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ABSTRACT

The core issue in semi-supervised learning (SSL) lies in how to effectively lever-
age unlabeled data, whereas most existing methods usually concentrate on the
utilization of high-confidence samples yet seldom fully explore the usage of low-
confidence samples. Early SSL methods mostly require low-confidence samples
to optimize the same loss function as high-confidence samples, but this setting
might largely challenge the low-confidence samples especially at the early train-
ing stage. In this paper, we aim to utilize low-confidence samples in a novel
way, which is realized by our proposed mutex-based consistency regularization,
namely MutexMatch. To be specific, the high-confidence samples are required
to exactly predict “What it is” by conventional True-Positive Classifier, while the
low-confidence samples, for a much simpler goal, are employed to predict “What
it is not” by True-Negative Classifier with ease. In this way, we not only mitigate
the pseudo-labeling errors but also make full use of the low-confidence unlabeled
data in the training stage. The proposed MutexMatch achieves superior perfor-
mance on multiple benchmark datasets, i.e., CIFAR-10, CIFAR-100, SVHN, and
STL-10. Particularly, our method shows further superiority under few quantities
of labeled data, e.g., 91.77% accuracy with only 20 labeled data on CIFAR-10.

1 INTRODUCTION

Aiming to escape from time-consuming and laborious labeling tasks, semi-supervised learning
(SSL) (Chapelle et al., 2009; Zhu, 2017) has been a longstanding yet important direction to leverage
a large quantity of unlabeled data along with few labeled data during training. Recent SSL models
could be categorized into consistency regularization based or entropy minimization based methods
where the utilization of unlabeled data is crucial in both. In particular, consistency regularization
based methods like (Laine & Aila, 2016; Tarvainen & Valpola, 2017) intend to utilize all unlabeled
data together with the supervision on labeled data, which is at the risk of strong confirmation bias.
Although recent holistic methods such as Sohn et al. (2020) realize consistency regularization by
combining entropy minimization via pseudo labeling, a fatal limitation is that they set a confidence
threshold to control whether unlabeled data should participate in training, preventing low-confidence
unlabeled data from being effectively involved. Different from consistency based methods, recent
entropy minimization based methods Rizve et al. (2021) employ pseudo labeling to iteratively in-
corporate a part of low-confidence samples into training process. However, in this way, in addition
to possible error accumulation, some low-confidence unlabeled samples are still neglected. In a
nutshell, the waste of unlabeled samples with low confidence causes the model difficult to learn the
potential pattern from all unlabeled data, which might deteriorate the final performance.

Being aware of the aforementioned limitations, we try to answer — if we could treat these low-
confidence unlabeled samples in a novel way? As shown in Figure 1, imaging a low-confidence
sample with its actual label of a “horse”, it might be hard for a trained model to propose an accurate
prediction, i.e., “it is a horse”. On the contrary, it can be much easier for the model to “guess what
it is not, e.g., it is not a cat”. This drives us to consider a straightforward yet feasible direction
— for low-confidence samples, can we design a paradigm to exclude “what it is not” to benefit
the learning of “what it is”. Intuitively, by introducing this paradigm, the space of searching the
optimal classifier could be largely reduced since the most impossible classes are initially excluded.
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Figure 1: Graphical explanations of the “Ex-
clusion Method” for classification task. For
an image, the proposed method excludes some
wrong classes via different images of the same
class, so as to eliminate the wrong answers.

That is to say, for a low-confidence image, it is
unnecessary to get a certain class, and its comple-
mentary pseudo-label is easier to obtain. Thus, we
could learn less error information when using un-
labeled data with low confidence.

As aforementioned, to leverage all unlabeled data
in a novel way, we propose MutexMatch, a new
framework of SSL using mutex-based consistency
regularization. We utilize True-Positive Classi-
fier (TPC): to predict “What it is”, and True-
Negative Classifier (TNC): to predict “What it is
not”, which is designed to learn feature representa-
tion of unlabeled data from a mutex perspective.
An improvement of MutexMatch compared with
the existing methods is that it allows low-confidence unlabeled samples to participate in training
by optimizing a much simpler objective compared with that of high-confidence unlabeled samples.
Inspired by FixMatch (Sohn et al., 2020), the weakly-augmented unlabeled samples are used to gen-
erate pseudo-labels, and we use RandAugument (Cubuk et al., 2020) for strong augmentation. We
set a threshold to control the high-confidence portion and low-confidence portion of pseudo-labels.
In high-confidence portion and low-confidence portion, we enforce the consistency regularization
on the output of TPC and TNC, respectively. A diagram of MutexMatch is shown in Figure 2.

In this work, the key contributions include three aspects: (1) We propose mutex-based consistency
regularization for SSL, which can make full use of unlabeled data in a more effective way; (2) We
use two classifiers (TPC and TNC) to construct MutexMatch, a novel framework using pseudo-
label and complementary label to learn an informative representation of unlabeled samples; (3) By
exploiting all unlabeled data, we can obtain better classification results in a label-scarce setting than
recently-proposed SSL algorithm. For example, on the most commonly-studied SSL benchmark
CIFAR-10, the accuracy of MutexMatch using only 20 labels can reach up to 91.77±2.60%.

