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Abstract

Federated Reinforcement Learning (FRL) enables agents to collaboratively train1

models across distributed environments without sharing raw data. However, exist-2

ing quantization methods like QuARL, ReLeQ, and VQQL struggle in environ-3

ments with varying state transitions and rewards, affecting model robustness. In this4

paper, we introduce Environment-based Adaptive Model Quantization (EAMQ),5

a method that dynamically adjusts compression ratios based on environmental6

variability. EAMQ uses a reward-weighted sensitivity analysis to assign lower7

compression ratios to sensitive parameters in sparse reward environments while8

applying higher compression in dense reward settings. We also propose a learn-9

able quantization technique that adapts based on a Temporal Difference (TD) loss10

function. Experiments show that EAMQ outperforms traditional methods across di-11

verse environments, reducing communication and storage costs while maintaining12

performance, even under heterogeneous conditions.13

1 Introduction14

Federated Reinforcement Learning (FRL) [7] is a decentralized approach where multiple agents15

collaboratively train a reinforcement learning model across distributed environments without sharing16

raw data. FRL has been applied in real-world scenarios such as smart grid management, multi-agent17

large language models, and the Internet of Things (IoT) [11]. Model quantization, such as QuARL [4],18

ReLeQ [1], and VQQL [2], have been developed to compress models during reinforcement learning19

(RL) training in order to reduce the communication and storage costs. However, traditional algorithms20

perform badly when FRL is applied in environmental heterogeneity situations [3], because they don’t21

consider the influence of the changing environments. Models trained in different environments have22

different robustness to quantization, models in some environments may be insensitive to higher23

compression rates, while others rely heavily on accurate parameter representations. In this work, we24

focus on quantizing model parameters during the training of several FRL functions [3] considering25

the changing environments. To the best of our knowledge, this is the first effort to apply model26

quantization specifically in environmental heterogeneity situations.27

In this paper, we simulate the packet loss conditions in a Federated Reinforcement Learning (FRL)28

system and propose a novel model compression algorithm called "Environment-based Adaptive29

Model Quantization (EAMQ)", inspired by learnable quantization techniques from [6]. Our approach30

first identifies the sensitivity of model parameters during reinforcement learning training in different31

environments. Parameters that exhibit significant variation are classified as sensitive and assigned a32

lower compression ratio, preserving higher precision by quantizing from float32 to int8, while less33

sensitive parameters are compressed more aggressively, for instance, from float32 to int4. Additionally,34

we introduce a learnable quantization mechanism that adaptively adjusts the quantization range by35
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minimizing the environment-based Temporal Difference loss function which will be adaptively36

adjusted according to the changing environment. [9].37

Our main contributions are as follows: First, we address the impact of environmental heterogeneity38

on model quantization by developing a compression ratio allocation strategy tailored to different39

environments. Second, we propose a novel learnable quantization algorithm that dynamically adjusts40

the quantization range, along with an environment-aware Temporal Difference loss function that41

accounts for both RL performance and environmental variability. Third, we adapt traditional model42

quantization algorithms for heterogeneous environments and compare them with our proposed EAMQ43

algorithm, establishing a new baseline for future research in model quantization under environmental44

heterogeneity. Fourth, we deployed our FRL algorithm on a real-world wireless distributed system to45

evaluate its performance, bridging the gap between theoretical analysis and practical application [5].46

2 Method47

2.1 Reward-Weighted Sensitivity Based on Environment Reward Distribution48

To assign adaptive quantization compression rates based on environment reward distribution dif-49

ferences, we calculate a reward-weighted variance for each parameter. The goal is to assign lower50

compression rates (e.g., float32 to int4) for parameters that are sensitive in sparse reward environ-51

ments, and higher compression rates (e.g., float32 to int8) for parameters that are less sensitive in52

dense reward environments. For each environment e, we first compute the average reward across all53

time steps:54

Re =
1

T

T∑
t=1

ret

where ret is the reward at time step t in environment e, and T is the total number of time steps. Next,55

we define the reward sparsity factor αe for each environment based on the inverse of the average56

reward:57

αe =
1

Re + ϵ

where ϵ is a small constant added to avoid division by zero. A higher αe indicates a more sparse58

