al., 2021):804

Aℓ,h = Softmax

(
(Xℓ−1W ℓ,h

Q )(Xℓ−1W ℓ,h
K )T

√
dh

)
(12)805

6We omit the layer normalisation of attention and MLP
modules at layer ℓ for simplification.

806

aℓi,j =
H∑

h=1

Aℓ,h
i,j (x

ℓ−1
j W ℓ,h

V )W ℓ,h
O =

H∑
h=1

rℓ,hi,j

(13) 807

where aℓi,j indicates the attention contribution from 808

token i to token j, and aℓi =
∑T

j=1 a
ℓ
i,j . Attention 809

pattern Aℓ,h ∈ RT×T is a lower triangular weight 810

matrix calculated by the h-th attention head at layer 811

ℓ, representing that each token can only attend to 812

previous tokens within autoregressive Transformer- 813

based LLMs. All matrices are split into multiple 814

attention heads, i.e., W ℓ,h
Q ,W ℓ,h

K ,W ℓ,h
V ∈ Rd×dh , 815

and W ℓ,h
O ∈ Rdh×d for head h. dh is the dimension- 816

ality of each head, H represents the total number 817

of attention heads, and dh = d/H . Aℓ,h
i,j is the 818

i-th row and j-th column entry of Aℓ,h, and rl,hi,j 819

indicates the weighted average values where token 820

i attend to token j by head h at the layer ℓ, and 821

rℓ,hi =
∑T

j=1 r
ℓ,h
i,j . 822

For MLP module, it receives the xℓ−1
i as input 823

and updates following: 824

mℓ
i = γ(W ℓ

inx
ℓ−1
i )W ℓ

out (14) 825

where γ(·) is activation function, W ℓ
in ∈ Rd×dm , 826

and W ℓ
out ∈ Rdm×d. dm is the dimensionality 827

of MLP module, which is larger than d. MLP 828

module is normally treated as key-value memo- 829

ries (Geva et al., 2021; Elhage et al., 2021; Geva 830

et al., 2022; Dai et al., 2022), where columns of 831

W ℓ
in[:,i] and rows of W ℓ

out[i,:] are viewed as keys 832

and values, respectively. Given the input xℓ−1
i , 833

the keys of MLP produce a vector of cofficients 834

kℓ
i = γ(W ℓ

inx
ℓ−1
i ) ∈ Rdm , and they weights the 835

corresponding values vℓ
i in W ℓ

out. Therefore, Eq. 14 836

can be reformatted as7: 837

mℓ
i =

dm∑
n=1

kℓ,n
i vℓ,n

i (15) 838

C Details of Each Dataset and 839

Experimental Settings 840

• Indirect Object Identification (IOI) (Wang 841

et al., 2022): IOI is a manually synthesised 842

corpus used to understand a specific natural 843

language task, where sentences such as “Af- 844

terwards Lisa and Rachel went to the garden, 845

and Lisa gave a bone to” should be followed 846

7We omit all bias bQ, bK , bO, bV , bin, bout, bU for simplifi-
cation.
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with “Rachel”. When two names are included847