2 RELATED WORK

Consistency regularization is a significant branch of recent state-of-the-art (SOTA) SSL methods,
which is proposed in Bachman et al. (2014). Such methods encourage the classifier to output same
class probability distribution after different versions of augmentation for the same unlabeled data.
Generally, the consistency regularization based models are trained with unlabeled data using the
loss function: ‖p(y|α(x) − p(y|α(x)))‖22, where x is the input image and α(·) is an kind of trans-
formation that does not change the image label. Particularly, α(·) can adopt different augmentation
methods, e.g., Mixup (Zhang et al., 2017) in Berthelot et al. (2019), RandAugment (Sohn et al.,
2020) in Sohn et al. (2020) and CTAugment in Berthelot et al. (2020). Laine & Aila (2016) enforces
a loss of consistency on the predictions of two augmented variants of unlabeled data. In Tarvainen &
Valpola (2017), a teacher model is maintained to generate more stable targets for unlabeled data, and
the mean squared error is used to encourage same predictions of the student and teacher models. Xie
et al. (2020) adopts automatic augmentation for data perturbation and enforces a loss of consistency
by the KL divergence. Recently, some holistic methods (Sohn et al., 2020; Berthelot et al., 2020)
have been proposed to combine consistency regularization with pseudo-labeling for better SSL per-
formance. Differently, in MutexMatch, in addition to enforcing prediction consistency on TPC, we
propose a novel mutex-based consistency to effectively leverage all unlabeled samples.

Pseudo-labeling is widely leveraged for entropy minimization by constructing one-hot labels from
predictions of unlabeled data with high-confidence and makes use of them based on cross-entropy
loss (Lee et al., 2013; Shi et al., 2018; Sohn et al., 2020; Xie et al., 2020). However, these methods
have a significant limitation, i.e., using confidence thresholds to select pseudo-labels results in that
all unlabeled data is not sufficiently exploited. Recent pseudo-labeling based method (Rizve et al.,
2021) proposes an uncertainty-aware pseudo-label selection framework to use both high and low-
confidence samples. However, it introduces two thresholds to control the pseudo-label generation,
thus some unlabeled samples are still not utilized.
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Figure 2: Diagram of the proposed MutexMatch. Given a batch of unlabeled samples, TPC P uses
their weakly-augmented variants to generate pseudo-labels. Then we adopt the classes with the
lowest confidence as the complementary labels to train TNC N separately. Meanwhile, TPC and
TNC are used for mutex-based consistency regularization in the high and low-confidence portion of
TPC’s predictions respectively. f denotes output features and p, r denote predictions of TPC and
TNC. Superscripts w and s represent corresponding outputs for the weakly-augmented variant and
strongly-augmented variant, respectively.

Complementary label is used to help the model learn which class the input image does not belong
to (Ishida et al., 2017; 2018; Yu et al., 2018). Considering a c-class classification task, we denote
x ∈ X as an input image and y ∈ Y = {1, ..., c} as its label. Complementary label y is generated by
select fromY\{y} at random. Inspired by Rizve et al. (2021) and Kim et al. (2019)1, in MutexMatch,
we design a novel way (detailed in Section 3.2) to propose complementary labels, so as to ensure
their effectiveness in semi supervised learning. Experiments about using standard complementary
label selections are discussed in Section 5.2.

3 MUTEXMATCH

3.1 OVERVIEW

Different from existing SSL approaches, in addition to a feature extractor θ(·), MutexMatch jointly
trains two distinct classifiers, a True-Positive Classifier (TPC) P(·) and a True-Negative Classifier
(TNC) N (·). To be specific, TPC is used to predict which class the instance belongs to (i.e., true
positive), while TNC is employed to indicate which class the instance is not (i.e., true negative).
To mitigate pseudo-labeling errors, a pre-defined high-confidence threshold τ is utilized to split the
unlabeled data into high-confidence and low-confidence portions. Besides training TPC on the high-
confidence portion, we explore complementary labels on low-confidence samples to train TNC. In
this way, all the unlabeled data could be effectively exploited.

In a mini-batch, we have B labeled data X = {(xlbb , ylbb )}Bb=1 and µB unlabeled data U =

{(xulbb , yulbb )}µBb=1, where µ represents the relative size of X and U . Following (Sohn et al., 2020),
we perform weak and strong augmentations for data perturbations, denoted by αw(·) and αs(·), re-
spectively. Given weakly-augmented instance xw and strongly-augmented instance xs, MutexMatch
simultaneously optimizes four losses: the supervised loss Lsup, the separated negative loss Lsep, the
positive consistency loss Lp and the negative consistency loss Ln. In summary, the total loss is

L = Lsup + λsepLsep + λpLp + λnLn, (1)

where λsep, λp and λn are scalar hyper-parameters to adjust the relative importance of correspond-
ing losses. The supervised loss Lsup is simply defined as the cross-entropy between ylb and the

1In Kim et al. (2019), complementary label based negative learning shows great potential for noisy labels.
Through our method using complementary label, we also achieve amazing performance under the more difficult
setting of semi-supervised with noisy labels and the results can be found in Section C in Appendix.
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predictions of TPC on labeled data xlb, calculated as follows:

Lsup =
1

B

B∑
n=1

H(ylbn ,P(θ(αw(xlbn )))), (2)

where H(p, q) denotes the standard cross-entropy loss between distribution q and p.

3.2 TRUE-NEGATIVE CLASSIFIER

What it is?

What it is not?

What it least
likely is

What it is?

Figure 3: Training of TNC

In multi-class classification tasks, for a specific
instance, it is easier to predict which class it
does not belong to than to know which class it
exactly is. For example, given an image of air-
plane in CIFAR-10, we can predict which class
it does not belong to with a probability 90% at
random, whereas we only have the probability
of 10% to correctly predict it is an airplane. To
this end, we design a True-Negative Classifier
to predict which class it is not. Compared to
TPC, it is much easier to obtain correct labels for TNC. Thus we exploit TNC to provide more
guidance information on unlabeled data. We then propose a mutex-based prediction consistency on
TPC and TNC to make full use of unlabeled data, which is described in Section 3.3. The high-level
training process of TNC is shown in Figure 3. Unlike the standard complementary label genera-
tions (Ishida et al., 2017; Yu et al., 2018), we use the class with the lowest confidence in TPC’s
predictions as the complementary label to train TNC. The training loss Lsep can be calculated as

Lsep =
1

µB

µB∑
n=1

H(argmin(P(θ(xwn )),N (θ̂(xwn ))), (3)

where θ̂ represents that θ is considered constant for the generation of this loss, i.e., stop back-
propagating gradients. Since our downstream task is to accurately classify images, we adopt such
gradient-blocking operation to ensure that the feature extractor will not be affected by the training
of TNC. We extensively investigate the effectiveness of TNC in Section 4.3.

