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Abstract

Ancestral graphs are an important tool for encod-
ing causal knowledge as they represent uncertainty
about the presence of latent confounding and selec-
tion bias, and they can be inferred from data. As for
other graphical models, several maximal ancestral
graphs (MAGs) may encode the same statistical
information in the form of conditional independen-
cies. Such MAGs are said to be Markov equivalent.
This work concerns graphical characterizations and
computational aspects of Markov equivalence be-
tween MAGs. These issues have been studied in
past years leading to several criteria and methods to
test Markov equivalence. The state-of-the-art algo-
rithm, provided by Hu and Evans [UAI 2020], runs
in time O(n5) for instances with n vertices. We
propose a new constructive graphical criterion for
the Markov equivalence of MAGs, which allows us
to develop a practically effective equivalence test
with worst-case runtime O(n3). Additionally, our
criterion is expressed in terms of natural graphical
concepts, which is of independent value.

1 INTRODUCTION

Graphical causal models represent random variables as ver-
tices of a graph and express causal effects of one variable
on another with edges. Using the graphical approach allows
an intuitive formalism to explore complex causal phenom-
ena Spirtes et al. [2000], Pearl [2009], Koller and Friedman
[2009]. Another strength of this approach is the ability to
tackle causal problems using algorithmic tools, paving the
way towards automated causal inference and data science.

A popular and commonly used model to encode causal
knowledge, which can be inferred from data, is a directed
acyclic graph (DAG). A DAG can be learned from condi-
tional independence (CI) statements, if one assumes faith-
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Figure 1: DAG G1 encodes the CIs Xa ⊥⊥ {Xc, Xd} and
Xc ⊥⊥ {Xa, Xb} among observed variables (u is a latent
variable). G2 is a MAG which encodes the same CIs. The
example is from [Richardson and Spirtes, 2002, Fig. 10].

fulness, that is, if the CIs among the variables are equal to
those expressed through d-separations in the DAG Spirtes
et al. [2000]. However, multiple DAGs can imply the same
CI statements. For instance, if for the variables Xa, Xb, Xc

the only CI relationship is Xa ⊥⊥ Xc | Xb, then there are
three DAGs a b c, a b c, and a b c, which
encode the CI. We say that such DAGs are Markov equiva-
lent and that they belong to the same Markov equivalence
class (MEC). Markov equivalent DAGs encode the same
conditional independances via d-separations and are, thus,
indistinguishable on the basis of observational CIs alone.

Key results for these concepts are the graphical criterion for
two DAGs to be Markov equivalent [Verma and Pearl, 1990,
Frydenberg, 1990] and the graph-theoretic characterization
of MECs as so-called CPDAGs [Andersson et al., 1997].
Subsequent work in this field resulted in further achieve-
ments, e. g., regarding causal structure identification from
data [Meek, 1997, Spirtes et al., 2000, Chickering, 2002a,b]
or causal inference and analysis based on Markov equiv-
alence classes [Maathuis et al., 2009, van der Zander and
Liśkiewicz, 2016, Wienöbst et al., 2021b]. However, things
are more complicated when hidden and selective variables
emerge – as is often the case in practice. Useful in this
setting are (maximal) ancestral graphs (AGs, MAGs) intro-
duced by Richardson and Spirtes [2002], which can repre-
sent uncertainty about the presence of latent confounding
and selection bias, and which can be inferred from data. A
variable is latent if it is not measured or recorded. For ex-
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ample, the DAG G1 in Fig. 1 shows a causal structure over
four observed variables represented as vertices a, b, c, d and
a latent variable represented as u. G1 implies the indepen-
dence relations Xa ⊥⊥ {Xc, Xd} and Xc ⊥⊥ {Xa, Xb} over
the observed variables, i. e., after marginalizing variable Xu

out. However, there is no DAG representing precisely these
CIs, which shows that DAGs are not closed under marginal-
ization. One can represent the CIs using MAGs as shown by
G2 in Fig. 1. Additionally, DAGs are not expressive enough
for selection variables, which are unmeasured variables de-
termining whether a measured unit is included in the data.
Hence, DAGs are not closed under conditioning. In con-
trast, the class of independence models associated with AGs,
i. e., the smallest class that contains the DAG independence
models, is closed under marginalizing and conditioning (see
[Richardson and Spirtes, 2002] for details).

Despite many advances, a number of fundamental problems
concerning the properties and algorithmic aspects of this
important model class remain to be explored. We investigate
the Markov equivalence of MAGs – one of the basic prob-
lems in this field. As for DAGs, MAGs that encode the same
conditional independencies are said to be Markov equivalent.
In graphical language, we express CIs via m-separations, an
extended form of d-separation in DAGs (formal definitions
are provided in Section 2).

An effective polynomial-time algorithm to test whether two
MAGs are Markov equivalent has been the subject of in-
tense research. A naïve implementation of the definition
requires testing m-separation relations over all pairs of ver-
tices and all subsets of vertices, which takes exponential
time. The first graphical criterion was given by Spirtes and
Richardson [1996]: The Spirtes and Richardson Criterion
(SRC) extends the conditions by Verma and Pearl [1990]
and Frydenberg [1990] for DAGs and is based on the useful
concept of discriminating paths. The SRC is intuitive and
forms the basis of subsequent work. However, testing the
SRC naively requires exponential time since there can be
exponentially many discriminating path, which all have to
be inspected. Zhao et al. [2005] proposed another character-
ization using the concept of minimal collider paths, which
also did not lead to polynomial time. The first criterion that
can be checked in polynomial time has been proposed by
Ali et al. [2009]. The complexity of their method is bounded
by O(n ·m4) for MAGs with n vertices and m edges. Re-
cently, a criterion based on parametrizing sets was proposed
by Hu and Evans [2020]. These sets can be generated in
time O(n · m2) (for dense graphs with m ∈ Ω(n2) this
equates to O(n5)) leading to a faster algorithm.

