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Abstract
Knowledge distillation leverages a teacher model to improve the training of a2

student model. A persistent challenge is that a better teacher does not always yield3

a better student, to which a common mitigation is to use additional supervision4

from several “intermediate” teachers. One empirically validated variant of this5

principle is progressive distillation, where the student learns from successive6

intermediate checkpoints of the teacher. Using sparse parity as a sandbox, we7

identify an implicit curriculum as one mechanism through which progressive8

distillation accelerates the student’s learning. This curriculum is available only9

through the intermediate checkpoints but not the final converged one, and imparts10

both empirical acceleration and a provable sample complexity benefit to the student.11

We then extend our investigation to Transformers trained on probabilistic context-12

free grammars (PCFGs) and real-world pre-training datasets (Wikipedia and Books).13

Through probing the teacher model, we identify an analogous implicit curriculum14

where the model progressively learns features that capture longer context. Our15

theoretical and empirical findings on sparse parity, complemented by empirical16

observations on more complex tasks, highlight the benefit of progressive distillation17

via implicit curriculum across setups.18

1 Introduction19

As the cost of training state-of-the-art models grows rapidly (Hoffmann et al., 2022), there is increased20

interest in using knowledge distillation (Hinton et al., 2015) to leverage existing capable models to21

train new models more efficiently and effectively. Knowledge distillation is an effective technique22

to train smaller vision (Jia et al., 2021; Touvron et al., 2021; Yu et al., 2022; Lin et al., 2023) and23

language models (Sanh et al., 2019; Gunasekar et al., 2023; Touvron et al., 2023; Reid et al., 2024) that24

permit faster inference with comparable performance. However, one curiously persistent phenomenon25

is that a better teacher does not always yield a stronger student. Prior works (Mirzadeh et al., 2019;26

Jin et al., 2019; Jafari et al., 2021; Harutyunyan et al., 2022; Anil et al., 2018) hypothesized that this27

is due to a capability gap between the teacher and the student. As such, they proposed progressive28

distillation, where the student is incrementally supervised by increasingly capable teachers. This29

technique has yielded strong empirical performance. One recent example is the training of Gemini-1.530

Flash from Gemini-1.5 Pro (Reid et al., 2024; Team et al., 2024): Gemini-1.5 Flash achieves 95% of31

Gemini-1.5 Pro’s performance on average and outperforms Gemini-1.0 Pro on 41 out of 50 text-based32

long-context benchmarks, while being substantially smaller. However, little is understood about33

progressive distillation in terms of the optimization or generalization benefits, compared to directly34

learning from the data or the final teacher checkpoint (i.e., one-shot distillation).35

Most prior work hypothesizes that progressive distillation enables better generalization (Mirzadeh36

et al., 2019; Jafari et al., 2021; Harutyunyan et al., 2022). In contrast, we identify a novel mechanism37

by which progressive distillation helps a student by accelerating its optimization (Figure 1). We38

define optimization acceleration as achieving improved performance with fewer training steps or39
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Figure 1: Progressive distillation accelerates training. Left: MLP on (100, 6)-sparse parity
(Definition 3.1), with width-50k teachers and width-100 students. Progressive distillation checkpoints
are at 100k-step intervals, and one-shot checkpoint uses the final (20M-step) checkpoint. Middle:
Transformer on (100, 6)-sparse parity, with 32-head teachers and 4-head students. Progressive
distillation checkpoints are at 10k-step intervals, and the one-shot checkpoint is at 250k steps. Right:
Transformers on PCFG (Section 4), with 32-head teachers and 8-head students using BERT-style
masked prediction. Progressive distillation uses 8 intermediate checkpoints.

samples. In this paper, we use fresh training samples in each training step; hence we use training40

steps and samples interchangeably to measure the optimization speed.41

We study two tasks where learning the right features is believed to be important and show that the42

intermediate checkpoints provide signal towards these features. The first is learning sparse parity43

(Definition 3.1), which is a commonly studied setting to understand the feature learning dynamics of44

neural networks. The second is learning probabilistic context-free grammars (PCFGs), which we use45

as a sandbox for capturing certain aspects of language modeling. Theory and extensive experiments46

in these settings support the following claims.47

1. Progressive distillation accelerates student learning. Our experiments in multiple settings48

demonstrate that progressive distillation accelerates training compared to standard one-shot49

distillation and learning from the data directly (Figure 1). More specifically, for sparse parity,50

progressive distillation can train a smaller MLP (or Transformer) at the same speed as a larger51

MLP (or Transformer). For PCFGs, progressive distillation improves the accuracy of a smaller52

BERT model (Devlin et al., 2018) at masked prediction. Finally, we verify our findings on more53

realistic setups of training BERT on Wikipedia and Books dataset.54

2. An implicit curriculum drives faster learning. We demonstrate theoretically and empirically that55

acceleration comes from an implicit curriculum of easy-to-learn subtasks provided by intermediate56

teacher checkpoints, which is not available from the final teacher checkpoint. For sparse parity, the57

easy-to-learn subtasks provide supervision for the coordinates which constitute the support of the58

sparse parity (Section 3). As a consequence, we show progressive distillation provably improves59

the sample complexity for sparse parity over one-shot distillation or learning directly from data60

(Theorem 3.2). For PCFGs, the implicit curriculum is defined in terms of learning features that61

increasingly capture larger n-gram contexts. Our results also provide guidance on how to select62

the intermediate teachers used during progressive distillation.63

Related works1. One persistent surprise in knowledge distillation is that stronger teachers do not al-64

ways lead to stronger students. Prior works have speculated that an overly large “teacher-student gap”65

is the cause, and accordingly proposed to bridge this gap by introducing supervision of intermediate66

difficulty (Mirzadeh et al., 2019; Cho & Hariharan, 2019; Harutyunyan et al., 2022; Jafari et al., 2021).67

Mirzadeh et al. (2019) used multi-step distillation involving models of intermediate sizes, and Shi et al.68

(2021) proposed to directly inject teacher supervision into the student’s trajectory using an approxima-69

tion of mirror descent. Most related to our work, Harutyunyan et al. (2022) analyzed distillation for70

extremely wide networks and found it helpful to learn from the intermediate checkpoints of the teacher,71

a strategy also adopted by Jin et al. (2019). They speculated that this is because neural networks72

learn progressively complex functions during training (Kalimeris et al., 2019). In contrast to their73

focus on the generalization ability of the student, we study the optimization dynamics of distillation.74

It is worth noting that there is also a rich body of work on understanding standard (one-shot)75

distillation, mostly regarding regularization effects. In particular, Menon et al. (2021) shows that76

1We defer a detailed discussion of related work to Appendix A.1.
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learning from the teacher leads to a tighter generalization bound when the teacher is closer to the77

Bayes distribution over the class labels. However, such Bayes perspective cannot explain the training78

acceleration in the feature learning tasks considered in this work, whose the Bayes distributions are79

delta masses and hence are the same as the one-hot labels themselves. Our results fill this gap by80

providing an orthogonal view of implicit curriculum.81

The benefit of curriculum on sparse parity has also been explored in Abbe et al. (2024), where82

the curriculum also helps identify the support. The difference though is that their curriculum is83

defined by explicitly altering the distribution over the inputs, whereas our curriculum shows up84

implicitly in the teacher supervision. Moreover, our implicit curriculum emphasizes that a properly85

chosen intermediate checkpoint, while having a worse accuracy than the final checkpoint, can lead86

to a better-performing student. This can be seen as a plausible mechanism for weak-to-strong87

generalization (Burns et al., 2023).88

Outline. Section 2 describes the distillation strategies. Section 3 introduces the implicit curriculum89

with a case study on sparse parity, presenting both empirical evidence and a provable benefit in sample90

complexity. Section 4 continues the empirical investigations on PCFG, and extends the observations91

to BERT’s training on Wikipedia and Books dataset. Finally, Section 5 discusses open directions.92

2 Preliminaries93

We now outline the distillation strategies considered in this paper and their empirical instantiation.94

For ease of exposition, we discuss one-dimensional label classification tasks here and generalize to95

sequence-to-sequence functions in Section 4. Denote the teacher and student models operating on96

input domain X as fT : X → RC and fS : X → RC , respectively. The outputs of a model f are97

logits that are transformed into a probability distribution over C classes using a softmax function with98

temperature τ , denoted as p(x; τ) := softmax(f(x)/τ). We will use pT , pS to denote the probability99

distributions of the teacher and the student, and will omit the subscript to denote a generic model.100

When τ = 1, we omit τ from the notation for brevity. Following Zheng & Yang (2024), we set τ = 1101

for the student and vary the temperature of the teacher.102

We compare two loss functions: ℓ, where the student fS learns only from ground-truth labels , and103

ℓDL , where the student fS is supervised only with the logits of some teacher fT .2104

ℓ(x, y; fS) = KL(ey∥pS(x)), (1)
ℓDL(x; fS , fT ) = KL(pT (x; τ)∥pS(x)), (2)

where ey is a one-hot vector whose yth entry is 1. We consider two strategies for choosing the teacher.105

The first is one-shot distillation, where the student learns from a fixed fT throughout the training,106

and the teacher is chosen as the final converged checkpoint. The second is progressive distillation,107

where the student learns from multiple intermediate checkpoints of the teacher’s training run:108

Definition 2.1 ((CT ,D)-progressive distillation). Given a set of teacher checkpoints CT = {fTi
}109

and a set of training durations D, the student is trained with the logits of teacher checkpoint fTi
for110

training length Di with i ∈ [|CT |] := {1, · · · , |CT |}.111

To simplify the presentation, the main paper tests a specific type of progressive distillation schemes,112

where CT contains N equally-spaced checkpoints and the student is trained on each one for T steps:113

Definition 2.2 ((N,T )-progressive distillation). CT contains N − 1 equally-spaced intermediate114

teacher checkpoints and the final teacher checkpoint. The student is trained with each checkpoint for115

T training steps. After NT steps, the student is trained with the final teacher checkpoint.116

To study the effect of each teacher checkpoint, we will also consider an extreme version of progressive117

distillation with N = 2, where the student uses one intermediate teacher checkpoint.118

Choice of temperature. We set τ = 10−4 for sparse parity and PCFG experiments (Section 4)119

where the vocabulary size is smaller than 5, and τ = 10−20 for natural language experiments120

(Section 4.2) whose vocabulary size is 30k.3 Using such a small temperature makes the teacher’s121

2We note that prior papers generally use a combination of these objectives, but we use supervision from one
source in order to isolate its effects on distillation.

3Figure 14 provides a comparison in temperature choices for sparse parity learning.
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outputs close to one-hot labels. This removes potential regularization effects due to the softness of the122

labels (Yuan et al., 2020) which would otherwise be a confounding factor. Moreover, the supervision123

with nearly one-hot labels is more representative of the setting where the student learns directly from124

the teacher’s generations instead of the logits. This method, often described as generating synthetic125

data in the language modeling setting, has generally yielded small yet highly performant students126

(Gunasekar et al., 2023; Liu et al., 2024). For one-shot distillation, we report the best-performing127

temperature among τ = 1, 10−4 in the main paper and defer other results to Appendix D.8.128

3 The implicit curriculum: a case study with sparse parity129

To elucidate the mechanism by which distillation accelerates training, we first focus on the well-130

studied task of learning sparse parity.4 Sparse parity is a commonly used sandbox for understanding131

neural network optimization in the presence of feature learning (Barak et al., 2022; Bhattamishra132

et al., 2022; Morwani et al., 2023; Edelman et al., 2023; Abbe et al., 2024).133

Definition 3.1 ((d, k)-sparse parity task). Let S ⊂ [d] denote a fixed set of coordinates, with |S| = k134

and k < d. Then, the sparse parity task is defined for any input x ∈ {±1}d, whose label is computed135

as y = 1 if
∏

i∈S xi > 0 and 2 otherwise.136

We train the teacher and student models using 2-label classification, where fT and fS return logits137

in R2. The teacher and the student have the same number of layers but different sizes. We vary the138

model width for MLP, and vary the number of attention heads for Transformer, with a fixed per-head139

dimension. These choices not only affect the parameter counts, but also govern the learning speed5.140