3.3 MUTEX-BASED CONSISTENCY REGULARIZATION

In recent consistency-regularization based SSL methods, only samples with high-confidence pre-
dictions are leveraged to train models. However, it could lead to inefficient utilization of unlabeled
data, especially at the early stage of the training process. Differently, MutexMatch can also effec-
tively exploit low-confidence unlabeled samples via introducing a novel mutex-based consistency
regularization. A high-confidence threshold τ on TPC’s predictions is defined to split the unlabeled
samples into two portions with mutex confidence intervals, i.e., the high-confidence one (> τ ) and
the low-confidence one (≤ τ ). In the high-confidence portion, we use TPC to learn what the unla-
beled data is, while in the low-confidence portion, we employ TNC to learn what it is not, because
it is difficult for us to obtain its real class information.

On the one hand, we use weakly-augmented example xw to generate pseduo-labels from TPC and
enforce positive consistency against its corresponding strongly-augmented variant xs. We can then
obtain their predictions, pw = P(θ(xw)) and ps = P(θ(xs)). Let p̂w = argmax(pw), such
consistency can be achieved by minimizing the loss Lp:

Lp =
1

µB

µB∑
n=1

1(max(pwn ) ≥ τ)H(p̂wn , p
s
n), (4)

where 1(max(pw) > τ) retains the predictions whose maximum probabilities are larger than τ .
On the other hand, for these low-confidence samples, we enforce consistency regularization against
TNC’s predictions by minimizing the Ln:

Ln =
1

µB

µB∑
n=1

1(max(pwn ) < τ)H(rwn , r
s
n), (5)
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Table 1: Accuracy for CIFAR-10, CIFAR100 and SVHN averaged on 5 different folds. Results with
∗ were reported in CoMatch (Li et al., 2020), while results with † are using our own reimplementa-
tion. Other results were reported in FixMatch (Sohn et al., 2020). Results with DA are achieved by
combining the distribution alignment technique (Berthelot et al., 2020).

Method CIFAR-10 CIFAR-100 SVHN

10 labels 20 labels 40 labels 80 labels 200 labels 400 labels 2500 labels 40 labels 250 labels

UDA - - 70.95±5.93 - - 40.72±0.88 66.87±0.22 47.37±20.51 94.31±2.76
MixMatch - 27.84±10.63∗ 52.46±11.50 80.79±1.28∗ - 33.39±1.32 60.06±0.37 57.45±14.53 96.02±0.23
ReMixMatch w. DA - - 80.90±9.64 - - 55.72±2.06 72.57±0.31 96.66±0.20 97.08±0.48
FixMatch 64.08±20.33† 82.32±9.77∗ 88.61±3.35 92.06±0.88∗ 38.87±2.50† 51.15±1.75 71.71±0.11 96.04±2.17 97.52±0.38

FixMatch w. DA∗ - 83.81±9.35 86.98±3.40 92.29±0.86 - - - - -
CoMatch∗ 69.87±11.82† 87.67±8.47 93.09±1.39 93.97±0.62 - - - 96.47 ± 1.29† 97.75 ± 0.19†
MutexMatch 78.73±11.21 91.77±2.60 93.49±0.22 94.34±0.81 40.38±2.36 56.14±1.46 71.80±0.23 97.19±0.26 97.73±0.18

where rw = N (θ(xw)) and rs = N (θ(xs)) are the label predictions of TNC for xw and xs,
respectively. For the purpose of entropy minimization (Lee et al., 2013), we adopt hard pseudo-
label p̂w to enforce the consistency regularization on TPC. Differently, we use soft pseudo-label rw
for consistency regularization of TNC, so as MutexMatch can know more information of impossible
class for classification. We further discuss this soft-label setting in Section 5.2. The whole algorithm
is presented in Section 1 of Appendix.

4 EXPERIMENTS

Following Tarvainen & Valpola (2017); Sohn et al. (2020), we perform evaluation on four benchmark
datasets, including STL-10, CIFAR-10/100 and SVHN. We also conduct ablation studies in Section
5 to investigate the efficacy of MutexMatch. Other experiments, e.g., the impact of learning rate and
hyper-parameters, are shown in Section D in the Appendix.

4.1 CIFAR-10, CIFAR-100 AND SVHN

We evaluate our method and baselines on three widely used SSL datasets: (1) CIFAR-10, consisting
of 50,000 images from 10 classes, (2) CIFAR-100, consisting of 50,000 images from 100 classes,
and (3) SVHN, consisting of more than 70,000 street view house number images from 10 classes.

Baselines. We introduce recent state-of-the-art SSL methods, i.e., CoMatch (Li et al., 2020),
FixMatch (Sohn et al., 2020) and FixMatch with distribution alignment (Berthelot et al., 2020)
to compare with MutexMatch. Moreover, we compare our method with SSL methods such as
UDA (Xie et al., 2020), MixMatch (Berthelot et al., 2019) and ReMixMatch (Berthelot et al., 2020).

