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Abstract

The development of self-supervised graph pre-training methods is a crucial ingredi-
ent in recent efforts to design robust graph foundation models (GFMs). Structure-
based pre-training methods are under-explored yet crucial for downstream applica-
tions which rely on underlying graph structure. In addition, pre-training traditional
message passing GNNs to capture global and regional structure is often challenging
due to the risk of oversmoothing as network depth increases. We address these
gaps by proposing the Laplacian Eigenvector Learning Module (LELM), a novel
pre-training module for graph neural networks (GNNs) based on predicting the
low-frequency eigenvectors of the graph Laplacian. Moreover, LELM introduces
a novel architecture that overcomes oversmoothing, allowing the GNN model to
learn long-range interdependencies. Empirically, we show that models pre-trained
via our framework outperform baseline models on downstream molecular property
prediction tasks.

1 Introduction

Graph Neural Networks (GNNs) have become a powerful tool in node and graph representation
learning, with successful applications across domains ranging from biomedicine (Cantürk et al.,
2023; Yan et al., 2024) to social networks (Fan et al., 2019). More recently, graph foundation
models (GFMs) are emerging as an exciting field; inspired by the success of large language models
(LLMs), researchers are exploring the possibility of creating large graph-based models with emergent
capabilities across many domains (Liu et al., 2025; Xie et al., 2022; Wang et al., 2025).

A key ingredient in this effort is the creation of self-supervised tasks which can be performed on
large unlabeled graph datasets (Liu et al., 2022). A variety of pre-training methods have been
proposed, with the majority of such methods being feature-based, including contrastive losses and
feature reconstruction (Liu et al., 2025; Xie et al., 2022). A few structure-based methods, which
precompute labels based on graph topology, have been proposed (Peng et al., 2020a; Hwang et al.,
2020). However, this category of pre-training approach, recently termed graph property prediction
(Liu et al., 2025), remains under-explored. Furthermore, limitations of GNNs in capturing long-range
structural information caused by oversmoothing and underreaching (Cai & Wang, 2020; Oono &
Suzuki, 2019; Keriven, 2022) pose challenges when approaching graph property prediction tasks
which rely on global structure.

We propose the Laplacian Eigenvector Learning Module (LELM) for GNNs and GFMs. The low-
frequency Laplacian eigenvectors capture a range of global, regional, and local graph structure,
making them well-suited as a structural target. LELM utilizes a novel global MLP prediction head
during pre-training that allows the GNN model to learn long-range relationships without requiring
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Figure 1: Overview of the LELM pre-training pipeline. Here, “Base GNN" and “Downstream
Prediction Head" can be any user-defined model architecture.

excessively deep networks, and it augments pre-training data with positional features to overcome
expressivity limits of GNNs. LELM is highly flexible: it can be used to pre-train any GNN to improve
downstream performance across all kinds of graph-based datasets, and it can be used either as an
independent pre-training method or as a plug-in addition to existing graph pre-training pipelines.

Our main contributions are as follows:

1. We propose LELM, a Laplacian eigenvector-based pre-training module for GNNs and GFMs.
2. We introduce a novel MLP head that enables GNNs to capture large-scale structure. Furthermore,

we propose a set of augmented node features based on the graph diffusion operator.
3. We empirically demonstrate that LELM provides performance improvements over baseline models.

2 Background

Given a graph G = (V,E) with unnormalized adjacency matrix A and degree matrix D, the
unnormalized Laplacian L of a graph G is defined as L = D−A.

Let λ1, λ2, . . . , λk denote the k lowest eigenvalues of L in nondecreasing order. Let ψ1, ψ2, . . . ψk
denote the corresponding eigenvectors, such that we have:

Lψi = λiψi

The low-frequency graph Laplacian eigenvectors have been used for positional encodings, spectral
GNNs, spectral clustering, and to generate provably minimal graph cuts. We provide examples and
references for each of these applications in Section B.

3 Method

The LELM pre-training framework consists of three primary components:

• Node feature augmentation: We provide initial features based on the graph diffusion operator.
These embeddings provide the base GNN model with additional structural context which is useful
for the pre-training task as well as for downstream structure-aware tasks.

• Graph-level MLP: We pass a graph-level aggregated representation from a base GNN into our
prediction MLP head. The graph-level MLP overcomes the challenge of oversmoothing by allowing
the base GNN to learn long-range node interactions without requiring an excessively deep message
passing network.

• Eigenvector prediction: During pre-training, we task the model to predict the k lowest-frequency
eigenvectors of the graph Laplacian.