The main contribution of this paper is a new criterion for the
Markov equivalence of MAGs. It is a simple and construc-
tive variant of the SRC and allows us to develop an algorithm
for equivalence testing in cubic time. This breaks the pre-
vious O(n5) worst-case time barrier. Our criterion, coined
constructive-SRC, is based on discriminating paths, but it

avoids searching through exponentially many paths and
boils down to a simple graphical condition. The constructive-
SRC is intuitive and checking it by hand is convenient. For
sparse graphs with maximal degree ∆, which are common in
causal modeling, the running time is bounded by O(n ·∆2).
We compare our algorithm experimentally with the algo-
rithm by Hu and Evans [2020] and show that the theoretical
improvements lead to better practical performance.

Obtaining the cubic runtime raises the question of whether
further improvements are possible, e. g., whether a runtime
of O(n2) can be attained. We discuss this issue by relating it
to the Markov equivalence of DAGs, where such a runtime
is achievable using the CPDAG representation of Markov
equivalence classes. We uncover obstacles in translating this
approach towards the MAG setting, while also highlighting
related open research questions in this area.

2 PRELIMINARIES

A mixed graph G = (V,E) consists of a set of vertices
and a set of edges between pairs of vertices. We consider
three different edge types: directed edges a b or a b,
bidirected edges a b, and undirected edges a − b. Ver-
tices linked by an edge of any type are called adjacent or
neighbors. The degree of a vertex is the number of its neigh-
bors, and the maximum degree of a graph is the maximum
degree of any of its vertices. We call vertices connected by
a bidirected edge siblings, and say that u is a parent of v
if u v (then v is a child of u). A path π between two
vertices v1 and vp in G is a sequence of distinct vertices
π = ⟨v1, . . . , vp⟩ with p ≥ 2 such that each vertex vi is
adjacent to vi+1 for i = 1, . . . , p − 1. A path of the form
v1 v2 . . . vp is directed or causal. If there is a di-
rected path from u to v, then u is called an ancestor of v
and v a descendant of u. For a vertex v, the set of all of its
ancestors is written as AnG(v). The descendant set DeG(v)
is analogously defined. DisG(v) is the set of vertices in the
same district as v, i. e., the ones connected to v via bidi-
rected edges. Also, we denote by PaG(v), ChG(v), NeG(v),
SiG(v) the set of parents, children, neighbors, siblings of v
in G, respectively.1 If G is clear from the context, we omit it
as subscript. These notations generalize to sets of vertices in
the natural way. We denote the subgraph induced by vertex
set S as G[S] = (S,E ∩ (S × S)). A graph is acyclic if
there is no directed path from a vertex u to v with v u.
An acyclic graph with only directed edges is called a DAG.
The skeleton of G is the graph obtained by replacing every
edge with an undirected one. A v-structure, also called an
unshielded collider, is an ordered triple of vertices (u, c, v)
that induces the subgraph u c v. The ∗ indicates that
any edge mark is possible. A vertex c on a path π is called a
collider if two arrowheads of π meet at c, e. g. if π contains

1We note that v ∈ AnG(v), v ∈ DeG(v) and v ∈ DisG(v).
This does, however, not hold for PaG, ChG, NeG and SiG.



x · · · b y

Figure 2: A discriminating path from x to y for b. For the
last three vertices, b y , b y , and

b y are possible configurations (see Fact 4.1).
In the first one b is a collider, in the other two a non-collider.

u c v. Two vertices are collider connected if there is
a path (a collider path) between them on which all internal
vertices are colliders; hence, adjacent vertices are collider
connected. Vertices are m-connected by a set Z if there is
a path π between them on which every collider is in An(Z)
and every node that is not a collider is not in Z. Such a π is
called an m-connecting path given Z. If vertices u, v are not
m-connected by Z, written as (u⊥⊥ v | Z)G, we say that Z
m-separates them. Two sets X,Y are m-separated by Z
if all their nodes are pairwise m-separated by Z. In DAGs,
m-separation is equivalent to d-separation [Pearl, 2009].

Ancestral Graphs. A graph G = (V,E) is called ancestral
(AG) if (i) it is acyclic, (ii) for every bidirected edge a b
vertex a is not an ancestor of b (and vice versa), and (iii) for
every undirected edge a− b vertex a (and vertex b) have no
parents or siblings. Consequently, ancestral graphs contain
at most one edge type between two vertices. An AG is a
maximal ancestral graph (MAG) if set Z exists for every
pair of nonadjacent vertices a and b such that a and b are
m-separated by Z. Every AG can be turned into a MAG
by adding bidirected edges between vertices that cannot
be m-separated. Syntactically, all DAGs are MAGs and all
AGs that contain only directed edges are DAGs.

Markov Equivalence. Two AGs G1 and G2 with the same
vertex set V are said to be Markov equivalent if we have
for all pairwise disjoint sets A,B,Z ⊆ V with A ̸= ∅
and B ̸= ∅ that A and B are m-separated given Z in G1

if, and only if, A and B are m-separated given Z in G2.
The following definition is central for the study of Markov
equivalence of MAGs:

Definition 2.1 ([Richardson and Spirtes, 2002]). A path
π = ⟨x, q1, . . . , qp, b, y⟩, p ≥ 1, is called discriminating for
vertex b in a MAG G if

(i) x is not adjacent to y and
(ii) any qi, 1 ≤ i ≤ p, is a collider on π and a parent of y.