in such sentences, the predicted name should848

not be the subject of the last clause. This849

task has been verified that GPT2 family works850

well (Wang et al., 2022; Merullo et al., 2024).851

However, we found that GPT2 family imme-852

diately fails this task if the input prompt is for-853

matted as MCQ, where the incorrect subject854

of the last clause is placed in the ‘A’ choice.855

• Greater-than task (Greater) (Hanna et al.,856

2024): Greater-than task is also a manually857

synthesised corpus, which is used to evaluate858

GPT2’s ability to sentences such as “The war859

lasted from the year 1732 to the year 17”, and860

model will predict valid two-digit end years,861

i.e., years > 32. However, we found the same862

anchored bias like IOI when this task is for-863

matted as MCQ in Fig. 1, and GPT2 family864

also fails to predict valid years and the pre-865

diction is always anchored at incorrect choice866

‘A’.867

• Logical Deduction of the Big-Bench868

(LD)8 (Srivastava et al., 2023): LD is a869

subtask which evaluates three-object logical870

deduction tasks, and it is used to measure871

whether model can parse information about872

multiple choices and their mutual relation-873

ships. Each MCQ in the task includes three874

similar objects in a naturally ordered context875

(e.g., books of various colours sitting on a876

shelf) and a set of simple clues regarding877

their placement (e.g., "the red book is to the878

right of the green book") such that no clue879

is redundant. The challenge is to assign the880

highest probability to correct MCQ choice881

about which object lies at which position.882

• ARC-Challenge (ARC) (Clark et al., 2018):883

ARC is a real grade-school level, multiple-884

choice science questions, which includes Easy885

and Challenge versions. We choose the Chal-886

lenge version to evaluate the anchored bias.887

• CommensenseQA (CSQA) (Talmor et al.,888

2019): CSQA is a new multiple-choice ques-889

tion answering dataset that requires different890

types of commonsense knowledge to predict891

the correct answers.892

8https://github.com/google/BIG-bench/blob/
main/bigbench/benchmark_tasks/logical_deduction/
three_objects/task.json

All GPT2 models are run during inference time and 893

parameters inside of each GPT2 model are frozen. 894

All experiments can be easily run using CPU or 895

GPU, e.g., Apple Macbook Pro with M1 Pro chip 896

or NVIDIA 3090 Ti with 24GB GPU RAM. 897

D The Statistic Information of Each Test 898

Dataset for GPT2 Models 899

We split each dataset into 90% Infer. set for 900

anchored bias discovering and mitigation, and 10% 901

Eva. set for modified GPT2 model verification on 902

the MCQ task. Table 7 shows the number of test 903

data samples for each dataset. 904

Num.
GPT2-Small GPT2-Medium GPT2-Large GPT2-XL
Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

IOI (2) 410 45 877 97 900 100 773 85
LD (3) 114 12 170 18 180 20 31 3
Greater (4) 289 32 856 95 897 99 883 98
ARC (4) 446 49 748 83 797 88 571 63
CSQA (5) 308 34 720 80 881 97 864 95

Table 7: Statistic of the test datasets for each GPT2
model, where Infer. represents 90% test dataset used
to discover and mitigate anchored bias, and Eva. repre-
sents 10% test dataset used to verify the performance of
updated GPT2 models.

E Top-10 Unembeded Tokens from 905

Identified Value Vectors 906

We unembedded more identified anchored-bias 907

value vectors in Table 8, and we can find there are 908

several tokens related to ‘A’, such as ␣a, ␣first, 909

␣First, ␣1, ␣A. 910

F Top-10 Unembedded Tokens from 911

Updated Value Vectors 912

After directly updating each identified value vec- 913

tor from MLP, we further unembedded them and 914

selected the top-10 tokens with the highest prob- 915

ability. Table 9 shows that those top-10 tokens 916

changes from original ‘A’ to other correct choice 917

tokens, i.e., B, C, D, E. 918

G Ablation Study of Different λ2 in Eq. 8 919

We conduct an ablation study by changing λ2 from 920

8 to 2 in Eq. 8, and evaluate the classification ac- 921

curacy of each Infer. and Eva. dataset using GPT2 922

family. Table 10,11,12,13,14,15,16 show the abla- 923

tion study results under different λ2. We can find 924

that the classification accuracy shows a decreas- 925

ing trend with λ2 from 8 to 2, which indicates that 926
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Model Vector Top-10 Tokens

GPT2-Small v9,788 (50.0%) ␣and, ␣in, ␣to, ␣or, ␣a, ␣at, ␣the, ␣..., ␣that, "

GPT2-Medium v20,1731(38.2%) ␣first, ␣First, first, ␣FIRST, First, ␣1, 1, ␣Firstly, Firstly, ␣begin

GPT2-Large
v34,2103(70.1%) romeda, maxwell, ドラゴン, lvl, mobi, elaide, amsung, nil, 911, dylib
v34,4178 (55.4%) reply, interstitial, ␣emer, 76561, ␣err, sg, ␣whe, eers, oi, ␣ignor

GPT2-XL

v44,2995 (27.5%) ggles, atchewan, ␣aw, ␣let, eed, ␣ont, wn, ␣be, gg, ␣palp
v44,128 (22.7%) ␣A, ␣C, ␣E, ␣B, ␣S, ␣G, ␣F, ␣P, ␣D, ␣K
v38,4174 (20.2%) ␣A, „ ␣and, ␣a, ␣at, ., ␣of, ␣as, ␣on, ␣(
v37,423 (91.8%) ␣The, ␣This, ␣It, ␣There, ␣A, ␣If, ␣You, ␣We, ␣These, ␣When
v37,2966 (66.2%) ␣a, ␣an, „ ␣and, ␣to, ␣the, ␣in, ␣(, ␣one, .