Together, these components allow the base GNN to learn local and global graph structure while
overcoming intrinsic expressivity limitations, making LELM a robust pre-training framework for
structure-aware downstream tasks. A visual overview of our pipeline can be seen in Figure 1, and a
detailed algorithmic overview of our pipeline can be found in Section C.
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3.1 Node feature augmentation

We propose two kinds of embeddings: (1) wavelet positional embeddings, which encode relative
positional information between nodes, and (2) diffused dirac embeddings, which encode local
connectivity structures around each node. Both embeddings use the graph diffusion operator, and
capture local aggregate information on each node. We provide more details as well as theoretical
guarantees in Section G.

3.2 Graph-level MLP

Once we perform node augmentation, we pass the augmented graph as input into a base GNN model
and graph-level MLP to output predicted eigenvectors.

Base GNN: The base GNN model takes in a graph with augmented node features and gen-
erates learned node representations via neighborhood message passing and update steps. Any GNN
architecture may be selected as the base model to fit the needs of the dataset and downstream
application.

Graph-level MLP: We concatenate the node-wise output of the base GNN model to form a graph-
level aggregated representation. We then pass the aggregated vector through an MLP model to
produce the low-frequency Laplacian eigenvectors.

Eigenvector-learning methods for other applications (such as spectral clustering) use a node-wise
MLP head, processing each node’s eigencoordinates independently based on their learned hidden
embedding (Shaham et al., 2018; Dwivedi et al., 2021; Cantürk et al., 2023). Such methods fail to
address oversmoothing as a node-wise MLP cannot learn long-range interactions; instead, one must
use several layers of message passing within the base GNN (Cantürk et al., 2023).

3.3 Eigenvector prediction

During pre-training, the model output aims to minimize a weighted sum of two loss functions: (1)
eigenvector loss and (2) energy loss.

To ensure the model does not output k copies of the trivial eigenvector, we impose orthogonality on
the final outputs of the model via QR decomposition, as proposed by Shaham et al. (2018). Let each
ûi denote the ith predicted eigenvector via LELM after orthogonality has been imposed.

Energy loss, used in Shaham et al. (2018); Dwivedi et al. (2021); Ma & Zhan (2023), computes the
sum of Rayleigh quotients:

Lenergy =
1

k

k∑
i=1

û⊤
i Lûi

Energy loss is minimized when the predicted eigenvectors span the same subspace as the ground-truth
eigenvectors; to enforce a strict ordering and basis on the predicted eigenvectors, we additionally
impose eigenvector loss, used in Mishne et al. (2019):

Leigvec =
1

k

k∑
i=1

∥Lûi − λiûi∥

We discuss further intuition behind our loss functions in Section D and provide proofs for necessary
sign and basis invariances in Section F.

4 Experimental Results

To evaluate the effectiveness of LELM, we conduct various experiments on real-world datasets.

Comparison against baseline models: We pre-train a standard Graph Isomorphism Network (GIN)
(Xu et al., 2019) and GPS (Rampášek et al., 2022), a graph transformer, using LELM. Once the
model has been pre-trained, we replace the graph-level MLP head with a downstream prediction MLP
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Table 1: Test MAE (↓) performance comparison on ZINC (single metric) and QM9 (first seven target
properties).

ZINC full ZINC subset QM9

Model Penalized log p Penalized log p µ α εHOMO εLUMO ∆ε {R2} ZPVE

GIN + LELM 0.130 0.353 0.484 0.489 0.00353 0.00371 0.00513 28.103 0.00048
GIN (baseline) 0.228 0.438 0.472 1.132 0.00386 0.00399 0.00562 50.909 0.00240
GPS + LELM 0.104 0.210 0.502 0.592 0.00372 0.00408 0.00511 33.606 0.00178
GPS (baseline) 0.150 0.358 0.413 0.718 0.00434 0.00442 0.00592 80.503 0.00111

Table 2: Test MAE (↓) performance comparison when pre-training a GIN on ZINC to predict
alternative structural training targets.

Alternative training targets ZINC full ZINC subset

LELM 0.130 0.353
Node degree 0.238 0.471
Local clustering coefficient 1.493 1.551
Cycle counting 0.285 0.420
Lap Eigenvalues 0.250 0.520

and fine-tune model weights. We evaluate our pre-training framework on three molecular datasets
ZINC, ZINC-12k (Sterling & Irwin, 2015) and QM9 (Ramakrishnan et al., 2014). For each of these
models, we compare LELM against the same GNN model without pre-training. For both models,
pre-training improves performance for all but one of the downstream targets. We record results of our
experiments in Table 1.

Comparison against alternative pre-training targets: We compare LELM to alternative structure-
based pre-training targets, including node degree, local clustering coefficient, cycle counting, and
Laplacian eigenvalues. For each alternative target, we pre-train a standard GIN (with our default
settings) using L1 loss. Results are recorded in Table 2. Here, we see that LELM outperforms
alternative structure-based pre-training targets, indicating that the Laplacian eigenvectors are a better
pre-training target than many other natural choices for graph targets.