A discriminating path is illustrated in Fig. 2. For vertices b
and y in G denote by DiscrG(b, y) the set of all discriminat-
ing paths π = ⟨x, q1, . . . , qp, b, y⟩ for b. Our focus lies on
the computational complexity of the following problem:2

2We first deal with the problem for MAGs without undirected
edges. We later discuss in Section 7 how these can be included
with minor modifications (our main theorem holds as is).

Problem 2.2 (MAG-EQUIVALENCE).

Instance: Two MAGs G1 and G2.
Question: Are G1 and G2 Markov equivalent?

3 HISTORY

A graphical criterion for Markov equivalence of DAGs was
provided by Verma and Pearl [1990] and Frydenberg [1990]:

Theorem 3.1 ([Verma and Pearl, 1990, Frydenberg, 1990]).
Two DAGs G1 and G2 are Markov equivalent if, and only if,

(i) G1 and G2 have the same adjacencies and

(ii) G1 and G2 have the same unshielded colliders.

The first graphical criterion for two MAGs to be Markov
equivalent was given by Spirtes and Richardson [1996]:

Theorem 3.2 (Spirtes and Richardson Criterion (SRC)).
Two MAGs G1 and G2 are Markov equivalent if, and only if,

(i) G1 and G2 have the same adjacencies,

(ii) G1 and G2 have the same unshielded colliders, and

(iii) if π forms a discriminating path for b in G1 and G2,
then b is a collider on the path π in G1 if, and only if,
it is a collider on the path π in G2.

Note that it is indeed possible that G1 contains a discrim-
inating path for b and y, which is not present in G2, even
in the case of Markov equivalence (see examples 2 and 3
in Fig. 3). Therefore, testing property (iii) naively requires
exponential time as one has to consider all discriminating
paths for variable b (which may be exponentially many).3

On the quest of finding a polynomial-time-checkable cri-
terion for the Markov equivalence of MAGs, Zhao et al.
[2005] proposed the following characterization:

Theorem 3.3 ([Zhao et al., 2005]). Two MAGs G1 and G2

are Markov equivalent if, and only, if G1 and G2 have the
same minimal collider paths.4

However, this characteristic also does not lead to a
polynomial-time algorithm as there can be exponentially
many minimal collider paths. Subsequently, discernible
effort has been made to develop an algorithm that tests
whether two MAGs are Markov equivalent and that runs in
polynomial time [Ali et al., 2009, Hu and Evans, 2020]. To
achieve this, the natural formulation in the style of Theo-
rem 3.2 has been abandoned and more involved criteria with-
out an intuitive graphical interpretation were introduced.

3Spirtes and Richardson [1996] claimed that the criterion is
testable in time nO(1), which was later withdrawn [Ali et al., 2009].

4π = ⟨v1, . . . , vp⟩ is minimal if there is no order preserving
subsequence ⟨v1 = vi1 , . . . , vt = vit⟩ that forms a collider path.



Ali et al. [2009] used triples with order (if the triple forms a
collider, it is called a collider with order). The idea behind
this approach is to consider only the discriminating paths
that are present in any Markov equivalent MAG. While
this was an important contribution towards characterizing
Markov equivalence classes of MAGs [Ali et al., 2005],
the recursive definition of such triples lacks the graphical
intuitiveness of, e. g, the SRC. With significant technical
effort, the following criterion was developed:

Theorem 3.4 (Theorem 3.7 in [Ali et al., 2009]). Two MAGs
G1 and G2 are Markov equivalent if, and only if, they have
the same adjacencies and the same colliders with order.

This criterion led to the sought polynomial-time algorithm.
However, the dependency is O(n ·m4) for MAGs with n
vertices and m edges.

Another criterion was proposed by Hu and Evans [2020]
based on so-called parametrizing sets. As we compare our
algorithm with this approach, we give a brief overview. For
a vertex set W ⊆ V , the barren subset of W is defined as
barren(W ) = {w ∈ W | De(w) ∩W = {w}}. A set H is
called a head if barren(H) = H and H is contained in a
single district in G[An(H)]. Let H(G) be the set of heads
and define the tail of a head as:

tail(H) = (DisG[An(H)](H) \H)∪ PaG(DisG[An(H)](H)).

The parametrizing set of MAG G is defined as the set
S(G) = {H ∪ A | H ∈ H(G) and A ⊆ tail(H)}. Hu and
Evans [2020] showed that MAGs G1 and G2 are Markov
equivalent if, and only if, they have the same parametrizing
sets. However, generating these sets is costly as they may
have exponential size. Hence, they consider S̃3 ⊆ S , which
only includes sets S of cardinality 2 and 3, with the vertices
in S having 1 or 2 adjacencies.

Theorem 3.5 (Corollary 3.2.1 in Hu and Evans [2020]).
Two MAGs G1 and G2 are Markov equivalent if, and only
if, S̃3(G1) = S̃3(G2).

The sets S̃3(G) can be generated in time O(nm2), which is
significantly faster than the algorithm by Ali et al. [2009].
However, the criterion in this form is quite technical and
does not lend itself easily to graphical characterizations of
Markov equivalent MAGs.

4 A SIMPLE CRITERION FOR THE
MARKOV EQUIVALENCE OF MAGS

We propose a constructive variant of the Spirtes and Richard-
son Criterion (SRC) for the Markov equivalence of MAGs.
This allows us to develop an efficient equivalence test, im-
proving upon the previous O(n5) runtime by Hu and Evans
[2020]. Additionally, our criterion has a natural graphical
interpretation, which is of independent value. We begin with
the following fact observed before in Fig. 2.

Fact 4.1. Let π = ⟨x, . . . , q, b, y⟩ be a discriminating path
in a MAG G. Then b and y are connected either via b y
or b y and in the former case b is a collider on π, in the
latter a non-collider.