Table 8: Identified anchored-bias value vectors vℓ,n of n-row of W ℓ
out at layer ℓ for each GPT2 model, where the

percentage indicates how frequently the specific vℓ,n is detected as an anchored-bias vector across all datasets,
and ␣ represents single space within the token because GPT2 tokeniser encodes same word with or without ␣ as
different token numbers. For each value vector, we further unembeded the top-10 tokens, and most of them are
human-interpretable words, which also verify that pretrained GPT2 family has intrinsic anchored bias within Wout.

Model Updated Vector New Top-10 Tokens

GPT2-Small v9,788 (50.0%) ␣B, ␣b, B, ␣C, ␣D, ␣L, ␣P, ␣R, ␣G, ␣BC

GPT2-Medium v20,1731 (38.2%) ␣C, C, ␣B, ␣c, ␣D, ␣CS, ␣F, ␣P, ␣G, ␣T

GPT2-Large
v34,2103 (70.1%) ␣C, ␣c, C, ␣B, ␣D, ␣F, ␣P, ␣G, ␣T, ␣M
v34,4178 (55.4%) ␣C, ␣c, C, ␣B, ␣P, ␣D, ␣F, ␣G, ␣T, ␣L

GPT2-XL

v44,2995 (27.5%) ␣C, ␣c, C, ␣B, ␣D, ␣P, ␣T, ␣F, ␣R, ␣G
v44,128 (22.7%) ␣A, ␣C, ␣E, ␣B, ␣S, ␣G, ␣F, ␣P, ␣D, ␣K
v38,4174 (20.2%) ␣C, ␣c, C, ␣B, ␣D, ␣P, ␣F, ␣T, ␣L, ␣S
v37,423 (91.8%) ␣C, ␣c, C, ␣B, ␣D, ␣F, ␣P, ␣T, ␣L, ␣G
v37,2966 (66.2%) ␣C, ␣c, C, ␣B, ␣D, ␣P, ␣F, ␣T, ␣G, ␣L

Table 9: The new top-10 tokens of each updated value
vector for each GPT2 model.

the effect of direct value vector update using Eq. 8927

decreases.928

H Top-1 Classification Accuracy Changes929

Using Attention Pattern Recalibration930

We also evaluate the top-1 classification accuracy931

when the attention pattern recalibration is used to932

the identified attention head. In Table 17, we can933

find that most top-1 classification accuracy is close934

to 0%, which indicates that those identified atten-935

tion heads play less important roles compared to936

specific MLP modules in each GPT2 model under937

the MCQ task setting.938

I One-shot and Two-shot MCQ939

Classification Results940

Based on the discussion in § 7, we further conduct941

an experiment to evaluate whether the anchored942

bias can be mitigated under the few-shot learn-943

ing setting. Fig. 7 and Fig. 8 show that 2-shot944

leaning performs better than 1-shot setting across945

all datasets, especially for IOI dataset. However,946

GPT2-XL always struggle to predict higher accu-947

racy across all datasets. This finding indicates that948

simple few-shot learning cannot mitigate anchored 949

bias and a more comprehensive analysis is needed 950

to investigate this bias. 951

J Damage to Updated GPT2 Family’s 952

Performance on IOI and Greater 953

Datasets 954

Based on the discussion in § 7, we further evaluate 955

the damage of direct value vector update from MLP 956

for the general ability of GPT2 family. We choose 957

original IOI and Greater-than datasets as they have 958

been verified that GPT2 family works well (Wang 959

et al., 2022; Merullo et al., 2024; Hanna et al., 960

2024). Fig. 9 and Fig. 10 show that classification 961

accuracy is acceptable when a value vector with a 962

specific layer and dimensionality is updated, which 963

matches the findings from Gu et al. (2024). 964

K MCQ Prompt Template with Random 965

Words 966

In order to evaluate whether anchored bias is sen- 967

sitive to the specific content of the input MCQ 968

prompts, we built two random MCQ datasets. One 969

of them contains randomly selected characters and 970

we concatenate them as a word with length from 971

5 to 10, and each MCQ prompt is built based on 972

“Question: <Question sample> Answer Choices: 973

<Multiple Choices> Answer:”. For the random 974

word dataset, we randomly select words from a 975

word vocabulary9. Finally, each dataset has 80 sam- 976

ples with the number of choices from 2 to 5 (see 977

Table 19). As shown in Table 18, anchored bias 978

still happens across GPT2 family, especially for 979

9https://www.mit.edu/~ecprice/wordlist.10000
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Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small v9,788 (50.0%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