Why can larger models learn faster? A natural way to learn sparse parity with gradient descent141

involves first identifying the support S and subsequently computing the product of variables in the142

support (i.e.,
∏

i∈S xi). Empirically, the two stages of learning manifest as a long plateau period in143

the model’s accuracy, followed by a sharp phase transition (Figure 1, left and middle). The search144

for the support is what makes learning problem difficult, as it depends on the input dimension d145

rather than the support size (Abbe et al., 2023; Barak et al., 2022). The benefit of increasing the146

width or the number of heads comes from providing more “parallel search queries.” For MLP, prior147

work has shown that increasing the width accelerates training (Edelman et al., 2023), which we also148

observe in Figure 7 (left) in appendix. For Transformers though, we find that increasing the number149

of attention heads is the most effective for improving the convergence speed, as opposed to increasing150

the per-head dimension or the MLP width. A detailed comparison is provided in Appendix C.2151

(Figure 10). Given this finding, we will vary the number of attention heads between the teacher and152

the student, while keeping the per-head dimension fixed. The number of heads hence directly controls153

the parameter count. This choice also aligns with the practice in open-sourced models such as the154

Llama series (Touvron et al., 2023).155

In the following, we first empirically verify that carefully chosen intermediate teacher checkpoints156

constitute an implicit curriculum for the student to learn from. Then, we show that this curriculum157

provably improves the speed of learning in the student by improving its training sample efficiency.158

3.1 Accelerating learning with the implicit degree curriculum159

The difficulty of the search problem suggests that we can accelerate student learning by providing160

direct supervision for what the support is (Abbe et al., 2023). We show that supplying the intermediate161

signal from a bigger teacher model accelerates the search process for the smaller model, as described162

by the following set of results.6163

(R1) Intermediate teacher checkpoints constitute an implicit degree curriculum. We provide164

empirical evidence that the supervision from intermediate teacher checkpoints serves as an implicit165

curriculum supplying strong signals for certain degree-1 monomials, which require fewer samples to166

learn. In Figure 2, we report the correlation between degree-1 monomials and the prediction of the167

teacher logits at various checkpoints. The correlation for each monomial xj , j ∈ [d] is computed as168

4We also experiment with a hierarchical generalization of sparse parity, which is deferred to Appendix C.3.
5In terms of the number of samples or the number of training steps, which coincide in our experiments as we

use freshly sampled batches.
6We will mark our results with (Ri) throughout the paper for easy reference.
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Figure 2: Implicit curriculum for (100, 6)-sparse parity. We compare 3 candidate intermediate
checkpoints, labeled as 1⃝, 2⃝, 3⃝, corresponding to 9.7M, 10.2M, and 10.8M steps, or the beginning,
middle, and end of the teacher’s phase transition. Left: Teacher’s accuracy throughout training.
Middle: During the phase transition, fT is much more strongly correlated with in-support variables
(x1, · · · , x6 in this case) than with off-support variables. Right: Only candidate 2⃝ (i.e., during
phase transition) enables (2, 1M)-progressive distillation to reach 100% accuracy. We use width-50k
teachers and width-100 students; Figure 8 shows similar results for width-1000 students.

|Ex,y([pT (x)]1 · xj)| at each checkpoint fT . Here [pT (x)]1 refers to the first output dimension of169

fT , which corresponds to p(y = 1) = p(
∏

i∈S xi > 0) = 1− p(y = 2) (recall Definition 3.1). We170

take the absolute value as we are only concerned with the magnitude of the correlation. Importantly,171

these strong correlations emerge when the teacher learns the sparse parity task (i.e., during the phase172

transition) but diminish with continued training.173

Note that the monomials need not be strictly degree-1. While our theory (Section 3.2) will only174

focus on degree-1 monomials for the sake of mathematical analysis, low-degree polynomials can175

still provide acceleration, which we also observe in practice (see Figure 9 in the Appendix for176

such an example). This transient low-degree supervision, available only through intermediate177

teacher checkpoints, may explain the superior performance of progressive distillation over one-shot178

distillation (Figure 1). We will confirm the provable sample complexity benefit of this implicit low179

degree curriculum in Section 3.2. The importance of the implicit curriculum is further strengthened180

by the superior performance of (2, T )-progressive distillation:181

(R2) Progressive distillation with a single intermediate checkpoint can outperform one-shot182

distillation. We consider the extreme version of progressive distillation where only a single183

intermediate checkpoint is used (in addition to the final checkpoint). Figure 2 shows the result for184

(2, 1M)-progressive distillation. We consider 3 candidates for the intermediate teacher checkpoint,185

occurring respectively at the beginning, middle or the end of the teacher’s phase transition. Our result186

demonstrates that the checkpoint selection is crucial, where only the checkpoint during the phase187

transition is useful in accelerating training.7 This provides further evidence that the implicit degree188

curriculum is the key to faster training via progressive distillation.189

More complex tasks may require more intermediate checkpoints, which we discuss in more depth in190

Appendix C.3. Nevertheless, we find that progressive distillation can be run efficiently and effectively191

across tasks, and a small number of intermediate teacher checkpoints often suffice to accelerate192

training provided that the checkpoints are properly selected.193

3.2 The low-degree curriculum reduces sample complexity194

We now formalize the benefits of progressive distillation for (d, k)-sparse parity in terms of sample195

complexity. For the sake of mathematical analysis, we take the student fS and the teacher fT196

models to be 1-hidden-layer MLPs with ReLU activations and scalar outputs. Further, the labels197

y are given as ±1, where 1 (or −1) corresponds to the class dimension 1 (or 2) in Definition 3.1.198

Following previous works (Barak et al., 2022; Abbe et al., 2023; Edelman et al., 2023), we analyze a199

simplified two-stage training procedure and train the model using the hinge loss: Lα(x, y; fS , fT ) =200

αmax(0, 1− fS(x)y) + (1− α)max(0, 1− fS(x)fT (x)).201

7We show similar results for width-1000 students (Figure 8) and transformers (Figure 13).
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Let’s first recall the hardness of learning sparse parity.8 For simplicity, we consider the case of202

MLPs of width Õ(2k) trained using online SGD. When learning from data alone, statistical query203

(SQ, Kearns (1998)) lower bound shows that learning the support for a (d, k)-sparse parity requires204

Ω(dk−1) samples (Abbe et al., 2023; Edelman et al., 2023). We will show that although this lower205

bound also applies to one-shot distillation from a strong teacher, it can be circumvented when learning206

from the implicit low-degree curriculum identified in the previous section.207

Specifically, we compare the sample complexity of one-shot distillation and (2, T )-progressive208

distillation (Section 2). Both strategies use a well-trained final checkpoint with an error of O(ϵ) error209

for an arbitrarily small ϵ > 0. Progressive distillation additionally uses the teacher’s intermediate210

checkpoint after its first phase of training, where we can provably show its predictions to have211

correlations at least Ω(1/k) to the monomials xi,∀i ∈ S. That is, progressive distillation first212

learns from the intermediate checkpoint and then switches to the final checkpoint, whereas one-shot213

distillation learns directly from the final checkpoint.214

(R3) Progressive distillation reduces sample complexity. We formally demonstrate the sample215

complexity benefit of progressive distillation.216

Theorem 3.2 (Informal version of Theorem B.1). Consider learning (d, k)-sparse parity with a217

student model of size m̃ = Θ̃(2k), where ·̃ hides polylog factors in d, k. Suppose the teacher has a218

loss O(ϵ) for some small ϵ > 0. Then, the total sample complexity needed for the student to reach219

ϵ-loss using progressive distillation with 2 checkpoints is Θ̃(2kd2ϵ−2 + k3). However, one-shot220

distillation requires at least Ω(dk−1, ϵ−2) samples.221

Proof sketch. We track the training behavior of the teacher model during its two-phase training. We222

show that at the end of the first phase, the teacher’s predictions will have Ω(1/k) correlations to degree-223

1 monomials xi,∀i ∈ S. In contrast, the correlations are smaller for degree-1 monomials xi,∀i /∈ S.224

Hence, the teacher’s predictions can be written as
∑

i∈S cixi +
∑

i/∈S cixi, plus additional higher225

degree odd polynomials which can be controlled, with |ci| ≥ Ω(1/k) for i ∈ S, and |ci| = o(1/kd),226

if i /∈ S. When training on the predictions from this intermediate teacher checkpoints, the correlation227

gap between in- and off-support degree-1 monomials will be reflected in the gradients of the student’s228

weights. Namely, there is a Ω(1/k) gap between the support and non-support coordinates in the229

weight gradients. This gap allows the coordinates i ∈ S in the student’s weights to grow quickly with230

only O(k2 log(m̃)) samples.231

On the other hand, for a teacher that has loss O(ϵ), a similar argument can show that the separation232

gap between the correlations of the teacher’s predictions to degree-1 monomials on support and233

outside support can be at most O(ϵ). So, harnessing this gap will require a sample size of at least234

Ω(ϵ−2) by concentration inequalities. Learning directly from the labels will require Ω(dk−1) samples235

from the SQ lower bound as discussed above. This gives the sample complexity differences between236

one-shot and progressive distillation. The full proof is provided in Appendix B.237

Remark. One gap between our theory and experiments is that our analysis applies to large-batch238

SGD with small gradient noise, whereas the experiments use online SGD with batch size 1. Bridging239

this gap, such as by adapting the analyses in Abbe et al. (2023) on Gaussian data, is an interesting240

future direction.241

4 Implicit curriculum with PCFGs and Natural language242

In this section, we empirically show that an implicit curriculum emerges generally, both when learning243

on probabilistic context-free grammars (PCFGs) and when performing natural language modeling244

tasks on the Wikipedia and Books datasets. We focus on BERT models (Devlin et al., 2018)9, and245

discuss experiments on GPT-2 (Radford et al., 2019) in Appendix E.246

The masked prediction task. Our experiments will be based on BERT models trained to perform247

masked prediction, which requires filling in masked-out tokens in an input sequence and excels at248

feature learning in natural languages (Hewitt & Manning, 2019; Tenney et al., 2019; Li et al., 2022).249

8A more detailed discussion is provided in Appendix A.1.
9See Appendix D.5.1 for a primer on BERT.
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Figure 3: An example of
a PCFG tree T(x) that gen-
erates x =“The cat ran
away”. “The cat” is an ex-
ample of level-2 span, and
“cat” is as a boundary to-
ken for the spans of both
the level-1 non-terminal Noun
and the level-2 non-terminal
Noun Phrase.

Definition 4.1 (Masked prediction task with mask rate p). Let v denote the vocabulary that contains250

a special token [mask], and let h denote an arbitrary sequence length. Given a sequence x ∈ vh,251

sample a set of masked positionsM ∈ [h] following P (i ∈ M) = p, ∀i ∈ [h]. Create a masked252

input x\M from x by replacing tokens at positions inM with [mask], a random token from X ,253

or kept unchanged with probabilities 80%, 10%, 10% respectively. Then, the masked prediction254

objective is the cross-entropy of the model’s predictions at positions i ∈M on input x\M.255

Since we are performing sequence-to-sequence modeling, we need to generalize the definition of256

the teacher fT and student fS from Section 2 accordingly, denoted as fT : vh → Rh×C and257

fS : vh → Rh×C . We will use p
(i)
T (x; τ) := softmax([fT (x)]i/τ) to denote the teacher’s output258

distribution on the ith position; similarly for p(i)S . As before, we omit τ when τ = 1. We use the259

following loss functions for the masked prediction task (Definition 4.1):260

ℓ(x; fS) = EM
1

|M|
∑
i∈M

KL(exi
∥p(i)S (x\M)), (3)

ℓDL(x; fS , fT ) = EM
1

|M|
∑
i∈M

KL(p(i)T (x\M; τ)∥p(i)S (x\M)), (4)

where ey is a one-hot vector whose yth entry is 1.261

We train BERT models with ℓ, ℓDL and report the average top-1 accuracy on the masked tokens. As262

discussed in Section 3.1, the teacher and student have the same depth (4 layers) but differ in the263

number of attention heads, with 32 heads for the teacher and 8 heads for the student. Each attention264

head has dimension 8, so the teacher has width 256 and the student has width 64. All hyperparameter265

details are in Appendix D.6.266

4.1 n-gram curriculum in PCFGs267

We first consider probabilistic context free grammars (PCFGs), which are commonly used to emulate268

the structure of natural language and thus provide mechanistic insights into language models (Zhao269

et al., 2023; Allen-Zhu & Li, 2023a). A PCFG generates sentences following a tree structure; Figure 3270

shows an example for the sentence “The cat ran away.” More precisely, a PCFG G = (N ,R,P, v) is271

defined by a set of non-terminalsN , rulesR over the non-terminals, a probability distribution P over272

R, and a vocabulary (terminals) v. A sentence x is associated with a generation tree T(x), whose273

intermediate nodes are non-terminals in N , leaf nodes are terminals in v, and edges are defined by274

rules sampled from R according to P . A formal definition of PCFG is provided in Appendix D.1.275

Our choices of PCFGs are taken from Allen-Zhu & Li (2023a), where all leaves in the same tree276

have the same distance to the root. Experiments in the main paper are based on the PCFG cfg3b277

generated by depth-7 trees, and results on other PCFGs are deferred to Appendix D.4.278

4.1.1 Progress measures of implicit curriculum279

Unlike our experiments on parity, what constitutes as feature is less straightforward for PCFG. We280

will use three progress measures to quantify the implicit curriculum for masked language modeling281

on PCFGs, based on n-gram statistics and non-terminal prediction.282

Measures that use n-gram statistics will measure the dependence of the model’s predictions on283

tokens in the neighboring contexts, defined as follows:284

7
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plateauing phase until the end of training. The triangles mark the selected checkpoints for progressive
distillation, with the first teacher checkpoint (denoted by C1) located at the middle of phase 2⃝.
Middle: Mrobust across training, which peaks at C1. The model gets more robust to shorter n-gram
perturbation as training progresses. The median is taken over the input sequences. Right: A 8-head
student’s final accuracy with (2, T )-progressive distillation after 4000 total training steps. The x-axis
marks the choice of the first teacher checkpoint. T is grid-searched over {500, 1000, 2000}. The
best performance is obtained by choosing C1. Although results in the plots are for a single training
run of the teacher, similar behaviors occur robustly across random seeds.