reward environment, while a lower αe indicates a dense reward environment. Using the reward59

sparsity factor αe, we compute the reward-weighted variance VarR(θk) for each parameter θk across60

all environments:61

VarR(θk) =
1

n

E∑
e=1

αe · (θek − µk)
2

where θek is the value of parameter θk in environment e, µk is the mean value of θk across all62

environments, and E is the total number of environments.63

Finally, we assign compression rates based on the reward-weighted sensitivity. Parameters with64

higher reward-weighted variance are assigned lower compression rates (e.g., float32 to int4), while65

parameters with lower reward-weighted variance are assigned higher compression rates (e.g., float3266

to int8).67

2.2 Learnable model quantization68

Symmetric linear quantization is a widely used data quantization technique [13], where the quantiza-69

tion range is centered around zero, treating positive and negative values symmetrically. In this method,70

the mapping between original and quantized values follows a linear relationship. However, a key71

limitation of traditional symmetric linear quantization is that the quantization range is predetermined72

before quantization. This fixed range may not be optimal for preserving model performance across73

all data distributions, as it may fail to adapt to the specific characteristics of the data.74

In this algorithm, we propose a novel learnable linear quantization that optimizes the quantization75

range for each data using a loss function called the "environment-based Temporal Difference (TD)76

loss function," which can be adjusted based on different environments. The formula for this loss77

function is:78
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Ltotal = Ltask + λenvLquant + λregLreg (1)

Where Ltask is the standard loss in reinforcement learning (e.g., TD error), Lquant is the difference79

between the original and quantized parameters using discrete cosine distance, and Lreg is the regular-80

ization term introduced to ensure stable quantization decisions across training iterations.81

The regularization term Lreg is defined as:82

Lreg =
∑
k

(
θcurrent
k − θprevious

k

)2

Where θcurrent
k represents the parameter values in the current iteration, and θprevious

k represents the83

parameter values from the previous iteration.84

In addition, λenv is a weight dynamically adjusted based on the environment’s sensitivity, and λreg is85

the weight assigned to the regularization term.86

The environment-adaptive weight λenv,t is calculated as:87

λenv,t = α ·
(

δt
max(δ)

)
+ β ·

(
∆G

max(∆G)

)
(2)

Where δt is the TD error at step t, representing the difference between predicted and actual rewards;88

∆G is the cumulative reward drop rate across environments; and α and β are hyperparameters to89

balance between TD error and cumulative reward drop.90

3 Experiments91

3.1 Experiment Setting92

In this experiment, we will first use tabular environments to verify the result of our EAMQ algorithm93

on quantifying the model in PAvg and QAvg. Next, we evaluate the algorithm’s effectiveness in deep94

reinforcement learning tasks, specifically in DQNAvg. The functions and environment configurations95

are consistent with those used in [3]. We compare our results against the following baselines:96

QuARL [4], ReLeQ [1], QFL [12], Fixar [10], FedDQ [8], and VQQL [2]. All model quantization97

algorithms are evaluated under the same compression ratios for a fair comparison. The original98

models are in float32 format, and we apply different quantization levels: int16 (50% compression),99

int8 (75% compression), int6 (81.25% compression), and int4 (87.5% compression). For the 81.25%100

compression ratio, our EAMQ method quantizes half of the data to int8 and the other half to int4,101

while the other algorithms quantize all data directly to int6.102

In our experiments, we apply quantization to either the Q-table (QAvg) or the policy function103

(PAvg), using two environments: RandomMDPs and WindyCliffs. To simulate varying degrees of104

heterogeneity across environments, we introduce the parameter κ. As κ increases, the environments105

become more diverse, reflecting greater dissimilarity in state transition probabilities and reward106

distributions. Tables 7, 7, 4, and 6 demonstrate that, across different environments and compression107

ratios, our quantization algorithm consistently outperforms traditional model quantization methods.108

For the deep reinforcement learning environment, we quantify the Deep Q-Network (DQN) in two109

scenarios: Acrobot and CartPole. The performance of DQNAvg is evaluated over 20 episodes. The110

curve illustrates the generation objective value, which represents the averaged performance across111

