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Abstract

Large Language Models (LLMs), such as the
GPT-4 and LLaMA families, have demon-
strated considerable success across diverse
tasks, including multiple-choice questions
(MCQs). However, these models exhibit a
positional bias, particularly an even worse
“anchored bias” in the GPT-2 family, where
they consistently favour the first choice ‘A’ in
MCQs during inference. This anchored bias
challenges the integrity of GPT-2’s decision-
making process, as it skews performance based
on the position rather than the content of the
choices in MCQs. In this study, we utilise the
mechanistic interpretability approach to iden-
tify the internal modules within GPT-2 models
responsible for this bias. We focus on the Multi-
Layer Perceptron (MLP) layers and attention
heads, using the “logit lens” method to trace
and modify the specific value vectors that con-
tribute to the bias. By updating these vectors
within MLP and recalibrating attention patterns
to neutralise the preference for the first choice
‘A’, we effectively mitigate the anchored bias.
Our interventions not only mitigate the bias
but also improve the overall MCQ prediction
accuracy for the GPT-2 family across various
datasets. This work represents the first compre-
hensive mechanistic analysis of anchored bias
in MCQs within the GPT-2 models, introducing
targeted, minimal-intervention strategies that
significantly enhance GPT2 model robustness
and accuracy in MCQs.

1 Introduction

Large Language Models (LLMs) exhibit remark-
able capabilities across a wide array of tasks, in-
cluding multiple-choice question (MCQ) (Robin-
son and Wingate, 2022), which are largely at-
tributed to the advancements in the Transformer
backbone. These models not only excel at rea-
soning but also demonstrate significant inductive
capabilities, which make them highly effective in

different domains (Chen et al., 2023; Team et al.,
2023; Anil et al., 2023).

Despite their success, recent studies have uncov-
ered a notable flaw: LLMs exhibit a positional bias
when tasked with MCQs. Specifically, the perfor-
mance of these models (e.g., LLaMA (Touvron
et al., 2023a), LLaMA2 (Touvron et al., 2023b),
GPT-4 (Achiam et al., 2023)) varies significantly
depending on the position of the correct answer
within the given choices (Pezeshkpour and Hr-
uschka, 2023; Zheng et al., 2024a). We further
observe that this vulnerability to positional bias
is even worse in the GPT-2 family, ranging from
GPT2-Small-124M to GPT2-XL-1.5B (Radford
et al., 2019). Our investigations reveal that GPT-2
models consistently favour the first choice ‘A’, re-
gardless of the actual position in the input MCQ
prompt where the correct answer choice is placed,
which we term as “anchored bias” in Fig. 1.

Previous work primarily mitigated positional
bias in MCQ by analysing the impact of differ-
ent prompt structures (Pezeshkpour and Hruschka,
2023) or by estimating different datasets’ prior bias
based on test samples (Zheng et al., 2024a). Such
approaches often remain superficial, merely alter-
ing the prompt presentation, or lacking a compre-
hensive analysis of fundamental reasons. Remark-
ably, there has been a lack of investigation into
the internal mechanisms of LLMs that contribute
to the anchored bias and strategies to mitigate it
without the need for prompt engineering or prior
estimation.

We apply mechanistic interpretability to reverse-
engineer the internal workings of the GPT-2 family
to understand the origins and extent of the anchored
bias. We quantitatively demonstrate that the GPT-
2 Small, Medium, Large, and XL. models exhibit
this anchored bias with significant regularity across
various MCQ datasets, ranging from 2 choices to
5 choices settings. Our detailed analysis using
the “logit lens” (Nostalgebraist, 2020) approach lo-



Question:

On a shelf, there are three books: a black book, an orange book, and
a blue book. The blue book is to the right of the orange book. The
orange book is to the right of the black book?
Answer Choices:

@A: The blue book is the leftmost
B: The black book is the leftmost
C: The orange book is the leftmost |

Answer:

I@A: The orange book is the leftmost.
B: The blue book is the leftmost.
C: The black book is the leftmost.

Performance on correct answer token:
Rank: 20 Logit: 13.34 Prob: 0.91% Token: B

Rankings: T T
Top Oth token. Logit: 16.28 Prob: 17.09% Token: A @
Top 1st token. Logit: 15.61 Prob: 8.80% Token: The
Top 2nd token. Logit: 14.68 Prob: 3.47% Token: On
Top 3rd token. Logit: 14.53 Prob: 2.97% Token: |

Performance on correct answer token:
Rank: 34 Logit: 12.54 Prob: 0.41% Token: C

Rankings:

Top Oth token. Logit: 16.27 Prob: 17.16% Token: A@

Top 1st token. Logit: 15.72 Prob: 9.88% Token: The

Top 2nd token. Logit: 14.79 Prob: 3.89% Token: On

Top 3rd token. Logit: 14.48 Prob: 2.87% Token: |
Figure 1: MCQ prompt paradigm used in GPT2-Small
and next token logit rankings with probability during
inference. Regardless of the order in which correct
answer choices are placed in the prompt except ‘A’,
GPT2-Small always give a higher logit score to the
choice immediately following the Answer Choices:,
i.e., A, where @v represents the anchored bias for the

incorrect choices (the correct choices should be B and C
for this example).

calises Multi-Layer Perceptron (MLP) layers with
specific dimensionality and attention heads that dis-
proportionately influence this anchored bias. We
find that certain value vectors in the MLP, which
inherently harbour this bias, and specific attention
heads pay more weight on the ‘A’ position over
the correct answer choice positions in the input
prompt.

Inspired from (Geva et al., 2021, 2022) where
MLPs can be treated as key-value memories, we
use a straightforward yet potent method (Dai et al.,
2022) to update these critical value vectors in the
MLP, effectively mitigate the anchored bias. This
adjustment not only mitigates the anchored bias
but also enhances the overall MCQ prediction ac-
curacy over 70% averaged across various MCQ
datasets and all GPT-2 family. Additionally, we
propose a novel strategy to recalibrate the attention
patterns by swapping the attention weight between
the anchored position and the correct answer choice
position. This strategy also mitigates the anchored
bias to a certain extent, especially for the classifica-
tion accuracy improvement of the Indirect Obejct
Identification (IOI) dataset (Wang et al., 2022) over
90% on GPT2-Medium. Finally, we trace the full
anchored bias circuit of each GPT2 model, which
includes all attention heads and MLPs contributing

to this bias.

In conclusion, to our best knowledge, this work
is the first comprehensive mechanistic analysis of
the intrinsic anchored bias in MCQ tasks across the
entire GPT-2 family. By identifying and rectifying
the critical value vectors within MLP and attention
heads responsible for this bias, we introduce novel,
minimal-intervention strategies that significantly
reduce GPT-2 models’ vulnerability and enhance
robustness against anchored bias in MCQ task.

2 Related Work

Several studies have documented the effects of
positional bias on LLM accuracy in MCQ:s.
Pezeshkpour and Hruschka (2023) found a "sensi-
tivity gap" in models like GPT-4, where positional
bias can decrease performance by up to 75% in
a zero-shot setting, and they improved accuracy
with new calibration strategies. Wang et al. (2023)
also noted the impact of option order on GPT-4’s
scores, enhancing accuracy through a calibration
framework including multiple evidence and bal-
anced position adjustments, along with human in-
volvement. Zheng et al. (2024a) addressed "selec-
tion bias" where LL.Ms disproportionately favour
certain options, introducing a debiasing method,
PriDe, that adjusts predictions during inference.
Wang et al. (2024) explored performance changes
from reordering answer options, confirming that
this impacts understanding. Turpin et al. (2024)
and Zheng et al. (2024b) explore the effects of posi-
tional bias in LLMs, showing how it skews Chain-
of-Thought generation and evaluator judgments,
and emphasize the need for strategies to detect and
mitigate these biases. However, those studies did
not analyse such bias inside of models and further
identify which component is relevant. Recently,
Lieberum et al. (2023) analyse final-token attention
heads and identify a subset “correct letter heads”,
which focus on earlier answer symbols to promote
the correct choice based on its order (mainly for
A/B/C/D). However, their findings are based solely
on MMLU task using the closed-source Chinchilla-
70B. Wiegreffe et al. (2025) investigates how suc-
cessful models perform formatted MCQs with sym-
bol binding internally rather than focusing on the
failure cases when models have positional bias.