Definition 4.2 (n-gram neighboring context). For a h-length sentence x ∈ vh and for i ∈ [h],285

we define the n-gram neighboring context around the ith token as the set of tokens at positions286

within (n − 1)/2 distance from i, denote as n-gram(i) := {j : max(i − ⌈(n − 1)/2⌉, 0) ≤ j ≤287

min(i+ ⌊(n− 1)/2⌋, h)}.288

In the example of Figure 3, for the word “cat”, its 3-gram neighboring context consists of words “The”289

and “ran”, and its 5-gram neighboring context additionally includes the word “away.” The choice290

of n-grams is inspired by results in Zhao et al. (2023), which show that a BERT model can solve291

masked prediction by implementing a dynamic programming algorithm that builds hierarchically292

on increasingly larger n-gram neighboring context spans (Definition 4.2). A model that primarily293

uses short n-gram neighboring context will be largely affected if the tokens within the context are294

perturbed during evaluation. This motivates us to consider two n-gram based measures.295

Measure 1: Robustness to removing n-gram context. Our first progress measure of feature learning296

checks how the model’s prediction changes when the n-gram context is present or absent. For each297

masked position i, we measure the total variation (TV) distance between the probability distributions298

when masking out only the current token, and when masking out all the tokens in n-gram(i), i.e.299

the neighboring n-gram context centered at i. Recall that x\M denotes a masked version of x with300

masked setM (Definition 4.1), and that p(i) denotes a model’s output probability distribution at the301

ith position. Then, our first measure is defined as302

Mrobust(f,x, i, n) = TV(p(i)(x\{i}), p
(i)(x\n-gram(i))). (5)

We report median of Mrobust(f,x, i, n) over randomly sampled x and i 10. A larger Mrobust(f,x, i, n)303

indicates that the model heavily depends on neighboring n-gram context tokens for the masked304

prediction.305

Measure 2: Closeness between full and n-gram predictions. Our second progress measure306

examines the change in predictions when the model is given the full sequence versus only a local307

n-gram window:308

Mclose(f,x, i, n) = TV(p(i)(x\{i}), p
(i)(xn-gram(i)\{i})), (6)

where xn-gram(i)\{i} denotes the n-gram context centered at position i, minus the position i itself.309

We report median of Mclose(f,x, i, n) over randomly sampled x and i. A large Mclose(f,x, i, n)310

indicates that the model utilizes contexts outside a n-gram window in its predictions.311

Measure 3: Non-terminal prediction. Finally, we also measure how well the model outputs encode312

the features of the underlying PCFG by checking the accuracy at predicting non-terminals (Allen-Zhu313

& Li, 2023b). The predictions are given by a linear classifier on top of the output embeddings.314

10Our observations stay the same for other percentiles.
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Definition 4.3 (PCFG non-terminal prediction task). Define the span of a non-terminal n as the set of315

terminals within the subtree rooted at n, denoted by span(n). The (right) boundary of span(n) refers316

to the rightmost position within span(n). We say a non-terminal is of level i if it is at distance i from317

the root. Then, the level-i non-terminal prediction task aims to predict n(i) at the boundary of n(i).318

As an example, in Figure 3, the level-2 non-terminal prediction task aims to predict the non-terminals319

Noun Phrase and Verb Phrase at words “cat” and “away” respectively. More details are320

provided in Appendix D.3.321

4.1.2 Empirical verification of the n-gram curriculum322

Similar to Section 3.1, we will start with examining the training dynamics of the teacher model. We323

observe a phase transition period akin to that of sparse parity, during which we identify an inflection324

point concerning Mrobust and Mclose. This inflection point proves to be a crucial intermediate325

checkpoint. We then demonstrate that progressive distillation improves feature learning in the student326

model, substantiated by the three measures defined in Section 4.1.1.327

For training dynamics, we observe 3 distinct phases of training in the teacher’s loss (Figure 4 left): 1)328

an initial phase where the loss doesn’t change much for the first 5% of training; 2) a rapid loss drop329

phase in the next ≈ 20% of training; and 3) a final phase of slow loss drop till end of training. In330

particular, the rapid loss drop phase is reminiscent of the phase transition in sparse parity (Section 3).331

Moreover, we identify an inflection point (marked by C1) during the second phase: before the332

inflection point, the robust loss Mrobust increases (Figure 4 middle), and the loss Mclose stays high333

(Figure 22 left); after the inflection point, both Mrobust and Mclose start to drop rapidly, suggesting334

that the model learns to utilize longer contexts as opposed to short neighboring n-grams.335

(R4) The inflection point is best for (2, T )-progressive distillation. We study the importance of336

each teacher checkpoint by comparing the performance of (2, T )-progressive distillation, where the337

student learns from a single intermediate checkpoint in addition to the final checkpoint. The value of338

T is grid-searched (more details in Appendix D.6). For the choice of the intermediate checkpoint,339

Figure 4 shows that the best intermediate checkpoint is the one at the inflection point (at 1000 training340

steps), which we denote as C1. Note that at the inflection point, the teacher has the highest reliance on341

shorter n-grams (e.g. for n = 3), which are analogous to the low-degree monomials in Section 3 and342

serves as intermediate tasks that are likely easier to learn. Hence, C1 being the optimal checkpoint343

choice further strengthens our hypothesis that an implicit curriculum is the key to the acceleration344

enabled by progressive distillation.345

Following (R4), we will choose the checkpoints for progressive distillation at training steps that346

are multiples of that of C1, i.e. at steps {i × 103}8i=1. As shown in Figure 1 (right), progressive347

distillation helps the student learn faster than both one-shot distillation and cross entropy training.348

Furthermore, progressive distillation leads to improved feature learning.349

(R5) Progressive distillation improves feature learning on PCFG. Progressive distillation350

improves over one-shot or no distillation over all 3 measures mentioned in Section 4.1.1. As shown351

in Figure 5, progressive distillation makes the student better utilize long contexts rather than local352

n-gram windows, evidenced by a lower Mrobust and Mclose. The student can also better predict the353

non-terminals, suggesting a better structural learning of the underlying PCFG.354

4.2 Beyond synthetic setups: implicit curriculum in natural languages355

We conduct experiments on BERT training (Devlin et al., 2018) on Wikipedia and Books (details356

in Appendix F). The teacher and student both have 12 layers, with 12 and 4 attention heads per-layer357

respectively. Each attention head is of dimension 64, corresponding to a width-768 teacher and a358

width-256 student. Similar to PCFG, the teacher’s loss exhibits 3 distinct phases (Figure 6 left), with359

an inflection point marking the change in Mrobust (Figure 6 middle). The inflection point can hence360

provide an implicit curriculum towards easier-to-learn local n-grams. Finally, progressive distillation361

helps the student achieve better accuracy at masked language prediction (Figure 6 right).362

Connections to related works. Our results align with those of Chen et al. (2023), who observed363

a phase transition in loss when training BERT on real-world language data corresponding to the364
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Figure 5: Comparisons on a 8-attention head BERT model. (Left) Mclose for different n-grams.
Progressive distillation has a lower Mclose with longer n-gram context. (Middle) Mrobust for different
n-grams. Progressive distillation has a lower Mrobust for all n-gram contexts. (Right) Probe
performance to predict the non-terminals (NTs) (Definition 4.3). Progressive distilled student
performs better when probed for higher level non-terminals in its contextual embeddings.

model learning syntax rules of language. Comparable findings were also reported in a concurrent365

work on matrix completion (Gopalani et al., 2024). For auto-regressive models, prior work has366

discussed the emergence of n-gram induction heads which indicate phases in which the model learns367

to perform in-context learning (Akyürek et al., 2024; Quirke et al., 2023; Olsson et al., 2022). We368

observe similar behavior for PCFGs and Wikipedia datasets and quantify the phase change using369

n-gram context dependence. We take a step further and leverage the phase transitions to accelerate370

the training of a smaller student model.371

5 Discussions372

We have shown that progressive distillation can improve the student’s feature learning via an implicit373

curriculum provided by the intermediate checkpoints. We discuss limitations and potential future374

directions below, and provide preliminary results for some of them in the appendix (see Appendix A).375

Impact of temperature. The teacher temperature τ is an important hyperparameter in knowledge376

distillation, where varying τ can sometimes lead to a greater performance gain than changing the377

distillation method (Touvron et al., 2021; Harutyunyan et al., 2022). Our results are consistent with378

these prior findings. However, our experiments use limited temperature choices, i.e. the default379

(τ = 1.0) and low temperature (τ = 10−4 or 10−20). A more precise understanding of temperature,380

especially its impact on optimization, is an interesting direction for future work.381

Distillation via generations. Another related distillation setting is training smaller (language) models382

using the generations of larger models, which has been shown to greatly improve various abilities (Liu383

et al., 2024; Yue et al., 2023; Yu et al., 2023; Luo et al., 2023; Chaudhary, 2023; Taori et al., 2023;384

Zheng et al., 2023). There are two differences between our experiments and these generation-based385

approaches. First, the supervision in our experiments are distributions (over classes or the vocabulary),386

while generations are samples from distributions. Our experiments with a low or zero temperature387

provide positive evidence towards bridging this gap, but the precise effect remains to be explored.388

More importantly, given an input, there is a unique supervision in our settings, whereas there could389

be multiple generations given by multiple steps of unrolling of the teacher. Extending our framework390

to these generative setting will be an important direction for future work.391
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Figure 6: BERT on Wikipedia and Books. Left to right: (a) Similar to our experiments on PCFG
(Figure 4), we observe three distinct phases in the loss behavior of 12-head teacher. The rapid loss
drop phase signifies a transition phase for the model. The triangles mark the selected checkpoints
for progressive distillation, with the first teacher checkpoint roughly picked in the middle of the
second phase (C1). (b) We observe Mrobust peaks at C1, and the model gets more robust to shorter
n-gram context masking, as training progresses. (c) A 4-head student achieves better top-1 accuracy
on masked prediction objective with progressive distillation.
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A Overview of the appendix675

The appendix provides omitted proofs and additional empirical explorations, which we outline below.676

17



Omitted proofs We will start with the proof of Theorem 3.2 in Appendix B. The main idea is to677

show that the teacher can develop stronger correlation to in-support variables than to off-support678

variables, which can then be utilized by the students to reduce sample complexity.679

Additional empirical results on sparse parity We present more experiments with MLP (Ap-680

pendix C.1) and Transformers (Appendix C.2), as well as results on learning a hierarchical extension681

of sparse parity (Appendix C.3). For Transformer experiments, we study how scaling along different682

dimensions of the architecture, such as MLP width and number of attention heads, affects the search683

of support for sparse parity. We discuss the effect of temperature in Figure 14. For the hierarchical684

extension of sparse parity, we show that the implicit curriculum occurs in different phases, which685

suggests a natural choice for number of intermediate checkpoints used in progressive distillation.686

Masked prediction on PCFGs In Appendix D.5, we provide a formal definition of probablistic687

context-free grammar (PCFG) and introduce the PCFGs that we use from Allen-Zhu & Li (2023b).688

