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ABSTRACT

Neural Processes (NPs) are powerful and flexible models able to incorporate un-
certainty when representing stochastic processes, while maintaining a linear time
complexity. However, NPs produce a latent description by aggregating indepen-
dent representations of context points and lack the ability to exploit relational
information present in many datasets. This renders NPs ineffective in settings
where the stochastic process is primarily governed by neighbourhood rules, such
as cellular automata (CA), and limits performance for any task where relational in-
formation remains unused. We address this shortcoming by introducing Message
Passing Neural Processes (MPNPs), the first class of NPs that explicitly makes
use of relational structure within the model. Our evaluation shows that MPNPs
thrive at lower sampling rates, on existing benchmarks and newly-proposed CA
and Cora-Branched tasks. We further report strong generalisation over density-
based CA rule-sets and significant gains in challenging arbitrary-labelling and
few-shot learning setups.

Generation — Encode, Aggregate, Sample, Decode Inference (training only)Input

Key: context node with features and labels; target node with features only; target node with features and predicted labels.

Figure 1: Computational graph of the Message Passing Neural Process. Input: the dataset consists
of examples (nodes) and a relational structure (edges). Features, x, are observed for every node, but
labels are only observed for the context set, the blue nodes labelled C. Generation: the encoder,
h, uses message-passing operations over the dataset to produce neighbourhood-aware representa-
tions of the context set, ri. The aggregator, a, combines these into a single representation, r, which
parameterises the global latent variable, z. The decoder, g, which also uses message-passing oper-
ations, is conditioned on a sample from the global latent variable and makes label predictions over
the target set, ŷT . Inference: the predicted labels are added to the target examples, differentiated
from the unlabelled targets by the label τ and purple nodes. The dataset is again passed through the
encoder, h, and aggregator, a, to produce the global latent variable as conditioned on the joint target
and context set, as required in the ELBO objective (Equation 5) for training.

1 MESSAGE PASSING NEURAL PROCESSES

We present Message Passing Neural Processes (MPNPs) as the synthesis of the MP and NP mod-
els. Figure 1 illustrates the operation of an MPNP and Appendix B gives more details including
pseudocode for the entire computation and derivations.

Problem Statement. Given a partially-labelled set of nodes with features X and neighbours given
by A, sampled from f : X,A → Y, with f ∼ D, the goal is to predict labels for a subset of the
unlabelled nodes.
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Dataset Sampling. In the classification setting, the context set for a dataset (a graph) is defined as a
set C =

{
(xi,yi)

}
of nodes and their one-hot labels. The information available to the encoder h is

given by the set C ∪
{
xj | j ∈

⋃
i∈context set N(i)

}
, with |C| = m, which contains the context set and

the k-hop neighbourhoods of all context nodes. In this way, the MPNP uses the relational structure
between the context set and other nodes to produce richer representations of the context nodes.
In turn, the global latent variable z is able to encode relational structure present in the underlying
stochastic process. The target set, T = {xi | i ∈ context set}∪{xi | i /∈ context set}, with |T | = n,
is a superset of the context set (though not necessarily containing the entire graph), without labels.
The decoder g also uses information from the k-hop neighbourhood when predicting target labels.

2 EXPERIMENTS

Recently introduced benchmark suites such as OGB (Hu et al., 2020) and those proposed by Dwivedi
et al. (2020) aim to improve the quality of evaluation of graph-based models. However, we find they
do not host tasks that match the problem statement in Section 1. To this end, in addition to standard
variants of TUD (Kersting et al., 2020) and PPI (Zeng et al., 2019) tasks, we introduce new task
formulations (Appendix C, D) of the existing ShapeNet (Chang et al., 2015; Yi et al., 2016) and full
Cora (McCallum et al., 2000; Bojchevski & Günnemann, 2018) datasets and entirely novel synthetic
tasks based on cellular automata (Von Neumann et al., 1951; Wolfram, 1984; Turing, 1990).

2.1 FIXED LABELLING TASKS

We first consider tasks where the same set of classes appear in every example in the same order
(Tables 1,2, Figure 2). Inductive GNNs are designed for this setting and provide a useful baseline
performance. Figures 3 and 6 (in the Appendix) show the superior uncertainty-modelling capabil-
ities of the MPNP. We then introduce tasks based on modelling Cellular Automata to show how
MPNPs extend available modelling capabilities, as baselines struggle in this setting (Figure 4). The
model is provided with the states of some cells over a generation and tasked with evolving others.

Table 1: Node classification on TU datasets, reported at {5, 10, 30}% context points. first / second.
Enzymes DHFR

Model 5 10 30 5 10 30

NP 79.23 93.43 95.75 54.66 55.71 57.38
MPNP 79.09 94.10 95.78 88.65 89.62 90.53

GNN 94.23 94.23 94.23 93.35 93.35 93.35
LP 58.93 63.91 76.42 38.48 41.51 53.63

Table 2: Node classification on Protein-Protein Interaction Site Prediction. R-MPNP scores for
{5, 30}% sampling rates. Results for ISIS, DeepPPISP and R-GCN are taken from Ofran & Rost
(2007), Zeng et al. (2019), and Schlichtkrull et al. (2018), respectively.

Method Accuracy % F-measure MCC

ISIS 69.4 0.267 0.097
DeepPPISP 65.5 0.397 0.206
R-GCN 76.7 0.165 0.169

5 30 5 30 5 30

NP 77.5 79.3 0.212 0.180 0.145 0.150
R-MPNP 79.1 80.7 0.292 0.348 0.236 0.284

2.2 ARBITRARY LABELLING TASKS

As the total number of classes could be very large and test examples may include unseen classes,
using fixed-classes is infeasible. Instead, arbitrary labellings (1, . . . , k) (Garnelo et al., 2018a) are
assigned on a per-dataset basis, and models are required to adapt accordingly.

The Cora-ML task is a widely used community detection benchmark. Papers are represented by
bag-of-words vectors with edges indicating that one of the papers cited the other. Our task, Cora-
Branched, is derived from a more complete dataset, with 70 classes over 11 computer science
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Figure 2: Linear-log plots of mIoU over context sample rates with 95% confidence interval shading
for the fixed-class ShapeNet task, by category. The GNN is inductive and does not depend on context
sampling. The Appendix gives numerical results (Tables 9, 10 and 11).

Figure 3: Segmentation uncertainty over an example from the ShapeNet fixed-class table category
test set and active sampling. (Left:) Ground truth labels are shown for the table-top (purple) and
table-leg (pink) parts. (Centre:) Uncertainty is depicted by the size and colour of the points: higher
at larger, yellower points and lower at smaller, bluer points. (Right:) Active sampling.

disciplines (McCallum et al., 2000; Bojchevski & Günnemann, 2018). There are 10 times as many
classes and the bag-of-words feature vectors are tripled in length. Given a partially labelled subgraph
of the network, the task is to label the rest (Tables 3 and 4). In the ShapeNet mixed-category setup
(Table 5), we model the process that produces n-part objects (say, n = 4 for chairs with arms, legs,
seats and backs, as well as airplanes with engines, bodies, tails and wings.) We thus provide an
arbitrary permutation of class labels for each example.
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Figure 4: State evolution accuracy ±σ for density- and count-based cellular automata. Models
are trained at 30-50% context sampling. Testing at 100% effectively judges the quality of the rule
embedding under perfect information.

The results presented show that the richer context representations and structural bias of the MPNP
are generally beneficial, outperforming the NP on Cora-Branched, PPISP, one TUD task and
ShapeNet mixed (excluding 3-class @ 0.1%), while producing semantically-realistic uncertainties,
as shown in Figure 3 (and Figure 6 in the Appendix.) Label propagation is more successful when
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Table 3: Results on the Cora-Branched transductive learning tasks for 3, 7 and 11 classes (#). Mean
accuracy and standard deviations are reported at {1, 5, 10, 30}% context points.

# Model 1% 5% 10% 30%

3

NP-c 67.00± 1.83 76.99± 1.50 78.56± 1.19 79.61± 1.20
MPNP-c 79.71± 1.04 88.28± 0.59 89.41± 0.58 90.02± 0.60
LP 65.31± 0.73 75.57± 0.31 77.90± 0.16 82.04± 0.18
Mode 54.35± 0.10 54.28± 0.07 54.40± 0.27 54.41± 0.18

7

NP-c 52.83± 0.49 63.02± 0.50 64.29± 0.43 65.23± 0.51
MPNP-c 58.40± 0.77 68.96± 1.08 70.53± 0.88 71.54± 0.91
LP 52.62± 0.31 64.85± 0.22 68.55± 0.14 74.96± 0.20
Mode 30.48± 0.16 30.57± 0.07 30.50± 0.10 30.50± 0.10

11

NP-c 34.57± 2.18 37.94± 0.84 38.88± 0.80 39.42± 0.78
MPNP-c 43.62± 1.01 50.64± 1.14 51.87± 1.23 52.67± 1.24
LP 46.84± 0.55 60.11± 0.12 64.22± 0.08 71.73± 0.05
Mode 21.60± 0.08 21.60± 0.11 21.63± 0.09 21.66± 0.10

Table 4: Performance on the Cora-Branched few-shot learning generalisation tasks for 2, 3, 5 and
11 class (#) tasks. Accuracy at {1, 5, 10}% context points.