3 Background: Large Language Models
and Mechanistic Interpretability

Architecture of LLMs. We focus on the au-
toregressive Transformer-based LLM architec-
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Figure 2: Left: the MLP and attention modules of LLMs, where the input prompt is encoded via Wg, and then the
processed information via attention and MLP layer is accumulated back to the residual stream X’ at layer ¢. Finally,
the residual stream at L layer is unembedded as logits and normalised as a probability distribution for next token
prediction. Right: logit lens (Nostalgebraist, 2020) is used to investigate the contribution of attention pattern and

MLP module for the next token prediction.

ture (Vaswani et al., 2017) based on prior
works (Geva et al., 2021; Elhage et al., 2021; Geva
et al., 2022; Dai et al., 2022; Meng et al., 2022a,b;
Yuksekgonul et al., 2024) with simplifications in
certain explanations. Given an input prompt con-
taining 7' tokens (¢1,...,t7) and each token ¢;
belonging to a vocabulary V), tokens are initially
encoded by d-dimensional vectors x? € R? using
an embedding matrix W € RVI*4,

As shown in Fig. 2, the architecture has L layers,
and each layer consists of attention and MLP mod-
ules, which transform token embeddings to resid-
ual streams (x4, ...,x5) € X* at layer £, where
xf € R?. The residual stream at layer / is a place
where all attention and MLP modules at layer ¢
read from and write to (Elhage et al., 2021), and it
is updated by the following equation for token ¢ at
layer £:

L __ -
X; = X;

'+ al +m! (1)
Here, a! is the attention contribution for token i
and mf is the MLP contribution at layer ¢'. At L
layer, the predicted probability distribution for the

next token P (t741|t1.7) is produced following:
P(tri1ltir) = Softmax (Wya(xf))  (2)

where Wy € R¥IVI is unembedding matrix, o (-)
is pre-unembedding layer normalisation.

The attention module mainly updates each token
residual stream xi_l by attending to all previous to-
kens in parallel. Specifically, the attention module
contains QK and OV circuits, where the former
operates W, Wi € R¥? matrices and the latter
operates Wo, Wy € R%*9 matrices, respectively.
Normally, QK circuit determines the attention pat-
tern A%, i.e., where information is moved to and
from the residual stream. OV circuit further de-
termines the attention output a based on the fixed

'We omit the layer normalisation of attention and MLP
modules at layer ¢ for simplification.

attention pattern, i.e., what information is from
the previous tokens’ position to the current token
position (Elhage et al., 2021):

H H

¢ Ohy 0Lyl bl 0h
aj; =) Ay G Wyhwgt =) )
h=1 h=1

where az{ ; indicates the attention contribution from
token i to token j, and af = Z;‘.le aﬁj. i? in-
dicates the weighted average values where token
7 attend to token j by head h at the layer ¢, and
rf’h = 25:1 rf]h (See Appendix B for detailed
explanations about attention module).

MLP module is normally treated as key-value
memories (Geva et al., 2021; Elhage et al., 2021;
Geva et al., 2022; Dai et al., 2022), where columns
of Wfl ] and rows of qut[i’:] are viewed as keys
and values in Fig. 2, respectively. Given the in-
put xf‘l, the keys of MLP produce a vector of
cofficients k! = y(Wix!™1) € R, and they
weights the corresponding values v¢ in W5, (See
Appendix B for detailed introduction about MLP):

dm
m{ =Y " k;"v;" 4)

n=1
Logit lens. Logit lens is a mechanistic inter-
pretability approach to investigate the contribution
of the intermediate layer representation in the au-
toregressive Transformer-based LLMs (Nostalge-
braist, 2020). Based on the architecture of LLMs
above, the P(tp11|t1.7) at layer L is the produc-
tion of linear softmax of logits unembedded via
Wy, which is the sum of input x? and attention and
MLP contributions at each layer £. Therefore, logit
lens can be used to measure the weighted atten-
tion value of each head rf’h € R4, each weighted
value vector k" v&™ € RY at n-th dimensionality
in MLP and intermediate residual stream xf c R?

for token i:



Datasets | Train | Test | A (%) | B(%) | C (%) | D (%) | E (%)

Dist. (%) ‘GPTZ—Small GPT2-Medium | GPT2-Large | GPT2-XL

101 (2) - 1000 0 100

LD (3) - 200 0 50 50

Greater (4) - 1000 0 33.33 | 33.33 | 33.33

ARC (4) 1.12k | 907 | 20.82 | 26.18 | 25.65 | 25.29

CSQA (5) | 9.74k | 982 | 19.60 | 20.25 | 19.98 | 20.38 | 19.79

101 (2) 455 97.4 100.0 85.8
LD (3) 63.0 94.0 100.0 17.0
Greater (4) 32.1 95.0 99.5 98.0
ARC (4) 54.6 91.6 97.6 69.9
CSQA (5) 34.8 81.5 99.6 97.7

Table 1: The distribution of correct choices on each
training dataset. IOI, LD, and Greater-than datasets are
manual-synthesised and we did not choose or place the
correct choice at A. For test datasets, we only select sam-
ples whose correct choices are not ‘A’ to avoid overlap
between anchored predictions from GPT2 models and
the correct choice. (-) indicates the number of choices.

logitf’h(rf’h) = WUU(rf’h)
logit™ (m!™) = Wyo(ko"vE™)  (5)
logit!(x}) = Wyo(x!)

(3

4 Preliminaries: Zero-shot Learning with
MCQs

Zero-shot learning. We mainly focus on the
zero-shot learning regarding each GPT2 model,
i.e., the input prompt is formatted as “Question:
<Question sample> Answer Choices: <Multiple
Choices> Answer:”, which is explained in Fig. 1.
After encoding the input prompt, GPT2 model will
decode the next token prediction, which is expected
as the correct answer choice.

Datasets and models. To comprehensively ver-
ify and evaluate the anchored bias of GPT2 family,
we consider 5 datasets, which include different
numbers of choices from 2 to 5. Indirect Object
Identification (1I0]) (Wang et al., 2022) and Greater-
than task (Greater) (Hanna et al., 2024): These
two datasets have been verified that GPT2 fam-
ily works well (Wang et al., 2022; Merullo et al.,
2024; Hanna et al., 2024). However, we found
that GPT2 family immediately fails these tasks if
the input prompt is formatted as MCQ in Fig. 1,
where the incorrect subject of the last clause or
incorrect years is placed in the ‘A’ choice and the
prediction is always anchored at incorrect choice
‘A’. Logical Deduction of the Big-Bench (LD)? (Sri-
vastava et al., 2023): LD is a subtask which eval-
uates three-object logical deduction tasks, and it
is used to measure whether model can parse in-
formation about multiple choices and their mutual
relationships. ARC-Challenge (ARC) (Clark et al.,
2018) and CommensenseQA (CSQA) (Talmor et al.,

2https://github.com/google/BIG-bench/blob/
main/bigbench/benchmark_tasks/logical_deduction/
three_objects/task.json

Table 2: The distribution of anchored bias ‘A’ happened
for GPT2 family across different datasets.

2019) are commonly-used MCQ benchmarks to
evaluate LLMs. For each dataset, we split into
90% Infer. set for anchored bias discovering and
mitigation, and 10% Eva. set to evaluate the mod-
ified GPT2 model performance. For models, we
comprehensively evaluate the GPT2 family, i.e.,
GPT2-Small-124M, GPT2-Medium-355M, GPT2-
Large-774M, and GPT2-XL-1.5B (Radford et al.,
2019) (See Appendix C for detailed introduction
of each dataset).

Evaluation metrics. We use logit lens (Nostal-
gebraist, 2020) introduced in § 3 to localise the
specific layer of MLP and specific attention head
which contribute to the anchored bias (more details
in § 5). Moreover, we use MLP contribution (Geva
et al., 2022) to locate the specific dimensionality
from W<, which leads to anchored bias. Regard-
ing mitigating anchored bias, we use classification
accuracy to evaluate whether the anchored bias can
be mitigated and GPT2 family can successfully
predict correct choices in MCQ.