Proof. Recall that q is collider and a parent of y and, thus,
the edge q y is present and the edge between q and b is
either q b or q b. To prove the claim, we first show
that b y cannot occur and distinguish the two ways the
edge between q and b is oriented. If q b, then we have a
directed cycle q y b q; if q b we would have q as
an ancestor of b, which violates the ancestrality property.

For the second part, note that b is always a non-collider if
b y. In case of b y, the edge q b cannot occur as b
would be an ancestor of y, violating the ancestrality property.
Hence, b is a collider in this case.

Theorem 4.2 (Constructive-SRC). Two MAGs G1 and G2

are Markov equivalent if, and only if,

(I) G1 and G2 have the same adjacencies,

(II) G1 and G2 have the same unshielded colliders, and

(III) for all edges b y ∈ G1 with DiscrG1(b, y) ̸= ∅ we
have b y ̸∈ G2 and vice versa.

Proof. We first show that if G1 and G2 fulfill the conditions
listed above, then they are Markov equivalent by arguing
that in this case SRC is satisfied. The first two conditions are
identical. Assume the third one holds for the constructive-
SRC. Then there is no discriminating path for (x, b, y) with
b y in G1 (for the argument we only consider G1 w.l.o.g.)
such that b y in G2. Hence, it cannot happen that we have
a discriminating path π in G1 and G2 such that b is a collider
in G1 and a non-collider in G2 (this is (iii) in the SRC). This
is because in that case G2 would have b y by Fact 4.1.

For the second direction: Assume G1 and G2 violate one of
the three conditions (I), (II) or (III). We show that they are
not Markov equivalent. By the SRC, this is obvious for (I)
and (II). Now consider that (III) is violated but (I) and (II)
are true. Then, w.l.o.g., assume that for some b y in G1

there is a discriminating path π = ⟨x, q1, . . . , qp, b, y⟩ in
G1 and the edge b y ∈ G2. It follows by the maximality
of G1 and the fact that x and y are nonadjacent that there is
a set Z such that (x⊥⊥ y | Z)G1

. One can easily verify that
q1, . . . , qp ∈ Z and b ̸∈ Z. Due to the former observation
it holds that (x⊥/⊥ b | Z)G1 . On the other hand, one can see
that (x ⊥⊥ y | Z)G2 and (x ⊥/⊥ b | Z)G2 cannot both hold
in G2. This is due to the fact that (x⊥/⊥b | Z)G2

immediately
implies (x⊥/⊥ y | Z)G2

as b is a non-collider not contained
in Z. Hence, G1 and G2 are not Markov equivalent.

To illustrate the constructive-SRC, we give three examples
(see Fig. 3) and discuss why or why not Markov equivalence



Example 1

x q b y x q b y

Example 2

x q b y x q b y

Example 3

x q b y x q b y

Figure 3: Three examples to illustrate the constructive-SRC.
Example 2 is from [Ali et al., 2009] and Example 3 is a
modification of another example therein.

holds (as all considered pairs of graphs have the same adja-
cencies and unshielded colliders, we focus on whether (iii)
of the SRC and (III) of the constructive-SRC are satisfied).

Example 1 (Fig. 3). The graphs are not Markov equivalent
as the left one contains a discriminating path from x to y
with b y and the right graph contains the edge b y,
which violates condition (III) of the constructive-SRC. In
the SRC, condition (iii) is not satisfied as the discriminating
path π = ⟨x, q, b, y⟩ exists in both graphs with b being a
collider in the left one and a non-collider in the right one.

Example 2 (Fig. 3). The graphs are Markov equivalent.
There is a discriminating path ⟨x, q, b, y⟩ in the left graph
and it includes the edge b y, but the right graph also
contains the edge b y and, hence, (III) does not apply.
Accordingly, condition (iii) of the SRC does not apply as
⟨x, q, b, y⟩ is not a discriminating path. An advantage of
the constructive-SRC is that one does not have to check for
every discriminating path whether it exists in both graphs.
It is sufficient to check for the existence of such a path with
collider b in one graph, in combination with the edge b y
in the other graph.

Example 3 (Fig. 3). The graphs are Markov equivalent as
well. There is no discriminating path in the left graph, but
one in the right graph, namely ⟨x, q, b, y⟩. It contains b y
and, hence, (III) does not apply (here, the discriminating
path needs to contain b y and the other graph needs to
contain b y). Also, (iii) does not apply because, as stated
above, there is no discriminating path in the left graph.

This third example is interesting, because it highlights
that (III) indeed only refers to discriminating paths with
b y. If then b y in the other graph, one can conclude
that Markov equivalence does not hold. If we have a discrim-
inating path with b y, even if b y in the other graph, we
cannot conclude the same. However, as we have seen above,
condition (III) is not only necessary for Markov equivalence,

it is, together with (I) and (II), also sufficient. This is because
(iii) in the SRC could only be violated if we have a discrimi-
nating path with a collider in one graph (hence b y) and
a non-collider in the other (hence b y) and, consequently,
(III) would be violated as well. Hence, for the constructive-
SRC, it is not necessary to consider discriminating paths
with non-colliders b. This entails a simplification, which
makes (III) easier to check by hand compared to previous
formulations (we discuss the algorithmic advantages of the
constructive-SRC in the subsequent section) as one only has
to look for discriminating path with collider b. Moreover, it
also allows to simplify the notion of a discriminating path
as a collider path between non-adjacent x and y for which
every vertex but the one before y is a parent of y.