# Model 1% 5% 10%

2 NP-c 59.25 63.53 64.29
MPNP-c 62.91 67.53 68.57

3 NP-c 49.82 56.93 59.03
MPNP-c 53.83 63.75 64.52

5 NP-c 36.84 42.68 44.10
MPNP-c 41.67 49.99 51.15

11 NP-c 19.71 21.13 21.82
MPNP-c 23.56 26.00 27.44

more labels are available, but MPNP greatly improves on it at low sampling rates, showing powerful
capabilities in scarce data settings. GNNs learn better when the generative process has little func-
tional variation, but perform poorly in the opposite case (mixed-class and few-shot), being entirely
unsuitable in the arbitrary labelling setting. The TUD biochemical datasets are the only fixed-class
setting where GNNs do consistently better than MPNPs, though we can attribute this to the lack
of functional variation of the generative process in these narrow tasks. On ShapeNet and PPISP
fixed-class tasks, MPNP surpasses the GNN in most cases.

Table 5: ShapeNet mixed-category, arbitrary-labelling results for 2, 3, and 4-part shapes (#). We
report the mIoU for {0.1, 1, 5, 10}% context points.

# Model 0.1% 1% 5% 10%

2

NP-c 48.06 83.60 88.62 89.17
MPNP-c 57.18 86.08 90.81 91.37
LP 55.55 84.37 91.90 93.93
GNN 36.14 36.14 36.14 36.14

3

NP-c 46.87 76.66 81.12 81.47
MPNP-c 45.52 78.95 83.80 84.31
LP 41.12 69.84 84.40 87.76
GNN 21.68 21.68 21.68 21.68

4

NP-c 28.48 67.19 72.30 72.88
MPNP-c 31.52 74.30 81.38 82.20
LP 30.29 66.61 83.61 87.91
GNN 15.82 15.82 15.82 15.82
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A BACKGROUND AND RELATED WORK

We begin by reviewing the theoretical foundations of our building blocks (Neural Processes, Mes-
sage Passing architectures) and related works. The next section presents MPNPs as a combination
of these ideas that operates on datasets with relational structure generated by stochastic processes.

A.1 NEURAL PROCESSES

Problem Statement. Given a set of points with features X , partially labelled by a function f :
X → Y sampled from a distribution over functions, D, the goal is to predict labels for a subset of
the unlabelled points.

A Neural Process (NP) (Garnelo et al., 2018b) learns to represent a stochastic process with an un-
derlying distribution D. To achieve this, the NP is trained on a set of functions f : X → Y
sampled from D and tested on a disjoint set. For each function, fi, a dataset contains tuples
(xj , yj), where yj = fi(xj). Their joint probability distribution can be written as p(y1:n|x1:n) =∫
p(fi)p(y1:n|fi, x1:n)dfi. Assuming observation noise Yj ∼ N (fi(xj), σ

2) and a neural network
γ modelling the stochastic process instance fi (that is, γ(x, z) = fi(x), where z is a random vector
that mimics the randomness of fi), we obtain the generative model:

p(z, y1:n|x1:n) = p(z)

n∏
j=1

N (yj |γ(xj , z), σ
2), (1)

where p(z) is a multivariate normal distribution. Learning the non-linear function γ requires
amortised variational inference on the evidence lower bound (ELBO), using a neural-network-
parameterised posterior q(z|x1:n, y1:n). Model generation starts with the NP receiving a set of m
context points Ci = {(xj , yj)}mj=1 sampled from fi. The model then predicts the values yj = fi(xj)
for n target points Ti = {xj}nj=1; namely, the m original context points and (m − n) previously
unseen target points. To match this setup, we isolate the context set x1:m, y1:m from the target set
xm+1:n, ym+1:n in equation 1. The final ELBO is:

log p(ym+1:n|x1:n, y1:m) ≥ Eq(z|x1:n,y1:n)

[ n∑
j=m+1

log p(yj |z, xj) + log
q(z|x1:m, y1:m)

q(z|x1:n, y1:n)

]
. (2)

Framework Details. We note the differences in NP processing with respect to typical machine
learning setups. An NP is trained over multiple datasets, or sets of samples Si from functions
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fi ∼ D, with a given training episode consisting of samples from a single such function. Sampling
over the distribution of functions provides information about the variability of the stochastic process
being modelled to the NP. The context set Ci described above is a (labelled) subset of Si, while
the target set Ti is an (unlabelled) superset of Ci, with Ci ⊆ Ti ⊆ Si. Section 1 explains how our
model uses the context set to compute target set predictions, while expanding on each of the main
components of the framework—encoder, aggregator, decoder—that are common across NP models.

A.2 MESSAGE PASSING AND GRAPH NEURAL NETWORKS

Neural networks that operate on graph-structured data process node features X ∈ Rn×d with re-
lational information in the form of an adjacency matrix A ∈ {0, 1}n×n. The aim is to produce
embeddings that are useful for downstream tasks such as node or graph classification. Graph neural
networks typically use generalised convolutional layers to learn these embeddings. We describe their
operation via the universal Message Passing (MP) paradigm; the next section presents the specific
MP instance that our models use.

Let ht
i ∈ Rd′ be the features of the i-th node after tmessage passing steps, where d′ is the embedding

dimensionality; optionally, we may have edge features eij ∈ Rk whereAij = 1. A message passing
layer corresponds to a single message passing step, updating the node features as follows, where F
and G are learnable functions, N(i) = {j | Aij = 1} and � is a permutation-invariant aggregation
function:

ht+1
i = MP(ht) , F (ht

i,�j∈N(i), G(ht
i,h

t
j , eij)). (3)

A.3 NEURAL PROCESS MODELS

Garnelo et al. (2018b) formulated the Neural Process as a favourable combination of neural networks
and Gaussian Processes. Conditional Neural Processes (CNPs) (Garnelo et al., 2018a) are NP in-
stances without a global latent variable, which implies a deterministic dependence on the context
set. Attentive NPs (Kim et al., 2019), CNAPs (Requeima et al., 2019), Convolutional CNPs (Gordon
et al., 2019) and Sequential NPs (Singh et al., 2019) make modifications to reduce underfitting, bet-
ter adapt in the multi-task setting, and apply inductive biases for translation and temporal sequences,
respectively. Louizos et al. (2019) propose the Functional NP that learns a graph of dependencies
between latent representations of the points, without placing a prior over the latent global variable,
though their tasks do not contain explicit relational information. The Graph NP (Carr & Wingate,
2019) is most closely related to the MPNP, performing edge imputation using a CNP-based model
and Laplacian-derived features for the context points. However, despite the naming similarity, Graph
NPs and MPNPs address different tasks—the former was evaluated on link prediction, which is not
in the scope of our work. Moreover, our NP-based model is more flexible, handles uncertainty
and learns from neighbourhoods, rather than whole-graph features, for classifying individual dataset
samples (nodes), while leveraging the structure between them (edges).

A.4 GRAPH LEARNING UNDER UNCERTAINTY

Graph Gaussian Processes (Ng et al., 2018) were designed as an extension to GPs, where the co-
variance function and prior exploit the existence of features in node neighbourhoods. Graph GPs
are the only Gaussian method for node classification, but perform slightly worse than GCNs—
a type of GNNs that we use as a baseline. Moreover, the complexity is somewhat higher:
O(max node degree2∗N) vs. O(N) for (MP)NP, whereN = set of observations/context nodes.
The Relational GP (Chu et al., 2007) models pairwise undirected links between data points, thus ad-
dressing a different task. The Graph Convolutional GP (Walker & Glocker, 2019) is a translation-
invariant model that operates similarly to convolutional layers, while generalising to non-Euclidean
domains. More recently, Opolka & Liò (2020) have also proposed a Graph Convolutional GP model
for link prediction, which uses a GP for node-level predictions, another GP that builds on the first
one for edge-level predictions, and a deep GP incorporating these building blocks to produce more
expressive representations.