10 environments with newly generated state transitions. A higher objective value indicates better112

performance. Our results demonstrate that EAMQ outperforms other model quantization algorithms113

in terms of overall performance across these environments.114

3.2 Ablation Study and Analysis115

In this section, we conducted ablation experiments to evaluate the effectiveness of our proposed116

algorithms. Figures 2a and 2b demonstrate that at a compression ratio of 81.25%, applying a117
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Table 1: Q-Avg over RandomMDPs for different compression ratios under κ = 0.4 and κ = 0.6
larger κ indicates environments with larger environment heterogeneity. The number stands for the
average cumulative reward of the algorithm, higher is better

κ = 0.4 κ = 0.6

Compression Rate 50% 75% 81.25% 87.5% 50% 75% 81.25% 87.5%

QPI 27.88 25.99 23.23 20.89 27.48 25.29 23.03 20.79
QuARL 29.01 26.17 25.33 21.34 28.01 26.07 25.33 21.34
ReLeA 26.58 25.52 24.12 22.99 26.58 24.52 23.02 21.19
VAQL 28.89 27.05 26.33 23.22 27.88 26.15 25.47 23.12
VOQL 29.87 28.57 27.91 23.21 28.86 27.47 26.92 25.25
EAMQ 34.05 33.80 32.15 30.82 34.14 32.80 31.80 30.80

Table 2: P-Avg over WindyCliffs at a compression ratio of 81.25% under κ = 0.6 and κ = 0.8 in an
FRL system with a high packet loss wireless network.

κ = 0.6 κ = 0.8

Loss package Rate 50% 70% 80% 90% 50% 70% 80% 90%

No quantization 106.52 95.51 93.11 90.08 10.58 10.72 9.21 9.19
ReLeA 116.52 113.51 104.13 102.05 15.58 14.72 11.91 10.21
VAQL 122.77 116.05 105.31 103.01 28.01 25.95 24.47 23.02
VOQL 121.17 114.51 109.98 105.02 20.06 17.07 14.82 14.15
EAMQ 135.57 133.05 127.14 121.87 31.05 27.28 25.19 23.48

Table 3: P-Avg over RandomMDPs for different compression ratios under κ = 0.4 and κ = 0.6
larger κ indicates environments with larger environment heterogeneity. The number stands for the
average cumulative reward of the algorithm, higher is better

κ = 0.4 κ = 0.6

Compression Rate 50% 75% 81.25% 87.5% 50% 75% 81.25% 87.5%

QPI 25.18 24.89 22.21 20.81 26.48 22.29 21.03 19.79
QuARL 26.21 25.16 24.32 21.24 28.01 26.07 25.03 21.04
ReLeA 26.52 25.51 24.11 23.98 25.58 24.82 23.00 20.19
VAQL 27.82 26.05 25.39 24.21 28.01 25.95 24.47 23.02
VOQL 28.17 27.51 26.98 25.22 28.06 27.07 26.82 25.15
EAMQ 33.58 32.07 30.15 29.83 32.14 31.81 30.79 29.80

Table 4: Q-Avg over WindyCliffs for different compression ratios under κ = 0.6 and κ = 0.8 larger
κ indicates environments with larger environment heterogeneity. The number stands for the average
cumulative reward of the algorithm, higher is better

κ = 0.6 κ = 0.8

Compression Rate 50% 75% 81.25% 87.5% 50% 75% 81.25% 87.5%

QPI 125.18 124.89 122.21 120.81 126.48 122.29 121.03 119.79
QuARL 126.21 125.16 124.32 121.24 128.01 126.07 125.03 118.01
ReLeA 126.52 125.41 124.01 123.68 125.58 124.82 123.02 119.09
VAQL 127.81 126.15 125.09 123.19 128.01 125.95 124.47 123.02
VOQL 128.87 127.53 126.08 125.02 128.06 127.07 126.82 125.05
EAMQ 133.96 132.07 130.15 129.83 133.65 131.81 130.79 129.81
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Table 5: P-Avg over WindyCliffs for different compression ratios under κ = 0.6 and κ = 0.8 larger
κ indicates environments with larger environment heterogeneity. The number stands for the average
cumulative reward of the algorithm, higher is better