5 Discovering Anchored Bias in MCQs

Frequency of anchored bias in GPT2 family
across all datasets. As introduced in § 4, we
use 5 different datasets with choices from 2 to 5
to investigate the anchored bias. Table 1 shows
that the correct choices distribution of ARC and
CSQA training dataset is balanced from ‘A’ to ‘E’.
In addition, IOI, LD and Greater test datasets are
manually synthesised, and we did not choose or
place the correct choice at ‘A’. For all test datasets,
we only select samples whose correct choice is not
‘A’ to avoid introducing extra bias, i.e., the mix-up
between correct prediction and anchored bias of
GPT2 family. Based on the randomly sampled test
datasets in Table 1, we further calculate the distri-
bution of anchored bias ‘A’ happened within each
test dataset when different GPT2 model is used in
Table 2. We can find that GPT2-Large and GPT2-
Medium have the most serious anchored bias, and
GPT2-XL and GPT2-Small have relatively less se-
rious issues. Based on this situation, we mainly


https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/logical_deduction/three_objects/task.json
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/logical_deduction/three_objects/task.json
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/logical_deduction/three_objects/task.json

focus on investigating test samples which have an-
chored bias for each dataset. Table 7 in Appendix D
shows the number of test samples for each dataset
and GPT2 model, where Infer. is used to localise
and mitigate anchored bias and Eva. is used to
verify the performance of mitigation.

Locating MLP of GPT2 family for anchored
bias. We first investigate MLP modules within
GPT2 family for anchored bias. Inspired
from (Geva et al., 2021, 2022), the MLP modules
can be regarded as key-value memories. As intro-
duced in § 3 and Fig. 2, the keys of MLP module is
a vector of coefficients k! = y(Wx{™!) € R,
which dynamically controls the contributions of the
corresponding values v/ in WY, based on different
input prompts. The value v! is treated as a mem-
ory bank which stores knowledge after the model
pertaining.

Based on the consensus about MLP module, we
aim to solve these research questions: 1) Is MLP
responsible for the anchored bias in GPT2 family?
2) Which layer and dimensionality of MLP is an-
chored bias relevant to? 3) Is this bias stored as
knowledge in a specific value vector of WZ,?

We use logit lens (Nostalgebraist, 2020) to calcu-
late logit of the final input prompt token contribut-
ing to incorrect choice token ‘A’ and correct choice
token ‘B/C/D/E’ based on different datasets using

Eq. 4 and Eq. 5%
logity:(mf)[A] = Wy[Alo (mF)
logits(m%)[B/C/D/E] = Wy [B/C/D/E|o(mf)
(6)

where Wy[A] € RN Wy [B/C/D/E] €
R4 [B/C/D/E] “and |A|, |B/C/D/E| represents the to-
ken number index of ‘A’ and one of token number
index of ‘B/C/D/E’, respectively.

We calculate the MLP logit difference between
anchored bias token ‘A’ and correct choice token
B/C/D/E averaged across all layers and datasets for
each GPT2 model using Infer. test samples. As
shown in Fig. 3, layer 9 in GPT2-Small, layer 20
in GPT2-Medium, layer 34 in GPT2-Large, and
layer 37/38/44 in GPT2-XL are dominant layers*
related to anchored bias. In addition, these lay-
ers are much closer to the final layer of GPT2,

3The reason why we focus on the final input token is that
the information inside of autoregressive transformer-based
model will accumulate to the final input token for the next
token prediction.

“In this work, the layer number and head number start
from 0.

Model | Vector

V1833 (100%)
v9:2859 (61 89%)

| Top-10 Tokens

_The, _This, _A, _There, _It, _In, _We, _If, _When, _An

- P
GPT2-Small LA, JIn, _The, .(, \n, -, ", _To, No,

GPT2-Medium | v?*%73 (79.3%) | _a, _an, a, an, _another, _something, A, _the, _some, _any

GPT2-Large | v¥1%41 (100%) | _A, A, _An, _Aires, _Ae, _An, ierrez, AAF, Aim, _Aus

V967 (98 0%)
VISAI91 (1009%)

A, _A, a, AIN, aic, acebook, aa, An, AAAA, ae

GPT2-XL .a, .an, a, _of, , _and, ., _in, an, _the

Table 3: Identified anchored-bias value vectors v™ of
n-row of W, atlayer ¢ for each GPT2 model, where the
percentage indicates how frequently the specific v&™ is
detected as an anchored-bias vector across all datasets,
and _ represents single space within the token because
GPT?2 tokeniser encodes same word with or without
.. as different token numbers. For each value vector,
we further unembedded the top-10 tokens, and most of
them are human-interpretable words, which also verify
that pretrained GPT2 family has intrinsic anchored bias
within Wy, (See Appendix E for more unembedded
tokens for each GPT2 model).

which agrees with (Geva et al., 2022; Gurnee et al.,
2023)’s finding that higher layers in GPT2 are rel-
evant to semantic concepts or complicated tasks.
We also notice that the last one or two layers in
each GPT2 model do not have anchored bias at all,
and they contribute more logits to correct choice
token ‘B/C/D/E’ to ‘A’. However, as the anchored
bias logits are accumulated from previous layers,
the final one or two layers cannot totally correct
this bias.

Based on the pattern from Fig. 3, we further use
MLP contribution (Geva et al., 2022) to localise the
specific dimensionality from W/, in these identi-

ou
fied layers leading to anchored bias:

Contrib(vfp’") = !kﬁl’"‘ ||V6Tn|| )

where |k§’n| is the absolute value of the coefficient
kg:”, and n € d,,. After using Eq. 7, we can locate
the top-10 most dominant weighted value vector
kg:”v?’" and dimensionality with the largest contri-
bution of the final input prompt token. We further
calculate logit difference of these identified layers
and dominant dimensionality in MLP of the final in-
put token contributing anchored bias token ‘A’ and
correct choice tokens B/C/D/E using Eq. 5, i.e.,
logity" [A](m%") —logity" [B/C/D/E](m%™). Then
we select candidates among the top-10 dominant di-
mensionality where difference score is larger than 4.
In the Table 3, vector column demonstrates the spe-
cific value vectors v" which are responsible for
anchored bias. For each value vector, we also calcu-
late how frequently it is recognised as an anchored-
bias vector across all datasets for each GPT2 model.
We can find that most identified value vectors have
more than 50% chance with anchored bias happen-
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Figure 3: MLP logit difference between anchored bias token ‘A’ and correct tokens (one of B,C,D,E), i.e.,
logit:[A](m%.) — logit}:[8/C/D/E](m%,) which is averaged within GPT-2 family across all layers and all datasets.
The deeper the blue blocks are at each layer, the more serious the anchored bias is, and vice versa.

Model ‘ Updated Vector ‘ New Top-10 Tokens

vo1853 (100%) | _B, B, b, .C, .D, _P, _L, _R, _H, _F
GPT2-Small | 0259 (618%) | 8, B, b, .C. .D, L, P, R, G, F
GPT2-Medium | v2*3713(79.3%) | _c, C, _B, _c, .D, .G, _F, _P, .CS, .T
GPT2-Large | v31541 (100%) | .C, _A, B, C, .c, .D, _F, P, .G, .T

44,4967

v (98.0%) | .C, _c, C, _A, B, .D, _F, _P, .T, .G
GPT2-XL v38491 (100%) | _.C, .c, C, .B, .D, _P, _F, _T, _L, .R

Table 4: The new top-10 tokens of each updated value
vector for each GPT2 model (See Appendix F for more
new unembedded tokens for each GPT2 model).

ing across all datasets and different GPT2 mod-
els. To further verify whether these value vectors
store anchored knowledge bias, we unembeded
each value vector logit and selected the top-10 to-
kens with the highest probability. As shown in
Table 3, we can find that most top-10 tokens within
each value vector are relevant to ‘A’, e.g., _LA, A,
_a, a,etc. This finding proves that some value
vectors in Wy, of GPT2 family store knowledge
bias after pertaining, and these knowledge biases
will become anchored bias when the input prompt
is formatted as MCQ. In addition, most unembe-
ded tokens are stopwords, e.g., pronouns, articles,
prepositions, etc, which also agrees with the find-
ings that “stopwords/punctuation” are commonly
distributed in the value vectors of MLP (Geva et al.,
2022).

Locating attention heads of GPT2 family for
anchored bias. Following a similar method as lo-
cating anchored bias in MLP, we also aim to solve
these research questions: 1) Is the attention head
also responsible for the anchored bias in GPT2 fam-
ily? 2) Which layer and head of attention pattern is
anchored bias relevant to?