GPT2-Medium v20,1731 (38.2%) 33.6 33.7 81.8 50.0 0.0 0.0 51.2 51.6 22.4 23.1

GPT2-Large
v34,2103 (70.1%) 71.2 63.5 55.6 57.7 32.0 96.2 49.7 50.5 52.9 49.0
v34,4178 (55.4%) 25.1 21.2 12.2 19.2 33.2 93.3 45.2 46.2 55.1 57.7

GPT2-XL

v44,2995 (27.5%) 24.8 36.3 100.0 100.0 99.2 100.0 93.3 92.3 92.7 94.2
v44,128 (22.7%) 67.8 64.8 96.8 100.0 100.0 100.0 91.1 90.8 92.5 95.2
v38,4174 (20.2%) 11.4 16.5 38.7 23.1 44.6 75.0 21.0 26.2 7.5 7.7
v37,423 (91.8%) 54.3 60.4 100.0 100.0 93.5 100.0 76.9 81.5 39.5 36.5
v37,2966 (66.2%) 34.0 31.9 100.0 100.0 77.2 97.1 73.7 76.9 55.2 60.6

Table 10: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using λ2 = 8.

Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
v9,1853 (100%) 99.5 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0
v9,2859 (61.8%) 22.7 26.9 100.0 100.0 37.8 69.2 89.2 96.2 45.8 41.0
v9,788 (50.0%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

GPT2-Medium
v20,3713 (79.3%) 97.7 95.2 90.6 73.1 17.3 47.1 43.0 52.7 14.2 8.8
v20,1731 (38.2%) 27.6 26.9 61.2 30.8 0.0 0.0 41.4 47.3 13.8 8.8

GPT2-Large
v34,1541 (100%) 100.0 100.0 100.0 100.0 100.0 100.0 95.7 95.6 99.2 99.0
v34,2103 (70.1%) 57.6 54.8 40.6 46.2 26.6 85.6 38.6 38.5 42.6 39.4
v34,4178 (55.4%) 16.8 16.3 2.2 3.8 27.0 85.6 35.5 37.4 45.5 45.2

GPT2-XL

v44,4967 (98.0%) 97.4 96.7 96.8 92.3 99.8 100.0 87.6 90.8 91.6 92.3
v44,2995 (27.5%) 18.6 30.8 100.0 100.0 97.7 100.0 91.9 92.3 86.9 89.4
v44,128 (22.7%) 59.6 59.3 93.5 92.3 100.0 100.0 90.0 90.8 89.7 92.3
v38,4191 (100%) 99.4 100.0 100.0 100.0 88.0 100.0 96.1 95.4 92.6 89.4
v38,4174 (20.2%) 6.7 7.7 38.7 23.1 37.8 60.6 16.3 18.5 4.7 4.8
v37,423 (91.8%) 38.2 41.8 100.0 100.0 86.9 100.0 67.3 70.8 30.1 29.8
v37,2966 (66.2%) 22.3 26.4 93.5 84.6 71.3 96.2 65.7 64.6 44.6 48.1

Table 11: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using λ2 = 7.

GPT2-Large and GPT2-XL. This finding confirms980

our findings that GPT2 family exhibit the anchored981

bias with significant regularity across various MCQ982

datasets.983

L Full Circuit of Anchored Bias of Each984

GPT2 Model985

Based on the identified MLP module and atten-986

tion head using logit difference between anchored987

choice ‘A’ and correct choices ‘B,C,D,E’. We988

can construct the full anchored-bias circuit for each989

GPT2 model. Fig. 11,12,13 show the full anchored-990

bias circuit of GPT2-Medium, GPT2-Large and991

GPT2-XL including identified attention heads and992

MLPs starting from layer 0 to the final layer.993
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Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
v9,1853 (100%) 96.1 96.2 100.0 100.0 94.8 100.0 98.7 98.1 99.4 97.4
v9,2859 (61.8%) 7.6 7.7 92.1 100.0 20.1 38.5 79.8 84.6 25.6 25.6
v9,788 (50.0%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