We note that (III) is a generalization of the unshielded col-
lider condition (ii). To see this, we reformulate the criterion
for Markov equivalence of DAGs (Theorem 3.1):5

Corollary 4.3 ([Verma and Pearl, 1990, Frydenberg, 1990]).
Two DAGs G1 and G2 are Markov equivalent if, and only if,

(a) G1 and G2 have the same adjacencies and

(b) if in G1 there is an unshielded collider x b y,
then G2 does not contain b y and vice versa.

Proof. We argue that (b) is true if, and only if, G1 and G2

have the same unshielded colliders (implying that Corol-
lary 4.3 is equivalent to Theorem 3.1). The first direction
is immediate: if one graph contains the unshielded collider
x b y while the other graph orients b y, then clearly
(x, b, y) is an unshielded collider in only one them.

For the other direction assume w.l.o.g. that G1 contains an
unshielded collider (u, v, w), but G2 does not. Then G2 has
either u v or v w. In both cases (b) is violated (set
b = v and either x = w, y = u or x = u, y = w).

Corollary 4.4. Two MAGs G1 and G2 are Markov equiva-
lent if, and only if,

(A) G1 and G2 have the same adjacencies,

(B) if there is a collider path ⟨x, . . . , b, y⟩ between non-
adjacent x and y with every vertex but x, b and y being
a parent of y in G1, then G2 does not contain the edge
b y and vice versa.

Proof. The collider path ⟨x, . . . , b, y⟩ may only consist of
three vertices, i. e., it could be an unshielded collider. If the
other graph were to contain the edge b y, then it would
not have that same collider, meaning the graphs are not
Markov equivalent by (II). If the collider path consists of
more than three vertices, the formulation equals (III).

5There are even further formulations of (III), e. g., in terms of
parameterizing sets, as pointed out by an reviewer: If there is a
discriminating path for {x, b, y} with non-collider b, then the set
is parameterizing in both graphs.



We remark that this corollary applies only to MAGs with-
out undirected edges (in contrast to the constructive-SRC).
However, only minor modifications are necessary to handle
undirected edges as well. We discuss these in Section 7.

5 TESTING MARKOV EQUIVALENCE OF
MAGS ALGORITHMICALLY

In the previous section, we derived a simple characterization
of Markov equivalence for MAGs. In this section, we deal
with the computational side of the problem and discuss
how this new characterization can be tested. The algorithm
we propose has a worst-case runtime of O(n3), thus being
significantly faster than previous approaches. Moreover, for
sparse graphs, which are very common in causal modeling,
we even report linear time in the number of vertices.

We check the conditions (I) and (II) naively. For checking
the third condition (III), we need to test for each b y
in Gk with k ∈ {1, 2}, for which b y is an edge in the
other graph Gk′ (with k′ = 3 − k), whether there is a
discriminating path for b and y. We do this by considering
every choice of y consecutively, computing for each the
bidirected connected components of its parents (we call
these the parent districts) that support our computations.

Definition 5.1. Given a MAG G = (V,E) and a vertex
y, the bidirected connected components of G[Pa(y)] are
termed the parent districts of y and denoted as D(y).

This notion is useful as the middle part of a discriminating
path consists solely of such vertices q1, . . . , qp in a single
parent district of y. Once the parent districts have been com-
puted, one can check if, for a certain district D ∈ D(y),
there is a vertex x non-adjacent to y and a parent or sib-
ling of D, which can function as the start of the discrim-
inating path. If this is the case, it remains to consider all
vertices b which are siblings of D and y. For these, we
can conclude that they are part of a discriminating path
x q1 . . . qp b y. If b y in the other graph,
the graphs are not Markov equivalent. Figure 4 illustrates
this approach and Algorithm 1 gives an implementation.

Theorem 5.2. Algorithm 1 checks whether two MAGs are
Markov equivalent in time O(n3) for general graphs and
expected time O(n ·∆2) for graphs with maximal degree ∆.

Proof. For the correctness of Algorithm 1, we need to show
that (III) of the constructive-SRC is correctly checked. If
the algorithm returns Not Markov equivalent in line 13, then
there exists a b and y such that b y in one graph and
b y in the other. Moreover, in the former graph there
exists a parent district D ∈ D(y) such that there is a
x ∈ PaGk

(D) ∪ SiGk
(D) \ NeGk

(y) (this set is non-empty
in line 8) and it is guaranteed that b is not only a sibling
of y, but also of D. Hence, there is a discriminating path
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Figure 4: Algorithm 1 checking vertex y in G1 (line 5)
with D(y) = { {q3} , {q1, q2} }. For D = {q3} , the set
PaG1

(D) ∪ SiG1
(D) \ NeG1

(y) is empty as x is a child of
D. Hence, Algorithm 1 does not consider D further (line 8).
For D = {q1, q2} , the set PaG1(D) ∪ SiG1(D) \ NeG1(y)
contains x, which is a parent of D but not a neighbor of y.
Moreover, b1 is a sibling of both D and y. Hence, we obtain
the discriminating path x q2 q1 b1 y. As b1 y
in G2, the algorithm reports that the graphs are not Markov
equivalent. Note that for SRC (iii) is violated due to the dis-
criminating path x, q2, q1, y in both graphs with G1 contain-
ing non-collider q2 q1 y and G2 containing collider
q2 q1 y. The discriminating path for q1 y in G2 and
the corresponding edge q1 y would also be detected by
Algorithm 1. Note that here {q2} is a parent district of y (q1
is not part of this district as it is not a parent of y in G2).

x q1 . . . qp b y, with q1, . . . , qp ∈ D and q1
being the sibling/child of x and qp being the sibling of b.
The collider path from q1 to qp exists by the definition of D.
For the same reason, we have that q1, . . . , qp are parents
of y. Note, in particular, that b ̸= x and both are not in D.
Thus, (III) is violated and the output is correct.