We then provide details of our experimental setup and conduct extensive ablation studies on training689

a BERT model using the masked prediction task with PCFG data. We experiment with variants of690

progressive distillation and confirm that they lead to improved performance on PCFGs, as measured691

by accuracy and the three progress measures introduced in Section 4.1.1. Furthermore, we investigate692

the effect of temperature, masking rate, and PCFG variation in Appendix D.8.693

Next-token prediction on PCFGs In Appendix E, we conduct next-token prediction experiments694

using GPT-2 models on PCFG “cfg3f”, i.e. the most complex PCFG in Allen-Zhu & Li (2023a). We695

characterize conditions under which progressive distillation provides significant gains.696

A.1 Additional related works697

Understanding knowledge distillation There have been many works dedicated to understanding698

the effectiveness of knowledge distillation (Hinton et al., 2015; Mobahi et al., 2020; Menon et al.,699

2021; Dao et al., 2021; Nagarajan et al., 2024). For classification tasks, which are the focus of700

most knowledge distillation works, one intuitive explanation is that the teacher output provides a701

distribution over the class labels, which is more informative than the one-hot data labels. Menon et al.702

(2021) formalizes this intuition and shows that a teacher that provides the Bayes class probabilities703

leads to a tighter generalization gap. Motivated by their result and the observation that a high-accuracy704

teacher can be poorly calibrated, Ren et al. (2022) proposes to supervise the student using a moving705

average of the teacher across the training trajectory. While Ren et al. (2022) uses information of706

trajectory, their student learns from a fixed target throughout training, which is a major difference707

from progressive distillation. The teacher supervision also provides regularization benefits, such as708

controlling the bias-variance tradeoff (Zhou et al., 2020), encouraging sparsity (Mobahi et al., 2020),709

or as a form of label smoothing (Yuan et al., 2020).710

Learning sparse parity There are well established hardness results for learning sparse parity.711

When given access to labels only, learning (d, k)-sparse parity with gradients from finite samples712

is an example of learning with statistical queries (SQ) (Kearns, 1998), for which a Ω(dk) SQ713

computational lower bound applies (Edelman et al., 2023). When learning with a fully-connected714

network (MLP), these parallel queries correspond to a combination of model width (i.e. neurons) and715

training steps, 11 and hence the SQ lower bound implies a fundamental trade-off between the width,716

the number of training steps, and the number of samples (Edelman et al., 2023). In particular, given717

the same number of training steps, narrower models require more samples to learn parity.718

Feature learning In this work, we use feature learning to refer to a learning process that recovers a719

low-dimensional “feature” which helps reduce sample complexity. Sparse parity is a task that can720

benefit from feature learning, where the feature is the support. For the special case of k = 2, Glasgow721

(2024) shows that feature learning using a jointly-optimized 2-layer neural network can reduce the722

sample complexity from Θ(d2) (corresponding to learning with NTK (Wei et al., 2019; Ghorbani723

et al., 2019)) to O(dpoly log d). Sparse parity is an example of a single-/multi-index function, where724

11More precisely, it is a combination of width and steps, as well as the batch size which affects the precision
of the stochastic gradient. We omit the impact of batch size here since we keep the batch size unchanged in the
experiments.
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the label is determined by a 1-dimensional/low-dimensional projection of the data. These functions725

have also been studied on Gaussian inputs (Nichani et al., 2022; Abbe et al., 2022, 2023; Damian726

et al., 2024a,b) and have known separation between neural networks (Abbe et al., 2022, 2023) and727

non-feature-learning kernel methods (Hsu, 2021).728

Benefit of width in optimization Prior work has shown that width plays an important role in the729

optimization difficulty, where wider networks are more optimized easily. Du & Hu (2019) shows730

that sufficient width is necessary for the optimization on deep linear networks. Multiple works731

show that overparameterization leads to favorable optimization landscape, such as fewer sub-optimal732

local minima (Soudry & Hoffer, 2017; Soltanolkotabi et al., 2018) or guaranteed convergence at the733

limit (Chizat & Bach, 2018, 2020). Wider models also exhibit faster decaying loss empirically (Yang734

et al., 2022; Bordelon et al., 2024a). Most related to our focus on learning sparse parity, Edelman735

et al. (2023) relates the width to the number of parallel statistical queries (SQs). Combined with736

sparse parity’s SQ lower bound, their result implies a trade-off where a larger width requires fewer737

optimization steps. Our work also acknowledges the benefit of width in optimization, but takes a738

different perspective by demonstrating that a smaller student can inherit the optimization benefit when739

learning from a higher-width teacher. Moreover, we consider the number of attention heads as another740

scaling dimension for Transformers, where the intuition is similar to having more “paths” (Dong741

et al., 2021). There have been results on studying the limiting output distribution as the number of742

attention heads goes to infinity (Hron et al., 2020; Bordelon et al., 2024b), though to our knowledge,743

there are no quantitative descriptions for finite number of heads.744

B Proofs of results in Section 3.2745

We provide the formal version of Theorem 3.2 in this section.746

Recall that the teacher model is defined as747

fT (x) =

m∑
i=1

aiσ (⟨wi,x⟩+ bi) .

The student model is similarly defined as748

fS(x) =

m̃∑
i=1

ãiσ
(
⟨w̃i,x⟩+ b̃i

)
.

Setup We assume the data points are sampled at random from U({±1}d). Without loss of generality,749

let the target k-sparse parity function be y = x1x2 · · ·xk. Symmetric initialization: Following (Barak750

et al., 2022), we use the following symmetric initialization: for each 1 ≤ i ≤ m/2,751

wi ∼ U({±1}d), bi ∼ U({−1 + k−1, · · · , 1− k−1}), ai ∼ U({±1/m}),
wi+m/2 = wi, bi+m/2 = bi, ai+m/2 = −ai.

Two-stage training: Following prior work (Barak et al., 2022; Abbe et al., 2023, 2024), we adopt a752

two-stage batch gradient descent training, where we first train the first-layer weights {w1, · · · ,wm},753

keeping the output weights {ai}mi=1 fixed. In the second stage of training, we fit the output weights754

{ai}mi=1 while keeping others fixed. We keep the biases {bi}mi=1 fixed throughout training. Similar755

strategy for training the student model as well. The teacher is trained with hinge loss, given756

by ℓ(x, y) = max(0, 1 − fT (x)y). The student is trained with ℓDL(x, y; fS , fT ) = max(0, 1 −757

fS(x)fT (x)).758

The training process is summarized in Algorithm 1.759

Sample complexity benefits with progressive distillation for the student Our result is that760

progressive distillation provably reduces the sample complexity compared to (one-shot) distillation761

or no distillation. The key is to establish a separation between the correlations with in-support and762

off-support variables, which happens with high probability as formalized in Corollary B.6. Under763

such event, we show:764
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Algorithm 1 2-stage training

Require: Stage lengths: T1, T2, learning rates η1, η2, batch size B1, B2, weight decay λ1, λ2.
for t ∈ [0, T1] and all i ∈ [m] do

Sample B1-samples {(x(j), y(j))}B1
j=1.

Update the weights wi as w(t)
i ← w

(t−1)
i −η1E(x,y)∈{(x(j),y(j))}B1

j=1
∇wi

(
Lθ(t)(x, y) + λ1 ∥wi∥2

)
.

end for
for t ∈ [0, T2] and all i ∈ [m] do

Sample B2-samples {(x(j), y(j))}B2
j=1.

Update the outer layer weights ai as a
(t+T1)
i ← a

(t+T1−1)
i −

η2E(x,y)∈{(x(i),y(i))}B2
j=1
∇ai

(
Lθ(t+T1−1)(x, y) + λ2a

2
i

)
.

end for

Corollary B.6: conditions satisfied by the teacher after first phase
W.h.p. the output of the teacher after the first phase satisfies the following condition for all i.∣∣∣Ex,yf

(1)
T (x) ·Maj(x)xi

∣∣∣ ≥ Ω(k−1), if i ∈ [k],∣∣∣Ex,yf
(1)
T (x) ·Maj(x)xi

∣∣∣ ≤ o(k−1), if i /∈ [k].

Theorem B.1 (Sample complexity benefits with progressive distillation). Suppose the teacher model765

has been trained with 2-stage training in Algorithm 1, which satisfies the conditions in Corollary B.6766

at the end of first stage and achieves loss O(d−c) for some constant c ≥ 1 at the end of the second767

stage. Suppose we train a student model fS of size m̃ = Θ̃(2kk) using the following two strategies:768

1. Progressive distillation: Train for the first T1 = 1 steps w.r.t. the teacher’s logits at T1769

checkpoint. Then, train with the final teacher checkpoint in the second stage.770

2. Distillation: Train with the final teacher checkpoint throughout training.771

Then,772

1. Under progressive distillation, the total sample complexity to reach a loss of ϵ with probabil-
ity 1− δ is

Θ(k2 log(dm̃/δ) + 2kd2k4ϵ−2 log(k/δ)).

2. The necessary sample complexity under distillation is at least Ω(dmin(2c,k−1)).773

The proof consists of two parts: 1) showing that the teacher develops strong correlation with the774

in-support variables after the first stage of training (Lemma B.2, Corollary B.6), and 2) showing that775

given the support, the second phase of training converges quickly (Corollary B.8). These two helper776

lemmas are proven in Appendix B.1.1 (first stage) and Appendix B.1.2 (second stage). The proof of777

Theorem B.1 is given in Appendix B.2.778

Notations Before stating the proofs, we provide a list of necessary notations.779

• At any training step t, f (t)
T will refer to the teacher’s output at that step. Its parameters are referred780

to as θ(t) = {a(t)i ,w
(t)
i , b

(t)
i }mi=1. The loss for f (t)

T is denoted by L(f
(t)
T ) or Lθ(t) . Notations for781

the student fS are defined similarly.782

• Given a set S̃, χS̃ denotes the Fourier function on S̃, where χS̃(x) =
∏

i∈S̃ xi. We are particularly783

interested in S̃ = S, i.e. the support of the sparse parity.784

• Maj : {±1}d → ±1 represents the majority function. On any x, Maj returns the sign of
∑d

i=1 xi.785

ζi for i ≥ 1 represents its ith fourier coefficient, i.e. ζi = Ex,yMaj(x)χS(x) for any S ∈ {0, 1}d786

with |S| = i. ζi = 0 when i is even, and ζi = Θ(i−1/3/
(
d
i

)
) when i is odd (O’Donnell, 2014).787
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• τg denotes the error tolerance in the gradient estimate due to mini-batch gradient estimation: let g788

be the population gradient and ĝ be the estimated gradient with a few examples, τg is defined such789

that ∥ĝ − g∥∞ ≤ τg . A τg-error gradient estimate can be obtained using a batch size of Ω̃(1/τ2g ).790

B.1 Analysis for the teacher791

B.1.1 First stage analysis for the teacher792

First, we show that with an appropriate learning rate, the magnitude of the weights wij on coordinates793

i ∈ S increases to 1
2k , while the coordinates i ̸∈ S stay O

(
1
kd

)
small.794

Lemma B.2 (Single step gradient descent, adapted from Claims 1, 2 in Barak et al. (2022)). Fix795

τg, δ > 0. Set T1 as 1. Suppose the batch size B1 ≥ Ω(τ−2
g log(md/δ)). For learning rate796

η1 = m
k|ζk−1| and λ1 = 1, the following conditions hold true for all neurons i ∈ [m] at the end of797

first stage of training w.p. at least 1− δ.798

1.
∣∣∣∣w(1)

ij −
sign(a

(0)
i ζk−1) sign(χ[k]\{j}(w

(0)
i ))

2k

∣∣∣∣ ≤ τg
|ζk−1| , for all j ∈ [k].799

2.
∣∣∣∣w(1)

ij −
ζk+1

|ζk−1|
sign(a

(0)
i ) sign(χ[k]∪{j}(w

(0)
i ))

2k

∣∣∣∣ ≤ τg
|kζk−1| , for all j > k.800

Proof. The proof follows that of (Barak et al., 2022), which we outline here for completeness. The801

proof has two major components: First, the magnitude of the population gradient at initialization802

reveals the support of the sparse parity. Second, the batch gradient and the population gradient can be803

made sufficiently close given a sufficiently large batch size. We will explain each step below.804

Claim B.3. At initialization, the population gradient of the weight vector in neuron i is given by805

Ex,y∇wij
ℓ(x, y; f

(0)
T ) = −Ex,y∇wij

f
(0)
T (x)y, which can be split across the coordinates as806

Ex,y∇wij
f
(0)
T (x)y = −1

2
a
(0)
i ζk−1χ[k]\{j}(w

(0)), for all j ∈ S

Ex,y∇wij
f
(0)
T (x)y = −1

2
a
(0)
i ζk+1χ[k]∪{j}(w

(0)), for all j ̸∈ S

Thus, the gradient of the weight coordinates wij for any neuron i and j ∈ S has magnitude |ζk−1|,807

while the gradients of the weight coordinates wij for any neuron i and j /∈ S has magnitude808

|ζk+1|. The gap between the gradient in support and out of support is given by |ζk−1| − |ζk+1| ≥809