As explained in § 3, attention pattern rf]h in-

dicates the weighted average values where token
1 attend to token j by head & at the layer /. We
use logit lens to analyse the logit difference of fi-
nal input prompt token contribution between an-
chored bias ‘A’ and correct choices ‘B/C/D/E’,
ie., logitglh [A] (rglh) - logitglh [B/C/D/E] (r?h). As
shown in Fig. 4, L§H1 and L10HS8 in GPT2-Small,
L18H12 and L20H5 in GPT2-Medium, L23HS8 and
L30HO in GPT2-Large, L31H9 and L34H14’ in
GPT2-XL are dominant heads related to anchored
bias. Those heads are also distributed closer to the
final layer in each GPT2 model. We zoom in on
the L8H1 and L10HS8 attention pattern of the final
input token in GPT2-Small using a sample from
10I dataset. As shown in Fig. 5, the final token ‘:’
attends more weights on the anchored bias token
‘A’ than the correct choice token ‘B’, which agrees
with our identified attention head using logit dif-
ference in Fig. 4. In addition, the full circuit of
anchored bias for each GPT2 model can be built
based on the MLP and attention logit difference in
Fig. 6.

6 Mitigating Anchored Bias in MCQs

Mitigating anchored bias in MLP. According
to findings in § 5, we localise the specific value vec-
tor in MLP related to the anchored bias. We further
aim to solve the following research question: Can
we fix the identified value vector in MLP by updat-
ing its values and editing the biased knowledge?

Following (Dai et al., 2022), we directly modify

L34H14 indicates layer 34 and head 14 and both of them
start from O.
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Figure 4: Attention pattern logit difference between anchored bias token ‘A’ and correct tokens (one of B,C,D,E),
ie., logitﬁp’h [A](réh) — logitgih [B/C/D/ E}(rglh) which is averaged within GPT-2 family across all layers and all
datasets. The deeper the blue blocks are at each layer, the more serious the anchored bias is, and vice versa.

L8H1 Question: Afterwards Lisa and Rachel went to the garden, and Lisa gave a bone to? Answer Choices: A: Lisa B: Rachel Answeﬂ:

L10H8 Question: Afterwards Lisa and Rachel went to the garden, and Lisa gave a bone to? Answer Choices:n: Lisa B: Rachel Answeﬂ:

Figure 5: The visualisation of identified anchored-bias attention head L8H1 and L10H8 in the GPT2-Small based on
Fig. 4, where the attention weight of final token :’ mainly attends to ‘A’ rather than ‘B’.

and update the identified value vector as:

vin = vhm — N\ Wi [A] + AWy [B/C/D/E] (8)
where A\; = 1, Ay = 8. After updating the corre-
sponding value vector in MLP, we utilise the up-
dated GPT2 model to predict the next token of the
same input MCQ prompts. We comprehensively
evaluate each updated GPT2 model with the corre-
sponding modified value vector using Infer. and
Eva. across all datasets. As shown in Table 5,
most updated value vectors achieve high classifi-
cation accuracy regarding MCQ tasks, even with
multiple near 100% or 100% accuracy in v%1853
of GPT2-Small, v34154! of GPT2-Large, v*44967
and v3%4191 of GPT2-XL. For those value vectors
with around a 60-70% chance of anchored bias hap-
pening across all datasets and different GPT2 mod-
els (i.e., v?2%9 of GPT2-Small, v2*3713 of GPT2-
Medium, v34:2103 of GPT2-Large, and v37,2966 f
GPT2-XL in Appendix G), the classification ac-
curacy still 68.09% averaged all datasets and all
models. This means that the simple and straight-
forward method (i.e., Eq. 8) is effective, and we
do not need to fine-tune the whole GPT2 model
to fix the anchored bias. We further unembedded
the updated value vectors in Table 4, and it shows
that the anchored bias token ‘A’ is significantly re-
moved and the new top-10 tokens for each new
value vector are replaced with the correct choices
token ‘B/C/D/E’.

Mitigating anchored bias in attention heads.
Based on the located attention heads for each GPT?2

101 (2)
Infer. Eva.

VoI5 (100%) | 1000 100.0 | 100.0 1000 | 100.0 100.0 | 100.0 100.0 | 100.0 100.0
v (61.8%) | 44.6 442 | 100.0 1000 | 588 923 | 937 962 | 60.1 564

GPT2-Medium \ vﬁ"-“"“(793%)\ 994 98.1 \ 97.1 885 \ 306  70.2 \ 56.8  60.4 \ 269 275
GPT2-Large | v*1%4 (100%) | 1000 100.0 | 100.0 1000 | 100.0 1000 | 967 967 | 99.7 100.0

VL% (98.0%) | 982 97.8 | 1000 1000 | 1000 1000 | 90.7  90.8
VISH9L (100%) | 1000 100.0 | 1000 1000 | 949 1000 | 97.4 969

LD (3)
Infer. Eva.

Greater (4)
Infer. Eva.

ARC (4)
Infer.  Eva.

CSQA (5)

Model Infer.  Eva.

Vector

GPT2-Small

948 942

GPT2-XL 9.5 952

Table 5: The classification accuracy of each MCQ infer-
ence (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using
A2 = 8 (See Appendix G for the ablation study of Ao
with different values).

model in § 5, we follow the same pattern as fixing
anchored bias in MLP and further propose a recali-
bration approach to mitigate the anchored bias in
the attention head by swapping the attention weight
of rgih between the position of ‘A’ and ‘B/C/D/E’:

I Lh Lh

= Yrp@reme)  TTperemE) = rT,p(A%g)
where p(A) and p(B/C/D/E) indicate the actual
position of anchored bias token ‘A’ and correct
choices token ‘B/C/D/E’ in the input prompts. As
shown in Table 6, the attention recalibration works
in L18H12 of GPT2-Medium, especially for IOI
dataset. This finding means that MLLP module plays
an important role than the attention head for the
anchored bias, and the performance of attention re-
calibration depends on the choice of GPT2 model
and dataset.

Lh
T,p(A)

7 Discussion

Is Few-shot learning helpful? Based on the
comprehensive zero-shot learning MCQ across all
datasets, we have a good understanding of how im-
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Figure 6: The full circuit of anchored bias for GPT2-Small model, where each attention head and MLP module are
selected when MLP and attention pattern logit difference threshold is larger than 4. The percentage within each
module indicates the probability of anchored bias across different datasets for GPT2-Small model when threshold is
larger than 4 (See Appendix L for the full circuits of other GPT2 models).

101 (2)
Infer.  Eva.

LD (3) Greater (4) ARC (4) CSQA (5)

Model Infer. Eva. Infer. Eva Infer. Eva. Infer Eva.

Head

2176 2778 339 3.6 2433 21.69 1.67

9.68 0.0
1290 0.0

GPT2-Medium | LISHI2 | 9247 90.72 125

L31H9
L34H14

0.0
0.0

0.0
0.0

057 00 053
057 00 333

0.0 0.12
1.67  0.46

0.0

GPT2-XL 00

Table 6: The Top-1 classification accuracy changes after
attention pattern recalibration for each GPT2 model
across all datasets (See Appendix H for other GPT2
model’s results).

portant the MLP and attention head are regarding
the anchored bias in the GPT2 family. The follow-
ing question might be whether few-shot learning
can mitigate this anchored bias without updating
specific value vectors in MLP or recalibrating the
attention head. We conduct an experiment to eval-
uate GPT2 family across all datasets using 1-shot
and 2-shot learning settings. The initial finding
is that the anchored bias could be relatively mit-
igated and average MCQ classification accuracy
across GPT2 family is 46.74%, 44.44%, 38.46%
and 23.34% under 1-shot learning and 46.52%,
45.70%, 43.22% and 32.62% under 2-shot learning
(See Appendix I). This result indicates that GPT2
family still struggles to predict correct choices, es-
pecially for GPT2-XL, which needs more investi-
gation in the future.

Is direct value vector updating in MLP harmful
to the general ability of GPT2 for other tasks?
We conduct an experiment to evaluate whether di-
rect value vector updating in MLP is harmful to the
general ability of GPT2-Small for the original I0I
and Greater-than tasks. The experiment shows that
the modified GPT?2 family can still achieve the aver-
age 85.8%, 91.1%, 81.7% and 78.8% accuracy on
the original IOI dataset, and 96.1%, 98.0%, 98.5%
and 98.4% on the original Greater-than dataset (See
Appendix J). Although direct value vector updating

in MLP is harmful to the general ability of GPT2
on the original IOl and Greater-than datasets, this
model editing approach does not produce serious
damage, which matches the findings from Gu et al.
(2024). However, we need to develop a better and
minimal-harm model editing algorithm in the fu-
ture.