8
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B MPNP DETAILS

Generation and Inference. Starting from Equation 1, with the function γ corresponding to the neu-
ral network g in Figure 1, and letting xN(i) denote features corresponding to an entire neighbour-
hood, we state the generative model for the MPNP (Appendix B.1 contains a complete derivation):

p(z,y1:n | x1:n,

n⋃
i=1

xN(i)) = p(z)

n∏
i=1

N
(
yi | F (xi‖z,�j∈N(i), G(xi‖z,xj‖z)), σ2

)
. (4)

The decoder function g is a composition of learnable functions (linear projections, MP steps) and
non-linearities, so it is trainable with amortised variational inference. The variational posterior
q(z|x1:n,y1:n) is also parameterised by a neural network (h in Figure 1) that is permutation-
invariant, as each of the functions in h satisfies this property (full proof in Appendix B.3). Op-
timisation can be achieved using standard methods with the following variational approximation of
the ELBO objective (fully derived in Appendix B.4), where D = x1:n ∪

⋃n
i=1 xN(i) ∪ y1:n:

log p
(
ym+1:n | x1:n,

n⋃
i=1

xN(i),y1:m

)
≥

n∑
i=m+1

Eq(z|D)

[
log p(yi | xi,xN(i), z)

]
−KL

(
q(z | x1:n,

n⋃
j=1

xN(j),y1:n)

∥∥∥ q(z | x1:m,

m⋃
j=1

xN(j),y1:m)
)
.

(5)

Aggregation in Challenging Settings. The manner in which information is stored in the global
latent variable z is crucial—at test time, the (context-conditioned) sample is processed together with
the new target points, so it must reflect the behaviour of the new stochastic process in a way that
is relevant to the task. Despite a simple mean over ri being sufficient for many tasks, it is often
necessary to produce a class-aware representation. Therefore, we adopt the alternative aggregation
function used by Garnelo et al. (2018a) for few-shot learning tasks,

a′({ri}) ,
∥∥∥

c∈C
a(I{c}(yi) ∗ ri), (6)

where C is the set of classes in the current context, with |C| fixed, as required. This performs
concatenation (‖) of per-class summaries aggregated with a. Intuitively, different classes in the
context set are clearly delimited in this scheme, which is especially helpful in few-shot learning
settings, where novel classes are seen during testing. Models using this scheme have the ‘-c’ suffix.

B.1 GENERATIVE MODEL

Equation 1 lets us derive the MPNP generative model, where the function γ corresponds to the
neural network g in Figure 1 and xN(i) denotes the features corresponding to the neighbourhood of
node i:

p(z,y1:n | x1:n,

n⋃
i=1

xN(i)) = p(z)

n∏
i=1

p(yi | xi,xN(i), z)

= p(z)

n∏
i=1

N
(
yi | γ(xi,xN(i), z), σ2

)
= p(z)

n∏
i=1

N
(
yi | F (xi‖z,

⊙
j∈N(i)

, G(xi‖z,xj‖z)), σ2
)
.

(7)

In this derivation, line 2 assumes that p(yi | xi,xN(i), z) takes the form of a normal distribution,
with mean and variance being functions of xi,xN(i), z. Line 3 uses the fact that, in our model, γ =

ReLU◦L2 ◦MPT ◦ReLU◦L1. Let us first consider the case for T = 1. The functionG corresponds
to a linear transformation L1 = WMP applied to each of the (target node) neighbours’ feature

9
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vectors (here, we refer to the concatenated representations xj‖z). This is followed by leveraging the
aggregation operator

⊙
j∈N(i) within the neighbourhood of each target node. Finally, F consists of

applying the skip-connection (linear transformation) Wskip to each of the target node feature vectors,
followed by the ReLU activation of the MP step and ReLU ◦ L2. The only difference for T = 2
lies in the aggregator and linear transformations within the MP step being performed twice. It is
important to note that the variance σ2 is output by the same network γ, as each prediction has its
own associated uncertainty.

B.2 MODEL PSEUDOCODE

Algorithm 1 summarises the MPNP label generation process described in the Message Passing
Neural Processes section.

B.3 ENCODER PERMUTATION INVARIANCE

We show that, for initial node representations hi, the transformation ri = (L2 ◦ MPT ◦ ReLU ◦
L1)(hi) produced by the encoder is permutation-invariant:

∀ permutation Π.(L2 ◦MPT ◦ ReLU ◦ L1)(XΠ,Π>AΠ) =(
(L2 ◦MP ◦ ReLU ◦ L1)(X,A)

)
Π.

(8)

Proof: Assume an arbitrary set of features X ∈ Rn×d and an adjacency matrix A ∈ {0, 1}n×n,
where n is the number of nodes in the context set and d is the feature dimensionality. We first show
that each of the operations within the encoder is permutation-invariant:

1. The linear projections L1, L2 are applied to each of the node vectors Xi separately, so
changing the order of input nodes will result in the same order in the output:

Li(XΠ,Π>AΠ) = Li(XΠ),∀i ∈ {1, 2}
= (Li(XΠ1) Li(XΠ2) . . . Li(XΠn))>

= (Li(X1) Li(X2) . . . Li(Xn))>Π

= Li(X)Π

= Li(X,A)Π.

(9)

2. The same holds for the activation functions, which are applied element-wise:

ReLU(XΠ,Π>AΠ) = ReLU(XΠ)

= ReLU(XΠij),∀i, j
= ReLU(Xij)Π

= ReLU(X)Π

= ReLU(X,A)Π.

(10)

3. The message passing operation is also permutation-invariant, since the transformation A→
PTAP preserves the structure of the graph, with node neighbourhoods undergoing the
transformation N(i) , {j | Aij = 1} → N(i)Π , {Πj | AΠiΠj = 1}:

MP(XΠ,Π>AΠ) = ReLU
(
Wskip(XΠ)i +

∑
j′∈N(i)Π

WMP(XΠ)j
)
,where j′ = Πj ,

= ReLU
(
Wskip(XΠi) +

∑
Πj∈N(Πi)

WMP(XΠj )
)

= ReLU
(
(WskipXi)Π +

∑
j∈N(i)

(WMPXj)Π
)

= ReLU
(
WskipXi +

∑
j∈N(i)

WMPXj

)
Π

= MP(X,A)Π.
(11)

10
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Algorithm 1: MPNP computation.
Input : Context set C = {xi,yi}, with |C| = m, features of context set node neighbours

{xi ‖ j ∈
⋃

i∈context set N(i)}, target set
T = {xi | i ∈ context set} ∪ {xi | i /∈ context set}, with |T | = n > m, features of
target set node neighbours {xi ‖ j ∈

⋃
i∈target set N(i)}.

Output: Target label predictions {ŷi ‖ i ∈ target set}.
// Initialise node features

1 foreach i ∈ context set do
2 h0

i ← xi ‖ yi

3 foreach j ∈
⋃

i∈context set N(i) do
4 h0

j ← xj ‖ 0

// Encoding
5 foreach i ∈ context set do
6 h0

i ← ReLU(L1(h0
i ))

7 foreach j ∈
⋃

i∈context set N(i) do
8 h0

j ← ReLU(L1(h0
j ))

9 foreach t ∈ 1, ..., T do
10 foreach i ∈ context set do
11 ht

i ← MP(ht−1)

12 foreach i ∈ context set do
13 ri ← L2(hT

i )

// Aggregation
14 r← a({ri ‖ i ∈ context set})
// Decoding

15 Sample z′ ∼ N (µ(r),diag[σ(r)])
16 foreach i ∈ target set do
17 h′0i = xi ‖ z′

18 foreach j ∈
⋃

i∈target set N(i) do
19 h′0j ← xj ‖ z′

20 foreach i ∈ target set do
21 h′0i ← ReLU(L1(h′0i ))
22 foreach j ∈

⋃
i∈target set N(i) do

23 h′0j ← ReLU(L1(h′0j ))

24 foreach t ∈ 1, ..., T do
25 foreach i ∈ target set do
26 h′ti ← MP(h′t−1)

27 foreach i ∈ target set do
28 r′i ← ReLU(L2(h′Ti ))

29 ŷ′i ∼ N
(

softmax(µ(r′i)),

30 diag[
(
0.1 + 0.9× softplus(σ(r′i))]

))

11



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Each type of operation performed within the encoder is thus permutation-invariant. Composing
permutation-invariant functions yields a function which has this property itself, so it follows that the
overall transformation is permutation-invariant.