Ablation on MLP head: We pre-train both the GIN and GPS using LELM, replacing the graph-level
MLP with a standard MLP which acts on each node’s embeddings individually. Results can be seen
in Table 3; for both the GIN and GPS, pre-training is more effective with the graph-level MLP.

Table 3: Test MAE (↓) performance comparison on ZINC when replacing the graph-level MLP with
a basic node-wise MLP during pre-training.

Model ZINC full ZINC subset

GIN + LELM 0.130 0.353
GIN + LELM (no graph-level MLP) 0.152 0.435
GPS + LELM 0.104 0.210
GPS + LELM (no graph-level MLP) 0.126 0.261

Enhancing existing pre-training methods: To demonstrate the flexibility of our method, we
complement an existing pre-training method with LELM and demonstrate performance improvements
in the majority of downstream tasks. Full experimental details and results can be found in Section I.

5 Limitations and Future Work

There are several promising future directions toward improving the LELM pre-training framework.
First, we have demonstrated the effectiveness of the framework for pre-training and fine-tuning a
GNN on the same dataset, or on domain-related datasets, but we have yet to explore the effectiveness
of LELM as a transfer learning framework. A future direction could be exploring the viability of
LELM when pre-training on synthetic graphs or on cross-domain datasets.
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Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations.

Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. Mgae: Marginalized graph
autoencoder for graph clustering. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, pp. 889–898, 2017.

Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li,
Zhengqing Yuan, Wei Song, Yijun Ma, et al. Graph foundation models: A comprehensive survey.
arXiv preprint arXiv:2505.15116, 2025.

Yaochen Xie, Zhengyang Wang, and Shuiwang Ji. Noise2same: Optimizing a self-supervised bound
for image denoising. Advances in neural information processing systems, 33:20320–20330, 2020.

Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. Self-supervised learning
of graph neural networks: A unified review. IEEE transactions on pattern analysis and machine
intelligence, 45(2):2412–2429, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Pengwei Yan, Kaisong Song, Zhuoren Jiang, Yangyang Kang, Tianqianjin Lin, Changlong Sun, and
Xiaozhong Liu. Empowering dual-level graph self-supervised pretraining with motif discovery. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 9223–9231, 2024.

7



Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in neural information processing systems, 33:
5812–5823, 2020.

A Related works: GNN pre-training methods

Towards the goal of improving graph foundation models, a variety of self-supervised graph pre-
training tasks have been proposed. According to the taxonomy provided by Liu et al. (2025); Xie et al.
(2022), existing graph pre-training methods can be categorized into two broad categories: contrastive
and predictive methods.

Contrastive methods maximize mutual information between pairs of data views using objectives like
Jensen-Shannon estimator (Nowozin et al., 2016) or InfoNCE (Oord et al., 2018). Methods can be
categorized by the types of views used: graph-node (Sun et al.; Veličković et al.; Peng et al., 2020b),
subgraph-node (Hu et al.; Jiao et al., 2020), and subgraph-subgraph Qiu et al. (2020). Some methods
also employ graph augmentation to generate two views (You et al., 2020).

Predictive methods, also referred to as generative methods (Liu et al., 2025), self-generate labels and
train to predict these labels. A first class of predictive models uses graph reconstruction, whether by
using node/edge masking (Xie et al., 2020; Batson & Royer, 2019; Hu et al.) or using autoencoders
(Wang et al., 2017; Kipf & Welling, 2016). A second class of predictive methods are property
prediction methods, which precompute underlying graph properties as labels. Examples include
statistical properties such as k-hop connectivity (Peng et al., 2020a) or topological properties like
a meta-path (Hwang et al., 2020). Overall, there are a lack of works on property prediction-based
methods, with the majority of predictive pre-training methods falling under the former category of
graph reconstruction (Liu et al., 2025). Our method, LELM, is the first property prediction method to
use the graph Laplacian eigenvectors as a pre-training target.

B Graph Laplacian eigenvector applications

Provably minimal graph cuts: The second-lowest eigenvector ψ2, known as the Fiedler vector, can
be used to generate a provably “good" cut on a graph; in particular, for some arbitrary threshold
s ∈ R, we can define a Fiedler cut C to be:

C = ({i : ψ2(i) < s}, {i : ψ2(i) ≥ s})

On any bounded-degree n-vertex planar graph, the optimal Fiedler cut has ratio O( 1n ) (Spielman &
Teng, 1996).