Settings. For all experiments, in MutexMatch, we adopt Wide ReseNet (Zagoruyko &
Komodakis, 2016) as the backbone (WRN-28-2 for CIFAR-10, SVHN and WRN-28-8 for CIFAR-
100) following Sohn et al. (2020). In our implementation, TNC is the same two-layer MLP as TPC.
For fair comparison, We follow these baseline methods (Sohn et al., 2020; Li et al., 2020) using
SGD with a momentum of 0.9 and a weight decay of 0.0005 during training. Also, we train the
model for 1024 epochs, using a learning rate of 0.03 without the decay schedule for CIFAR-10,
and with cosine decay schedule for CIFAR-100 and SVHN. For hyper-parameters in MutexMatch,
we set τ = 0.95, µ = 7, B = 64 for all experiments. Particularly, we set τ = 0.5 on CIFAR-10
with 80 labels and train the model with cosine decay schedule for learning rate. In our method,
RandAugment (Cubuk et al., 2020) is used for strong augmentation. Also, λsep, λp and λn are set
to 1 for simplicity. To reduce the influence from random data partition, we report the mean and
variance of accuracy on five different folds of labeled/unlabeled data.

Results. Table 1 shows the comparison between MutexMatch and baselines. With only 4
labeled data per class, MutexMatch achieves an accuracy of 93.49±0.22% on CIFAR-10,
56.14±1.46% on CIFAR-100 and 97.19±0.26% on SVHN, yielding improvement over prior SSL
results. Especially, we demonstrate the superiority of MutexMatch under the extremely label-scarce
setting. e.g., achieving an average accuracy of 91.77% on CIFAR-10 with only 20 labels, 40.38%
on CIFAR-100 with 200 labels. In addition, details on barely supervised learning can be found in
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Section B of Appendix. The fewer labels will lead to the accumulation of more noise pseudo-labels
in training, whereas MutexMatch uses all unlabeled data while introducing little error information.

Moreover, we report additional results on CIFAR-10 with different backbone CNN-13 and more
available labels. We compare MutexMatch with MT (Tarvainen & Valpola, 2017), ICT (Verma
et al., 2019), DualStudent (Ke et al., 2019) and UPS Rizve et al. (2021). We conduct experiments
using the same setting as CIFAR-10 with 80 labels. In Table 2, we find that MutexMatch is not
backbone dependent, and achieves performance improvement when more labels are given, outper-
forming all baseline methods. More discussion of experimental results can be found in Section 4.3.

Table 2: Accuracy on CIFAR-10 with larger
amounts of labels and CNN-13 backbone.
Results of baseline methods are reported in
UPS (Rizve et al., 2021).

Method CIFAR-10

1000 labels 4000 labels

MT 80.96±0:51 88.59±0.25
ICT 84.52±0.78 92.71±0.02
DualStudent 85.83±0.38 91.11±0.09
UPS 91.82±0.15 93.61±0.02

MutexMatch 93.01±0.32 94.10±0.24

Table 3: Accuracy on STL-10 averaged on 5
pre-defined folds with ResNet-18 backbone.
Results of baseline methods are reported in
CoMatch (Li et al., 2020).

Method STL-10

ResNet-18

MixMatch 38.02±8.29
FixMatch 65.38±0.42
FixMatch w. DA 66.53±0.39
CoMatch 79.80±0.38

MutexMatch 83.36±0.22

4.2 STL-10

STL-10 contains 10 classes of 5,000 labeled and 100,000 unlabeled images extracted from a similar
but broader distribution. The challenge of STL-10 lies in other unlabeled images contains out of
distribution images and this distribution shift enables us to test the robustness of SSL algorithm.

Settings. For STL-10, we evaluate MutexMatch on the 5 pre-defined folds. Each fold con-
tains 1,000 labeled data and 100,000 unlabeled data. Therefore, we trained five models and
averaged their performance as the final result. Following Li et al. (2020), we use ResNet-18 as
the backbone because it consumes less computing resources than WRN-28-8 used in Sohn et al.
(2020). We use the same hyperparameters and learning rate as CIFAR-100 in Section 4.1, and train
the models using SGD with a momentum of 0.9 and a weight decay of 0.0005.

Results. Table 3 shows the results, averaged on all 5 runs. In this setting, MutexMatch achieves
accuracy improvement from 79.80±0.38% to 83.36±0.22% compared with CoMatch. The perfor-
mance of MutexMatch on STL-10 is much better than that of the existing methods, showing TNC is
less sensitive to data distribution shift between labeled and unlabeled data, so that MutexMatch can
maintain robust performance like on other datasets.

4.3 EFFECTIVENESS ANALYSIS OF TNC

As shown in Figure 1, the TNC of MutexMatch uses exclusion method to help the model deal with
unlabeled data with low confidence. Ideally, we think that for one class, the distribution of comple-
mentary pseudo-labels from TNC should be evenly dispersed or diverse unlike pseudo-label from
TPC, so MutexMatch can exclude more error classes as much as possible. We conduct experiments
on CIFAR-10 with 40 labels using the same setting as in Section 4.1. We observe that the class
prediction from TNC is indeed generally consistent with our hypothesis. As shown in Figure 4,
during training, for each class of CIFAR-10, the prediction of TNC is gradually dispersed to several
classes (i.e., far away from the main diagonal of heat map), instead of gathering at a single class,
indicating that TNC could play the role of exclusion method. On the contrary, the prediction out-
putted by TPC is gradually concentrated to the correct class (i.e., gathered to the main diagonal of
the heat map). Note that, TNC uses soft labels for consistency regularization, which can explore
more complementary information to help TPC classify correctly.

Compared with other baseline methods shown in Table 1, MutexMatch performs better on CIFAR-
10 with extremely scarce labels. We believe that confirmation bias (Yu et al., 2018) leads to the poor
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Figure 4: The rate (%) of each class (column in heat map) in the pseudo-label and complementary
pseudo-label outputted by TPC and TNC respectively corresponding to each class (row in heat map)
in CIFAR-10. The darker, the higher. Results are reported in a run on CIFAR-10 with 40 labels.
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Figure 5: Accuracy of pseudo-label and com-
plementary label on CIFAR-10 with different
amount of labeled data.

performance of other methods. Fewer labels will
introduce more noisy pseudo-labeled examples to
participate in the learning process. Nevertheless,
MutexMatch utilizes the unlabeled samples with
low confidence, in an exclusive manner by TNC,
introducing few noisy pseudo-labels. As shown in
Figure 5, our experiments on CIFAR-10 show Mu-
texMatch produces more accurate pseudo-labels
than FixMatch (Sohn et al., 2020), especially when
there are very few labeled samples. In this figure,
M indicates the results of MutexMatch and F in-
dicates the results of FixMatch.