B.4 ELBO

We derive the variational approximation to the ELBO objective stated under Generation and In-
ference. In the derivation, we assume m context nodes and n target nodes (that is, n − m addi-
tional targets). The aim is to maximise the log-likelihood of target labels ym+1:n, given the target
node features x1:n, context node features x1:m, context labels y1:m and neighbourhoods of con-
text nodes. We denote by xN(i) the features corresponding to an entire neighbourhood and let
D = x1:n ∪

⋃n
i=1 xN(i) ∪ y1:n.

log p
(
ym+1:n | x1:n,

n⋃
i=1

xN(i),y1:m

)
=

log p
(
ym+1:n, z | x1:n,

n⋃
i=1

xN(i),y1:m

)
− log p

(
z | x1:n,

n⋃
i=1

xN(i),y1:n

)
=

[
log p

(
z | x1:m,

m⋃
i=1

xN(i),y1:m

)
+

n∑
i=m+1

log p(yi | xi,xN(i), z)
]
− log p

(
z | x1:n,

n⋃
i=1

xN(i),y1:n

)
=

log
p
(
z | x1:m,

⋃m
i=1 xN(i),y1:m

)
q
(
z | x1:n,

⋃n
i=1 xN(i),y1:n

) +

n∑
i=m+1

log p(yi | xi,xN(i), z) − log
p
(
z | x1:n,

⋃n
i=1 xN(i),y1:n

)
q
(
z | x1:n,

⋃n
i=1 xN(i),y1:n

) =

Eq(z|D)

[
n∑

i=1

log p(yi | xi,xN(i), z) + log
p(z | x1:m,

⋃m
j=1 xN(j),y1:m)

q(z | x1:n,
⋃n

j=1 xN(j),y1:n)

]
+

KL
(
q(z | x1:n,

n⋃
j=1

xN(j),y1:n)
∥∥∥p(z | x1:n,

n⋃
j=1

xN(j),y1:n)
)
≥

Eq(z|D)

[
n∑

i=1

log p(yi | xi,xN(i), z) + log
p(z | x1:m,

⋃m
j=1 xN(j),y1:m)

q(z | x1:n,
⋃n

j=1 xN(j),y1:n)

]
=

n∑
i=m+1

Eq(z|D)

[
log p(yi | xi,xN(i), z)

]
− Eq(z|D) log

q(z | x1:n,
⋃n

j=1 xN(j),y1:n)

p(z | x1:m,
⋃m

j=1 xN(j),y1:m)
=

n∑
i=m+1

Eq(z|D)

[
log p(yi | xi,xN(i), z)

]
−KL

(
q(z | x1:n,

n⋃
j=1

xN(j),y1:n)
∥∥∥q(z | x1:m,

m⋃
j=1

xN(j),y1:m)
)
.

In the order given above, the (in)equalities use the following: rewriting the log-likelihood via
the posterior distribution, substituting the first term via the generative model, introducing a vari-
ational distribution q(z | x1:n,

⋃n
i=1 xN(i),y1:n) (in our case, the encoder h and the aggregation

a) to approximate the posterior p(z | x1:n,y1:n), multiplying by q
(
z | x1:n,

⋃n
i=1 xN(i),y1:n

)
and integrating over z, the result that ∀p, q. KL(p‖q) ≥ 0, separating terms, approximating
p(z | x1:m,

⋃m
j=1 xN(j),y1:m) with q(z | x1:m,

⋃m
j=1 xN(j),y1:m) and applying the KL definition.

C TASK DESCRIPTIONS

Cellular Automata For the Life-like family of cellular automata we sample ∼ % of the possible
218 rule sets at random (Bernoulli p = 0.01). For each selected rule set, we generate a random state
on a 30 × 30 toroidal lattice (top connects to bottom, left connects to right) and check that every
possible state is present (i.e. there are live cells with each of 0, 1, 2, ..., 8 neighbours and similarly
a dead cell), then step forward one generation by applying the rule set to form the input-label pair.

12
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Table 6: Dataset statistics by tasks. For transductive Cora there is a single citation network (i.e. 1
graph) from which subgraphs are sampled to produce training examples (of which the total possible
number depends on the number of classes being used in the split e.g. for the 2-class task there are(

11
2

)
= 55.) In the few-shot case, the train and test subgraphs are disjoint and neither features, labels,

nor edges are observed from the test set during training. In all Cora tasks we use PCA to reduce
the number of input features from 8710 to 100. For Proteins, we remove 6 graphs with more than
one component or non-physical features (negative length). The density CA tasks (Voronoi, spherical
Voronoi, small-world, scale-free) use generated graphs with the number of nodes being drawn from
[100, 200], we report the observed mean as generated by our seed.

Dataset Task Graphs Mean-Nodes Features Classes

ShapeNet

Bag 76 2749.46 3 2
Cap 55 2631.53 3 2

Knife 392 2156.57 3 2
Laptop 451 2758.13 3 2
Mug 184 2816.97 3 2

2-parts 1158 2,557.26 3 2

Earphone 69 2496.70 3 3
Guitar 787 2353.91 3 3
Pistol 283 2654.22 3 3

Rocket 66 2358.59 3 3
Skateboard 152 2529.55 3 3

Table 5271 2722.40 3 3

3-parts 6628 2,665.34 3 3

Airplane 2690 2577.92 3 4
Car 898 2763.81 3 4

Chair 3758 2705.34 3 4
Lamp 1547 2198.46 3 4

4-parts 8893 2,584.53 3 4

Motorbike 202 2735.65 3 6

TUD

Proteins 1113 39.06 29 3
Enzymes 600 32.63 18 3
DHFR 467 42.23 3 9
COX2 467 41.22 3 8
BZR 405 35.75 3 10

PPISP 408 207.64 38 2

Cora Transductive 1 19,793 100* 70
Few-shot train 1 17,657 100* 11
Few-shot test 1 2136 100* 11

Cellular Automata

Life-like 2659 900 2 2
Voronoi 2700 149.81 2 2

Spherical-Voronoi 2700 150 2 2
Small-world (WS) 2700 149.54 2 2

Scale-free (BA) 2700 149.34 2 2

13
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Table 7: Class-ID information for the Cora class taxonomy. There are 11 disciplines collectively
containing 70 classes. These IDs can be used to select classes as loaded by CitationFull from
PyTorch Geometric.

Discipline IDs

Information Retrieval {0,1,4,12}
Databases {2,10,28,42,44,46,60}
Artificial Intelligence {5,8,9,11,14,22,33,34,48,53,54}
Machine Learning {3,20,29,55,57,58,59}
Encryption and Compression {6,15,26}
Operating Systems {7,27,45,62}
Networking {13,16,24,30}
Hardware and Architecture {17,40,41,50,67,68,69}
Data-Structures Algorithms and Theory {18,19,21,31,32,35,61,64,66}
Programming {23,36,37,49,51,52,56,63,65}
Human Computer Interaction {25,38,39,43,47}

For density-based rules we use birth/survival functions with either the form of the top-hat function:

R0(d, k1, k2) =


0 for d < k1,

1 for k1 ≤ d ≤ k2,

0 for d > k2.

(12)

or 1−R0, i.e.:

R1(d, k1, k2) =


1 for d < k1,

0 for k1 ≤ d ≤ k2,

1 for d > k2.

(13)

The irregular graphs that the density-based rules operate on are generated using Scipy and Net-
workX. In each case we sample the number of nodes uniformly from the interval [100, 200]. For the
planar Voronoi the nodes are positioned at uniformly at random in the unit square and the tessella-
tion is generated using SciPy.1 For spherical-Voronoi the nodes are positioned uniformly at random
over the surface of the sphere and the tessellation is generated using SciPy.2 For small-world the
graphs are generated using the Watts-Strogatz model with p = 0.1 and k = 10 i.e. the network
is initialised in a ring-lattice connected to its 10 nearest-neighbours on the ring and then edges are
rerouted with probability 0.1, using the NetworkX implementation.3 For the scale-free case we use
the Barabasi-Albert model with m = 3, using the NetworkX implementation.4

Cora We base our Cora tasks on the CitationFull dataset provided in PyTorch Geometric5

which is loading the data used by Bojchevski and Günnemann6, who in turn base their set on that
originally gathered by Andrew McCallum of University of Massachussets Amherst.7 Nodes are re-
search papers with bag-of-word features (8710 words meet the threshold for inclusion by Bojchevski
and Günnemann, which was given through correspondence with the authors as a minimum of ap-
pearing in 10 documents in the set) that use presence/absence rather than counts (multi-hot). Edges
indicate that one of the papers cited the other, though we do not distinguish between citing/cited

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.
Voronoi.html

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.
SphericalVoronoi.html

3https://networkx.github.io/documentation/networkx-1.9/reference/
generated/networkx.generators.random_graphs.watts_strogatz_graph.html

4https://networkx.github.io/documentation/networkx-1.9/reference/
generated/networkx.generators.random_graphs.barabasi_albert_graph.html

5https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_
geometric/datasets/citation_full.html

6https://github.com/abojchevski/graph2gauss
7https://people.cs.umass.edu/˜mccallum/data.html
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and the graph is undirected. The papers belong to one of 70 topics within 11 disciplines of Com-
puter Science, and we present the relevant class-ID information for splitting by discipline in Table
7. In the few-shot learning setup we separate out classes {29, 4, 10, 53, 26, 45, 30, 17, 21, 56, 47} for
validation and {59, 1, 42, 48, 15, 62, 16, 67, 61, 49, 38} for testing, representing 14.94% and 10.79%
of the total nodes, respectively. Each of these splits contains a class from every branch (hence 11
classes) with an effort made to ensure the class-to-branch ratios were also approximately 15% and
10%, with preferential selection for the test set and an allowance for producing largely connected
subgraphs. For example, on the Encryption-branch there are three classes 15, 26, and 6, contain-
ing approximately one sixth, one third and one half of the nodes, respectively, with class 15 being
selected for the test set and 26 for the validation set. Practically the connectivity allowance means
selecting class 48 (12.1% of AI) rather than 22 (9.0% of AI) for the test set and class 29 (14.7% of
ML) rather than 55 (14.9% of ML) for the validation set.