Positional encodings: The low-frequency Laplacian eigenvectors naturally encode a global position
on the graph. As a result, Laplacian positional encodings (LapPE) have been used as a standard
positional encoding for graph transformer models (Dwivedi & Bresson, 2020; Rampášek et al., 2022).
In practice, directly using the Laplacian eigenvectors as positional encodings creates sign and basis
ambiguity issues, as ψi is an eigenvector of L ⇐⇒ −ψi is an eigenvector of L. Approaches to
solving this problem include designing an architecture which processes the Laplacian eigenvectors
in a sign- and basis-invariant manner (Lim et al., 2022) or defining canonical directions for the
eigenvectors (Ma et al., 2023).

Spectral GNNs: A variety of methods, known as spectral graph neural networks, use the Laplacian
eigendecomposition to learn filters in signal domain (Bo et al., 2023b). Some methods explicitly
compute or approximate the k lowest-frequency Laplacian eigenvectors, learning advanced filters on
the corresponding eigenvalues (Bruna et al., 2013; Liao et al., 2019; Bo et al., 2023a). Other methods
instead learn polynomial filters on the graph (Defferrard et al., 2016; He et al., 2022), circumventing
the expensive process of eigendecomposition by learning a k-degree polynomial function with respect
to L, i.e. p(L) = θ0I + θ1L+ · · ·+ θkL

k.

Spectral clustering: The Laplacian eigenvectors have also been used for clustering applications.
Given a set of data x1, . . . xn, Belkin & Niyogi (2001) construct a weighted graph G with n nodes
using a heat kernel. Then to generate a k-dimensional embedding, Belkin & Niyogi (2001) compute
the k-lowest eigenvectors ψ2, . . . ψk+1 (omitting the trivial eigenvector) of the graph Laplacian and
assign data point xi the embedding (ψ2(i), ψ3(i), . . . , ψk+1(i)). Shaham et al. (2018); Chen et al.
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(2022) learn this spectral map using a neural network, allowing for a natural extension of this map to
new datapoints.

C Complete algorithms

We provide a detailed overview of the eigenvector pre-training process in Algorithm 1, and an
overview of the full pre-training and fine-tuning pipeline in Algorithm 2.

Algorithm 1 Eigenvector Prediction

Input: Graph G = (V,E); augmented node features X̃ = {x̃j}; Base GNN
Output: Output Pre-trained GNN model, k lowest-frequency eigenvectors

1: for i < Pre-Training Epochs do
2: z⃗0, . . . , z⃗n ← BASEGNN(G, X̃)

3: Z⃗ ← [z⃗1, . . . , z⃗n] ∈ Rnd

4: Ũ ← MLP(Z⃗)
5: Û = QR(Ũ)

6: Loss = α · ENERGYLOSS(Û) + β · EIGVECLOSS(Û)
7: Back-propagate Loss, update model weights
8: end for
9: return BASEGNN

Algorithm 2 Structure-Informed Graph Pre-training Framework
Input: Graph G = (V,E); node features X = {xj}; training labels Y ; untrained Base GNN;

untrained Downstream Prediction Head
Output: Trained Base GNN and Downstream Prediction Head

1: X̃ ← AUGMENTFEATURES(G,X)

2: BASEGNN← EIGVECPRETRAIN(G, X̃,BASEGNN)
3: for i < Fine-tuning Epochs do
4: z⃗0, . . . , z⃗n ← BASEGNN(G, X̃)

5: Z⃗ ← [z⃗1, . . . , z⃗n]

6: Ŷ ← DOWNSTREAMHEAD(Z⃗)

7: Loss = LOSSCRITERION(Ŷ , Y )
8: Backpropagate Loss, update model weights
9: end for

10: return BASEGNN, DOWNSTREAMHEAD

D Loss function

We minimize a weighted sum of two loss functions: (1) eigenvector loss and (2) energy loss. Both
loss functions respect necessary sign and basis invariances of Laplacian eigenvectors; full proofs can
be found in F.

Energy loss, used by Shaham et al. (2018); Dwivedi et al. (2021); Ma & Zhan (2023), aims to
minimize the sum of Rayleigh quotients:

Lenergy =
1

k
Tr(Û⊤LÛ)

This loss function is motivated by the iterative optimization problem following from Courant-Fischer,
which states that the eigenvectors of L (and the eigenvectors of any Hermitian matrix) can be
equivalently expressed as solutions to the following iterative optimization problem:

ψk ∈ argmin
∥x∥=1

x⊥ψ1,...,ψk−1

x⊤Lx.
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The term x⊤Lx
x⊤x

is known as the Rayleigh quotient; because we normalize our predicted eigenvectors,
we simply treat this as x⊤Lx.

However, minimizing this loss function only minimizes the sum of the first k Rayleigh quotients,
meaning the minimizer (subject to orthogonality) is any set of vectors spanning same subspace
spanned by the k lowest frequency eigenvectors. For applications in clustering, this is reasonable,
as the exact basis in which embeddings are expressed is often irrelevant; however, to require the
model to truly predict the k-lowest eigenvectors, we must include a more explicit penalty, such as
eigenvector loss.