GPT2-Medium
v20,3713 (79.3%) 92.5 90.4 77.6 26.9 7.8 26.0 29.3 37.4 4.9 2.2
v20,1731 (38.2%) 22.0 20.2 31.2 11.5 0.0 0.0 29.7 36.3 7.1 5.5

GPT2-Large
v34,1541 (100%) 100.0 100.0 100.0 100.0 100.0 100.0 93.1 91.2 97.8 97.1
v34,2103 (70.1%) 39.8 37.5 20.6 46.2 14.8 51.9 28.7 29.7 30.8 26.9
v34,4178 (55.4%) 9.8 7.7 0.6 0.0 15.7 51.0 26.1 28.6 35.0 31.7

GPT2-XL

v44,4967 (98.0%) 95.2 95.6 93.5 84.6 99.4 100.0 84.2 90.8 85.5 87.5
v44,2995 (27.5%) 12.9 19.8 96.8 92.3 93.1 100.0 87.9 92.3 76.6 85.6
v44,128 (22.7%) 50.7 50.5 90.3 84.6 99.8 100.0 87.6 89.2 84.8 87.5
v38,4191 (100%) 96.9 98.9 100.0 100.0 78.1 100.0 95.1 95.4 82.5 83.7
v38,4174 (20.2%) 3.2 5.5 35.5 23.1 29.9 47.1 13.0 16.9 2.7 1.0
v37,423 (91.8%) 23.2 27.5 100.0 100.0 80.3 100.0 57.8 60.0 20.5 17.3
v37,2966 (66.2%) 12.5 15.4 77.4 76.9 60.7 92.3 56.0 56.9 32.4 29.8

Table 12: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using λ2 = 6.

Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
v9,1853 (100%) 76.8 82.7 100.0 100.0 69.2 100.0 93.0 96.2 96.1 94.9
v9,2859 (61.8%) 1.2 3.8 48.2 69.2 4.5 12.8 63.2 69.2 12.3 12.8
v9,788 (50.0%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

GPT2-Medium
v20,3713 (79.3%) 79.8 76.9 50.0 0.0 0.9 1.9 18.9 24.2 0.8 0.0
v20,1731 (38.2%) 15.7 15.4 10.0 0.0 0.0 0.0 20.2 18.7 3.1 2.2

GPT2-Large
v34,1541 (100%) 100.0 100.0 100.0 100.0 100.0 100.0 87.6 83.5 95.3 95.2
v34,2103 (70.1%) 23.4 17.3 7.8 26.9 3.6 10.6 20.2 13.2 21.2 14.4
v34,4178 (55.4%) 4.6 2.9 0.0 0.0 5.4 20.2 17.4 16.5 25.1 17.3

GPT2-XL

v44,4967 (98.0%) 88.6 90.1 77.4 69.2 95.8 100.0 77.6 84.6 76.0 78.8
v44,2995 (27.5%) 7.2 15.4 90.3 84.6 86.2 98.1 82.7 84.6 61.0 69.2
v44,128 (22.7%) 38.9 41.8 83.9 84.6 98.5 100.0 82.5 86.2 74.8 76.0
v38,4191 (100%) 85.0 87.9 100.0 100.0 68.4 99.0 88.1 87.7 64.4 67.3
v38,4174 (20.2%) 1.3 4.4 32.3 15.4 21.1 35.6 9.3 13.8 1.7 0.0
v37,423 (91.8%) 12.5 17.6 96.8 100.0 69.8 95.2 47.8 47.7 13.5 13.5
v37,2966 (66.2%) 5.6 8.8 64.5 61.5 49.2 73.1 43.4 40.0 21.2 20.2

Table 13: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using λ2 = 5.
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Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
v9,1853 (100%) 30.7 36.5 58.8 69.2 26.3 59.0 63.9 73.1 64.9 69.2
v9,2859 (61.8%) 0.0 0.0 3.5 0.0 0.0 0.0 35.0 44.2 2.3 2.6
v9,788 (50.0%) 99.5 100.0 100.0 100.0 100.0 100.0 97.8 100.0 99.7 100.0

GPT2-Medium
v20,3713 (79.3%) 59.4 55.8 16.5 0.0 0.0 0.0 7.6 9.9 0.1 0.0
v20,1731 (38.2%) 11.1 9.6 0.6 0.0 0.0 0.0 10.4 13.2 1.0 0.0