κ = 0.6 κ = 0.8

Compression Rate 50% 75% 81.25% 87.5% 50% 75% 81.25% 87.5%

QPI 125.18 124.89 122.21 120.01 126.08 122.19 121.93 119.39
QuARL 126.21 125.16 124.32 21.44 128.01 126.07 125.03 121.04
ReLeA 126.52 125.51 124.11 123.08 125.58 124.72 123.91 121.29
VAQL 127.82 126.05 125.39 124.01 28.01 25.95 24.47 23.02
VOQL 128.17 127.51 126.98 125.12 28.06 27.07 26.82 25.15
EAMQ 139.58 132.07 131.15 131.89 32.14 31.81 30.79 29.80
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(a) DQNAvg in Acrobot environment
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(b) DQNAvg in CartPole environment

Figure 1: Performance of DQNAvg in different environments. The y-axis shows the cumulative
reward of the agents. E=2 means the agents’ models are averaged every 2 episodes. Different colors
show the performance of the algorithm after quantification by different quantization algorithms, the
standard error (a measure of variability or uncertainty) is depicted as a shadow around the line, with
the shadow width being 1.65 times the standard error.

uniform compression ratio across all data yields inferior results compared to utilizing Reward-118

Weighted Sensitivity for adaptive compression allocation, as shown in Figure 7, our learnable model119

quantization method significantly outperforms traditional symmetric linear quantization.120

Table 2 demonstrates that FRL performance declines in high packet loss networks due to information121

loss during communication, a significant challenge in real-world IoT systems [10]. We implemented122

our algorithm in a real wireless distributed system, controlling the packet loss ratio to simulate com-123

munication loss between agents in different environments. Results show that our model quantization124

algorithm enhances FRL robustness in poor network conditions, highlighting both the effectiveness125

and efficiency of our approach.126

4 Conclusion and Future Work127

In this paper, we introduced Environment-based Adaptive Model Quantization (EAMQ) to tackle the128

challenges of model quantization in heterogeneous environments within Federated Reinforcement129

Learning (FRL). EAMQ uses reward-weighted sensitivity and a learnable quantization method to130

adapt compression rates based on the environment, ensuring strong performance across different131

scenarios. Our experiments show that EAMQ outperforms traditional methods, reducing commu-132

nication costs while preserving or improving model effectiveness. We hope our algorithm will133

encourage further exploration of Federated Reinforcement Learning model quantization in hetero-134

geneous environments, as a promising and innovative direction for advancing model compression135

techniques.136
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Figure 2: Performance of DQNAvg in different environments. We compare the performance in
the same compression ratio between we not using Reward-Weighted Sensitivity analysis and using
Reward-Weighted Sensitivity analysis

Table 6: P-Avg over WindyCliffs for different compression ratios under κ = 0.6 and κ = 0.8 larger
κ indicates environments with larger environment heterogeneity. The number stands for the average
cumulative reward of the algorithm, higher is better

κ = 0.6 κ = 0.8

Compression Rate 50% 75% 81.25% 87.5% 50% 75% 81.25% 87.5%

QPI 125.18 124.89 122.21 120.01 26.08 22.19 21.93 19.39
QuARL 126.21 125.16 124.32 21.44 26.01 26.07 25.03 21.04
ReLeA 126.52 125.51 124.11 123.08 25.58 24.72 23.91 21.29
VAQL 127.82 126.05 125.39 124.01 28.01 25.95 24.47 23.02
VOQL 128.17 127.51 126.98 125.12 28.06 27.07 26.82 25.15
EAMQ 139.58 132.07 131.15 131.89 32.14 31.81 30.79 29.80

Table 7: Q-Avg and P-Avg over RandomMDPs for different compression ratios under κ = 0.4
and κ = 0.6, the result we use Learnable model quantization or directly using Symmetric linear
quantization

κ = 0.4 κ = 0.6

Compression Rate(Q-Avg) 50% 75% 81.25% 87.5% 50% 75% 81.25% 87.5%

Linear quantization 26.17 26.07 25.01 21.21 25.86 24.47 22.02 21.15
EAMQ(ours) 33.58 32.07 30.15 29.83 32.14 31.81 30.79 29.80