Eigenvector loss, used by Mishne et al. (2019), measures the difference between each Lûi and λiûi:

Leigvec =
1

k
∥(LÛ − ÛΛk)∥

Eigenvector loss enforces both the correct basis and a strict ordering (up to eigenvalue multiplicity)
on the predicted eigenvectors. Our final loss function is then:

L = α · Lenergy + β · Leigvec

E Loss function alternative expressions

Eigenvector loss, per-vector form:

Leigvec =
1

k

k∑
i=1

∥Lûi − λiûi∥

Eigenvector loss, matrix form:

Leigvec =
1

k
∥(LÛ − ÛΛk)∥

Energy loss, per-vector form:

Lenergy =
1

k

k∑
i=1

û⊤i Lûi

Energy loss, matrix form:

Lenergy =
1

k
Tr(Û⊤LÛ)

Energy loss is order-invariant and rotation invariant (see F); for applications in clustering, this is
reasonable. However, we would like the model to learn the eigenvectors in their specific order, so we
also define absolute energy loss, matching the Rayleigh quotient with the ground-truth eigenvalue:

Lenergy_abs =
1

k

k∑
i=1

|û⊤i Lûi − λi|

This can be written as, in matrix form:

Lenergy_abs =
1

k
Tr|Û⊤LÛ − Λk|

In practice, we do not show any results using absolute energy loss, and instead linearly combine
energy loss with eigenvector loss to avoid order and rotation invariance. However, absolute energy
loss remains an interesting avenue to explore.
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E.1 Orthogonality

To ensure the model does not output k copies of the trivial eigenvector, we must give the model
orthogonality constraints on the output vectors. There are again two reasonable choices here: (1)
forced orthogonality and (2) orthogonality loss.

Forced orthogonality, used in Shaham et al. (2018), imposes orthogonality on the final outputs of
the model via QR decomposition. In other words, if Û ′ is the initial output to the model, Q is an
n× k matrix with orthonormal columns, and R is a k × k upper triangular matrix, then we achieve
the final output Û as such:

QR = Û ′

Û = Q

Orthogonality loss, used in Dwivedi et al. (2021); Ma & Zhan (2023); Mishne et al. (2019) imposes
a softer constraint, encouraging orthogonality by penalizing the model for producing pairwise similar
vectors. This can be written as:

Lortho =
1

k
∥Û⊤Û − I∥

Based on preliminary testing, we found that forced orthogonality improved performance on the
eigenvector-learning, and thus use forced orthogonality in all of our experiments.

F Energy and eigenvector losses are sign and basis invariant

F.1 Definition of basis invariance

Consider any eigenspace spanned by ground truth eigenvectors [ψj , ψj+1, . . . ψj+k−1] = V . Also
recall that, by Spectral Theorem, we can decompose any vector u into a linear combination of all
eigenvectors:

u =

n∑
i=1

ciψi

Then a loss function is basis invariant if any rotation of the projected component V V ⊤u does not
change the loss incurred by u. In other words, u gets to arbitrarily “choose" with what basis it wants
to express its V V ⊤u component. Sign invariance is a special case of basis invariance, where changing
sign is equivalent to rotating over a one-dimensional subspace (note that this is slightly stronger than
the most apparent form of sign invariance, where we would say L(u) = L(−u); instead, we can flip
any component ciψi of u when decomposed in terms of eigenvectors).
Definition 1 (Basis invariance). Consider an eigenspace spanned by ground truth eigenvectors
[ψj , ψj+1, . . . ψj+k−1] = Ψ ∈ Rn×k. Consider an eigenspace rotation RΨ defined as such:

RΨ = ΨAΨ⊤ + (In −ΨΨ⊤), A ∈ SO(k)

A loss function L(u) is basis invariant if, for all such Ψ, RΨ, u ∈ Rn, we have:

L(u) = L(RΨu)

F.2 Proofs

Lemma 1 (Energy loss is basis invariant). For any RΨ and a single eigenvector prediction u ∈ Rn,
we have:

u⊤Lu = (RΨu)
⊤L(RΨu)

Proof. First note that RΨ is orthogonal; the set of all RΨ describes a subset of SO(k) where only
the k basis vectors in Ψ are rotated. Thus, we have R⊤

ΨRΨ = I .