TUD Datasets Proteins and Enzymes are more commonly treated as graph-classification tasks,
but there is an intermediate labelling of secondary structural elements (α-helices, β-sheets and β-
turns) that can be used in the node classification setup. DFHR, COX2 and BZR consist of small
libraries of small molecule inhibitors against each respective protein target (Dihydrofolate Reduc-
tase, Cycloxygenase-2 and the Benzodiazapene Receptor). In the typical graph-classification task,
molecules are deemed active or inactive on the basis of a thresholded half-maximal inhibitory con-
centration measure determined through in vitro biochemical assays. The node-classification task
considered here requires the model to predict node labels representing encodings of atom-type.
Node features are xyz coordinates of the conformation provided in the datasets.

Protein-Protein Interaction Site Prediction This node-classification task utilises protein struc-
tural data collated in (Zeng et al., 2019), representing protein structures as graphs of interact-
ing residues. Nodes are featurised with low dimensional embeddings of physicochemical prop-
erties (Meiler et al., 2001), encodings of secondary structure, solvent accessibility metrics, and
position-specific scoring matrices which capture evolutionary information as protein-protein inter-
action residues have been shown to be evolutionarily conserved. Edge features represent one-hot
encodings of intramolecular interaction types. Node labels indicate whether or not that amino acid
takes part in an experimentally determined protein-protein interaction. Graphs are constructed using
Graphein (Jamasb et al., 2020).

D EXPERIMENTAL AND MODEL DETAILS

D.1 EXPERIMENTS

Recently introduced benchmark suites such as OGB (Hu et al., 2020) and those proposed by Dwivedi
et al. (2020) aim to improve the quality of evaluation of graph-based models. However, we find they
lack tasks that are appropriate for evaluating meta-learning frameworks of the kind we present, i.e.
they do not host tasks that match the problem statement in Section 1. To this end, in addition to stan-
dard formulations of TUD (Kersting et al., 2020) and PPI (Zeng et al., 2019) tasks, we present new
task formulations of the existing ShapeNet (Chang et al., 2015; Yi et al., 2016) and full Cora (Mc-
Callum et al., 2000; Bojchevski & Günnemann, 2018) datasets and entirely novel synthetic tasks
based on cellular automata (Von Neumann et al., 1951; Wolfram, 1984; Turing, 1990).

D.1.1 BASELINES AND MODEL DETAILS

We evaluate against a variety of baselines that collectively leverage all sources of information present
in the tasks (featural, relational & contextual). This helps highlight where the advantages of the
MPNP lie in a given setting. Table 8 from Appendix D indicates which baselines were run on each
task and why. The label propagation algorithm (LP) (Zhu & Ghahramani, 2002) makes direct use
the context labels (nodes are labelled by their neighbours, who label their neighbours, and so on)
and is best suited to segmentation-like tasks. The strength of LP as a baseline is confirmed in recent
work showing simple models based on label propagation are competitive with state-of-the-art GNN
models (Huang et al., 2021). Where relevant, we include guessing the most common context-
label (Mode), as this may significantly outperform the uniform-prior (1/|C|) for some tasks. Graph
neural networks (GNNs) use training data in the inductive setup, but are not equipped to use the
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context points provided at test time. GNNs are expected to perform well on tasks with fixed classes
and little variation in the generative process across the set of datasets being modelled. We note that
these models are not designed to handle arbitrary labelling tasks and their expected performance is
bound by chance, i.e. E[acc.] = 1/|C|: as predictions do not depend on class labellings, for any
given task example we can construct a set of equivalent tasks by permuting the labels, and over
the set of permutations the average performance will be chance (a formal derivation is provided
in Appendix F). As such, we do not include this baseline on these tasks. In our setup, the GNN
consists of GCN layers with skip-connections (Appendix D.4 contains a detailed description of the
architecture).

Non-message-passing Neural Processes (NPs) are limited only by their inability to leverage rela-
tional information between points, though this is, of course, a serious limitation in the settings we
consider. We use the same Message Passing Neural Process and NP architectures for most Cora,
ShapeNet and biochemical tasks, with the addition of Maxout layers (Goodfellow et al., 2013) for
CA tasks. Other modifications are described with the experiment in which they are used, and full
model details for each scenario are provided in Appendix D.

D.1.2 FIXED LABELLING TASKS

We first consider tasks where the same set of classes appear in every example and the class labelling
is ‘fixed’. Inductive GNNs are designed for this setting and provide a useful baseline performance.

Two tasks are adapted from the TUD collection (Kersting et al., 2020): Enzymes and DHFR. The
Enzymes dataset consists of proteins represented as networks of secondary-structural elements (α-
helices, β-sheets, β-turns; SSEs) with biochemical features describing these units and edges between
connected elements. DHFR is a library of small molecules that inhibit a particular protein, repre-
sented as graphs of atoms connected by bonds with spatial positions as features. Table 1 shows
the MPNP narrowly outperforms the NP at the Enzymes task and by a much greater margin for
DHFR, though in each case an inductive GNN is more successful. This suggests that the relational
information present in the Enzymes dataset is of secondary importance to the featural information
of the SSEs, and that there is limited variation over both datasets, given that an inductive model can
perform well without any context points. Nevertheless, it is promising that MPNPs are able to use
the relational information in DHFR to improve greatly on NPs.

The Protein-Protein Interaction (PPI) Site Prediction task involves predicting which nodes
(amino acids) in an amino acid residue graph are involved in an experimentally-determined PPI
(Zeng et al., 2019). Solving this task is thought to depend strongly on being able to use relational
information, and there is great variation between examples. As expected following the TUD re-
sults, the MPNP excels in this setting, with SOTA-competitive results at plausible context rates
presented in Table 2. The prefix ‘R’ indicates that the message-passing scheme has an edge-type
dependency, as in the R-GCN (Schlichtkrull et al., 2018). Full details for this model are provided in
Appendix D.5.

The ShapeNet repository (Chang et al., 2015; Yi et al., 2016) is a collection of large-scale 3D shapes,
represented as point clouds for our applications.8 We embed the points as a nearest-neighbours graph
(A) and use the (x, y, z) position as node features (X). There are 16 object categories, each with a
fixed number of parts, ranging from two to six. The labels have consistent meaning across datasets
within a category. For example, we model the process that produces chairs with arms, legs, seats
and backs, which we can consistently label {1, 2, 3, 4}.
Part labelling results are presented in Figure 2. We use the mean-Intersection-over-Union (mIoU)
metric, which is standard for segmentation tasks: the ratio of overlap (TP) to the union (TP+FP+FN)
is found for each part, and averaged (higher is better, T/F P/N = true/false positives/negatives). In
11 object categories, the MPNP outperforms the NP at more than 95% confidence across the entire
context sampling range, and is the top-performing model over some of the sampling range in 13 out
of 15 categories. At 30% sampling, label propagation dominates as expected. We do not include
results for guessing-the-mode as this strategy is unsuited to the mIoU metric (performance is bound
by 1/C for C-part objects as TPC = 0 for all but one part.)

8There exist many techniques that make fuller use of the geometric information available, but for this proof-
of-concept we consider only the simplest method.
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Figure 3 shows the superior uncertainty-modelling capabilities of the MPNP (with extensive visuali-
sations in the Appendix, Figure 6). In the first 3 plots, we visualise the uncertainty predictions for
a table sample. Though the models achieve similar mIoU, the MPNP is only significantly uncertain
at the borders between parts (a physically relevant uncertainty), whereas the NP is uncertain along
the table-top edges, which are distant from any table-leg points in the internal geometry of the ta-
ble. On the right, we present the results of an active learning experiment similar to that described
by Garnelo et al. (2018a). At each step, the target with the greatest uncertainty is added to the
context set (i.e. labelled) and predictions are repeated. This shows the power of useful uncertainty
estimates in the MPNP.