For the other direction, if the graph contains a violation of
(III), then there is a discriminating path for b y (while the
other graph contains b y). The existence of such a path
is detected as all discriminating paths for b y have the
form x q1 . . . qp b y with q1, . . . , qp being
parents of y. Thus, there is a parent district of y, which has
x as parent/sibling and b as a sibling. Hence, the algorithm
outputs Not Markov equivalent in line 13.

Regarding the runtime, note that checking (I) and (II) in
line 1 is possible in time O(n2), resp. O(n3). If the graph
is sparse the runtimes O(n∆), resp. O(n∆2), follow (for
the latter case consider for each vertex all pairs of its par-
ents and test whether they are adjacent.6) For checking (III),
there are n vertices y considered per graph at line 5. Com-
puting the parent districts for one y can be done in time
O(n2) or O(∆2) if ∆ is the maximal degree of the graph,
as finding the connected components of a (sub)graph with
s vertices takes O(s2) time in the worst-case. Hence, this
step can be performed in time O(n3) or O(n ·∆2). Also the
neighbors/parents/siblings of y and all its parent districts

6 We can perform adjacency tests in O(1) by storing the graph
as adjacency matrix. For sparse graphs we may avoid O(n2) space
by using hash tables, which yields expected time O(1).



may be precomputed in this phase as well.

Further, there are two nested for loops, one over the parent
districts (there are at most O(n) or O(∆) many) and one
over b (again there are O(n) or O(∆) choices for b)7. Fi-
nally line 11 can be performed in (expected) time O(1) (see
footnote 6), yielding again O(n ·∆2) proving the claim.

input :Two MAGs G1 = (V1, E1), G2 = (V2, E2).
output :Whether G1 and G2 are Markov equivalent.

1 if (I) or (II) of the constructive-SRC is violated then
2 return Not Markov equivalent.
3 end
4 foreach Gk = (Vk, Ek) with k ∈ {1, 2} do
5 foreach y ∈ Vk do
6 foreach D ∈ D(y) do
7 Compute PaGk

(D) and SiGk
(D).

8 if PaGk
(D)∪ SiGk

(D) \NeGk
(y) ̸= ∅ then

9 foreach b ∈ SiGk
(D) ∩ SiGk

(y) do
10 Let Gk′ be the other graph, i. e.,

k′ = 3− k.
11 if b y in Gk′ then
12 return Not Markov equivalent.
13 end
14 end
15 end
16 end
17 end
18 end
19 return Markov equivalent.

Algorithm 1: Checking the constructive-SRC.

We conclude that for graphs with maximal degree ∆ the
expected runtime can be written as O(n·∆2), which is linear
in the number of vertices for a constant ∆. We note that this
is a significant improvement over Hu and Evans [2020], who
reported time O(m2) = O(n2) for sparse random graphs.

6 A DIFFERENT APPROACH TO
MARKOV EQUIVALENCE TESTING

The continued improvement of algorithms for testing the
Markov equivalence of MAGs from exponential time (SRC)
over O(n9) (Ali et al. [2009]) and O(n5) (Hu and Evans
[2020]) to O(n3) begs the question of what the best achiev-
able runtime is. Is it possible to test Markov equivalence
of MAGs in O(n2)? A natural comparison is the one to
the Markov equivalence of DAGs. Here, the naïve test of
Theorem3.1 can be done in O(n3): List all triples that are
unshielded colliders. This approach cannot lead to faster al-
gorithms, as we may have Ω(n3) unshielded colliders (this

7Forming SiGk (D) ∩ SiGk (y) can be done in O(n). To do it
in expected time O(∆) we may again use hash tables.

obstacle exists for MAGs as well). This indicates that a
whole new approach is necessary.

For DAGs, such an approach is possible by utilizing com-
pleted partially directed acyclic graph (CPDAGs) [Anders-
son et al., 1997]. A CPDAG is a compact and unique repre-
sentation of a Markov equivalence class. To test whether two
DAGs are Markov equivalent, one may compute the corre-
sponding CPDAGs C1 and C2 and check whether C1 = C2.
The complexity of this approach hinges on the complex-
ity of converting DAGs to CPDAGs. There are two algo-
rithmic strategies for this task: The first one imitates the
PC algorithm for learning the CPDAG from observational
data [Spirtes et al., 2000]. First, initialize C as the skeleton
of D. Second, set all v-structures of D in C. Third, ori-
ent further edges by repeated application of the first three
Meek rules [Meek, 1995]. The second strategy constructs
the CPDAG from D based on a topological ordering of D
while utilizing characterizations of CPDAGs and Markov
equivalence classes of DAGs [Andersson et al., 1997]. This
approach was used by [Chickering, 1995], who proposed a
clever linear-time (i. e., O(n+m)) algorithm for the DAG-
to-CPDAG task.

Hence, based on the second approach, testing Markov equiv-
alence of DAGs can be done in linear time O(n+m). 8

Coming back to MAGs, we note that the first approach for
DAGs can be used as well. For a MAG G, one can imitate
the FCI algorithm [Spirtes et al., 2000], which is the counter-
part of the PC algorithm under latent confounding/selection
bias, to obtain its corresponding partial ancestral graph
(PAG) [Zhang, 2008a], which is, analogously to the CPDAG
for DAGs, a compact and unique representation of an equiva-
lence class. This is done by first initializing P as the skeleton
of G, setting the unshielded colliders according to G and,
finally, applying the 10 completion rules given by Zhang
[2008b] (see also Ali et al. [2005]). This approach yields a
polynomial-time algorithm for testing Markov equivalence
of MAGs, but with a rather large polynomial:9 One can
compute the PAGs P1, P2 for the given MAGs G1, G2 and
check whether they are identical10.