GPT2-Large
v34,1541 (100%) 100.0 100.0 100.0 100.0 98.2 100.0 80.7 79.1 86.8 89.4
v34,2103 (70.1%) 10.3 4.8 1.1 0.0 0.1 0.0 10.9 8.8 12.6 5.8
v34,4178 (55.4%) 2.2 1.9 0.0 0.0 0.6 1.0 12.3 9.9 15.9 10.6

GPT2-XL

v44,4967 (98.0%) 74.6 76.9 61.3 38.5 85.7 100.0 68.0 76.9 57.4 62.5
v44,2995 (27.5%) 4.1 9.9 77.4 61.5 73.4 96.2 73.9 75.4 42.9 50.0
v44,128 (22.7%) 26.3 31.9 71.0 61.5 92.1 99.0 75.7 78.5 58.9 65.4
v38,4191 (100%) 58.9 57.1 71.0 61.5 58.1 90.4 75.5 75.4 43.2 45.2
v38,4174 (20.2%) 0.5 2.2 32.3 15.4 13.1 22.1 6.8 10.8 1.2 0.0
v37,423 (91.8%) 4.4 3.3 80.6 76.9 54.9 76.0 34.7 38.5 7.5 4.8
v37,2966 (66.2%) 1.9 4.4 51.6 38.5 33.5 54.8 32.2 30.8 11.1 7.7

Table 14: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using λ2 = 4.

Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
v9,1853 (100%) 1.7 1.9 0.0 0.0 2.1 10.3 16.8 23.1 14.3 15.4
v9,2859 (61.8%) 0.0 0.0 0.0 0.0 0.0 0.0 8.5 9.6 0.0 0.0
v9,788 (50.0%) 67.6 71.2 71.1 76.9 98.3 100.0 70.6 73.1 92.9 97.4

GPT2-Medium
v20,3713 (79.3%) 34.7 31.7 0.0 0.0 0.0 0.0 1.5 3.3 0.0 0.0
v20,1731 (38.2%) 8.1 4.8 0.0 0.0 0.0 0.0 4.8 6.6 0.4 0.0

GPT2-Large
v34,1541 (100%) 100.0 100.0 95.0 100.0 67.7 100.0 65.1 68.1 70.4 72.1
v34,2103(70.1%) 3.1 1.9 0.0 0.0 0.0 0.0 6.1 3.3 5.8 4.8
v34,4178 (55.4%) 0.9 0.0 0.0 0.0 0.0 0.0 6.1 4.4 6.5 5.8

GPT2-XL

v44,4967 (98.0%) 51.2 58.2 61.3 38.5 64.2 91.3 52.0 53.8 33.3 34.6
v44,2995 (27.5%) 1.8 4.4 61.3 46.2 49.8 78.8 56.4 58.5 24.0 24.0
v44,128 (22.7%) 12.7 17.6 54.8 53.8 76.6 94.2 61.8 64.6 40.4 42.3
v38,4191 (100%) 21.7 27.5 58.1 38.5 38.1 63.5 54.1 63.1 19.7 21.2
v38,4174 (20.2%) 0.1 0.0 29.0 7.7 6.2 13.5 4.4 6.2 0.8 0.0
v37,423 (91.8%) 1.3 2.2 67.7 53.8 34.7 52.9 22.2 24.6 3.7 3.8
v37,2966 (66.2%) 0.5 1.1 48.4 30.8 19.6 37.5 22.2 18.5 6.6 5.8

Table 15: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using λ2 = 3.
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Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
v9,1853 (100%) 0.0 0.0 0.0 0.0 0.0 0.0 1.3 1.9 1.0 0.0
v9,2859 (61.8%) 0.0 0.0 0.0 0.0 0.0 0.0 0.9 1.9 0.0 0.0
v9,788 (50.0%) 5.4 7.7 0.0 0.0 24.2 53.8 15.5 19.2 26.9 30.8

GPT2-Medium
v20,3713 (79.3%) 15.6 16.3 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0
v20,1731 (38.2%) 4.2 1.9 0.0 0.0 0.0 0.0 1.7 4.3 0.0 0.0