We introduce tasks based on modelling Cellular Automata. Irregular graph-CAs have been used
to study traffic networks (Malecki, 2017), social networks (Hunt et al., 2011), urban develop-
ment (White, 1998) and logistics (Lopez et al., 2019), and cell dynamics (Bock et al., 2009). Our
aim is to show how MPNPs extend available modelling capabilities, as existing baselines are likely
to struggle in this setting. The model is provided with the states of some cells over a generation
and tasked with evolving others. To evaluate generalisation, we prevent rule-set overlap in the train,
validation and test sets. This contrasts with the existing work of Gilpin (2018), where the model
learns a single rule-set, and that of Mordvintsev et al. (2020), who train a CA to produce a desired
pattern. We provide an overview of these tasks, with full details given in Appendix C.

Figure 5: Three generations of a population-density CA on a spherical Voronoi network producing
complex patterns in the cells. The MPNP receives the first state (nodes are cells, edges link bordering
cells, features are 0/1 according to cell state) and predicts cell states (0/1) after one transition.

Conway’s Game of Life (Games, 1970) consists of cells in a 2D lattice governed by simple rules:
cells become alive/are born (B) or stay alive/survive (S) depending on the number of living neigh-
bours. The Life-like family of CA are the generalisations of these rules over any number of neigh-
bours 0–8, defining 218 variants. Neighbour counts can also be generalised to neighbourhood
population-densities, and density-based rules can be adapted to irregular graphs and non-planar
topologies. We consider single-interval rules, such that cells live or die based on being inside or out-
side a continuous range of population-densities, on small-world, scale-free, and spherical Voronoi
networks (an example of the latter is shown in Figure 5).

State evolution results are presented in Figure 4. Here, the ‘Population/State Mode’ baselines are
versions of ‘guessing-the-mode‘ that output the most common label over the whole context set or
by initial state, respectively. The NP is often able to match the state-mode strategy, but this is
the ceiling to methods that do not take relational information into account. The MPNP is able to
learn effective representations that generalise well to the disjoint test set for density-based rules.
For density-based rules, MPNPs perform strongly across a variety of graph structures, while NPs
are bound by simple strategies that guess the most common state change. Neither model is able to
perform well for the Life-like family, despite the existence of a solution to this problem for MPNPs,
outlined in Appendix G.

D.1.3 ARBITRARY LABELLING TASKS

Garnelo et al. (2018a) applied the CNP model in the arbitrary labelling setting, where each dataset
includes samples drawn from a fixed number k of class types, where the total number of types
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K � k. As the total number of classes could be very large and test examples may include unseen
classes, using fixed-classes is infeasible. Instead, arbitrary labellings (1, . . . , k) are assigned on a
per-dataset basis, and models are required to adapt accordingly.

The Cora-ML task is a widely used community detection benchmark. Papers are represented by
bag-of-words vectors with edges indicating that one of the papers cited the other. Our task, Cora-
Branched, is derived from a more complete dataset, with 70 classes over 11 computer science
disciplines (McCallum et al., 2000; Bojchevski & Günnemann, 2018). There are 10 times as many
classes and the bag-of-words feature vectors are tripled in length. Given a partially labelled subgraph
of the network, the task is to label the rest. We consider the transductive setup (Yang et al., 2016;
Veličković et al., 2017) where every class is observed during training and a few-shot learning task
where, at test time, the models are presented with classes unobserved during training, to evaluate
how well the learned representations generalise. Results for the transductive setting are presented
in Table 3. Both models perform well in the low-sampling rate regime, indicating a strong feature
signal, though the MPNP-c significantly outperforms the NP-c in every test, by up to 10% for 7-class.
LP performs best at higher sampling rates and for more classes, as expected. Table 4 compares the
quality of NP and MPNP representations in the few-shot learning context—the MPNP generalises
better to unseen categories.

In the ShapeNet mixed-category setup, we model the process that produces n-part objects (say,
n = 4 for chairs with arms, legs, seats and backs, as well as airplanes with engines, bodies, tails
and wings.) Here, labels have consistent meaning only within a given realisation, so using a fixed
ordering of labels implies a meaningless relationship between, say, chair-backs and airplane-wings.
We thus provide an arbitrary permutation of class labels for each example.

Table 5 shows results for the mixed-class part-grouped ShapeNet task. The GNN struggles as ex-
pected, with performance below chance. Label propagation is the strongest performer at high sam-
pling rates, with the MPNP-c and NP-c at a relative advantage with fewer context points. The NP-c
performs best at 0.1% on 3-class, which may be due to category imbalances (80% of 3-part objects
are tables) disrupting the MPNP-c. MPNP-c and label propagation otherwise divide the sampling
range as top performers.

All models were trained on a Titan Xp GPU or an RTX 2080 GPU, with
torch.manual seed(0) across all experiments. An 80/20 train/test split was used for
TUD datasets9 and the ones provided by PyTorch Geometric10 for all ShapeNet tasks. The
supplementary material includes code for all models and experiments described in this paper.

D.2 MPNP

The architecture of the MPNP can be summarised as follows:

1. encoder: Linear(h), ReLU, {MP(h), ReLU}×T , Linear(r);

2. global latent variable encoder: Linear(r), [Linear(z), Linear(z)] (mean & variance of z);

3. decoder: Linear(h), ReLU, {MP(h), ReLU}×T , Linear(h), ReLU, [Linear(C), Linear(C)]
(mean & variance of ŷ).

Across all experiments, the Adam optimiser is used to maximise the ELBO (i.e. minimise the sum
of the negative log-likelihood and KL-divergence in equation 5).

D.2.1 TUD

On Proteins and Enzymes, the MPNP hyperparameters are h = 64, r = 128, z = 256; for the
MPNP-c, h = 64, r = 96, z = 288; both have T = 2. On DHFR, COX2 and BZR, both MPNP
and MPNP-c have h = 64, r = 128, z = 256, T = 1. We trained both models for 400 epochs with
learning rate 7e× 10−5 on all datasets except for Enzymes, where we used 700 epochs and learning

9https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.
html#torch_geometric.datasets.TUDataset

10https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.
html#torch_geometric.datasets.ShapeNet
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Table 8: For each task that MPNPs were evaluated on, we indicate whether a baseline has been run
or explain why we did not consider it necessary.

NP LP GNN Mode

TUD 3 3 (just to illustrate the
low performance due to
low label homophily—
Table 1)

3 7 low label homophily

PPISP 3 7 same argument as
above (biochemical
data domain)

3 (R-GCN) 7 low label homophily

ShapeNet fixed 3 3 3 7 unsuitable for com-
parison with the mIoU
metric

Cellular Automata 3 7 not better than chance
(high variation across
rules)

7 not better than chance
(for every CA rule there
exists the opposite)

3 (population, state)

Cora-Branched trans-
ductive

3 3 7 not better than chance
(classes shuffled for
each sample)

3

Cora-Branched few-
shot

3 7 experiment is mea-
suring generalisation of
learned representations
(this model does not
learn from the training
set)

7 not better than chance
(classes shuffled, pre-
viously unseen at test
time)

7 experiment is mea-
suring generalisation of
learned representations
(this model does not
learn from the training
set)

ShapeNet arbitrary 3 3 3 7 unsuitable for com-
parison with the mIoU
metric

rate 1 × 10−4. For all datasets, we sample context and (additional) target points in the 10%–25%
range.

D.2.2 SHAPENET

Across all experiments, h = 64, r = 128, z = 256, T = 2. The MPNP was trained for 400 epochs
on fixed-class and 500 epochs on mixed-class tasks, with 5%–25% context and (additional) target
points and a learning rate of 7× 10−5.

D.2.3 CORA

In both the transductive and few-shot settings, h = 64, r = 64, T = 2 and z = N × 64 for N -
classes. In the transductive setting the model is trained for 500 epochs where little if any overfitting
is observed. In the few-shot setting the model is trained for 400 epochs. The model performs
significantly better on the training classes in the few-shot case, though this is expected. A learning
rate of 7 × 10−5 is used in both cases and we sample context and target points in the 10%–50%
range.