Is anchored bias sensitive to specific content
of input prompts? We construct two random
MCQ datasets which include random concatenated
characters and random vocabulary words (see Ta-
ble 18 and Table 19 in Appendix K). The result
shows that anchored bias still happens across dif-
ferent GPT2 models, especially for GPT2-Large
and GPT2-XL. This indicates that anchored bias
is insensitive to MCQ input prompts, which also
confirms our findings that GPT2 family exhibit the
anchored bias with significant regularity across var-
ious MCQ datasets.

8 Conclusion

In this work, we identify the anchored bias of GPT2
family, where GPT-2 models consistently favour
the first choice ‘A’ in the MCQ task. Based on
this observation, we comprehensively conduct a
mechanistic analysis of the internal workings of
GPT?2 family. We find that some value vectors in
MLP modules with specific layers and dimension-
ality play a significant role in the anchored bias,
and we further use a straightforward but potent
approach to update the corresponding value vec-
tors, which effectively mitigate the anchored bias
in GPT2 family. In addition, some attention heads
also play auxiliary roles in this bias, and the recali-
bration approach works well for the IOI dataset in
GPT2-Medium.



Limitations

This work mainly focuses on the mechanistic analy-
sis of GPT2 family with the model size from 124M
to 1.5B. It is worth comprehensively investigating
whether larger open-source LLMs have similar an-
chored biases, such as LLaMA-7B-65B, LLaMA2-
7B-70B, LLaMA3-8B-71B, etc. In addition, dif-
ferent LLM architectural backbones might have
different extents of anchored bias, e.g., Mixture
of Experts (MoE) and Mamba with selective state
spaces. It is meaningful to compare how differ-
ent MLPs and attention heads are across different
LLMs above and why anchored bias disappears
if larger LLMs do not have such an issue. More-
over, the knowledge editing approach by directly
updating value vectors from MLPs is not optimal
as it will introduce some extent of damage to the
general ability of GPT2 models. However, how to
develop a better and minimal-harm model editing
algorithm is an open question (Gu et al., 2024),
which is worth exploring in the future.
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A Broader Impacts

Mechanistic interpretability of anchored bias for
the GPT2 family under the MCQ setting is worth
investigating, as it can help us better understand
the inner working mechanism of MLPs and atten-
tion heads for autoregressive Transformer-based
LLMs. The identified MLPs and attention heads
leading to the anchored bias can be used to guide
the larger LLMs development for safer, less biased
and more trustworthy LLMs. Such a mechanistic
analysis approach can be extended to other tasks,
such as LLLMs mathematical reasoning, dialogue
generation, and different training methods, such as
chain-of-thoughts (CoTs), reinforcement learning
from human feedback (RLHF), direct preference
optimization. In addition, an adversarial attack
might be used for commercial LLM products when
this anchored bias is analysed. This also encour-
ages researchers to develop much safer and robust
LLM:s.
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B Detailed Explanations of LLMs
Architecture

We focus on the autoregressive Transformer-based
LLM architecture (Vaswani et al., 2017) based on
prior works (Geva et al., 2021; Elhage et al., 2021;
Geva et al., 2022; Dai et al., 2022; Meng et al.,
2022a,b; Yuksekgonul et al., 2024) with simpli-
fications in certain explanations. Given an input
prompt containing 7" tokens (1, ..., ¢r) and each
token ¢; belonging to a vocabulary V, tokens are ini-
tially encoded by d-dimensional vectors X? € R?
using an embedding matrix Wg € RIVI*4,

The architecture has L layers, and each layer
consists of attention and MLP modules, which
transform token embeddings to residual streams
(x4,...,x4) € X at layer £, where x! € R%. The
residual stream at layer £ is a place where all at-
tention and MLP modules at layer ¢ read from and
write to (Elhage et al., 2021), and it is updated by
the following equation for token ¢ at layer ¢:

¢
X

=x71 4 af 4+ m! (10)
Here, af is the attention contribution for token 7
and m! is the MLP contribution at layer ¢°. At L
layer, the predicted probability distribution for the
next token P (tp41|t1.7) is produced following:

P(tT+1|t1;T) = Softmax (WUU(X%)) (11)
where Wy € R¥IVI is unembedding matrix, o (-)
is pre-unembedding layer normalisation.

The attention module mainly updates each token
residual stream xé_l by attending to all previous to-
kens in parallel. Specifically, the attention module
contains QK and OV circuits, where the former
operates Wq, Wi € R4*? matrices and the latter
operates Wo, Wy € R4*? matrices, respectively.
Normally, QK circuit determines the attention pat-
tern A, i.e., where information is moved to and
from the residual stream. OV circuit further de-
termines the attention output a¢ based on the fixed
attention pattern, i.e., what information is from
the previous tokens’ position to the current token
position (Elhage et al., 2021):

(Xéflwcgh) (Xéflwllgh)T
e

AbM — Softmax (
(12)

%We omit the layer normalisation of attention and MLP
modules at layer ¢ for simplification.

H H
o lhy 0—1vx-4h lh 2.h
aj; =y AW =) r
h=1 h=1
(13)

where az{ ; indicates the attention contribution from

T

token 7 to token j, and af => =1 aﬁ ;- Attention

pattern A%" € RT*T is a lower triangular weight
matrix calculated by the A-th attention head at layer
/, representing that each token can only attend to
previous tokens within autoregressive Transformer-
based LLMs. All matrices are split into multiple
attention heads, i.e., Wé’h, Wéh, W‘E/’h € Raxdn,

and Wé’h € R >4 for head h. dj, is the dimension-
ality of each head, H represents the total number
of attention heads, and d;, = d/H. Af]h is the
i-th row and j-th column entry of A%", and ri?
indicates the weighted average values where token
7 attend to token j by head h at the layer ¢, and

¢,k T _4h

r, = Zj:l r;-
For MLP module, it receives the xf_l as input

and updates following:

m; = y(Winx; )W,

n-*g out

(14)

where 7(-) is activation function, Wy, € R%*dm
and W', € RI*d 4. is the dimensionality
of MLP module, which is larger than d. MLP
module is normally treated as key-value memo-
ries (Geva et al., 2021; Elhage et al., 2021; Geva
et al., 2022; Dai et al., 2022), where columns of
I/Vifl[:ﬂ and rows of qut[i’z] are viewed as keys
and values, respectively. Given the input xf_l,
the keys of MLP produce a vector of cofficients
k! = y(W{x!™!) € R%, and they weights the
corresponding values vf in W¥,. Therefore, Eq. 14
can be reformatted as’:

dm
m{ =) kv (15)
n=1

C Details of Each Dataset and
Experimental Settings

* Indirect Object Identification (I0I) (Wang
et al., 2022): IOl is a manually synthesised
corpus used to understand a specific natural
language task, where sentences such as “Af-
terwards Lisa and Rachel went to the garden,
and Lisa gave a bone to” should be followed

"We omit all bias bq, br,bo, by, bin, bout, bu for simplifi-
cation.



with “Rachel”. When two names are included
in such sentences, the predicted name should
not be the subject of the last clause. This
task has been verified that GPT2 family works
well (Wang et al., 2022; Merullo et al., 2024).
However, we found that GPT?2 family imme-
diately fails this task if the input prompt is for-
matted as MCQ, where the incorrect subject
of the last clause is placed in the ‘A’ choice.

Greater-than task (Greater) (Hanna et al.,
2024): Greater-than task is also a manually
synthesised corpus, which is used to evaluate
GPT2’s ability to sentences such as “The war
lasted from the year 1732 to the year 177, and
model will predict valid two-digit end years,
i.e., years > 32. However, we found the same
anchored bias like IOI when this task is for-
matted as MCQ in Fig. 1, and GPT2 family
also fails to predict valid years and the pre-
diction is always anchored at incorrect choice
‘A

Logical Deduction of the Big-Bench
(LD)® (Srivastava et al., 2023): LD is a
subtask which evaluates three-object logical
deduction tasks, and it is used to measure
whether model can parse information about
multiple choices and their mutual relation-
ships. Each MCQ in the task includes three
similar objects in a naturally ordered context
(e.g., books of various colours sitting on a
shelf) and a set of simple clues regarding
their placement (e.g., "the red book is to the
right of the green book") such that no clue
is redundant. The challenge is to assign the
highest probability to correct MCQ choice
about which object lies at which position.