The accuracy of complementary pseudo-label is
very crucial. An important premise for Mutex-
Match to work is that the complementary pseudo-
label outputted by TNC is easy to predict, so it will
introduce less error information into the model.
Figure 5 shows that the complementary pseudo-
labels outputted by TNC achieves high accuracy. Compared with the pseudo-label outputted by
TPC, complementary label is more insensitive to the change of the number of labels. Even with
only one label per class, it can maintain a high accuracy.

5 ABLATION STUDY

We conduct an extensive ablation study to verify the effectiveness of MutexMatch. The experiments
are mainly conducted on CIFAR-10 and SVHN using four labels per class, where MutexMatch
achieves 93.49±0.22% and 97.19±0.26% accuracy using default setting. In the following experi-
ments, we keep the supervised loss as Equation (2) and positive consistency loss as Equation (4).

5.1 UTILIZATION OF LOW-CONFIDENCE SAMPLES

In order to fairly verify the effectiveness of TNC, we use the same settings as Section 4.1. We believe
that the reason why the performance of MutexMatch is better than other earlier SSL algorithms is
that the existence of TNC enables the model to learn from all unlabeled data. For example, in
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FixMatch, with a predefined confidence threshold, the unlabeled samples whose confidence is less
than this threshold will not participate in the training. Therefore, we use the three most intuitive
ways to use all the unlabeled data. We first use TPC to compute prediction pw = P(xw) of weakly-
augmented unlabeled data xw and then:

(i) We use p̂w = argmax(pw) as a hard pseudo-label, and enforce the cross-entropy loss
against the model’s prediction ps = P(xs) of strongly-augmented unlabeled data xs:

Lab1 =
1

µB

µB∑
n=1

1(max(pwn ) < τ)H(p̂wn , p
s
n). (6)

(ii) We use pw as a soft pseudo-label and enforce the cross-entropy loss against ps:

Lab1 =
1

µB

µB∑
n=1

1(max(pwn ) < τ)H(pwn , p
s
n). (7)

(iii) We use the features fw = θ(xw) of weakly-augmented image and the features fs = θ(xs)
of strongly-augmented image extracted by the feature extractor:

Lab1 =
1

µB

µB∑
n=1

1(max(pwn ) < τ)E(fwn , f
s
n), (8)

where E(p, q) denotes the mean squared loss between two distributions p and q.

The loss given above minimized by experiments is simply Lsup + Lp + Lab1. All models are
trained on SVHN using four labels per class and we show the results of all experiments in Figure 6.
In this figure, the FULL indicates the setting of (i), the SOFT indicates the setting of (ii) and the
MSE indicates the setting of (iii). On this dataset, the default MutexMatch achieves an accuracy
of 97.19±0.26%, outperforming all other experiments. Other ways using low-confidence samples
will introduce more noisy pseudo-labels, resulting in the decline and instability of the accuracy of
pseudo-label, which is not conducive to consistency regularization.
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Figure 6: The learning curve of ablation study on SVHN. The x-axis represents the training epoch
and y-axis represents the test accuracy in (a) and the pseudo-label accuracy in (b).

5.2 EVALUATION ON LEARNING SCHEME OF TNC

The learning of TNC in MutexMatch is very important. In default MutexMatch, we use hard com-
plementary pseudo-label q̂w = argmin(pw) to train TNC separately when stopping gradient back
propagation on the feature extractor, and enforce consistency regularization against soft pseudo-
label rw = N (xw) in the low-confidence portion of pw ≤ τ . In order to validate the effectiveness of
learning scheme of TNC in MutexMatch, we use three changed learning schemes for experiments:

8



Under review as a conference paper at ICLR 2022

(i) We use hard pseudo-label q̂w = argmin(pw) to train TNC separately while stopping gra-
dient back propagation on θ, and enforce consistency regularization against hard comple-
mentary pseudo-label:

Lsep =
1

B

B∑
n=1

H(q̂wn , r
w
n ), Lab2 =

1

µB

µB∑
n=1

1(max(pwn ) < τ)H(r̂wn , r
s
n), (9)

where r̂w = argmax(rw) and rs = N (xs).
(ii) We use hard complementary pseudo-label γ̂w, which is generated via randomly selecting

the class without the highest confidence from pw (just like the standard complementary
label selection) to train TNC separately, while stopping gradient back propagation on θ,
and enforce consistency regularization against soft complementary pseudo-label:

Lsep =
1

B

B∑
n=1

H(γ̂wn , r
w
n ), Lab2 =

1

µB

µB∑
n=1

1(max(pwn ) < τ)H(rwn , r
s
n). (10)

(iii) We remove the separately training part of TNC. The complementary pseudo-label for TNC
is obtained directly by qw = Norm(1 − pw) where Norm(·) is operation normalizing
qw into interval [0, 1]. We enforce consistency regularization against soft complementary
pseudo-label:

Lab2 =
1

µB

µB∑
n=1

1(max(pwn ) < τ)H(qwn , r
s
n). (11)

The loss given above minimized by experiments is simply Lsup + Lp + Lsep + Lab2 in (i), (ii) and
Lsup + Lp + Lab2 in (iii).