κ = 0.4 κ = 0.6

Compression Rate(P-Avg) 50% 75% 81.25% 87.5% 50% 75% 81.25% 87.5%

Linear quantization 29.17 28.07 28.01 22.21 27.86 26.47 26.02 24.15
EAMQ(ours) 34.05 33.80 32.15 30.82 34.14 32.80 31.80 30.80
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A Algorithm175

B Detail of Q-Avg function176

B.1 Q-Avg Algorithm in Federated Reinforcement Learning177

In this paper, we apply the Q-Avg algorithm, a variant of the Q-learning algorithm adapted for178

Federated Reinforcement Learning (FRL). Q-Avg is designed to address the challenges of training179

multiple agents across distributed and heterogeneous environments by periodically averaging the180

Q-value updates from each agent. This approach aims to reduce communication costs and improve181

the overall performance of the system in scenarios with varying environment dynamics.182
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Algorithm 1 Gradient Descent for Quantization Range Optimization with Regularization and Envi-
ronment Sensitivity
Require: Initialized quantization ranges S = {S1, S2, . . . , Sm}, learning rate η, number of iterations
T , λreg, λenv.

1: Initialize parameters Sk for each parameter k
2: for each iteration t = 1→ T do
3: Compute task loss Ltask
4: Quantize parameters using current quantization ranges Sk

5: Compute quantization loss Lquant
6: Compute regularization term:

Lreg =
∑
k

(
θcurrent
k − θprevious

k

)2

7: Compute total loss:
Ltotal = Ltask + λenvLquant + λregLreg

8: for each parameter Sk do
9: Compute gradient ∂Ltotal

∂Sk

10: Update quantization range:

Sk ← Sk − η
∂Ltotal

∂Sk

11: end for
12: end for
13: Return optimized quantization ranges S

Q-Value Averaging: In each environment, agents independently learn Q-values by interacting with183

the environment. After a set number of episodes, the Q-value updates from each agent are transmitted184

to a central server where the **Q-Avg** algorithm computes the averaged Q-values across all185

participating agents. This ensures that all agents benefit from each other’s learning experiences, even186

in environments with heterogeneous state transitions and reward functions. The Q-Avg formula is187

given by:188

Qavg(s, a) =
1

N

N∑
i=1

Qi(s, a) (3)

where N is the number of agents, Qi(s, a) is the Q-value of agent i for state s and action a, and189

Qavg(s, a) represents the averaged Q-value after aggregation.190

Handling Heterogeneous Environments: One of the key advantages of Q-Avg is its ability191

to handle heterogeneous environments. In standard reinforcement learning, models are trained192

in homogeneous environments, but in FRL, agents operate in environments with different state193

transition dynamics and reward structures. To address this, Q-Avg adapts by incorporating the agents’194

experiences across diverse environments. This allows agents to generalize better to new environments195

and ensures robustness in learning.196

Communication Efficiency: A major challenge in FRL is the communication overhead due to197

frequent parameter updates. Q-Avg mitigates this by reducing the frequency of communication198

between agents and the server, only averaging the Q-values after a predefined number of episodes.199

By doing so, Q-Avg minimizes the communication costs while still benefiting from collaborative200

learning across agents.201

Algorithm Overview: The overall steps of the Q-Avg algorithm can be summarized as follows:202

1. Initialization: Each agent initializes its Q-table Qi(s, a) and begins interacting with its203

local environment.204
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2. Learning: Each agent updates its Q-values using the standard Q-learning update rule:205

Qi(s, a)← Qi(s, a) + α
(
r + γmax

a′
Qi(s

′, a′)−Qi(s, a)
)

(4)

where α is the learning rate, r is the reward, and γ is the discount factor.206

3. Averaging: After a fixed number of episodes, each agent sends its updated Q-values to the207

central server, which computes the average Q-values:208

Qavg(s, a) =
1

N

N∑
i=1

Qi(s, a) (5)