* ARC-Challenge (ARC) (Clark et al., 2018):
ARC is a real grade-school level, multiple-
choice science questions, which includes Easy
and Challenge versions. We choose the Chal-
lenge version to evaluate the anchored bias.

CommensenseQA (CSQA) (Talmor et al.,
2019): CSQA is a new multiple-choice ques-
tion answering dataset that requires different
types of commonsense knowledge to predict
the correct answers.
8https://github.com/google/BIG-bench/blob/

main/bigbench/benchmark_tasks/logical_deduction/
three_objects/task.json
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All GPT2 models are run during inference time and
parameters inside of each GPT2 model are frozen.
All experiments can be easily run using CPU or
GPU, e.g., Apple Macbook Pro with M1 Pro chip
or NVIDIA 3090 Ti with 24GB GPU RAM.

D The Statistic Information of Each Test
Dataset for GPT2 Models

We split each dataset into 90% Infer. set for
anchored bias discovering and mitigation, and 10%
Eva. set for modified GPT2 model verification on
the MCQ task. Table 7 shows the number of test
data samples for each dataset.

Num. GPT2-Small | GPT2-Medium | GPT2-Large | GPT2-XL

) Infer. Eva. | Infer. ~ Eva. | Infer. Eva. | Infer. Eva.
101 (2) 410 45 877 97 900 100 | 773 85
LD (3) 114 12 170 18 180 20 31 3
Greater (4) | 289 32 856 95 897 99 883 98
ARC (4) 446 49 748 83 797 88 571 63
CSQA (5) | 308 34 720 80 881 97 864 95

Table 7: Statistic of the test datasets for each GPT2
model, where Infer. represents 90% test dataset used
to discover and mitigate anchored bias, and Eva. repre-
sents 10% test dataset used to verify the performance of
updated GPT2 models.

E Top-10 Unembeded Tokens from
Identified Value Vectors

We unembedded more identified anchored-bias
value vectors in Table 8, and we can find there are
several tokens related to ‘A’, such as _a, _first,
JFirst, o1, _A

F Top-10 Unembedded Tokens from
Updated Value Vectors

After directly updating each identified value vec-
tor from MLP, we further unembedded them and
selected the top-10 tokens with the highest prob-
ability. Table 9 shows that those top-10 tokens
changes from original ‘A’ to other correct choice
tokens, i.e., B, C, D, E.

G Ablation Study of Different )\ in Eq. 8

We conduct an ablation study by changing Ao from
8 to 2 in Eq. 8, and evaluate the classification ac-
curacy of each Infer. and Eva. dataset using GPT2
family. Table 10,11,12,13,14,15,16 show the abla-
tion study results under different As. We can find
that the classification accuracy shows a decreas-
ing trend with Ay from 8 to 2, which indicates that


https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/logical_deduction/three_objects/task.json
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/logical_deduction/three_objects/task.json
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/logical_deduction/three_objects/task.json

Model ‘ Vector ‘ Top-10 Tokens

GPT2-Small | v (50.0%)

| _and, _in, _to, _or, .a, .at, _the, ...

, that, "

GPT2-Medium | v2*1731(38.2%) |

_first, _First, first, _FIRST, First, _1, 1, _Firstly, Firstly, _begin

v342103(70.1%) | romeda, maxwell, R>I>/, 1vl, mobi, elaide, amsung, nil, 911, dylib
GPT2-Large 34.4178 . L . -

Vo (55.4%) | reply, interstitial, _emer, 76561, _err, sg, _whe, eers, oi, _ignor

vi429% (27 5%) | ggles, atchewan, _aw, _let, eed, _ont, wn, _be, gg, _palp

v4128 (22 7%) | LA, _C, _E, .B, .S, .G, _F, _P, .D, K
GPT2-XL v3841T™ (202%) | LA, ,, _and, _a, .at, ., .of, _as, _on, _(

v37423.(91.8%) | _The, _This, _It, _There, _A, _If, _You, _We, _These, _When

v37296 (66.2%) | _a, _an, , .and, _to, _the, .in, .(, _one, .

Table 8: Identified anchored-bias value vectors v*™ of n-row of W, at layer ¢ for each GPT2 model, where the
percentage indicates how frequently the specific v¥™ is detected as an anchored-bias vector across all datasets,
and _ represents single space within the token because GPT2 tokeniser encodes same word with or without . as
different token numbers. For each value vector, we further unembeded the top-10 tokens, and most of them are
human-interpretable words, which also verify that pretrained GPT2 family has intrinsic anchored bias within Wy,.

Model ‘ Updated Vector ‘ New Top-10 Tokens
GPT2-Small | v*™8(50.0%) |_B, _b, B, _.C, .D, _L, _P, _R, .G, .BC
GPT2-Medium | v**173! (38.2%) | _C, C, _B, _c, .D, .CS, _F, P, .G, .T
34,2103
) v (70.1%) | _.C, .c, C, B, .D, _F, _P, .G, .T, M
GPT2-Large | saarms (554%) | C, _c. C. .8, P, D, F. .G, T, L
vi299 (275%) | _.C, _c, C, B, .D, _P, _T, _F, _R, _G
vA128 (227%) | LA, _C, _E, _B, .S, .G, _F, _P, D, K
GPT2-XL V384T 202%) | .C, _c, C, B, .D, _P, _F, _T, _L, _S
v37:423.(91.8%) | .C, .c, C, B, .D, _F, P, .T, .L, .G
37296 (66.2%) | _.C, _c, C, B, .D, _P, _F, _T, .G, .L

Table 9: The new top-10 tokens of each updated value
vector for each GPT2 model.

the effect of direct value vector update using Eq. 8
decreases.

H Top-1 Classification Accuracy Changes
Using Attention Pattern Recalibration

We also evaluate the top-1 classification accuracy
when the attention pattern recalibration is used to
the identified attention head. In Table 17, we can
find that most top-1 classification accuracy is close
to 0%, which indicates that those identified atten-
tion heads play less important roles compared to
specific MLP modules in each GPT2 model under
the MCQ task setting.

I One-shot and Two-shot MCQ
Classification Results

Based on the discussion in § 7, we further conduct
an experiment to evaluate whether the anchored
bias can be mitigated under the few-shot learn-
ing setting. Fig. 7 and Fig. 8 show that 2-shot
leaning performs better than 1-shot setting across
all datasets, especially for 101 dataset. However,
GPT2-XL always struggle to predict higher accu-
racy across all datasets. This finding indicates that
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simple few-shot learning cannot mitigate anchored
bias and a more comprehensive analysis is needed
to investigate this bias.

J Damage to Updated GPT2 Family’s
Performance on 101 and Greater
Datasets

Based on the discussion in § 7, we further evaluate
the damage of direct value vector update from MLP
for the general ability of GPT2 family. We choose
original IOI and Greater-than datasets as they have
been verified that GPT2 family works well (Wang
et al., 2022; Merullo et al., 2024; Hanna et al.,
2024). Fig. 9 and Fig. 10 show that classification
accuracy is acceptable when a value vector with a
specific layer and dimensionality is updated, which
matches the findings from Gu et al. (2024).

K MCQ Prompt Template with Random
Words

In order to evaluate whether anchored bias is sen-
sitive to the specific content of the input MCQ
prompts, we built two random MCQ datasets. One
of them contains randomly selected characters and
we concatenate them as a word with length from
5 to 10, and each MCQ prompt is built based on
“Question: <Question sample> Answer Choices:
<Multiple Choices> Answer:”. For the random
word dataset, we randomly select words from a
word vocabulary®. Finally, each dataset has 80 sam-
ples with the number of choices from 2 to 5 (see
Table 19). As shown in Table 18, anchored bias
still happens across GPT2 family, especially for

*https://www.mit.edu/~ecprice/wordlist.10000
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101 (2) LD (3) Greater (4) ARC (4) CSQA (5)
Model Vector Infer. Eva. | Infer. Eva. | Inferr Eva. | Infer. Eva. | Infer. Eva.
GPT2-Small | v%™8(50.0%) | 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 100.0 100.0
GPT2-Medium | v?%1731 (382%) | 336 337 | 818 500 | 0.0 00 | 51.2 516 | 224 231
v342103 (70.1%) | 712 635 | 55.6 577 | 320 962 | 497 505 | 529 49.0
GPT2-Large 344178
v (5549,) | 251 212 | 122 192 | 332 933 | 452 462 | 551 577
vi6299 275%) | 24.8 363 | 100.0 100.0 | 99.2 100.0 | 93.3 923 | 92.7 942
vi128 22 7%) | 67.8 648 | 96.8 100.0 | 100.0 100.0 | 91.1 90.8 | 92.5 952
GPT2-XL v384T (202%) | 114 165 | 387 23.1 | 446 750 | 21.0 262 | 75 7.7
v37423 (91.8%) | 54.3 604 | 100.0 100.0 | 93.5 1000 | 769 81.5 | 39.5 365
v37:2966 (662%) | 34.0 319 | 1000 100.0 | 77.2 97.1 | 73.7 769 | 552  60.6

Table 10: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using Ay = 8.