The second strategy currently cannot be translated to MAGs
as there is no counterpart for the DAG-to-CPDAG algorithm
to directly transform a MAG into a PAG. Hence, a better
understanding of PAGs might be needed for further progress
and we deem this as an important topic for future research.

8The runtime of the first approach depends on the complexity
of orienting the graph with the Meek rules. Wienöbst et al. [2021a]
showed that it is possible to perform this step in O(n3).

9The time is a polynomial of order roughly O(m3 · n) as for
every undirected edge we have to check whether global conditions
hold (Zhang [2008b] briefly discuss the runtime, mentioning O(n ·
m) for checking the fourth rule for a single edge.

10This strategy has some parallels to Ali et al. [2009], due
to the fact that colliders with order also play a key role in the
completeness of the FCI rules Ali et al. [2005].



Experiments for sparse graphs generated with k = 3n

Algorithm HE Algorithm C-SRC

n Avg. Time Std. Dev. Avg. Time Std. Dev.

250 0.0487s 0.0101 0.0015s 0.0009
500 0.1058s 0.0388 0.0032s 0.0051
750 0.1605s 0.0279 0.0049s 0.0065

1000 0.2587s 0.0594 0.0062s 0.0058
1250 0.3579s 0.0684 0.0085s 0.0081
1500 0.4629s 0.0789 0.0091s 0.0058
1750 0.5373s 0.0626 0.0106s 0.0021
2000 0.6794s 0.0778 0.0119s 0.0024

0.0472s 0.10258s 0.15556s 0.2525s 0.34938s 0.45377s 0.52664s 0.66751s

A
dv

an
ta

ge
of

C
-S

R
C

H
E

Random graphs with n =

250 500 750 1000 1250 1500 1750 2000

Experiments for dense graphs generated with k = 10n

Algorithm HE Algorithm C-SRC

n Avg. Time Std. Dev. Avg. Time Std. Dev.

25 0.0011s 0.0007 0.0004s 0.0004
50 0.0169s 0.0028 0.0028s 0.0007
75 0.0912s 0.0246 0.0092s 0.0014
100 0.4004s 0.1037 0.0263s 0.0129
125 1.0339s 0.2283 0.0466s 0.0091
150 2.3356s 0.4349 0.0808s 0.0084
175 4.7182s 0.8741 0.1303s 0.0106
200 8.9285s 1.5242 0.2033s 0.0129

0.00067s 0.01414s 0.0826s 0.37418s 0.98724s 2.25485s 4.58789s 8.72528s
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Figure 5: Advantage plots that compare our implementation (C-SRC) with the algorithm by Hu and Evans (HE). Each
bar corresponds to an experiment on random graphs with n vertices (denoted above the bars) and k = 3n (top image) or
k = 10n (bottom image) edges, respectively. For each experiment we measured the average time needed by both algorithms
over 250 instances. If C-SRC uses t1 seconds and HE took t2 seconds, then the advantage of C-SRC over HE is defined by
t2 − t1 (i. e., the advantage is positive iff C-SRC is faster). The advantage (in seconds) is shown below the bars.

7 RELATED PROBLEMS

So far, our focus lied on the problem of testing Markov
equivalence of MAGs without undirected edges. In this sec-
tion we discuss the connection to more general formulations
of the problem. First, we note that the constructive-SRC and
Algorithm 1 also work for MAGs with undirected edges.
This is because the SRC also holds in this setting and that
there cannot be an undirected edge in a discriminating path
(in particular, the edge between b and y cannot be undi-
rected). For Corollary 4.4 a modification is necessary: con-
dition (II) has to be changed to “If there is a collider path
x, . . . , b, y between non-adjacent x and y with every vertex
but x, b and y being a parent of y in one graph, then the
other graph does neither contain the edge b y nor the
edge b− y.” This is necessary as a collider u v w in
one graph might correspond to a non-collider u − v − w
in the other graph – and these graphs are, of course, not
Markov equivalent.

Further related problems are obtained by removing the max-
imality or the ancestrality requirement (or both). In that
case, we deal with general acyclic directed mixed graphs

(ADMGs). These are graphs that may contain directed and
bidirected edges with the only requirement that there is no
directed cycle. The SRC and constructive-SRC do not apply
for ADMGs as they explicitly use the maximality and ances-
trality properties. However, one can transform ADMGs into
equivalent MAGs and, thus, test the Markov equivalence of
ADMGs using the algorithms for MAGs. As it turns out, the
currently fasted algorithm for the ADMG-to-MAG transfor-
mation (Algorithm 2 in Hu and Evans [2020]) requires time
O(n4) and is, thus, the bottleneck in this approach (testing
the equivalence of MAGs is in O(n3) by Theorem 5.2).

It is unclear to us whether this transformation can be per-
formed in O(n3). A central part of it involves the computa-
tion of so-called inducing paths, where it has to be checked
for every pair of vertices (x, y) whether there is a collider
path between x and y via vertices in An(x, y). Since we
have O(n2) such pairs and since, further, graph traversal is
in Ω(n +m), this direct approach necessarily produces a
workload of O(m · n2). We believe that it will be central
for the developement of faster ADMGs equivalence tests to
better understand the complexity of ADMG-to-MAG and
consider this as an interesting question for further work.



Table 1: Distribution of directed edges ( ) and bidirected
edges ( ) in the randomly generated ADMGs and in the
corresponding MAGs. For every row we generated 250
random ADMGs with n vertices and k edges, and show the
average of directed or bidirected edges they contain.