D.2.4 CA

The CA models use a modified architecture that includes Maxout layers (Goodfellow et al., 2013)
that can be summarised as follows:

1. encoder: MP(h), ReLU, {Linear(h), ReLU}×3, Maxout(h, 2), Linear(r), ReLU;

2. global latent variable encoder: Linear(r), [Linear(z), Linear(z)] (mean & variance of z);

3. decoder: MP(h), ReLU, {Linear(h), ReLU}×3, Maxout(h, 2), (concatenation with z),
{Linear(h), ReLU}×3, [Linear(C), Linear(C)] (mean & variance of ŷ).
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Maxout layers use a pool-size of 2 and the decoder delays concatenation with z until after the
Maxout layer (and the part before concatenation matches the encoder). For both the life-like and
density-based settings, h = 64, r = 64, z = 128. The models are trained for 200 epochs with a
learning rate of 1× 10−4 and we sample context and target points in the 30%–50% range.

D.2.5 R-MPNP

The architecture of the R-MPNP can be summarised as follows:

1. encoder: Linear(h), ReLU, {R-MP(h), ReLU}×T , Linear(r);
2. global latent variable encoder: Linear(r), [Linear(z), Linear(z)] (mean & variance of z);
3. decoder: Linear(h), ReLU, {R-MP(h), ReLU}×T , Linear(h), ReLU, [Linear(C),

Linear(C)] (mean & variance of ŷ).

Across all experiments, the Adam optimiser is used to maximise the ELBO (i.e. minimise the sum
of the negative log-likelihood and KL-divergence in equation 5).

D.2.6 PPISP

The hyperparameters used are h = 64, r = 64, z = 256. Models were trained for 1000 epochs with
a learning rate of 4× 10−5. We sample context and target points in the 10%–50% range.

D.3 NP BASELINE

The architecture of the NP consists of:

1. encoder: Linear(h), ReLU, Linear(h), ReLU, Linear(r);
2. global latent variable encoder: same as for the MPNP;
3. decoder: Linear(h), ReLU, Linear(h), ReLU, Linear(h), ReLU, [Linear(C), Linear(C)]

(mean & variance of ŷ).

The Adam optimiser is also used here to maximise the ELBO.

D.3.1 TUD

On Enzymes, the NP and NP-c hyperparameters are h = 64, r = 128, z = 512. On Proteins, we
used h = 64, r = 64, z = 512 for the NP and h = 64, r = 96, z = 288 for the NP-c. On DHFR,
COX2 and BZR, both NP and NP-c have h = 64, r = 64, z = 512. We trained both models for 400
epochs with learning rate 4e−5 on all datasets except for Enzymes, where we used 700 epochs. For
all datasets, we sample 10%–25% context and (additional) target points.

D.3.2 SHAPENET

The same hyperparameters were used for all tasks: h = 64, r = 64, z = 512. The NP was trained
for 400 epochs on fixed-class and 500 epochs on mixed-class tasks, with 5%–25% context and
(additional) target points and a learning rate of 4e−5.

D.3.3 CORA

In both the transductive and few-shot settings, h = 64, r = 64 and z = N × 64 for N -classes,
matching the MPNP. The model is trained for 500 epochs in the transductive setting and 400 in the
few-shot setting. A learning rate of 7× 10−5 is used in both cases and we sample context and target
points in the 10%–50% range, matching the MPNP.

D.3.4 CA

Changes are made to the NP architecture for the CA tasks to match the changes made to the MPNP
for this task, with MP layers replaced with linear layers with 2h units to match the parameter count
of the MP. Otherwise the parameters match that of the MPNP: h = 64, r = 64, z = 128. The
models are trained for 200 epochs with a learning rate of 1× 10−4.
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D.3.5 PPISP

The hyperparameters used are h = 64, r = 64, z = 256. Models were trained for 1000 epochs with
a learning rate of 6 × 10−5. We sample context and target points in the 10%-50% range, matching
the R-MPNP.

D.4 GNN BASELINE

This model consists of 3 GCN11 layers with learnable skip-connections; the operation of a layer is:

ht+1 = ReLU
(
Wskipht + GCN(ht)

)
. (14)

We use h = 64 across all tasks and train the model for 500 epochs, with the Adam optimiser
minimising the cross-entropy loss and a learning rate of 1e−4. The context and target ranges are as
previously described, for each dataset. Note that this model does not make use of the context labels.

D.5 R-GCN BASELINE

The model consists of 3 RGCN12 layers; the operation of a layer is:

ht+1 = ReLU
(
RGCN(ht)

)
. (15)

We use h = 64 and train the model for 400 epochs, with the Adam optimiser minimising the cross-
entropy loss and a learning rate of 7 × 10−5. This model leverages edge features in the message-
passing steps but does not make use of context labels.

E NUMERICAL RESULTS AND UNCERTAINTY PLOTS

In this section, we present the numerical results used to generate the CA and ShapeNet plots in the
main text. Tables 9, 10 and 11 show the ShapeNet single-category performances, whereas Table 12
provides the Cellular Automata results. Figure 6 illustrates additional uncertainty visualisations
for other classes in ShapeNet, reinforcing the finding that the estimates produced by MPNPs are
semantically relevant.

Table 9: Numerical mIoU results for the MPNP on ShapeNet single-category tasks (µ± σ).
0.1% 1% 5% 10% 30%

Bag 71.08± 3.78 75.12± 1.44 75.57± 0.89 76.05± 0.13 73.21± 0.72
Cap 64.00± 4.28 68.76± 4.32 73.05± 0.92 69.42± 1.34 67.41± 0.47

Knife 79.82± 0.25 87.34± 1.47 89.93± 0.46 90.39± 0.34 90.34± 0.24
Laptop 90.39± 0.31 95.94± 0.17 96.71± 0.19 96.75± 0.00 97.07± 0.12
Mug 75.90± 1.37 85.63± 2.27 87.80± 1.02 88.70± 1.20 88.14± 0.02

Earphone 49.80± 4.45 57.14± 1.99 59.41± 1.44 55.59± 1.22 55.35± 0.70
Guitar 77.95± 0.61 89.12± 0.31 92.33± 0.25 92.75± 0.31 93.17± 0.11
Pistol 67.68± 0.95 82.51± 0.60 85.82± 0.29 85.57± 0.46 86.48± 0.16

Rocket 54.61± 0.21 56.03± 0.48 60.78± 0.74 64.26± 2.48 62.90± 0.04
Skateboard 41.67± 2.01 51.75± 0.76 55.10± 0.13 53.44± 1.05 52.33± 0.15

Table 75.19± 0.81 83.64± 0.30 85.80± 0.04 85.94± 0.01 86.61± 0.03

Airplane 58.32± 0.82 81.55± 0.16 86.68± 0.06 87.32± 0.05 87.90± 0.00
Car 43.08± 0.91 69.02± 1.45 76.56± 0.37 78.02± 0.12 78.53± 0.10

Chair 72.29± 0.00 86.73± 0.32 89.88± 0.26 90.22± 0.00 90.70± 0.03
Lamp 61.80± 1.31 79.44± 0.00 84.03± 0.15 84.45± 0.25 84.89± 0.01

Motorbike 27.54± 1.36 48.10± 1.09 53.94± 0.16 53.17± 0.38 53.76± 0.02

11https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#
torch_geometric.nn.conv.GCNConv

12https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#
torch_geometric.nn.conv.RGCNConv
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Table 10: Numerical mIoU results for the NP on ShapeNet single-category tasks (µ± σ).
0.1% 1% 5% 10% 30%

Bag 52.62± 0.00 54.20± 2.23 52.87± 0.35 53.06± 0.12 53.46± 0.13
Cap 45.08± 6.01 56.88± 0.60 55.21± 0.40 59.67± 1.18 57.94± 0.71

Knife 72.84± 0.33 87.02± 0.65 89.49± 0.12 89.68± 0.31 89.12± 0.20
Laptop 82.42± 2.05 93.49± 0.24 96.07± 0.38 96.46± 0.12 96.72± 0.02
Mug 68.52± 1.71 80.95± 0.41 84.92± 0.61 84.58± 0.97 85.57± 0.01

Earphone 36.42± 7.28 47.98± 1.06 47.94± 0.68 47.79± 0.04 49.04± 0.24
Guitar 69.00± 0.36 83.41± 0.64 87.83± 0.50 88.12± 0.16 89.11± 0.01
Pistol 63.84± 2.02 70.42± 0.79 70.64± 0.15 71.94± 0.22 71.79± 0.17

Rocket 56.71± 2.41 59.76± 0.69 63.69± 0.54 62.50± 0.58 63.85± 0.31
Skateboard 32.13± 1.71 41.84± 0.07 40.78± 0.03 40.36± 0.19 40.25± 0.09

Table 76.53± 0.21 83.11± 0.08 84.18± 0.08 84.20± 0.12 84.26± 0.01

Airplane 44.92± 0.06 78.05± 0.22 83.05± 0.02 83.65± 0.02 84.04± 0.05
Car 38.86± 0.43 57.90± 1.33 63.89± 0.08 64.73± 0.14 65.55± 0.46

Chair 69.68± 1.14 84.78± 0.51 87.35± 0.10 87.69± 0.11 87.81± 0.01
Lamp 57.04± 1.73 71.88± 0.54 75.40± 0.45 75.49± 0.19 76.19± 0.01

Motorbike 21.28± 1.41 25.44± 0.05 25.66± 0.04 25.69± 0.16 25.73± 0.05

Table 11: Numerical mIoU results for GCN and labelprop on ShapeNet single-category tasks
(µ± σ). Note that the GCN does not use the context labels and thus produces deterministic outputs.