In addition, because Ψ is an eigenspace, all columns are eigenvectors with a shared eigenvalue λ.
Then we have:

RΨL = ΨAΨ⊤L+ L−ΨΨ⊤L = λΨAΨ⊤ + L− λΨΨ⊤ = LΨAΨ⊤ + L− LΨΨ⊤ = LRΨ
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Then we have:
R⊤

ΨLRΨ = R⊤
ΨRΨL = L

Thus, for any u, we have:

u⊤Lu = u⊤R⊤
ΨLRΨu = (RΨu)

⊤L(RΨu)

2

Lemma 2 (Eigenvector loss is basis invariant). For any RΨ and a single eigenvector prediction
u ∈ Rn and ground truth eigenvalue λ, we have:

∥Lu− λu∥ = ∥L(RΨu)− λ(RΨu)∥

Proof. We know, from our proof above in Lemma 1, that RΨL = LRΨ. Because RΨ ∈ SO(k), we
have ∥RΨx∥ = ∥x∥ for any x ∈ Rn. Then we have:

∥Lu− λu∥ = ∥RΨ(Lu− λu)∥
∥Lu− λu∥ = ∥L(RΨu)− λ(RΨu)∥

2

We have an even stronger statement of invariance for energy loss: given a predicted set of k
orthogonal vectors, rotating the vectors within the same subspace does not impact loss. In other
words, a model trained on energy loss only needs to predict the correct subspace of k eigenvectors.
This is clearly not true of eigenvector loss. Depending on the application, this kind of invariance can
be good or bad.
Lemma 3 (Energy loss is rotation invariant). Let L be a Laplacian matrix and V ⊆ Rn be some
k-dimensional subspace. Suppose U = [u1, u2, . . . , uk],W = [w1, w2, . . . , wk] ∈ Rn×k are both
orthonormal bases for V . Then we have:

1

k
Tr(U⊤LU) =

1

k
Tr(W⊤LW )

Proof. Note that UU⊤ =WW⊤, as they are both orthogonal projectors for the same subspace. Then
we have, by the cyclic property of trace:

1

k
Tr(U⊤LU) =

1

k
Tr(UU⊤L) =

1

k
Tr(WW⊤L) =

1

k
Tr(W⊤LW )

2

G Node feature augmentation

G.1 Graph Diffusion Operator

The diffusion operator P of a graph G is defined as:

P = D−1A

Each entry Pij represents the probability of starting a random walk at node i and ending at node j
after one step. One can also take powers of the diffusion operator, P t. Each entry of the powered
matrix, P tij , represents the probability of starting a random walk at node i and ending at node j after t
steps

The jth wavelet operator Ψj of a graph G is defined as:

Ψj = P 2j−1

− P 2j

Ψ0 = I − P

A wavelet bank,WJ is a collection of wavelet operators such that:

WJ = {Ψj}0≤j≤J ∪ P 2J

12



G.2 Node Embeddings

Wavelet positional embeddings encode information about the relative position of each node within
the graph. We randomly select two nodes from each graph, i and j, and start dirac signals δi, δj . We
then apply these signals to each wavelet, Ψk, in our wavelet bank. The wavelet positional embedding
for node m is the mth row of the resulting matrix.

wm,k = Ψk(m, ·)

[ | |
δi δj
| |

]
wm = [wm,1 . . . wm,J ]

Diffused dirac embeddings encode information about the connectedness of each node and its
neighbors. For each node, m, we apply the mth row of the diffusion matrix P to each wavelet Ψk in
our wavelet bank. As above, the diffused dirac embedding for node m is the mth row of the resulting
matrix.

dm,k = Ψk(m, ·) P (m, ·)⊤

dm = [dm,1 . . . dm,J ]

These node embeddings are unique up to co-spectrality of the graph Laplacian.

Lemma 4 (Uniqueness up to co-spectrality). Let G1, G2 be graphs of size n with Laplacian matrices
L1, L2 respectively. Let d1m, d

2
m represent the diffused dirac embeddings for each node in G1, G2.

Then if L1 and L2 have different eigenvalues, {d1m : m ≤ n} ̸= {d2m : m ≤ n}

Proof. Consider the random-walk Laplacian of a graph: Lrw := I −D−1A = I − P . Moreover,
note that Lrw = D−1L. Observe that

LrwDv = D−1LDv

= D−1UΛU⊤Dv

= Bv for some diagonalizable matrix B with eigenvalues λi, . . . , λn

Where U = [ψ1 . . . ψn], with ψi orthonormal eigenvectors of L and Λ is the diagonal matrix of
eigenvalues λ1, . . . , λn of L. Any change to the eigenspectrum of L, clearly results in a change to
Lrw, and therefore P . Since Ψ0 = I − P , any two graphs with distinct Laplacian eigenspectra will
have distinct diffused dirac node embeddings. 2

H Alternative structural pre-training targets

Here, we formally define and provide details for the alternative pre-training targets used in section 4.