101 (2) LD (3) Greater (4) ARC (4) CSQA (5)
Model Vector Infer. Eva. | Infer. Eva. | Inferr Eva. | Inferr Eva. | Infer. Eva.
v9183 (100%) | 99.5 100.0 | 100.0 100.0 | 100.0 100.0 | 99.8 100.0 | 100.0 100.0
GPT2-Small v92859 (61.8%) | 227 269 | 100.0 100.0 | 37.8 692 | 892 962 | 458 41.0
v978 (50.0%) | 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 100.0 100.0
) v203713.(793%) | 977 952 | 90.6 73.1 | 173 47.1 | 43.0 527 | 142 88
GPT2-Medium v20.1731 (38 29%) | 27.6 269 | 61.2 308 | 0.0 00 | 414 473 | 13.8 88
v341541 (100%) | 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 957 95.6 | 99.2  99.0
GPT2-Large v342103.(70.1%) | 57.6 548 | 40.6 462 | 266 856 | 38.6 385 | 426 394
v34AIT8 (5549) | 16.8 163 | 2.2 3.8 | 27.0 856 | 355 374 | 455 452
vi4967 98 0%) | 974 967 | 96.8 923 | 99.8 100.0 | 87.6 90.8 | 91.6 923
vi4299% 275%) | 18.6  30.8 | 100.0 100.0 | 97.7 100.0 | 91.9 923 | 869 89.4
vi128 (22 7%) | 59.6 593 | 93.5 923 | 100.0 100.0 | 90.0 90.8 | 89.7 923
GPT2-XL v38A91 (100%) | 99.4 100.0 | 100.0 100.0 | 88.0 100.0 | 96.1 954 | 92.6 89.4
v3841T4 (202%) | 6.7 7.7 | 387 23.1 | 378 60.6 | 163 185 | 4.7 4.8
v37423 (91.8%) | 382 41.8 | 100.0 100.0 | 869 100.0 | 67.3 70.8 | 30.1 29.8
v372966 (66.2%) | 22.3 264 | 935 846 | 713 962 | 657 646 | 446 48.1

Table 11: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using Ay = 7.

GPT2-Large and GPT2-XL. This finding confirms
our findings that GPT?2 family exhibit the anchored
bias with significant regularity across various MCQ
datasets.

L Full Circuit of Anchored Bias of Each
GPT2 Model

Based on the identified MLP module and atten-
tion head using logit difference between anchored
choice ‘A’ and correct choices ‘B,C,D,E’. We
can construct the full anchored-bias circuit for each
GPT2 model. Fig. 11,12,13 show the full anchored-
bias circuit of GPT2-Medium, GPT2-Large and
GPT2-XL including identified attention heads and
MLPs starting from layer O to the final layer.
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101 (2) LD (3) Greater (4) ARC (4) CSQA (5)
Model Vector Infer. Eva. | Inferr Eva. | Infer.r Eva. | Infer. Eva. | Infer. Eva.
v91853 (100%) 96.1 962 | 100.0 100.0 | 94.8 100.0| 98.7 98.1 | 994 974
GPT2-Small v92859 (61.8%) | 7.6 7.7 | 921 100.0 | 20.1 385 | 79.8 84.6 | 25.6 256
v9788 (50.0%) 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 100.0 100.0
) v203713.(793%) | 925 904 | 77.6 269 | 7.8 260 | 293 374 | 49 2.2
GPT2-Medium | Uo0.1751 (38 906) | 220 202 | 312 115 | 00 00 | 297 363 | 71 55
v341541 (100%) | 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 93.1 91.2 | 97.8 97.1
GPT2-Large v342103.(70.19%) | 39.8 375 | 206 462 | 148 519 | 287 297 | 308 269
v34ALT8 (55 49%) | 9.8 7.7 0.6 00 | 157 510 | 261 286 | 350 31.7
vi44967 (98 0%) | 952  95.6 | 935 846 | 994 100.0 | 842 90.8 | 855 875
vi299% 275%) | 129 198 | 968 923 | 93.1 1000 | 879 923 | 76.6 856
vi128 22 7%) | 50.7 505 | 90.3 84.6 | 99.8 100.0 | 87.6 89.2 | 84.8 875
GPT2-XL v38491 (100%) | 96.9 989 | 100.0 100.0 | 78.1 100.0 | 95.1 954 | 82.5 837
v38ALTL (202%) | 3.2 55 | 355 231 | 299 47.1 | 13.0 169 | 2.7 1.0
v37423 (91.8%) | 232 27.5 | 100.0 100.0 | 80.3 100.0 | 57.8 60.0 | 20.5 17.3
v372966 (662%) | 12.5 154 | 774 769 | 60.7 923 | 560 569 | 324 298

Table 12: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using A\ = 6.

101 (2) LD (3) Greater (4) ARC (4) CSQA (5)
Model Vector Infer. Eva. | Infer. Eva. | Inferr Eva. | Infer. Eva. | Infer. Eva.
v91853 (100%) 76.8 827 | 100.0 1000 | 692 100.0| 93.0 962 | 96.1 949
GPT2-Small v92859 (61.8%) 1.2 3.8 | 482 692 | 45 128 | 632 692 | 123 1238
v9788 (50.0%) 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 100.0 100.0
) v203713(7939) | 79.8 769 | 500 0.0 0.9 1.9 | 189 242 | 0.8 0.0
GPT2-Medium | U20.1731 (38 906) | 157 154 | 100 00 | 00 00 | 202 187 | 31 22
v341541 (100%) | 100.0 100.0 | 100.0 100.0 | 100.0 100.0 | 87.6 83.5 | 953 952
GPT2-Large | v32193(70.1%) | 234 173 | 78 269 | 3.6 106 | 202 132 | 212 144
v3LALTS (55 4%) | 4.6 2.9 0.0 0.0 54 202 | 174 165 | 251 173
vi44967 (98 0%) | 88.6 90.1 | 774 692 | 958 100.0| 77.6 84.6 | 76.0 788
vi6299% 275%) | 7.2 154 | 903 846 | 862 98.1 | 827 846 | 61.0 69.2
vi128 22 79%) | 389 418 | 83.9 846 | 985 1000 | 825 862 | 748 76.0
GPT2-XL v38491 (100%) | 85.0 87.9 | 100.0 100.0 | 684 99.0 | 88.1 877 | 644 673
v38ALTL (202%) | 1.3 44 | 323 154 | 21.1 356 | 93 13.8 1.7 0.0
v37423 (91.8%) | 125 17.6 | 968 100.0 | 69.8 952 | 47.8 477 | 135 135
v37:2966 (66.2%) | 5.6 8.8 | 645 615 | 492 73.1 | 434 400 | 212 202

Table 13: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using Ay = 5.
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101 (2) LD (3) Greater (4) ARC (4) CSQA (5)

Model Vector Infer. Eva. | Infer. Eva. | Infer. Eva. | Infer. Eva. | Infer. Eva.

v91853 (100%) 307 365 | 588 692 | 263 590 | 63.9 731 | 649 692
GPT2-Small v92859 (61.8%) | 0.0 0.0 3.5 0.0 0.0 0.0 | 350 442 | 23 2.6
v 788 (50.0%) 99.5 100.0 | 100.0 100.0 | 100.0 100.0 | 97.8 100.0 | 99.7 100.0

v203713 (793%) | 594 558 | 165 0.0 0.0 0.0 7.6 9.9 0.1 0.0
v20.1731 (38 29%) | 11.1 9.6 0.6 0.0 0.0 00 | 104 132 | 1.0 0.0

v341541 (100%) | 100.0 100.0 | 100.0 100.0 | 982 100.0 | 80.7 79.1 | 86.8 89.4
GPT2-Large v342103.(70.1%) | 103 4.8 1.1 00 | 0.1 00 | 109 88 | 126 58
v3LALT8 (55 49) | 2.2 19 | 00 00 | 06 1.0 | 123 99 | 159 106

vi4967 (98 0%) | 74.6 769 | 61.3 385 | 857 100.0| 68.0 769 | 574 625
vi4299% 275%) | 4.1 99 | 774 615 | 734 962 | 73.9 754 | 429 500
vi128 (227%) | 263 319 | 71.0 61.5 | 921 99.0 | 75.7 785 | 589 654
GPT2-XL v384191 (100%) | 589 57.1 | 71.0 615 | 58.1 904 | 755 754 | 432 452
v384LT4 (202%) | 0.5 22 | 323 154 | 131 221 | 68 108 | 1.2 0.0
v37423.(918%) | 4.4 33 | 80.6 769 | 549 760 | 347 385 | 7.5 4.8
v37:2966 (66.29%) | 1.9 44 | 516 385 | 335 548 | 322 308 | 111 77

GPT2-Medium

Table 14: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using \s = 4.