0.03((d− 1)−(k−1)/2) (Lemma 2 in Barak et al. (2022)).810

The second component involves applying a hoeffding’s inequality to show the gap between sample811

and population gradient.812

Claim B.4. Fix δ, τg > 0. For all i, j, for a randomly sampled batch of size B1, {(xk, yk)}B1

k=1, with813

probability at least 1− δ,814 ∣∣∣Ex,y∼U({±}d)∇wijf
(0)
T (x)− E{(xk,yk)}

B1
k=1

∇wijf
(0)
T (x)

∣∣∣ ≤ τg,

provided B1 ≥ Ω(τ−2
g log(md/δ)).815

Because we want the noise τg to be smaller than the magnitude of the true gradients for the coordinates816

in the support S, we want τg to be smaller than |ζk−1|. We set this to get favorable condition for817

second phase of training (see Lemma B.7).818

On the other hand, we show that after the first phase, the output of the network has positive correlations819

to the individual variables in the support of the label function, and thus the checkpoint after the first820

phase can be used to speed up training of future models.821

Lemma B.5 (Correlation with in-support variables). Under the event that the conditions in Lemma B.2822

are satisfied by each neuron, which occurs with probability at least 1 − δ w.r.t. the randomness823

of initialization and sampling, the output of the model after the first phase satisfies the following824

conditions:825
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1. Ex,yf
(1)
T (x)xi ≥ 1

8k +O(τgd |ζk−1|−1
) +O(m−1/2) for all i ∈ S.826

2. Ex,yf
(1)
T (x)xi ≤ O((kd)−1) for all i /∈ S.827

3. Ex,yf
(1)
T (x)χS(x) ≤ O(τgd |ζk−1|−1

) for all S with even |S|.828

4.
∥∥∥f (1)

T

∥∥∥2
2
= Ex,y[f

(1)
T (x)]2 ≤ O(d/k).829

Proof. Consider a neuron i ∈ [m/2] and its symmetric counterpart i+m/2. W.L.O.G., we assume830

sign(w
(0)
ij ) = sign(a

(0)
i ζk−1) for all j ∈ [k], and sign(a

(0)
i ) = 1. Recall that k is assumed to be even,831

hence sign(χ[k](w
(0)
i )) = 1. Then, the condition in Lemma B.2 can be simplified as832

w
(1)
ij =

1

2k
+ vij , w

(1)
i+m/2,j = −

1

2k
− vij , for all j ∈ [k],

w
(1)
ij =

1

2k

ζk+1

|ζk−1|
sign(w

(0)
ij ) + vij , w

(1)
i+m/2,j = −

1

2k

ζk+1

|ζk−1|
sign(w

(0)
ij ) + vij , for all j ≥ k,

where vij satisfies the following conditions.833

|vij | ≤
τg
|ζk−1|

, for all j ∈ [k],

|vij | ≤
τg

|kζk−1|
, for all j ≥ k.

Then, the sum of the output of the neurons i and i+m/2 on an input x (ignoring the magnitude of834

ai) is given by835

(f
(1)
T )i(x) = σ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + ⟨vi,x⟩+ bi


− σ

− 1

2k

k∑
j=1

xj −
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + ⟨vi,x⟩+ bi

 ,

and

f
(1)
T (x) =

m/2∑
i=1

ai(f
(1)
T )i(x) =

1

m

m/2∑
i=1

(f
(1)
T )i(x).

1. In-support correlations: We are interested in the correlation of this function to a variable xu836

for u ∈ S. We argue for u = 1, as the similar argument applies for others. Thus, we are interested in837

Ex,y(f
(1)
T )i(x)x1 = Ex,yσ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + ⟨vi,x⟩+ bi

x1

− σ

− 1

2k

k∑
j=1

xj −
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + ⟨vi,x⟩+ bi

x1.

(7)

We focus on the first term; argument for the second term is similar. First of all, we can ignore ⟨vi,x⟩838

incurring an error of O(τgd |ζk−1|−1
).839
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Ex,yσ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + bi

x1

= Ex,y:x1=+1σ

 1

2k
+

1

2k

k∑
j=2

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + bi


− Ex,y:x1=−1σ

− 1

2k
+

1

2k

k∑
j=2

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + bi


≥ 1

2k
Ex,yI

 1

2k

k∑
j=2

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + bi ≥ 0

 .

The final step follows from the observation that the argument of σ in the first term is 1
k higher than840

the argument of σ in the second term. This implies that when the first term is non-zero, it’s at least841
1
2k higher than the second term. Hence, we lower bound by considering one scenario where the first842

term is non-zero.843

Continuing, we can further split the indicator function into cases when each term in the argument of844

the indicator function is positive.845

Ex,yσ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + bi

x1

≥ 1

2k
Ex,yI

 1

2k

k∑
j=2

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + bi ≥ 0


≥ 1

2k
Ex,yI

 k∑
j=2

xj ≥ 0

 I

 d∑
j=k+1

xj ≥ 0

 I (bi ≥ 0)

≥ 1

8k
I (bi ≥ 0) .

From Equation (7), we then have846

Ex,y(f
(1)
T )i(x)x1 ≥

1

4k
I (bi ≥ 0) +O(τgd |ζk−1|−1

).

As bi has been kept at random initialization and thus is a random variable selected from the set847

{−1 + 1
k , · · · , 1−

1
k}, with probability 1

2 , I (bi ≥ 0). This implies, w.p. atleast 1/2 w.r.t. a neuron’s848

bias initialization, Ex,y(f
(1)
T )i(x)x1 ≥ 1

4k +O(τgd |ζk−1|−1
). The final bound comes from the fact849

that Ex,yfT (x)x1 = Ex,y
1
m

∑m
i=1(f

(1)
T )i(x)x1 ≥ 1

8k +O(τgd |ζk−1|−1
) +O(m−1/2), where the850

error term is bounded using Hoeffding’s inequality.851

2. Out-of-support correlations: Similar to the Equation (7), we have for u /∈ S,852

Ex,y(f
(1)
T )i(x)xu = Ex,yσ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + ⟨vi,x⟩+ bi

xu

− σ

− 1

2k

k∑
j=1

xj −
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + ⟨vi,x⟩+ bi

xu.

(8)
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However, we observe that the influence of xu in each of the terms is bounded by 1
k

ζk+1

|ζk−1| . Consider853

the first term; the argument for the second term is similar. We can again ignore ⟨vi,x⟩ incurring an854

error of O(τgd |ζk−1|−1
).855

Ex,yσ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + bi

xu

= Ex,y:xu=+1σ

 1

2k

ζk+1

|ζk−1|
sign(w

(0)
iu ) +

1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|
∑

j=k+1→d;j ̸=u

sign(w
(0)
ij )xj + bi


− Ex,y:xu=−1σ

− 1

2k

ζk+1

|ζk−1|
sign(w

(0)
iu ) +

1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|
∑

j=k+1→d;j ̸=u

sign(w
(0)
ij )xj + bi


= Ex,y

C(x)

k

ζk+1

|ζk−1|
sign(w

(0)
iu )I

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|
∑

j=k+1→d;j ̸=u

sign(w
(0)
ij )xj + bi ≥ 0

 ,

where C(x) ∈ {1, 2} denotes a function that depends on x. The final step follows from a first order856

taylor expansion of σ. The magnitude can hence be bounded by 1
k
|ζk+1|
|ζk−1| . This can be bounded857

by 1
kd (section 5.3, O’Donnell (2014)). The final bound comes from the fact that Ex,yfT (x)xu =858

Ex,y
1
m

∑m
i=1(f

(1)
T )i(x)xu ≤ O((kd)−1).859

3. Correlations to support of an even size: The function (f
(1)
T )i is given by860

(f
(1)
T )i(x) =σ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + ⟨vi,x⟩+ bi


− σ

− 1

2k

k∑
j=1

xj −
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + ⟨vi,x⟩+ bi


=σ

 1

2k

k∑
j=1

xj +
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + bi


− σ

− 1

2k

k∑
j=1

xj −
1

2k

ζk+1

|ζk−1|

d∑
j=k+1

sign(w
(0)
ij )xj + bi

+O(τgd |ζk−1|−1
)

:=g(x) +O(τgd |ζk−1|−1
).

One can observe that g(x) is a symmetric function and so an odd function. Thus, Ex,yg(x)χS(x) = 0861

(exercise 1.8, O’Donnell (2014)) and so, Ex,y(f
(1)
T )i(x)χS(x) = O(τgd |ζk−1|−1

).862

4. Output norm: Focusing on function (f
(1)
fT

)i:863 ∥∥∥(f (1)
T )i

∥∥∥2
2
= Ex,y(f

(1)
T )i(x)

2

= Ex,y

(
σ(⟨w(1)

ij ,x⟩+ bi)− σ(⟨w(1)
i+m/2,j ,x⟩+ bi)

)2
≤ Ex,y min

(∥∥∥w(1)
i

∥∥∥2
2
+ b2i ,

∥∥∥w(1)
i+m/2

∥∥∥2
2
+ b2i

)
∥x∥22 = O

(
1

k

)
· d.

The intermediate step uses Cauchy-Schwartz inequality, and the final step uses the values of864

w
(1)
ij , w

(1)
i+m/2,j . As f

(1)
T (x) = 1

m

∑m/2
i=1 (f

(1)
T )i(x), we have

∥∥∥(f (1)
T )
∥∥∥2
2
≤ 2

m

∑m/2
i=1

∥∥∥(f (1)
T )i

∥∥∥2
2
=865

O
(
d
k

)
.866
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Corollary B.6. Under the event that the conditions in Lemma B.2 are satisfied by each neuron, which867

occurs with probability at least 1− δ w.r.t. the randomness of initialization and sampling, the output868

of the model after the first phase can be given as:869

f
(1)
T (x) =

k∑
j=1

cjxj +

d∑
j=k+1

cjxj +
∑

S⊆[d]:|S|%2=1,|S|≥3

cSχS(x) +
∑

S⊆[d]:|S|%2=0

cSχS(x),

where870

|cj | ≥ Ω(k−1), for all 1 ≤ j ≤ k,

|cj | ≤ O((kd)−1), for all j > k,

|cS | ≤ O(τgd |ζk−1|−1
), for all S ⊆ [d] with |S|%2 = 0,

|cS | ≤ O(d/k), for all S ⊆ [d] with |S|%2 = 1.

As such, the following correlations hold true for all i.871

Ex,yf
(1)
T (x) ·Maj(x)xi =

1

2
ci +O(τgd5/3 |ζk−1|−1

).

If batch size B1 is set ≥ Ω(k2d10/3ζ−2
k−1), such that τg ≤ O(k−1d−5/3 |ζk−1|), then the following872

holds for all i.873 ∣∣∣Ex,yf
(1)
T (x) ·Maj(x)xi

∣∣∣ ≥ Ω(k−1), if i ∈ [k],∣∣∣Ex,yf
(1)
T (x) ·Maj(x)xi

∣∣∣ ≤ o(k−1), if i /∈ [k],

Proof. The form of f (1)
T follows from the fourier coefficient analysis in Lemma B.5.874

Now, we can use the formulation to derive875

Ex,yf
(1)
T (x) ·Maj(x)xi

=Ex,y

d∑
j=1

cjxj ·Maj(x) · xi + Ex,y

∑
S⊆[d]:|S|%2=1,|S|≥3

cSMaj(x)χS(x) · xi

+ Ex,y

∑
S⊆[d]:|S|%2=0

cSχS(x) ·Maj(x)xi

=Ex,y

d∑
j=1

cjxj ·Maj(x) · xi + Ex,y

∑
S⊆[d]:|S|%2=0

cSMaj(x)χS(x) · xj

=ciEx,yMaj(x) + Ex,y

∑
j,j ̸=k

cjMaj(x)xjxi + Ex,y

∑
S⊆[d]:|S|%2=0

cSMaj(x)χS(x) · xi

=
1

2
ci + Ex,y

∑
S⊆[d]:|S|%2=0

cSMaj(x)χS(x) · xi.