All models are trained on CIFAR-10 using four labels per class, and we show the results of all
experiments in Figure 7. In the figure, the Hard-Hard indicates setting of (i), the Rand-Soft indi-
cates setting of (ii) and the Rev-Norm indicates setting of (iii). (i), (ii) and (iii) achieve accuracy
of 90.56%, 91.53% and 91.03% respectively. The default MutexMatch achieved an accuracy of
93.49% which outperforms other settings. Furthermore, experiments show that the accuracy and
stability of the complementary pseudo-labels which are outputted by TNC of default MutexMatch
are dominant. TNC uses hard pseudo-label for separate training to ensure the accuracy and stability
of complementary pseudo-label, and uses soft pseudo-label to participate in mutex-based consis-
tency regularization to exclude more potential error classes.
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Figure 7: The learning curve of ablation study on CIFAR-10 with 40 labels. The x-axis represents
the training epoch and the y-axis represents the test accuracy in (a), the pseudo-label accuracy in (b),
and the complementary pseudo-label accuracy in (c).

6 CONCLUSION

In this paper, we propose MutexMatch, a novel SSL algorithm using a mutex-based consistency
regularization derived by two distinct classifiers, one is to predict “what it is” and the other is to
predict “what it is not”. MutexMatch can achieve superior performance on various SSL benchmarks,
especially under label-scarce conditions. Last but not least, we validate that low-confidence samples
could still be well utilized in training from a novel way. We believe this usage of low-confidence
samples could be borrowed to other semi-supervised tasks, e.g., segmentation and detection.
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A ALGORITHM

Algorithm 1: MutexMatch algorithm

Input: batch of labeled data X = {(xlbb , ylbb )}Bb=1, batch of unlabeled data U = {xulbb }
µB
b=1,

feature extractor θ, TNC P , TNC N
1 for iteration t do
2 Lsup = 1

B

∑B
n=1H(ylbn ,P(xlbn )) // Supervised loss for xlb

3 for iteration b = 1 to µB do
4 pwb = P(θ(αw(xulbb ))) // Compute TPC’s prediction for weakly-augmented xulb

5 psb = P(θ(αs(xulbb ))) // Compute TPC’s prediction for strongly-augmented xulb

6 rwb = N (θ(αw(x
ulb
b ))) // Compute TNC’s prediction for weakly-augmented xulb

7 rsb = N (θ(αs(x
ulb
b ))) // Compute TNC’s prediction for strongly-augmented xulb

8 p̂wb = argmax(pwb ) // Select pseudo-labels for xulb

9 q̂wb = argmin(pwb ) // Select complementary pseudo-labels for xulb

10 end
11 Lsep = 1

µB

∑µB
n=1H(q̂wn ,N (θ̂(xwn ))) // Stop back-propagating gradients on θ

12 Lp = 1
µB

∑µB
n=1 1(max(pwn ) ≥ τ)H(p̂wn , p

s
n) // Positive consistency loss for xulb

13 Ln = 1
µB

∑µB
n=1 1(max(pwn ) < τ)H(rwn , r

s
n) // Negative consistency loss for xulb

14 update θ,P,N by SGD to optimise Lsup + λsepLsep + λpLp + λnLn
15 end

B BARELY SUPERVISED LEARNING

The experimental protocol of barely supervised learning (BSL) described in Sohn et al. (2020) as-
sume a limited availability (e.g., 1 or 5) of labeled data from categories of interest. In order to test
the performance of our method in extreme cases, we conduct experiments on CIFAR-10 with only
one label per class, and consider developing a simple method to use our TNC in the test phase.
As shown in Table 4, we use five different random seeds to extract one label of each class from
CIFAR-10, and use MutexMatch to achieve test accuracy reaching between 65.30% and 93.07%
with a mean of 78.73%. Compared with FixMatch (Sohn et al., 2020) reaching between 48.58%
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and 85.32%, the performance of MutexMatch is more superior. Then we consider using TNC to
complete the test phase under this setting to obtain the test accuracy. We assume that in the ideal
case, according to Equation (3), for test data x, the prediction of TNC rx = N (x) and the prediction
of TPC px = P(x) should satisfy argmax(rx) = argmin(px).

According to negative learning proposed in Kim et al. (2019), we hypothesis TNC is trained
to classify what input image does not belong to its complementary label, so that we can use
r̂x = argmin(rx) to classify an input image x. Compared with TPC, TNC may learn less error
information when the label is extremely scarce, so as to obtain better test performance. In order to
verify this idea, we used TNC to participate in the test phase showed in Figure 8. For test sample x,
we set a confidence threshold T , if px > T we uses TPC to predict, if px < T uses TNC instead,
that is, the leftmost point (T = 0) in the figure represents only TNC for test, and the rightmost point
(T = 1) represents only TNC for test. Taking 20 labels as the dividing line, we can see that using
TNC for prediction has more advantages in the case of fewer labels.
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Figure 8: Test accuracy on CIFAR-10 in single run with various amount of labels using TNC to par-
ticipate test phase. The x-axis represents confidence threshold T and y-axis represents test accuracy.

Table 4: Accuracy of MutexMatch on a single 1-label split of CIFAR-10 with different random
seeds. Results are ordered by accuracy.

Fold 1 2 3 4 5

Accuracy 65.30 71.12 77.83 86.33 93.07

C SEMI-SUPERVISED LEARNING WITH NOISY LABELS

To evaluate the robustness of MutexMatch, we conduct our experiments following settings of
semi-supervised learning with noisy labels on CIFAR-10. Semi-supervised learning and noise
labels are challenging problems, and semi-supervised learning with noise labels is much more
because the ability of the model to resist noise labels will be greatly weakened when there is only a
small amount of labeled data.