4. Update: The central server sends the averaged Q-values Qavg(s, a) back to the agents,209

which update their Q-tables accordingly.210

5. Reiteration: The process continues, with agents periodically sending their updated Q-values211

for averaging and receiving the averaged Q-values from the server.212

Advantages213

• Collaborative Learning: Q-Avg enables agents to leverage the experiences of other agents,214

improving overall learning performance in federated environments.215

• Scalability: The algorithm scales efficiently with the number of agents, as the Q-value216

averaging process is simple and communication is minimized.217

• Adaptability: Q-Avg is well-suited to handle heterogeneous environments, making it robust218

in real-world scenarios where environment dynamics vary between agents.219

Overall, Q-Avg offers a simple yet effective solution for federated Q-learning, particularly in scenarios220

where communication costs and environment diversity are key challenges.221

C Detail of P-Avg function222

C.1 P-Avg Algorithm in Federated Reinforcement Learning223

In this paper, we utilize the **P-Avg** algorithm, a federated averaging approach specifically224

designed for policy-based reinforcement learning in distributed environments. P-Avg focuses on225

averaging policy parameters across multiple agents, allowing them to collaboratively improve their226

policies while interacting with heterogeneous environments. This method is particularly useful for227

handling policy gradients in Federated Reinforcement Learning (FRL), where agents work in diverse228

environments and need to share their policy updates efficiently.229

Policy Averaging: The core idea of P-Avg is to periodically average the policy parameters from each230

agent to form a global policy. Each agent learns its local policy by interacting with its environment,231

and after a set number of episodes, the policies are shared with a central server for averaging. The232

**P-Avg** update rule is as follows:233

πavg =
1

N

N∑
i=1

πi (6)

where N is the number of agents, πi represents the policy parameters of agent i, and πavg is the234

averaged policy after aggregation. This global policy is then distributed back to the agents for further235

updates.236

Handling Environmental Heterogeneity: P-Avg is particularly effective in **heterogeneous237

environments**, where each agent operates in a different environment with its own dynamics and238

reward structures. Since each agent learns a policy suited to its local environment, averaging these239

policies helps agents generalize across different environments. This approach ensures that all agents240

benefit from each other’s experiences, improving the robustness of the global policy.241
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Policy Gradient Updates: In P-Avg, each agent updates its local policy parameters using the242

**policy gradient** method. For each agent i, the policy is updated using the following rule:243

θi ← θi + α∇θiJ(θi) (7)

where θi are the policy parameters for agent i, α is the learning rate, and ∇θiJ(θi) is the policy244

gradient computed based on the agent’s experience. After a fixed number of updates, the local policies245

are shared and averaged, as described earlier.246

Algorithm Overview: The overall process of P-Avg can be summarized as follows:247

1. Initialization: Each agent initializes its policy parameters πi and begins interacting with its248

local environment.249

2. Policy Update: Each agent updates its policy using the policy gradient method:250

θi ← θi + α∇θiJ(θi)

where θi are the policy parameters, and J(θi) is the objective function.251

3. Averaging: After a predefined number of episodes, each agent sends its updated policy252

parameters πi to the central server, which computes the averaged policy:253

πavg =
1

N

N∑
i=1

πi

4. Update: The central server sends the averaged policy πavg back to the agents, which update254

their local policies accordingly.255

5. Reiteration: The process repeats, with agents periodically sending their policy updates for256

aggregation and receiving the averaged policy from the server.257

Communication Efficiency: Like Q-Avg, P-Avg reduces communication costs by minimizing the258

frequency of parameter exchanges between agents and the server. Instead of continuously transmitting259

policy updates, agents only communicate their policies after a set number of episodes, reducing the260

overall communication overhead in large-scale distributed systems.261

Advantages262

• Collaborative Learning: P-Avg enables agents to share and combine their policies, lever-263

aging the collective knowledge from diverse environments.264

• Adaptability to Heterogeneous Environments: By averaging policies across agents265

working in different environments, P-Avg improves the generalization of policies to unseen266

or diverse conditions.267

• Scalability: The algorithm scales efficiently with the number of agents, as policy averaging268

is computationally lightweight and reduces the need for frequent communication.269