ADMG MAG
n k / /

250 3n 373.844 376.156 0.9962 394.38 401.88 0.9840
500 3n 752.536 747.464 1.0081 772.148 771.456 1.0022
750 3n 1125.812 1124.188 1.0023 1146.012 1147.944 0.9991

1000 3n 1500.308 1499.692 1.0010 1519.616 1523.628 0.9980
1250 3n 1873.564 1876.436 0.9990 1892.58 1899.968 0.9966
1500 3n 2251.344 2248.656 1.0016 2270.228 2272.872 0.9992
1750 3n 2627.564 2622.436 1.0023 2647.156 2646.568 1.0005
2000 3n 3002.328 2997.672 1.0018 3021.66 3021.5 1.0003

25 10n 124.392 125.608 0.9984 246.432 49.544 5.4013
50 10n 250.912 249.088 1.0113 824.804 306.212 2.7741
75 10n 374.312 375.688 0.9989 1639.868 796.848 2.0995

100 10n 498.536 501.464 0.9962 2684.468 1501.252 1.8099
125 10n 625.692 624.308 1.0038 3902.696 2456.212 1.6067
150 10n 749.684 750.316 1.0006 5314.2 3632.024 1.4762
175 10n 874.788 875.212 1.0007 6926.444 4999.7 1.3952
200 10n 1002.088 997.912 1.0051 8662.34 6582.824 1.3236

8 EXPERIMENTS

To emphasize the practical effectiveness of the constructive-
SRC and, in particular, Algorithm 1, we compare it ex-
perimentally with the algorithm proposed by Hu and Evans
[2020] on synthetic data. Both algorithms were implemented
in the Julia programming language [Bezanson et al., 2017]
and we ran the experiments on a desktop computer with an
Intel(R) Core(TM) i7-8565U CPU and 16GBs of RAM.11

Synthetic MAGs were generated with the process described
in [Hu and Evans, 2020]: Fix a topological ordering τ of
the vertices, then add k edges uniformly at random, and
finally direct each edge with probability 1/2 according to τ .
Replacing remaining undirected edges with bidirected edges
yields an ADMG, which can in turn be transformed into a
MAG, as discussed in Section 7.

For a fair comparison with the experiments in [Hu and
Evans, 2020], we run a modified version of Algorithm 1. It
generates, for a single MAG, a set of all adjacencies A (for
checking I), a set of all v-structures V (for checking II), and
the set C of all b y that are part of a discriminating path,
as well as the set N of all b y (for checking III). Clearly,
if one were to generate these sets for two MAGs G1 and
G2, testing equivalence would reduce to checking whether
A1 = A2, V1 = V2, C1 ∩N2 = ∅, and C2 ∩N1 = ∅.

This approach provides a finer control over the experiments
as it avoids the possibility of an “early stopping” at line 1
or line 13 of Algorithm 1 (which can happen if the given
MAGs are not equivalent and would give an unfair advan-
tage to our algorithm). It also enables us to consider single
MAGs, which are simpler to generate randomly than, e. g,
two random Markov equivalent MAGs. The reported run-

11The code is available under: https://github.com/
mwien/magequivalence

times can be viewed, for our algorithm as well as for [Hu
and Evans, 2020], as essentially half the time occurring
when two Markov equivalent DAGs are compared (because
these steps have to be performed for both graphs).

For the choice of the parameter k (the number of edges), we
follow, on the one hand, Hu and Evans [2020] and set it to
k = 3n (see the top part of Fig. 5) and, on the other hand,
also consider denser graphs with k = 10n (bottom part
of Fig. 5). Note that k is the number of edges in the gener-
ated ADMG and not in the MAGs on which the algorithms
run. The transformation of an ADMG into a MAG might
generate new edges, see Table 1. For k = 3n, one usually
only sees a small increase, while a significant amount of
edges is added for k = 10n. The proportion of directed
and bidirected edges also changes in the latter case, the
graphs usually contain more directed edges than bidirected
ones. For our experiments, we ran both algorithms on the
same 250 randomly generated graphs for each choice of
parameters and report the average time they used in Fig. 5.

It can be seen that Algorithm 1 is faster for all choices of n
and k. We can also observe that for ever larger graphs, the
advantage increases – which implies that the algorithm in
fact has a better asymptotic behaviour. This phenomenon
becomes even more significant on the dense (and, thus,
more difficult) instances. Finally, the absolute runtime of
Algorithm 1 is generally extremely low (for the considered
inputs only fractions of a second12).

9 CONCLUSIONS

We proposed the constructive-SRC – a new criterion for the
Markov equivalence of MAGs. It is expressed in terms of
natural graphical concepts, can easily be tested by hand for
smaller graphs, and leads to the first cubic-time algorithm.

For further work, it remains an open problem whether the
runtime can be reduced to O(n2), as is possible for DAGs.
We argued that a different approach is necessary, as any ap-
proach that explicitly considers all unshielded colliders has
a complexity of Ω(n3). Generally, a better understanding
of Markov equivalence classes of MAGs may facilitate the
translation of further research from the DAG setting, e. g.,
regarding active learning [Hauser and Bühlmann, 2012] or
the question of computing the size of Markov equivalence
classes [Wienöbst et al., 2021b], which could add to re-
cent results in this direction [Kocaoglu et al., 2019, Wang
and Zhou, 2021]. Finally, due to the improved runtime for
equivalence testing of MAGs, the ADMG-to-MAG transfor-
mation is currently the bottleneck for the problem on acyclic
mixed graphs, making the design of a faster transformation
algorithm an important task for further work.

12Generating significantly harder instances is not a trivial task
as the random generation process relies on the ADMG-to-MAG
task, which currently cannot be performed faster than in O(n4).

https://github.com/mwien/magequivalence
https://github.com/mwien/magequivalence
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