Setting. Following Kim et al. (2019); Patrini et al. (2017), we applied three different types
of noise in experiments:
(1) Symmetric-inc noise is created by randomly selecting the label from all classes.
(2) Symmetric-exc noise is created by randomly selecting the label from all classes without ground
truth label.
(3) Asymmetric noise is generated by mapping TRUCK → AUTOMOBILE, BIRD → PLANE,
DEER→ HORSE, and CAT↔ DOG for CIFAR-10.
We evaluate MutexMatch and baselines with noisy labels mentioned above using the same settings
as in Section 4.1. All experiments use 40 labeled data for training, varying radio of noisy labels in
labeled data (25%&50%).
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Results. Table 5 shows the accuracy comparison between MutexMatch and baselines. All
the results are reported by averaging on 5 different folds. Experiments show the robustness of
MutexMatch under this setting. For example, with 2 labels and 2 noisy labels (Symmetric-inc) per
class, MutexMatch achieves 88.72±3.51% accuracy, while training of FixMatch collapse reaching
a lower 77.80±17.57% accuracy. MutexMatch contains the idea of negative learning. Learning
from the perspective of complementary pseudo-label can prevents model from overfitting to noisy
data (Kim et al., 2019) so that MutexMatch achieves superior performance in SSL with noisy labels.

Table 5: Accuracy on CIFAR-10 with noisy labels averaged on 5 different folds. All experiments
were based on 40 labeled data with varying radio of noisy labels.

Method Symmetric-inc Symmetric-exc Asymmetric

25%noisy 50%noisy 25%noisy 50%noisy 25%noisy 50%noisy

FixMatch 77.80±17.57 81.54±18.47 80.05±5.80 75.11±14.66 84.58±5.90 72.91±19.30

MutexMatch 88.72±8.51 77.18±10.55 89.37±6.10 81.85±8.00 89.51±5.14 78.28±15.44

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ABLATION STUDY ON LEARNING RATE AND LEARNING RATE SCHEDULE

We note that learning rate and learning rate schedule are very important for MutexMatch. In this
section, we use the experimental setting in Section 4.1 to conduct additional ablation experiments
for both. Following Loshchilov & Hutter (2017), recent work (Sohn et al., 2020; Li et al., 2020) use
a cosine learning rate decay and achieve best performance. However, as shown in Table 6, we found
that MutexMatch achieves better results without learning rate decay on CIFAR-10, outperforming
cosine learning rate decay by 0.32%. When there are many labels, the pseudo-labels outputted by
TPC are more likely to have high-confidence and remain stable. It is necessary for MutexMatch to
use cosine learning rate decay to jump out of the local optimum.

Table 6: Ablation study on learning rate and learning rate schedule. Results are reported on CIFAR-
10 varying number of labels.

Decay Schedule Learning Rate Labels Backbone Accuracy

No Decay 0.03 40 WRN-28-2 93.54
No Decay 0.07 40 WRN-28-2 93.02
No Decay 0.10 40 WRN-28-2 92.89

Cosine Decay 0.03 40 WRN-28-2 93.22
Cosine Decay 0.07 40 WRN-28-2 93.20
Cosine Decay 0.10 40 WRN-28-2 92.59

No Decay 0.03 80 WRN-28-2 93.95
Cosine Decay 0.03 80 WRN-28-2 94.53
No Decay 0.03 1000 CNN-13 91.57
Cosine Decay 0.03 1000 CNN-13 93.46
No Decay 0.03 4000 CNN-13 92.75
Cosine Decay 0.03 4000 CNN-13 94.41

D.2 HYPERPARAMETERS

For MutexMatch, the choice of τ needs to be very cautious, because different τ will lead to the
division of high and low-confidence portions, which will affect the impact of the mutex-based con-
sistency regularization on the model. We use the identical setting of experiments in Section 4.1 for
MutexMatch and vary τ to verify the sensitivity of MutexMatch to this hyperparameter. As shown
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Table 7: Ablation study on confidence threshold τ . Results are reported on CIFAR-10 varying
number of labels.

τ Labels Backbone Accuracy

0.5 40 WRN-28-2 93.52
0.75 40 WRN-28-2 93.44
0.85 40 WRN-28-2 93.28
0.95 40 WRN-28-2 93.54
0.99 40 WRN-28-2 92.17

0.5 80 WRN-28-2 94.53
0.95 80 WRN-28-2 93.64

0.5 1000 CNN-13 93.46
0.95 1000 CNN-13 92.07

0.5 4000 CNN-13 94.41
0.95 4000 CNN-13 92.94

in Table 7, MutexMatch needs to select appropriate τ to divide confidence portions. We note that
when there are many labels, τ has a greater impact on performance. The more labels are available,
the less confirmation bias will be when using TPC directly for classification, so the portion of TPC
in mutex-based consistency regularization can be used directly for learning. Therefore, we guess
that in general, we should choose a smaller τ to make more pseudo-labels participate in the training
of TPC when the number of labels increases.

At the same time, showed in Figure 9, we vary the weight λsep of the separate training loss for
TNC Lsep and λn of the negative consistency loss Ln. Choosing the appropriate weight of loss is
very important for MutexMatch. Larger λsep ensures the accuracy of complementary pseudo-labels,
which helps TNC better participate in training. Appropriate λn weighs the contribution of TNC and
TPC in mutex-based consistency regularization, so that the model can achieve better performance.

Additionaly, we provide more ablation studies on various λsep, λn and λp shown in Table 8. We
find that increasing λsep and λn at the same time will cause severe performance degradation, which
shows that we must carefully control the importance of TNC in the learning process, because TPC
has always maintained the most important position in completing our classification tasks. Mean-
while, appropriate λp ensures model can benefit from learning of TNC. More results of experiments
about situation where λp = 0 or λn = 0 can be found in Section D.3.

Table 8: Accuracy on CIFAR-10 with 40 la-
bels and various λsep, λn, λp.