• Node degree: A node-level label representing the degree of each node

• Local clustering coefficient: A node-level label computing the local clustering coefficient
of each node. For a fixed node u, the coefficient C is given by:

C =
2|{ejk : vj , vk ∈ Nu, ejk ∈ E}|

|Nu|(|Nu| − 1)
.

• RWSE: A node-level label computing self-walk probabilities at varying step counts for the
diffusion operator (Dwivedi et al., 2021). In our experiments, we use step counts from the
interval [2, 22].

• Cycle counting: A graph-level label computing cycle counts of varying lengths. In our
experiments, we count cycles up to length 9.

• Lap Eigenvalues: A graph-level label computing the k-lowest Laplacian eigenvalues
λ1, . . . , λk. We use the same k = 6 as we do with LELM.
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Table 4: Test ROC-AUC (%, ↑) performance on 5 molecular prediction tasks when augmenting
an existing pre-training method on a GIN base model. Sup. refers to the original supervised
pre-training as implemented by Hu et al. (2019), and Sup.+ refers to supervised training with LELM.
Results for no pre-training are taken directly from Sun et al. (2022). All methods are tuned over
seven learning rates and averaged over three seeds.

Dataset BACE BBBP Tox21 ToxCast SIDER

Pretrain method MLP Head

ContextPred, Sup.+ Graph-level 79.62± 3.63 70.76± 1.64 77.94± 0.11 66.13± 0.34 60.05± 0.99
ContextPred, Sup.+ Node-wise 75.87± 3.11 68.74± 1.07 78.86± 0.06 63.78± 0.32 59.83± 0.53
ContextPred, Sup. - 84.98± 1.28 68.25± 0.48 77.44± 0.19 64.01± 0.81 62.87± 0.89
Masking, Sup.+ Graph-level 80.71± 3.84 68.33± 0.89 79 .09 ± 0 .25 65 .96 ± 0 .20 62 .41 ± 1 .77
Masking, Sup.+ Node-wise 81 .02 ± 1 .67 69 .94 ± 1 .76 79.33± 0.41 65.14± 0.44 59.38± 1.11
Masking, Sup. - 75.42± 2.64 67.36± 4.60 78.33± 0.24 64.88± 0.82 61.6± 1.78
No pre-training - 75.77± 4.29 69.62± 1.05 75.52± 0.67 63.67± 0.32 59.07± 1.13

For all alternative structural pre-training tasks, we use the same hyperparameters for GIN as displayed
in 5, with no initial features and using a standard MAE loss instead of eigenvector + energy loss. We
train on the full ZINC dataset. All structural pre-training targets are normalized to have mean 0 and
standard deviation 1 across the entire dataset.

I Enhancing an existing Graph Neural Network pre-training method

I.1 Summary

We augment the existing molecular pre-training methods proposed by Hu et al. (2019) with
eigenvector-learning. In particular, Hu et al. (2019) propose node-level pre-training tasks (context
prediction and masking) on ZINC15 (Sterling & Irwin, 2015), followed by a graph-level supervised
pre-training task on ChEMBL (Mayr et al., 2018; Gaulton et al., 2012). We augment the graph-level
supervised pre-training step by adding an additional MLP head to predict eigenvectors, and we
evaluate on five downstream datasets based on work by Sun et al. (2022).

Detailed results are shown in Table 4. Eigenvector-learning consistently improves performance for
the masking pre-training pipeline, but achieves mixed results on the context prediction pipeline.
Notably, performance for the masking pipeline was increased for all five datasets when performing
eigenvector pre-training with the graph-level MLP head.

I.2 Learning rate tuning

We keep the majority of the settings from Hu et al. (2019) the same. For downstream fine-tuning, we
tune over 7 learning rates for fair comparison according to Sun et al. (2022). We run each method
and learning rate over 3 seeds, and select the learning rate based on mean validation accuracy over all
learning rates.

I.3 Downstream datasets

We briefly list and cite the five downstream datasets here for reference. The five datasets are the
datasets chosen in Sun et al. (2022), and are a subset of the eight primary downstream datasets
evaluated in Hu et al. (2019).

• BACE: Qualitative binding results Subramanian et al. (2016)

• BBBP: Blood-brain barrier penetration Martins et al. (2012)

• Tox21: Toxicity data Mayr et al. (2016)

• Toxcast: Toxicology measurements Richard et al. (2016)

• SIDER: Database of adverse drug reactions (ADR) Kuhn et al. (2016)
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J Detailed experimental settings

A complete overview of model hyperparameters and settings can be found in Table 5. Heuristically,
the Graph-level MLP head hidden dimension is chosen to be the max # nodes multiplied by the
hidden dimension size of the base GNN. We do NOT omit the trivial eigenvector when counting
number of eigenvectors predicted.