The second step removes Ex,y

∑
S⊆[d]:|S|%2=0 cSχS(x) · Maj(x)xi because Maj(x) is an odd876

function, and so Ex,yMaj(x)χS(x)xi will be 0 for odd sized S. Similar argument holds877

for removing Ex,y

∑
j,j ̸=i cjMaj(x)xjxi in the final step. We finish the proof by bounding878

Ex,y

∑
S⊆[d]:|S|%2=0 cSMaj(x)χS(x) · xi.879
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As |cS | ≤ O(τgd |ζk−1|−1
) for all S with |S|%2 = 0, we can bound it as880 ∣∣∣∣∣∣Ex,y

∑
S⊆[d]:|S|%2=0

cSMaj(x)χS(x) · xi

∣∣∣∣∣∣
≤O(τgd |ζk−1|−1

) ·

 ∑
S⊆[d]:|S|%2=0

|Ex,yMaj(x)χS(x)xi|


≤O(τgd |ζk−1|−1

) ·

∑
S⊆[d]

|Ex,yMaj(x)χS(x)|


≤O(τgd |ζk−1|−1

) ·

∑
S⊆[d]

|Ex,yMaj(x)χS(x)|


=O(τgd |ζk−1|−1

) ·
∑
S⊆[d]

Θ

(
|S|−1/3(

d
|S|
) )

=O(τgd5/3 |ζk−1|−1
).

Here the pre-final step follows from the bounds on the Fourier coefficients of Maj outlined in881

Appendix B. Finally, we set B1 ≥ Ω(τ−2
g ) is set such that τg ≤ O(k−1d−5/3ζk−1). This makes882

O(τgd5/3 |ζk−1|−1
) = o(1/k). Hence, with appropriate batch size B1,883

Ex,yf
(1)
T (x) ·Maj(x)xi =

1

2
ci + o(1/k).

The proof follows from the magnitude of ci derived above.884

B.1.2 Second stage analysis for the teacher885

Lemma B.7 (Second stage Training, cf. Theorem 4 in (Barak et al., 2022)). Fix ϵ, δ >886

0. Suppose m ≥ Ω(2kk log(k/δ)), d ≥ Ω
(
k4 log(kd/ϵ)

)
. Furthermore, suppose B1 ≥887

Ω(|ζk−1|2 k2 log(kd/ϵ)) s.t. the weights satisfy the conditions in Lemma B.2 with τg =888

O(|ζk−1| k−1) after the first phase. Then after T2 = Ω(md2k3/ϵ2) steps of training with batch size889

B2 = 1, learning rate η2 = 4k1.5/(d
√
m(T2 − 1)) and decay λ2 = 0, we have with expectation890

over the randomness of the initialization and the sampling of the batches:891

min
t∈[T2]

E [Lθ(t)(x, y)] ≤ ϵ.

Thus, the minimal sample complexity to reach a loss of ϵ is given by892

T1 ×B1 + T2 ×B2 = Θ(|ζk−1|2 k2 log(kd/ϵ)) + Θ(md2k3/ϵ2)

= Θ(dk−1k2 log(dk/ϵ) + 2kd2k4ϵ−2 log(k/δ)).

Corollary B.8. Under the conditions outlined in Lemma B.7, after T2 steps of training in the893

second phase, if t† denote the time step at which the model achieves the minimum loss, i.e. t† :=894

argmint∈[T2] E [Lθ(t)(x, y)], then895

E
[
f
(t†)
T (x)xi

]
≤ ϵ, for all i ∈ [d].

The proof follows from the fact that if the correlation along y =
∏

i∈S xi is large (≥ 1− ϵ as hinge896

loss is below ϵ), the correlations along other Fourier basis functions will be small. Hence, depending897

on how saturated the model is, the signal along the support elements are small.898

We will use a slightly modified version of Lemma B.7 with higher sample complexity in the first899

phase, to ensure the stronger conditions of Corollary B.6 hold true as well. This will be necessary to900

get improved signal to teach a smaller student.12901

12We haven’t optimized the error bounds in Corollary B.6. Our sample complexity bounds are likely loose in
Corollary B.9

26



Corollary B.9 (Modified Version of Lemma B.7). Fix ϵ, δ > 0. Suppose m ≥ Ω(2kk log(k/δ)), d ≥902

Ω
(
k4 log(kd/ϵ)

)
. Furthermore, suppose B1 ≥ Ω(|ζk−1|2 k2d10/3 log(kd/ϵ)) s.t. the weights satisfy903

the conditions in Corollary B.6 with τg = O(|ζk−1| k−1d−5/3) after the first phase. Then after T2 =904

Ω(md2k3/ϵ2) steps of training with batch size B2 = 1, learning rate η2 = 4k1.5/(d
√

m(T2 − 1))905

and decay λ2 = 0, we have with expectation over the randomness of the initialization and the906

sampling of the batches:907

min
t∈[T2]

E [Lθ(t)(x, y)] ≤ ϵ.

Thus, the minimal sample complexity to reach a loss of ϵ is given by908

T1 ×B1 + T2 ×B2 = Θ(|ζk−1|2 d10/3k2 log(kd/ϵ)) + Θ(md2k3/ϵ2)

= Θ(dk+7/3k2 log(dk/ϵ) + 2kd2k4ϵ−2 log(k/δ)).

B.2 Analysis for the student909

Proof of Theorem B.1. We will first prove the sample complexity upper bound for progressive distil-910

lation, followed by a sample complexity lower bound for distillation.911

Sample complexity for Progressive distillation: Under progressive distillation, the label is given by912

f
(T1)
T for the first T1 steps. We will follow similar steps as Lemma B.2, where the label is replaced913

by f
(T1)
T . Claim B.3 changes, while Claim B.4 stays the same. We will showcase the change in914

Claim B.3 here.915

At initialization, the population gradient of the weight vector in neuron i at coordinate j is given by916

Ex,y∇w̃
(0)
ij

ℓDL(x, y; f
(0)
S , fT )

= −Ex,y∇w̃
(0)
ij

f
(0)
S (x)f

(T1)
T (x)

= −aiEx,yI
[
⟨w̃(0)

i ,x⟩+ b̃i ≥ 0
]
f
(T1)
T (x)xj

= −aiEx,y

(
1

2
+

1

2
Maj(w̃(0)

i ,x)

)
f
(T1)
T (x)xj

= −ai
1

2
Ex,yf

(T1)
T (x)xj − ai

1

2
Ex,yMaj(w̃(0)

i ,x)f
(T1)
T (x)xj ,

where the relation between I
[
⟨w̃(0)

i ,x⟩+ b̃i ≥ 0
]

and Maj(w̃(0)
i ,x) follows because of

∣∣∣b̃i∣∣∣ < 1 at917

initialization. From Corollary B.6,918 ∣∣∣Ex,y∇w̃
(0)
ij

ℓDL(x, y; f
(0)
S , fT )

∣∣∣ ≥ Ω(k−1), if j ∈ [k],∣∣∣Ex,y∇w̃
(0)
ij

ℓDL(x, y; f
(0)
S , fT )

∣∣∣ ≤ o(k−1), if j /∈ [k].

Thus, a fourier gap exists between the population gradients on in-support and out-of-support919

coordinates in the gradients. We can then apply Claim B.4 to show that a finite batch size of920

B1 ≥ Ω(k2 log(dm̃/δ)) is sufficient to maintain this gap between the coordinates in support and out921

of support. Thus, the change in the necessary sample complexity comes from the reduced sample922

complexity in the first phase. The proof for the second phase training is exactly equal to the proof for923

the teacher in Theorem B.1.924

Sample complexity for Distillation: On the other hand, for the teacher checkpoint with lossO(d−c),925

the correlation to the monomial terms in the support is bounded by O(d(−c)) (by Corollary B.8). If926

we want to learn from the correlations to the support, we need the number of samples to be at least927

Ω(d2c) as the gradient noise needs to be lower than O(d−c) (by Claim B.4). To learn the support928

from the true label, we need the number of samples to be at least Ω(dk−1), by the following result:929

Lemma B.10 (Width-optimization trade-off, cf. Proposition 3 in (Edelman et al., 2023)). For δ > 0,930

gradient noise τg > 0, and model width m > 0, if T ≤ 1
2

(
d
k

) δτ2
g

m , then there exists a (d, k)-sparse931

parity such that w.p. at least 1 − δ over the randomness of initialization and samples, the loss is932

lower bounded as L(f (t)
T ) ≥ 1− τg for all t ∈ {1 · · ·T}.933
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Figure 7: Larger models learn sparse parity faster. A larger model has more width (MLP, left)
or more attention heads (Transformers, right). The results are for (100, 6)-parity, aggregated over 5
runs for each setup.

This result implies that for a fixed batch size (and hence a fixed τg), we either require a bigger width,934

or more number of gradient steps (which translates to sample complexity since we are using fresh935

samples each batch). Hence, for the model to learn the support from a combination of the two936

components, it needs a sample complexity at least Ω(dmin(2c,k−1)/m̃).937

C Results on sparse parity and its generalization938

C.1 Additional results on sparse parity with MLP939

We take both the teacher and student models to be 1-hidden-layer MLPs with ReLU activations. The940

teacher has a hidden width of 5 × 104, and the students are of widths 102 or 103. All models are941

trained using SGD with batch size 1 for 20M steps on sparse parity data with n = 100 and k = 6942

(Definition 3.1). The support is set to be the first 6 coordinates of the input vector without loss of943

generality. The learning rate is searched over {10−2, 5 × 10−3, 10−3}. Evaluation is based on a944

held-out set consisting of 4096 examples, and we report the average across 3 different training seeds.945

For one-shot distillation, we use the teacher checkpoint at the end of training (20M checkpoint), at946

which point the teacher has fully saturated. For progressive distillation, we use N = 200 equally947

spaced teacher checkpoints that are 0.1M steps apart.948
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Figure 8: Repeated experiments from Figure 2 for a student of width 1000.

C.2 Learning with Transformers: parallel search with attention heads949

The benefit of progressive distillation and the implicit curriculum is not specific to MLP. This section950

presents similar results with Transformers (Vaswani et al., 2017). The d-dimensional input vector is951

now treated as a length-d sequence, and the label is predicted using the last token’s output. We fix the952

support S to be the first 6 coordinates of the sequence. Note that unlike MLP, Transformer’s learning953

is not permutation-invariant to the location of S due to the causal mask. Nevertheless, given the same954

S, the comparison on learning speed is still meaningful.955

For Transformers, the parallel queries come from both the MLP width and also the number of attention956

heads. To illustrate this, consider the following two solutions (which we formalize in Appendix C.2.1)957

to sparse parity: The first solution uses attention to locate the support and then uses MLP to compute958

the product of the in-support variables. The second solution copies over all variables to the final959

position, whose MLP is then responsible for both identifying the support and computing the product.960
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Figure 9: Repeated experiments from Figure 2 but for a different teacher. For (2, 0.1M) progressive
distillation, the checkpoint that lies in the middle of the second phase accelerates training the most.
In Figure 2, we used a teacher that was trained with learning rate 5 × 10−3. The correlation plot
for the teacher to degree-1 monomials had a clear gap for degree-1 monomials in-support and
out-of-support at the middle of the second phase (indicated by candidate 2). However, for a teacher
that is trained with a higher learning rate 10−2, we didn’t find such a clean gap in correlations for
degree-1 monomials. On the other hand, correlations to degree-2 and degree-3 monomials showed
a clean gap between in-support and off-support variables at the middle of the phase transition. Hence,
the student needn’t learn only from degree-1 monomials to get training acceleration, any low degree
monomials suffice to teach the student about the support. Rest for degree-2 monomials refers to all
monomials of the form xixj where atleast one of i, j /∈ S. Similar definition for degree-3 monomials.