101 (2) LD (3) Greater (4) ARC (4) CSQA (5)
Infer. Eva. | Infer. Eva. | Infer. Eva. | Infer. Eva. | Infer. Eva.

v91853 (100%) 1.7 1.9 0.0 0.0 2.1 103 | 168 23.1| 143 154
GPT2-Small v9:2859 (61.8%) 0.0 0.0 0.0 0.0 0.0 0.0 85 96 | 00 00
v9788 (50.0%) 67.6 712 | 71.1 769 | 98.3 1000 | 706 73.1 | 929 974

v203713 (7939 | 347 317 | 0.0 0.0 0.0 0.0 15 33| 00 00
v20.1731 (38 295y | 8.1 4.8 0.0 0.0 0.0 0.0 48 66 | 04 00

v341541 (100%) | 100.0 100.0 | 95.0 100.0 | 67.7 100.0 | 65.1 68.1 | 704 72.1
GPT2-Large v3203(70.1%) | 3.1 19 | 00 00 | 00 00 | 61 33| 58 438
v3H4T8 (5549) | 0.9 0.0 0.0 0.0 0.0 0.0 61 44 | 65 58

viA9%7 (98.0%) | 512 582 | 61.3 385 | 642 913 | 52.0 538 33.3 346
vi4:299% 275%) | 1.8 44 | 613 462 | 498 788 | 564 585 | 240 24.0
v 227%) | 127 176 | 548 538 | 766 942 | 61.8 64.6 | 404 423
v38AL (100%) | 21.7 275 | 581 385 | 38.1 635 | 541 63.1| 197 212
v384174 (202%) | 0.1 00 | 290 77 62 135 | 44 62| 08 00
v37423 (91.8%) 1.3 22 | 677 53.8 | 347 529 | 222 246| 37 3.8
v37:296 (66.2%) | 0.5 1.1 | 484 308 | 19.6 375 | 222 185| 66 58

Model Vector

GPT2-Medium

GPT2-XL

Table 15: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using A\ = 3.
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101 (2) LD (3) Greater (4) ARC (4) CSQA (5)

Model Vector Infer. Eva. | Infer. Eva. | Infer. Eva. | Infer. Eva. | Infer. Eva.
v9:1853 (100%) 00 00 | 00 00| 00 00 13 19 ] 1.0 00

GPT2-Small v92859.(61.8%) | 0.0 0.0 00 00 | 00 0.0 09 19| 00 00
v 78 (50.0%) 5.4 7.7 00 00 | 242 538 | 155 19.2| 269 308

. v20.3713(7939%) | 156 163 | 00 00 | 00 00 | 03 00| 00 00
GPT2-Medium | (201731 38296y | 42 19 | 00 00 | 00 00 | 17 43 | 00 00
v34154L (100%) | 99.9 100.0 | 66.1 69.2 | 344 100.0 | 37.5 374 395 34.6

GPT2-Large v342103 (70.1%) | 0.6 10 [ 00 00| 00 00 | 23 22| 1.8 19
v34ALT8 (55 49%) | 0.1 0.0 0.0 00 | 00 0.0 21 11| 27 29

v#4496798.0%) | 185 176 | 484 231 ] 333 625 | 31.7 338 13.8 144

vi429% . (275%) | 0.6 2.2 | 484 308 | 254 490 | 361 354| 90 58

vi128.(227%) | 4.0 7.7 | 484 385| 489 769 | 43.1 385 | 189 202

GPT2-XL v38419L (100%) | 4.3 6.6 | 419 23.1| 161 288 | 289 292 | 65 58
v384174.(20.2%) | 0.0 00 | 226 77 | 28 4.8 25 46| 05 00

v37423.(91.8%) | 0.4 1.1 | 484 30.8| 156 327 | 123 123| 15 19

v37:2966 (66.2%) | 0.1 00 | 323 154 | 75 154 | 112 154| 20 0.0

Table 16: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using Ay = 2.

101 (2) LD (3) Greater (4) ARC (4) CSQA (5)
Model Head Infer. Eva. Inferr Eva. Inferr Eva. Inferr Eva. Infer. Eva.
L8HI 00 00 00 00 00 00 00 204 00 00

GPT2-Small | 1 homs | 00 00 00 00 00 00 00 204 00 00
GPT2Medium | LISHIZ [ 9247 90.72 2176 2778 339 3.16 2433 21.69 167 125
CHUM 1 o0H5 | 034 00 00 00 00 00 00 00 00 00
CPTolaee | L23H8 | 00 00 00 00 00 00 038 L4 00 206
TLarg L30HO | 00 00 00 00 00 00 00 00 00 00
GPT2XL L3IHO | 00 00 968 00 057 00 053 00 012 00
L34HI4 | 00 00 1290 00 057 00 333 167 046 00

Table 17: The Top-1 classification accuracy changes after attention pattern recalibration for each GPT2 model

across all datasets.
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Figure 7: One-shot MCQ classification accuracy of different datasets across GPT2 family.

Two-shot MCQ Classification Accuracy of Different Datasets Across GPT2 Models
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Figure 8: Two-shot MCQ classification accuracy of different datasets across GPT2 family.
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Figure 9: Damage to updated GPT?2 family’s classification accuracy on original IOI dataset using Eq. 8 with Ay = 8.

Damage to GPT2 Family's Performance on Greater Dataset
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Figure 10: Damage to updated GPT2 family’s classification accuracy on original Greater dataset using Eq. 8 with
Ay = 8.
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Figure 11: The full circuit of anchored bias for GPT2-Medium model, where each attention head and MLP module
are selected when MLP and attention pattern logit difference threshold is larger than 4. The percentage within each
module indicates the probability of anchored bias across different datasets for GPT2-Medium model when the
threshold is larger than 4.
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Figure 12: The full circuit of anchored bias for GPT2-Large model, where each attention head and MLP module
are selected when MLP and attention pattern logit difference threshold is larger than 4. The percentage within
each module indicates the probability of anchored bias across different datasets for GPT2-Large model when the
threshold is larger than 4.
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Figure 13: The full circuit of anchored bias for GPT2-XL model, where each attention head and MLP module are
selected when MLP and attention pattern logit difference threshold is larger than 4. The percentage within each
module indicates the probability of anchored bias across different datasets for GPT2-XL model when the threshold
is larger than 4.
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Type ‘GPT2-SmalI GPT2-Medium GPT2-Large GPT2-XL

Random Characters 70.0 69.0 99.0 96.0
Random Words 65.0 82.0 95.0 100.0

Table 18: The percentage of anchored bias occurring
when MCQ prompt template is replaced with random
characters and random words.
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Random
Charac-
ters

Question: cgryp rkodmajc ajwsqby jnqgagcmsa agbyyasj ibng-
bxtn dazvqigre urbnmumw ltpjslayp ighfudgy hbaldde? Answer
Choices: A: samdaheepw Itvlpeh B: rqqtxdgiyb rznosxhk djpsitdar
ubjgq ioamje C: bkdjziiy Answer:

Random
Words

Question: citysearch logical bidder discount kentucky forming
rapid digit flash putting reid liechtenstein mate? Answer Choices:
A: seven owner voluntary B: clicking it C: harassment beam
firewire D: run helpful Answer:

Table 19: The MCQ prompt template with random characters and random words.
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