Table 5: A comprehensive list of all model hyperparameters used during the eigenvector pre-training
step. All hyperparameters highlighted in gray are specific to eigenvector-learning, while other listed
configs reflect general GNN settings (and are set to match default values in each respective baseline
work).

Method GIN (4) GPS (4) GIN pre-training (I)

Pre-training dataset ZINC-subset (12k), ZINC (250k), QM9 (134k) ZINC-subset (12k), ZINC (250k), QM9 (134k) ZINC15 (2M), ChEMBL (456K)
Base architecture GIN Transformer/GIN GIN
# params 33543 157680 2252210
# layers of per-node feature update 3 3 2
# layers of message passing 4 4 5
Hidden dim 60 60 300
Activation fn ReLU ReLU ReLU
Dropout 0.1 0.1 0.2
Batch size 128 128 32
Learning rate 0.001 0.001 0.001
Optimizer Adam Adam Adam
Scheduler ReduceLROnPlateau ReduceLROnPlateau None

patience=5, factor=0.9 patience=20, factor=0.5 -
Pre-Training Epochs 200 100 100
Fine Tuning Epochs 500 150 100
Laplacian norm type Unnormalized Unnormalized Unnormalized
# eigenvectors predicted 6 6 5
Initial features Diffused dirac + Wavelet pos. Diffused dirac + Wavelet pos. Molecule features
MLP head type(s) Graph-level Graph-level Graph-level, per-node
Graph-level MLP max # nodes 40 40 50
MLP head # layers 5 5 1
MLP head hidden dim 2400 2400 N/A
MLP head activation fn ReLU ReLU N/A
Loss function (and coefficient) 2*Eigenvector + 1*energy 2*Eigenvector + 1*energy 0.25 * Eigenvector + 0.05 * ortho
Other features/notes Removed graphs with less than six nodes during pre-training

For our ablation experiments with node-wise MLP heads, we keep all settings the same, replacing the
graph-level MLP, which has an graph-level input dimension of 60 · 40 = 2400, with a node-level
MLP which has an input dimension and hidden dimension of 60.

For ZINC-12k and ZINC, the test/train splits are provided. The QM9 dataset is randomly split into
training, validation, and test sets with a ratio of 0.8/0.1/0.1

K Runtime and compute

All experiments were run using Yale’s Grace cluster. Runs used a single GPU each, with at least
11GB of RAM per GPU. The type of GPU varied between A100, V100, A5000, and RTX5000. For
all runs using our main pipeline (comparison against baseline models, comparison against alternative
pre-training targets, and ablation on MLP head), pre-training and fine-tuning on all downstream
tasks took between 12 to 24 hours on ZINC-full, and 36 to 48 hours on QM9. For experiments
enhancing an existing pre-training pipeline, the full pre-training process (including both unsupervised
and supervised steps) took around 24 hours, and the downstream fine-tuning across all five datasets
for a single seed and model variant took around 15 hours.

Across all results that are included in this paper, we estimate a total of 325 GPU hours spent on the
main-body experiments, and an additional 400 GPU hours spent on enhancing an existing GNN
pre-training method.

The complete experimental process consumed far more GPU hours, as we initially explored basic
models’ abilities to learn Laplacian eigenvectors, and also experimented with a variety of augmenta-
tion features before deciding on the two included in the paper. We estimate an additional 800 GPU
hours used for initial experimentation and exploration.

L Visualization of predicted eigenvectors during pre-training
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Figure 2: A comparison of predicted eigenvectors (blue) with ground-truth eigenvectors (orange) for
a single molecular graph with n = 21 nodes. These predictions were produced by the standard GIN
model on a validation example from the ZINC dataset. Node indices are sorted in increasing order of
ψ2(i), and the sign orientation of the predicted vectors ûi is chosen such that ûi · ψi ≥ 0.
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TAG-DS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims of the abstract and introduction are that we developed a novel GNN
pre-training method that improves performance on structure-based tasks. The empirical
results demonstrate the improvements, and the theoretical results justify the design of the
framework.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper includes a limitations section, section 5, that discusses the question
of whether the framework is suitable for transfer learning.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All proofs in the paper include the full set of assumptions and all proofs are
complete and correct. Proofs are included in sections F and G
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Code is provided in supplemental material and data is publicly accessible.
Moreover, all experimental settings are provided in supplemental material as well for ease
of reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code is provided as part of supplementary material and all data is publicly
accessible.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details, including data splits, hyperparameters, optimizer,
network depth, etc., are provided in the supplemental material in section J.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a complete overview of compute resources used and time of
execution in the appendix in section K.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Paper does not violate any part of Neurips Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The framework developed in this paper is not tied to any particular application.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

20

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: All models are trained publicly accessible molecular property prediction
datasets that pose no safety risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used for core methods in this research. The only use of LLMs
was for checking grammar in the paper.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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