The second solution is less interesting as it reduces to an MLP, so we focus on the first solution in the961

following, which utilizes the attention mechanism unique to Transformers.962

(R6) More attention heads helps with the search for support Our experiments are based on 2-layer963

Transformers 13 with 8 dimensions per attention head. As shown in Figure 7 (right), increasing the964

number of heads makes learning faster. There are clear phase transitions similar to the MLP case.965

Ablation with other ways to vary the model size Most Transformer experiments in this work966

keep the per-head dimension to be fixed and vary the number of attention heads between the teacher967

and the student. The MLP input dimension is the sum of the attention head dimensions, so a968

student with fewer heads will have a smaller MLP than the teacher, which is preferable in terms of969

efficiency. Fixing the per-head dimension is a widely adopted setup in practice, such as in the Llama970

series (Touvron et al., 2023). We now additionally consider two other ways to vary the model size. In971

particular, we vary the number of heads, while 1) fixing the hidden dimension (i.e. the total dimension972

of all heads concatenated) to be 256, or 2) fixing the dimension of each head to be 256 and averaging973

the output from each head, in which case the hidden dimension is also 256. These two setups are less974

common in practice but nevertheless serves as complementary evidence: the performance difference975

comes solely from the number of attention heads, as the MLP dimension is kept the same. As shown976

in Figure 10 (b,c), increasing the number of attention also increases the training speed in these two977

setups.978

Ablation with 2-shot distillation We repeat the 2-shot distillation ablation for MLP. We first979

confirm that the low-degree curriculum described in Section 3.1 is also observed in Transformers. As980

shown in Figure 12, the 2-layer 32-head teacher model exhibits significantly higher correlation with981

13We use 2 layers since 1-layer Transformers are hard to train empirically, despite being representationally
sufficient to solve sparse parity.
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(a) Per-head dimension = 8 (b) Hidden dimension = 256 (c) Dimension 256, averaging heads
Figure 10: Increasing the number of attention heads speeds up training. Each plot compares the
accuracy throughout training for 2-layer models with various heads, while fixing: (a) the per-head
dimension to 8; (b) the MLP hidden dimension to 256; (c) both the per-head and MLP hidden
dimension to 256, by averaging (rather than concatenating) the heads. We report runs with the
learning rate that has the highest mean accuracy and break tie with training speeds. The shadows
show the variances of the runs.

Figure 11: In-support attention growth co-occurs with accuracy increase Attention on individual
coordinates on or off the support of the sparse parity, taking the median of 1024 random binary input
sequences. The shade highlights the teacher’s phase transition period. The model accuracy is marked
by the gray dashed line, with scale adjusted for better display. The two subfigures show the same
type of results but with different randomness seeds.

the in-support monomials (i.e. {xi}i∈S than with off-support monomials during the phase transition.982
14 Then, we show in Figure 13 that using as few as 1 intermediate checkpoint suffices to significantly983

speeds up the training of the student.984

Ablation with various temperatures As mentioned in Section 2, our progressive distillation results985

use a low temperature in order to remove potential favorable regularization effects from soft labels.986

We chose a temperature of τ = 10−4 for sparse parity, where the output dimension is 2. In Figure 14,987

we empirically confirm that setting the temperature to be below 0.01 is sufficient to get results that988

are qualitatively similar to using τ = 0 (i.e. taking the argmax). Note that using a higher temperature989

such as τ = 1 can make learning slower despite potentially having more regularization effects from990

softer labels. We leave understanding the exact effect of temperature to future work.991

C.2.1 Two Transformer solutions for sparse parity (Proposition C.1 and Proposition C.3)992

We consider a simplified version of a Transformer block, without the residual connection or the993

layernorm:994

fblock = f
(L)
mlp ◦ fattn,

where995

fattn(X;WQ,WK ,WV ) := CausalAttn(XWQW
⊤
KX⊤)XWV ,

with WQ,WK ,WV being the query, key, value matrices, and f
(L)
mlp(x; {Wl, bl}l∈[L]) is a L-layer MLP996

that recursively apply f
(l+1)
mlp (x) = σ(Wl+1f

(l)
mlp(x) + bl+1) position-wise. σ is the relu function for997

l ∈ [L− 1], and is the identity function for l = L.998

14Note that the upper right subplot in Figure 12 has a second correlation spike with the in-support variables.
However, supervising with this second checkpoint does not provide acceleration. This suggests that there might
be mechanisms other than the low-degree curriculum at play.
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Figure 12: Low-degree curriculum in Transformers on (100, 6)-sparse parity. The x-axis shows
the training steps, and y-axis shows the 2-layer 32-head teacher’s correlation with in-support (orange
lines) vs off-support (blue lines, aggregated into mean and standard deviation) degree-1 monomials.
The black dotted lines mark the accuracy, scaled for better display. The correlation values are
calculated using 100k randomly drawn sequences. The 4 subplots correspond to models trained using
4 random seeds.

Figure 13: 2-shot progressive distillation with Transformers: Compared to cross-entropy training
or one-shot distillation, transformers learn faster with progressive distillation, where the intermediate
checkpoints are taken either at regular 10k intervals (“progressive”), or during the phase transition
(“progressive (2-shot)”). The two vertical lines show the teacher training steps at which the two
checkpoints for 2-shot distillation are chosen. We set the teacher temperature to be τ = 10−4 for
progressive distillation, and τ = 1 for one-shot distillation.

Figure 14: The benefit of progressive distillation holds with hard labels, as shown by comparing
2-shot progressive distillation with different temperatures. The two gray vertical lines mark the
training steps at which the teacher checkpoints are taken.

31



Proposition C.1 (Attention support selection). (d, k)-sparse parity can be solved by a 1-layer999

Transformer with a 2-layer MLP, whose attention weights satisfy αi,d ∝ exp(c1[i ∈ S]) for some1000

large constant c > 0. The MLP has hidden dimension 4(k + 1), L∞ norm bounded by 4k(k + 1).1001

Proof. The idea is that the attention selects the k in-support variables, and the MLP computes the1002

product of these variables.1003

To select the in-support variables, we want the attention weight αi,d ∝ exp(c1[i ∈ S]), for some1004

large constant c. This can be achieved by having the projection matrices WQ,WK focus only on the1005

position and ignore the tokens. In particular, let z denote the input sequence, and let the embedding1006

of a token be xi = vzi + pi, where {v0,v1} are embeddings for the binary token 0 or 1, and pi is the1007

position encoding for position i. Take {v0,v1}, {pi}i such that vzi⊥pi. Let c > 0 be a large enough1008

constant. Choose WQ,WK such that for any i ∈ [d], x⊤
i W

⊤
QWKxd = p⊤i W

⊤
QWKpd = c · 1[i ∈ S].1009

This ensures that αi,d ∝ exp(c1[i ∈ S]).1010

Then, the role of attention is to average over the in-support tokens. For simplicity of exposition, let’s1011

take c→∞ for now (i.e. using saturated attention (Merrill et al., 2022)), so that αi,n → 1[i∈S]
k ; that1012

is, the attention weights at the last position average over the in-support variables. Take WV to be a1013

vector, such that WV ignores the positional information and the input token 0, and only preserves the1014

input token 1, i.e. WV pi = 0, ∀i ∈ [d], WV v0 = 0, and WV v1 = 1.1015

Next, the MLP needs to compute the parity function over the k in-support variables. The input to1016

the MLP is hence proportional to (
∑

i∈S I[zi = 1])v1, and the size of the set of inputs is k + 1. To1017

determine the size of the MLP, we use the following lemma:1018

Lemma C.2 (1D discrete function interpolation with an MLP (Lemma 1 in Liu et al. (2022))). Let X1019

be a finite subset of R, such that |x| ≤ Bx for all x ∈ X , and |x− x′| ≥ ∆ for all x ̸= x′ ∈ X . Let1020

f : X → Rd be such that ∥f(x)∥∞ ≤ By for all x ∈ X . Then, there is a 2-layer ReLU network for1021

which1022

fmlp(x+ ξ; θmlp) = f(x) ∀x ∈ X , |ξ| ≤ ∆/4.

The inner dimension is d′ = 4|X |, and the weights satisfy1023

∥W1∥∞ ≤
4

∆
, ∥b1∥∞ ≤

4Bx

∆
+ 2, ∥W2∥∞ ≤ By, b2 = 0.

Setting Bx = 1, By = 1, and ∆ = 1
|S| , the parity function over these k + 1 input values can be1024

approximated by a 2-layer MLP with inner dimension 4(k + 1), with norm bounded by 4k(k + 1).1025

As a concrete example, one way to satisfy the requirements above is to set the attention weights to1026

v1 = WV = e1 := [1, 0, 0, 0], v0 = e2 := [0, 1, 0, 0]. Set pi = pn = e3 for i ∈ S, and pi = e4 for1027

i ̸∈ S. Set WQ = WK = c

[
0 0 1 0
0 0 0 0

]
for some sufficiently large c > 0.1028

1029

Proposition C.3 (No attention selection). There exists a 1-layer Transformer with 3-layer MLP1030

that computes k-sparse parity, whose attention weights satisfy αi,d = 1
d . Consequently, the MLP1031

computes the sparse parity function given the full set of variables.1032

Proof. The idea is for the uniform attention to copy all tokens to the last position. However, unlike in1033

Proposition C.1, the attention needs to copy the tokens into a length-d embedding vector, as we need1034

to preserve the position information in this embedding vector. We need to generalize Lemma C.21035

accordingly to handle multi-dimensional inputs:1036

Lemma C.4 (General discrete function interpolation with an MLP; (Lemma 2 in Liu et al. (2022))).1037

Let X be a finite subset of Rdin , such that ∥x∥∞ ≤ Bx for all x ∈ X , and ∥x− x′∥∞ ≥ ∆ for all1038

x ̸= x′ ∈ X . Let f : X → Rdout be such that ∥f(x)∥∞ ≤ By for all x ∈ X . Then, there is a 3-layer1039

ReLU network for which1040

fmlp(x+ ξ; θmlp) = f(x) ∀x ∈ X , |ξ| ≤ ∆/4.
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Letting Xi denote the set of unique values in coordinate i, the inner MLP dimensions are as follows:1041

d1 = 4
∑

i∈[din]

|Xi|, d2 = |X |.

The weights satisfy1042

∥W1∥∞ ≤
4

∆
, ∥b1∥∞ ≤

4Bx

∆
+2, ∥W2∥∞ ≤ 1, ∥b2∥∞ ≤ din, ∥W3∥∞ ≤ By, b3 = 0.

Then, the MLP at the last position computes the sparse parity over the k coordinates while ignoring1043

the others. Hence the effective input set is |X | = 2k. Setting Bx = 1, By = 1, and ∆ = 1, there1044

exists a 3-layer MLP with width 2k and norm bound 2k+2 by Lemma C.4.1045

Preliminary interpretability analysis: Transformer does utilize attention in practice We1046

observe that the model focuses attention on relevant tokens and that the amount of attention weights1047

put on the support is tightly correlated with the accuracy, which suggests that the model indeed1048

utilizes the attention mechanism in learning sparse parity.1049

Specifically, Figure 11 shows the results on 2-layer 16-head GPT-2 models. The attention weights1050

are for the final position, whose logits are used for computing the binary parity label for the entire1051

sequence. We track the attention weights along length-2 paths from the first and the second layer.1052

For example, for a single-head model, let a(l)i ∈ ∆d−1 denote the lth-layer attention vector at the1053

ith position; then, the on-support attention for a given sample is computed as ⟨a(2)d ),v
(1)
T ⟩, where1054

[v
(1)
T ]i :=

∑
j∈T a

(1)
i [j] is the total amount of first-layer attention weights that the ith position puts1055

on the support T . For multi-head models, a(l)i ∈ ∆d−1 is defined as the sum of attention vectors1056

from all heads, and the rest is computed similarly.1057
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Figure 15: 8-way classification using a hierarchical decision tree of depth 3, with each node repre-
sented by 5-sparse parity. Progressive distillation helps student learn faster from a width-50k teacher,
compared to one-shot distillation from the final checkpoint.
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Figure 16: An illustration of hierarchical data generation, for a 3-level tree with 3 variables per
feature. A feature corresponds to a tree node, each marked by a rectangle. The product of the binary
variables in a feature determines which child to take: the left child is chosen if the product evaluates
to −1, and the right child is chosen if the product is +1. The final label for an example is decided
based on the tree leaf reached.

C.3 A hierarchical generalization of sparse parity1058

This section considers an extension of sparse parity, where the labels are given by a decision tree.1059

Sparse parity can be considered as a special case with tree depth 1.1060

Definition: The input x is a boolean vector picked uniformly at random from the d-dimensional1061

hypercube {±1}d, and the label y ∈ [K] where K := 2D for some fixed D ∈ N. The underlying1062

labeling function for y follows a binary decision tree of depth D, whose leaves correspond to class1063

labels. The branching at a node depends on a sparse parity problem. An example visualization is1064

provided in Figure 16.1065

More formally, the nodes in the decision tree are represented by a set of sparse parity problems1066

S = {T1, T2, · · · , TK−1}, where Tj is determined by product of a subset of size k variables selected1067

from the dimensions of the input x (e.g. x1x2 · · ·x5 for k = 5). An input x belongs to the class1068

i ∈ [K] iff1069

[

D∏
j=1

I
[
c(i, j)T

v
(i)
j
(x) > 0

]
> 0, where

c(i, j) =

{
1, if i ≥ 2D−j

−1, otherwise

Here, v(i)1 , · · · v(i)D denote the features in S that lie on the path joining the root of the decision tree to1070

the leaf representing the label i. An example is given in Figure 16.1071
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Figure 17: Setting: 8-way classification using a hierarchical decision tree of depth 3, with
each node represented by 5-sparse parity. The relevant features for class y = 1 are
x1 · · ·x5, x6 · · ·x10, x16 · · ·x20 at tree levels 3, 2, and 1 respectively (Figure 16). The irrele-
vant features are x36, · · · , x100. Here we plot the magnitude of correlation to degree-1 monomials
Ex,y[pT (x)]1xi for each i in the relevant feature groups for class 0. Because the degree-1 monomials
show noisy correlations, we also report the magnitude of correlation to degree-2 monomials
Ex,y[pT (x)]1xixj for each i, j in the relevant feature groups for class 1. For degree-2 monomials,
rest refers to correlation to monomials of the form xixj where atleast one variable is outside support
variables (x36, · · · , x100). The correlations to degree-1 (or 2) monomials on the relevant features
spike at different training steps.