GCN labelprop
0.1% / 1% / 5% / 10% / 30% 0.1% 1% 5% 10% 30%

Bag 69.76 54.62± 1.88 70.10± 4.35 86.16± 1.05 90.45± 1.10 95.67± 0.54
Cap 65.85 47.76± 5.07 74.19± 3.53 84.97± 0.49 88.83± 0.62 93.43± 0.41

Knife 79.61 57.48± 3.40 88.82± 0.56 93.70± 0.36 95.01± 0.24 97.03± 0.10
Laptop 94.23 58.61± 2.64 88.16± 0.64 93.76± 0.17 95.46± 0.12 97.34± 0.05
Mug 85.40 47.44± 1.48 74.93± 2.42 88.15± 0.45 91.09± 0.71 94.19± 0.15

Earphone 49.76 36.35± 2.29 66.68± 1.96 78.45± 1.21 82.50± 0.73 88.24± 0.27
Guitar 89.01 37.85± 1.69 78.79± 1.97 92.06± 0.20 94.10± 0.20 96.44± 0.09
Pistol 76.72 39.80± 1.22 69.09± 1.56 83.25± 0.94 87.02± 0.23 92.39± 0.21

Rocket 56.31 38.43± 3.14 59.84± 7.51 80.95± 0.52 85.67± 1.15 91.53± 0.37
Skateboard 57.19 32.83± 1.57 56.59± 1.35 80.33± 0.71 84.91± 0.78 90.76± 0.35

Table 76.54 42.22± 0.53 68.88± 0.27 83.32± 0.08 86.83± 0.06 91.16± 0.07

Airplane 79.50 20.81± 0.21 60.48± 0.33 79.77± 0.13 84.50± 0.07 90.47± 0.04
Car 71.95 19.20± 0.38 45.91± 0.99 67.85± 0.38 75.33± 0.31 85.36± 0.05

Chair 77.84 33.06± 0.62 70.97± 0.27 87.04± 0.12 90.65± 0.07 94.65± 0.02
Lamp 53.78 58.61± 2.64 88.16± 0.64 93.76± 0.17 95.46± 0.12 97.34± 0.05

Motorbike 46.18 15.66± 1.14 38.46± 1.28 63.11± 1.46 74.05± 0.51 85.51± 0.36
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Table 12: Numerical accuracy results for the Cellular Automata tasks (µ± σ).
MPNP NP

10% 30% 100% 10% 30% 100%

Small-world 88.14± 0.82 95.09± 0.45 97.33± 0.57 77.28± 4.85 78.97± 4.87 79.59± 4.83
Scale-free 84.73± 2.87 93.18± 3.25 95.49± 3.47 74.84± 0.73 76.91± 0.43 77.57± 0.47
Voronoi 83.13± 2.77 90.01± 5.16 92.39± 6.26 73.96± 4.09 76.09± 4.46 76.70± 4.34

Spherical Voronoi 82.91± 2.66 91.68± 3.90 94.93± 4.57 74.00± 4.12 75.81± 4.21 76.53± 3.86

Life-like 63.81± 2.03 65.40± 2.73 65.77± 2.85 61.38± 0.77 62.40± 0.06 62.62± 0.03

Population mode State mode
10% 30% 100% 10% 30% 100%

Small-world 68.40± 0.11 69.53± 0.13 70.10± 0.00 80.34± 0.13 81.62± 0.11 82.11± 0.00
Scale-free 66.54± 0.42 67.64± 0.12 68.25± 0.00 74.46± 0.17 76.30± 0.12 76.90± 0.00
Voronoi 67.36± 0.32 68.71± 0.04 69.37± 0.00 76.54± 0.17 78.17± 0.07 78.74± 0.00

Spherical Voronoi 66.09± 0.29 67.31± 0.07 67.91± 0.00 76.46± 0.20 78.13± 0.04 78.72± 0.00

Life-like 62.08± 0.07 62.55± 0.02 62.69± 0.00 84.22± 0.04 84.48± 0.02 84.57± 0.00
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Figure 6: Uncertainty visualisations on examples from the airplane, chair, lamp, mug and car cat-
egories. In each case the MPNP is able to better localise the uncertainty to semantically relevant
locations (i.e. border regions). The NP tends to be uncertain in large simple volumes, having the
entire handle side of the mug being very uncertain, for instance. Similar effects are seen for the top
of the lamp, the car axles, and the edges of the chair seat. The airplane is generally harder, with
borders between the wings, fuselage and engines occurring in a relatively compact region, though
we still see better localisation in the tail.
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F INDUCTIVE GNNS WITH ARBITRARY LABELLING

When introducing the baselines in the Experiments section, we noted that the expected performance
of inductive GNNs in the arbitrary labelling setting is no better than chance. This is because the
predictions of such a model do not depend on the labelling scheme and for any particular labelling
of a task we can produce a set of equivalent tasks by permuting the labels. First consider the two class
case: outputs are either 1 or 2 and labels are either A or B, giving the mutually exclusive, collectively
exhaustive groups {1A}, {1B}, {2A}, {2B}, which we normalise to sum to 1 by dividing by the
number of examples. In the case that (A,B) = (1, 2), the accuracy is:

accAB = {1A}+ {2B}
and if the labels are permuted:

accBA = {2A}+ {1B}

which average to:

accmean =
{1A}+ {2B}+ {2A}+ {1B}

2
=

1

2
.

Generalising, outputs are in 1, ...,N and labels in {A, ...,Ω}, for the matrix of pairs:1A . . . 1Ω
...

. . .
NA NΩ


with the sum of all these elements being 1. There are N! permutations of the arbitrary labelling, and
therefore N! equivalent tasks. Each term in the matrix appears in (N− 1)! accuracy sums (with that
term fixed, there are N− 1 free terms with (N− 1)! permutations), so the mean accuracy is:

accmean =
(N− 1)! (1A + · · ·+ NΩ)

N!
=

(N− 1)!

N!
=

1

N
.

G AN MPNP SOLUTION TO THE LIFE-LIKE FAMILY

The Life-like rules can be viewed as 18 separate rules that act in parallel, one for each neighbourhood
count (9) for each state (2) and hence the 218 variants noted in the main text (experimental section).
A solution can be built using the concatenation encoder where the first steps describe the situation
being observed at a given node as a one-hot encoding in an 18-element vector, and then summarises
these using a max aggregator (or sum or mean with corrections later) and then concatenating by
whether the cell lives or dies (i.e. concatenate by class). The max aggregation gives all the observed
conditions that lead to a cell being alive in the next generation, and all those that lead to a cell being
dead13. This representation is then used without modification as the latent variable. The decoder
first extracts the observation to the format used by the encoder and then compares it with the latent
variable, if it matches a condition found in the living-half of the latent variable, then the cell is alive
in the next generation, if it matches a condition in the dead-half then the cell dies or stays dead.

The non-obvious parts are producing a one-hot encoding from a scalar (the neighbourhood count is
produced simply by the MP) and checking the decoder observation against the latent variable. One-
hot encodings of length N can be produced using Maxout layers as follows. First using a 2-pool
Maxout as:

Maxout(x) = maxj
(
(W1x+ b1)j , (W2x+ b2)j

)
,

setting W1 = −1 and W2 = 1, b1 = (−1, 0, ..., N − 2) and b2 = (−1,−2, ...,−N). The elements
of this function take the form of the max of (−x + j − 1) and (x − j − 1) which is a ‘v’ with unit
slopes centred at j with a minimum value of −1. If we follow the Maxout with a linear layer (−I)
and a ReLU activation, we can first flip the ‘v’ and then flatten the edges to give a triangular hat
centred at j with height 1. Thus, if x = 2 the first element (zeroth) is 0, the second element is 0,

13This could be compressed further using the fact that the rules are deterministic and do not overlap.
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the third element is 1 and the rest are 0s. In this way, the first parts of the encoder and decoder can
accurately represent the observed states. To compare an observation against the latent variable, we
can take the sum of the observation and latent and subtract 1s (i.e. an AND).
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