λsep λn λp Accuracy

1 1 1 93.49
1 1 10 91.27
1 1 20 85.05

10 1 1 88.94
20 1 1 85.44
20 10 1 18.03
20 10 10 15.96
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Figure 9: Accuracy on CIFAR-10 with 40 la-
bels and various λsep, λn.

D.3 ABLATION STUDY ON TPC AND TNC

We explain why we enforce consistency regularization on TNC as follows. Given two augmented
variants derived from the same unlabeled instance, we claim that the class probability distributions
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Figure 10: The correct component in prediction vector is class 1.

(i.e., soft-labels) of their complementary predictions (i.e., the TNC’s outputs) should be consistent.
Under the help of an independent training process of TNC, the model can be more confident on
“what it is not”. As a result, such prediction consistency on TNC can effectively decrease the False-
Negative probability on TPC’s predictions. As shown in Figure 10, given a instance of class 1, the
independent training of TNC can generate an accurate complementary prediction with extremely
low probability of class 1. Then encouraging a similar prediction on its strongly augmented variant
can help the model to learn more discriminative features. It can in turn affect the TPC’s prediction,
such that the False-Negative probabilities (to be predicted as a class of 2, 3, 4, 5) can be effectively
decreased. Consequently, the True-Positive probability of TPC’s predictions is enlarged.

We construct an experiment on CIFAR-10 with 40 labels to verify our findings. We denote Mu-
texMatch without consistency reguarlization on TNC as M wo. c (i.e., MutexMatch degenerates to
FixMatch). Although the confidence of the correct predictions of MutexMatch and M wo. c is very
high (are very close to 100%), we check their wrong predictions as an example for comparison. In
fact, for the correct part of the pseudo-labels, MutexMatch obtains more correct pseudo-labels than
M wo. c (FixMatch) thanks to the use of consistency regularization on TNC (i.e., MutexMatch’s
accuracy of pseduo-labels is higher than FixMatch, which is shown in Figure 5).

As shown in Figure 11(a), given the unlabeled instances belonging to “automobile”, the Mutex-
Match’s average probability of “automobile” component in prediction vector is higher than that of
M wo. c. We can also obtain similar findings on other different classes, as shown in Figure 11(b).
Such observations demonstrate enforcing prediction consistency on TNC can successfully help the
model lower the False-Negative probability, which in turn improve the True-Positive probability in
the TPC’s prediction vector.
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Figure 11: (a) Average probability of each component in prediction vector of automobile images.
(b) Average probability of correct component in prediction vector of all classes in CIFAR-10.
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Moreover, this design is based on the consideration of it’s unreasonable to directly involve com-
plementary label based negative learning in semi-supervised. In the early training stage of semi-
supervised learning, the accuracy of pseudo-labels is often not very high. In this process, the intro-
duction of complementary labels directly into the learning process will not only be helpful, but even
harmful, and lead to training collapse finally. Therefore, we use consistency regularization to “de-
couple” the part where complementary label are directly involved in training. We believe that it is
reasonable to use consistency regularization on TNC at the sample level, because we only need TNC
to show the various results for each class at the dataset level, which is shown in Section 4.3. This
demonstrates TNC has learned discriminative information from the aspect of complementary label.
Implementing consistency regularization on TNC at the sample level is to help TNC learn from the
perspective of complementary labels, so that feature extraction can learn better data representation
of unlabeled data with low confidence. In addition, we use soft labels for consistency regularization
on TNC, which also ensures TNC can learn multi-class information, which is described in Section
3.3. For further discussion on the effectiveness of TPC and TNC, we consider removing these two
components respectively. Given mentioned above, we designed the following experiments:

(i) What happens if consistency regularization on TNC is abandoned (i.e., λn = 0)? Taking
into account that in the default MutexMatch, training of TNC with complementary pseudo-
labels stops the gradient, so if we set λn = 0, then TNC is equivalent to not participating in
the training of the model at all, which means that MutexMatch degenerates into FixMatch.
So a more reasonable setting is to restore the backpropagation on feature extractor θ in
Equation (3). Then we explore the effect of not using consistency regularization on TNC:

Lsep =
1

µB

µB∑
n=1

H(argmin(P(θ(xwn )),N (θ(xwn ))), (12)

where we restore the back propagation on θ and set λn = 0 in Equation (1).
(ii) What happens when we train TNC with complementary labels generated by TPC without

stopping the gradient on TNC? We keep λn = 1 in Equation (1), and restore the backprop-
agation on θ like Equation (12).

(iii) At the same time, in order to explore the role of TPC component, we set λp = 0 in Equation
(1) for ablation study.

(iv) We simply set (λp, λn, λsep) to (0, 0, 0), (0, 1, 0) and (1, 1, 0).

As shown in Figure 12, the default MutexMatch achieves dominant performance compared with
other settings. In figures, wo. TNC represents setting of (i), wo. SG represents setting of (ii), wo.
TPC represents setting of (iii) and w. 000, w. 010, w. 110 represent setting of (iv). Obviously, TNC
participates in model training directly will cause training to collapse, which means that the model
is seriously affected by the learning of TNC, and there is no way to learn effective information of
“what it is”. (iii) shows that TPC in this case does not get adequate training and it can’t complete
the classification task. i.e., the training of TPC is equivalent to using only labeled data. Meanwhile,
The training of TNC is closely related to TPC. In this case, TNC has not been well trained, too. And
in fact, we don’t use TNC to participate in the testing phase. (i) and (ii) illustrate the superiority
of using consistency regularization for learning on TNC. This “decoupling” ensures that TNC can
make the model learn a better data representation without affecting the learning of TPC. Finally, the
combination of (iv) and other settings proves the necessity of each component in MutexMatch.
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Figure 12: The learning curve of ablation study on SVHN. The x-axis represents the training epoch
and y-axis represents the test accuracy in (a), (c) and the pseudo-label accuracy in (b), (d).
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