Overall, P-Avg provides a scalable and efficient solution for policy-based reinforcement learning270

in federated settings, particularly when agents operate in environments with varying dynamics and271

reward structures.272

D Detail of DQNAvg function273

D.1 DQNAvg Algorithm in Federated Reinforcement Learning274

The **DQNAvg** algorithm is an adaptation of the standard Deep Q-Network (DQN) for Feder-275

ated Reinforcement Learning (FRL) environments, where multiple agents learn independently in276

distributed environments and periodically share their model parameters with a central server for277

aggregation. DQNAvg is particularly useful in continuous action spaces, where learning a robust278

policy across heterogeneous environments is crucial for improving performance while reducing279

communication costs.280
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Deep Q-Network (DQN): DQN is a model-free reinforcement learning algorithm where a neural281

network is used to approximate the Q-values Q(s, a) for each state-action pair. The network is trained282

to minimize the difference between the predicted Q-values and the target Q-values, which are based283

on the Bellman equation:284

Q(s, a)← Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
(8)

where α is the learning rate, γ is the discount factor, r is the reward, and s′, a′ represent the next state285

and action, respectively.286

Averaging Q-Networks: In DQNAvg, each agent trains its own local Q-network based on its287

interactions with the environment. After a certain number of episodes, the local Q-networks are sent288

to the central server, where they are aggregated to form a global Q-network. This global Q-network289

is then distributed back to the agents for further training, ensuring that agents benefit from the290

experiences of others.291

The aggregation of Q-networks follows a simple averaging scheme:292

Qavg(s, a) =
1

N

N∑
i=1

Qi(s, a) (9)

where N is the number of agents, Qi(s, a) represents the Q-values of agent i, and Qavg(s, a) is the293

averaged Q-value for each state-action pair after aggregation.294

Handling Environmental Heterogeneity: DQNAvg is designed to handle **heterogeneous envi-295

ronments**, where each agent operates in an environment with different state-transition dynamics296

and reward functions. By averaging the Q-values across agents, DQNAvg ensures that the global297

Q-network reflects experiences from diverse environments, improving the generalization of policies298

to new and unseen conditions.299

The key advantage of this approach is that agents can learn robust policies even in environments with300

varying dynamics, as the averaging process incorporates knowledge from multiple sources.301

Experience Replay: Each agent in DQNAvg uses an **experience replay buffer** to store past302

transitions, which are sampled randomly to break the correlation between consecutive experiences.303

The Q-network is updated using mini-batches of experiences from the replay buffer, ensuring more304

stable and efficient learning.305

Algorithm Overview: The main steps of the DQNAvg algorithm can be summarized as follows:306

1. Initialization: Each agent initializes its Q-network Qi and its experience replay buffer.307

2. Learning: Each agent interacts with its local environment, updates its Q-network using the308

DQN update rule, and stores experiences in the replay buffer:309

Qi(s, a)← Qi(s, a) + α
(
r + γmax

a′
Qi(s

′, a′)−Qi(s, a)
)

3. Averaging: After a fixed number of episodes, each agent sends its Q-network Qi to the310

central server. The server computes the average Q-network as:311

Qavg(s, a) =
1

N

N∑
i=1

Qi(s, a)

4. Update: The averaged Q-network Qavg is sent back to all agents, which update their local312

Q-networks accordingly.313

5. Reiteration: The process continues with agents periodically sending their Q-networks for314

aggregation and receiving the averaged Q-network for further training.315
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Communication Efficiency: To reduce communication overhead, DQNAvg only averages Q-316

networks after a predefined number of episodes. This minimizes the frequency of model transmissions,317

significantly lowering communication costs in federated settings, especially when applied to large-318

scale environments.319

Advantages:320

• Collaborative Learning: DQNAvg allows agents to leverage the experiences of others,321

enabling faster and more robust learning in distributed environments.322

• Adaptability to Heterogeneous Environments: By averaging Q-values across diverse323

environments, DQNAvg ensures that the global model can generalize to a wide range of324

conditions.325

• Reduced Communication Costs: The periodic averaging of Q-networks ensures that326

communication is minimized, making DQNAvg well-suited for large-scale federated learning327

applications.328

Overall, DQNAvg extends the traditional DQN approach to a federated learning framework, allowing329

multiple agents to collaborate and learn efficiently across diverse environments while reducing330

communication costs and improving policy generalization.331
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