GPT2-Large
v34,1541 (100%) 99.9 100.0 66.1 69.2 34.4 100.0 37.5 37.4 39.5 34.6
v34,2103 (70.1%) 0.6 1.0 0.0 0.0 0.0 0.0 2.3 2.2 1.8 1.9
v34,4178 (55.4%) 0.1 0.0 0.0 0.0 0.0 0.0 2.1 1.1 2.7 2.9

GPT2-XL

v44,4967 (98.0%) 18.5 17.6 48.4 23.1 33.3 62.5 31.7 33.8 13.8 14.4
v44,2995 (27.5%) 0.6 2.2 48.4 30.8 25.4 49.0 36.1 35.4 9.0 5.8
v44,128 (22.7%) 4.0 7.7 48.4 38.5 48.9 76.9 43.1 38.5 18.9 20.2
v38,4191 (100%) 4.3 6.6 41.9 23.1 16.1 28.8 28.9 29.2 6.5 5.8
v38,4174 (20.2%) 0.0 0.0 22.6 7.7 2.8 4.8 2.5 4.6 0.5 0.0
v37,423 (91.8%) 0.4 1.1 48.4 30.8 15.6 32.7 12.3 12.3 1.5 1.9
v37,2966 (66.2%) 0.1 0.0 32.3 15.4 7.5 15.4 11.2 15.4 2.0 0.0

Table 16: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using λ2 = 2.

Model Head
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
L8H1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.04 0.0 0.0
L10H8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.04 0.0 0.0

GPT2-Medium
L18H12 92.47 90.72 21.76 27.78 3.39 3.16 24.33 21.69 1.67 1.25
L20H5 0.34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GPT2-Large
L23H8 0.0 0.0 0.0 0.0 0.0 0.0 0.38 1.14 0.0 2.06
L30H0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GPT2-XL
L31H9 0.0 0.0 9.68 0.0 0.57 0.0 0.53 0.0 0.12 0.0
L34H14 0.0 0.0 12.90 0.0 0.57 0.0 3.33 1.67 0.46 0.0

Table 17: The Top-1 classification accuracy changes after attention pattern recalibration for each GPT2 model
across all datasets.
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Figure 7: One-shot MCQ classification accuracy of different datasets across GPT2 family.

Figure 8: Two-shot MCQ classification accuracy of different datasets across GPT2 family.

18



Figure 9: Damage to updated GPT2 family’s classification accuracy on original IOI dataset using Eq. 8 with λ2 = 8.

Figure 10: Damage to updated GPT2 family’s classification accuracy on original Greater dataset using Eq. 8 with
λ2 = 8.
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Figure 11: The full circuit of anchored bias for GPT2-Medium model, where each attention head and MLP module
are selected when MLP and attention pattern logit difference threshold is larger than 4. The percentage within each
module indicates the probability of anchored bias across different datasets for GPT2-Medium model when the
threshold is larger than 4.
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Figure 12: The full circuit of anchored bias for GPT2-Large model, where each attention head and MLP module
are selected when MLP and attention pattern logit difference threshold is larger than 4. The percentage within
each module indicates the probability of anchored bias across different datasets for GPT2-Large model when the
threshold is larger than 4.
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Figure 13: The full circuit of anchored bias for GPT2-XL model, where each attention head and MLP module are
selected when MLP and attention pattern logit difference threshold is larger than 4. The percentage within each
module indicates the probability of anchored bias across different datasets for GPT2-XL model when the threshold
is larger than 4.
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Type GPT2-Small GPT2-Medium GPT2-Large GPT2-XL

Random Characters 70.0 69.0 99.0 96.0
Random Words 65.0 82.0 95.0 100.0

Table 18: The percentage of anchored bias occurring
when MCQ prompt template is replaced with random
characters and random words.
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Random
Charac-
ters

Question: cgryp rkodmajc ajwsqby jnqqaqcmsa agbyyasj ibng-
bxtn dazvqigre urbnmumw ltpjslayp ighfudgy hbaldde? Answer
Choices: A: samdaheepw ltvlpeh B: rqqtxdgiyb rznosxhk djpsitdar
ubjgq ioamje C: bkdjziiy Answer:

Random
Words

Question: citysearch logical bidder discount kentucky forming
rapid digit flash putting reid liechtenstein mate? Answer Choices:
A: seven owner voluntary B: clicking it C: harassment beam
firewire D: run helpful Answer:

Table 19: The MCQ prompt template with random characters and random words.
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