Experiment Setup: In this section, we focus on 8-way classification, where the data is generated1072

by a tree of depth 3. Each feature in S is given by a product of 5 variables. We keep the variables1073

distinct in each feature, i.e., T1 = x1x2 · · ·x5, T2 = x6x7 · · ·x10 and so on.1074

Experiments and Observations: We conduct similar experiments as our sparse parity experiments.1075

In Figure 15, we show that progressive distillation helps train a smaller student as fast as the teacher,1076

and even reach 100% accuracy.1077

Low-degree curriculum: We show the correlations of the teacher’s logits for a particular label and1078

its relevant features in Figure 17. We observe similar spikes in the degree-1 monomials involving1079

the support of the features. However, because there are multiple features defining a label class, with1080

features at level 1 being shared among multiple labels, we see a difference in the time-frames at which1081

the spikes appear in the degree-1 monomials of the features. As such, a single teacher checkpoint1082

won’t give information of entire support to a student to learn from.1083

Effectiveness of (3, T )-progressive distillation: We consider progressive distillation with 3 check-1084

points, where the student only uses 2 intermediate teacher checkpoint in addition to the final one. We1085

show in Figure 18 that there exists a (3, 2M)-progressive distillation that can help train a student1086

successfully. Furthermore, we demonstrate that these two intermediate checkpoints must be posi-1087

tioned within the phase transition to achieve 100% accuracy in training the student. This supports the1088

hypothesis that a low-degree curriculum is crucial for progressive distillation since the correlations1089

with degree-1 monomials are high only during the phase transition period. Additionally, we find that a1090

distillation strategy with only a single intermediate checkpoint and the final checkpoint is insufficient1091

for the student to achieve 100% accuracy, which aligns with our observation that degree-1 monomials1092

for different features emerge at different steps. However, we also note that even within the phase1093

transition, the optimal selection of the two checkpoints can significantly impact the student model’s1094

performance.1095
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Figure 18: Setting: 8-way classification using a hierarchical decision tree of depth 3, with each node
represented by 5-sparse parity. (3, 2M)-progressive distillation from 3 checkpoints on a 1000 width
student; 2 intermediate teacher checkpoints are used each for 2M steps, and then the final checkpoint
is used till end of training. Observations: (a) Teacher shows a phase transition in accuracy during
training. 6 candidate checkpoints for (3, 2M)-progressive distillation have been marked, out of
which 2 are selected in each setting. The checkpoint at 6M lies outside the phase transition of the
teacher. (b): We show the behavior of a few representative settings. Two main observations: (1)
Selecting only a single checkpoint during the phase transition of the teacher is sub-optimal, as shown
by plots that contain 6M checkpoint as an intermediate checkpoint, (2) 2 checkpoints during the
stage transition suffice to train the student to 100% accuracy, however the performance can heavily
depend on their selection. Figure 17 shows that the teacher learns the low-level features at 4.5M
checkpoint, making it crucial for distillation. (c): Even with extremely low temperature, the benefit of
the phase transition checkpoint persists, suggesting that the monomial curriculum, not regularization,
is the key to the success of progressive distillation.

3 5 10
Training Steps(×106)

0.5

1.0

Ac
cu

ra
cy

1

2

3
4

5 6

Teacher behavior

Candidates 
 for (3, T)- 
progressive

0 2 4
Steps 1e6

0.5

1.0

Ac
cu

ra
cy

(3, 2M)-progressive( = 1)

3.5M(3)-6.0M(6)
2.5M(1)-6.0M(6)
3.5M(3)-4.5M(5)
3.5M(3)-4.0M(4) 0 2 4

Steps 1e6

0.5

1.0

Ac
cu

ra
cy

(3, 2M)-progressive( = 10 4)

3.5M(3)-4.5M(5)
4.0M(4)-4.5M(5)
one-shot

Figure 19: Same experiments as Figure 18 for a width-100 student.
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D Extensive study on PCFGs1096

D.1 A formal description of PCFGs1097

We study progressive distillation using probabilistic context free grammar (PCFG). Compared to1098

sparse parity and hierarchical data, PCFG is a more realistic proxy for natural languages and has1099

been commonly used as a sandbox for mechanistically understanding the training of language models1100

(Zhao et al., 2023; Allen-Zhu & Li, 2023b). A PCFG consists of a set of non-terminals (NTs) and1101

grammar rules involving the non-terminals that specify the generation process of a sentence. For1102

example, for the sentence The cat ran away, the grammatical structure dictates words the, cat, ran,1103

away as determinant, noun, verb, and adverb. ran and away together represent a verb1104

phrase, and the, cat together represent a noun phrase (see Figure 3). For a language model to1105

generate grammatically correct sentences, it needs to learn the underlying grammatical rules.1106

A probabilistic context-free grammar (PCFG) is defined as a 4-tuple G = (N , v,R,P), where1107

• N is the set of non-terminals, which can be considered as internal nodes of a parse tree. There is a1108

special non-terminal S, known as the start symbol.1109

• [v] is the set of all possible words, corresponding to parse tree leaves.1110

• R denotes a set of rules. For all A,B,C ∈ N , there is a rule A→ BC inR. Furthermore, there1111

are rules A→ w for all A ∈ N , w ∈ [v].1112

• P specifies the probability of each rule to be used in the generation process. For a rule r ∈ R,1113

if P[r] = 0, then the rule is an invalid rule under the generation process. Furthermore, for each1114

non-terminal A ∈ N , on all rules r ∈ R of the form A→ ·,
∑

r∈R:r=A→· P(r) = 1. We denote1115

R(A) as the set of all non-zero rules from A.1116

A concrete example of PCFGs is to model grammars of natural languages (Jurafsky, 2000). In this1117

case, language tokens form the vocabulary of PCFG, while parts of speech such as nouns, verbs or1118

noun phrases, verb phrases form the non-terminals. Rules like noun phrases being composed of a1119

determinant and a noun form the core of such PCFG, while the probability of each rule is determined1120

by their occurrences across sentences in the language.1121

Data generation from PCFG Given a PCFG G = (N , v,R,P), a string is generated in a recursive1122

fashion as follows: we start with s1 = ROOT at step 1, and maintain a string st ∈ ([v] ∪ N )∗ at1123

step t. At step t, if all characters in st belong to [v], the generation process terminates, and st is the1124

resulting string. Otherwise, for each character A ∈ st, if A ∈ N , we sample a rule r ∈ R of the form1125

A→ · with probability P(r) and replace A by characters given by r(A).1126

Tracking n-grams As outlined in Section 4, we track the behavior of trained models by measuring1127

the behavior of their output on the neighboring n-gram context. In the context of PCFGs and1128

masked language modeling for BERT, Zhao et al. (2023) theoretically demonstrate that one of the1129

optimal algorithms for predicting masked tokens is a dynamic programming algorithm based on the1130

inside-outside algorithm (textbook reference: Jurafsky (2000)). This algorithm computes “inside1131

probabilities” for spans of tokens of various lengths, representing pairwise token dependencies1132

within those spans. For example, in the setting of Figure 3, the inside probability for the span “The1133

cat” indicates the likelihood that these two tokens co-occur. The dynamic programming approach1134

calculates these inside probabilities hierarchically, with smaller spans forming the basis for larger1135

spans. The model’s performance ultimately depends on how accurately it represents span probabilities1136

across different lengths. For instance, if the token “cat” is masked in the sentence “The cat ran away”,1137

the success of the model depends on the representation of the likelihood of the spans “The cat”, “cat1138

ran”, “The cat ran”, and “The cat ran away”. We denote the neighboring tokens in the n-gram window1139

span of a token as its n-gram context.1140

D.2 Variants of progressive distillation1141

Comparisons at different lengths We follow common practices for training self-attention models1142

for both one-shot distillation and progressive distillation. We use Adam optimizer (Kingma & Ba,1143

2014), 512 batch size training (to imitate large batch training), and a cosine learning rate schedule1144

(Loshchilov & Hutter, 2016) which is generally used to train large language models. As cosine1145
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learning rate depends on the total training horizon, in order to show that progressive distillation1146

converges faster than one-shot distillation, we compare the two algorithms by varying the number of1147

training samples for the student. That is, we train the teacher model with 4× 106 training samples1148

(equal to 8000 steps), and compare the two algorithms for a student model at {1, 2, 4, 8} × 1061149

training samples (equal to {2000, 4000, 8000, 16000} steps).1150

Progressive Distillation choices Because we are considering comparisons at different training lengths1151

for the student, we have to consider a more general version of progressive distillation introduced in1152

Definition 2.2. In Definition 2.2, progressive distillation is defined by two parameters, (a) number1153

of teacher checkpoints (N ) for supervision, and (b) training steps per checkpoint. We define our1154

selection criteria for the N checkpoints later. However, after selecting the N checkpoints, we have1155

the following two variants of progressive distillation.1156

1. N -shot Equal-split distillation: Here, we simply split the entire student’s training length into1157

N equal intervals, where the student is supervised by the ith teacher checkpoint in interval1158

i ∈ [N ].1159

2. N -shot κT0-Equal-split distillation: Here κ ∈ (0, 1], and T0 refers to the total training1160

length of the teacher. The idea is to decide the allocation on the basis of the training length1161

of the teacher, instead of the training length for the student. We train the student under the1162

supervision of each checkpoint for κT0/N training steps. Teacher checkpoints that fail to1163

fit into the student’s supervision schedule are ignored (corresponding to a large κ), and the1164

final checkpoint is kept till the end of training if the student is trained for longer than κT0.1165

We can view 1
κ as the amount of “speed up”; for instance, we recover one-shot distillation1166

with κ→ 0. Our experiments (Appendix D.2) suggest that κ = 1/2 is a reasonable rule of1167

thumb that can help the student learn faster than the teacher at any given training length.1168

In the main paper, in Figures 1, 5 and 6, we have reported performance on PCFG and Wikipedia for1169

N -shot T0-Equal-split distillation as progressive distillation. We conduct more ablation studies on κ1170

in Appendix D.2. We keep the exploration of optimal strategies of progressive distillation to future1171

work.1172

Selection criteria for N teacher checkpoints: While there are multiple ways in which one can pick1173

the reference checkpoints to train the student model, we use a simple strategy which is sufficient to1174

demonstrate the benefit of progressive distillation. Similar to our observation of transition phase for1175

parity in Section 3, we search for transition phases in the loss behavior of the teacher and select the1176

first teacher checkpoint roughly in the middle of the transition phase. The rest are picked at multiples1177

of this initial checkpoint.1178

D.3 Details on Non-terminal prediction with Multi-head linear probing1179

Following Allen-Zhu & Li (2023b), we train a position-based linear attention on the model’s em-1180

beddings to predict the non-terminals at each level of underlying PCFG. We consider a set of linear1181

functions fr : Rd → R|N |, where r ∈ [H] and H is the number of “heads” in the linear attention1182

model. If e1, · · · , eL denote the model’s output embeddings for a sequence x1, · · · ,xL, then the1183

prediction of the model at each index i ∈ [L] is given by1184

Gi(x) =
∑

r∈[H],k∈[L]

wr,i→kfr(ek),

wr,i→k =
exp(⟨Pi,r, Pk,r⟩)∑

k′∈[L] exp(⟨Pi,r, Pk′,r⟩)
,

for trainable parameters Pi,r ∈ Rd. We train the parameters with logistic regression on 512001185

examples and test on a validation set of 1024 examples.1186

D.4 Details on the synthetic PCFGs1187

We use 5 synthetic PCFGs considered by Allen-Zhu & Li (2023a) (please see Figure 20 for the1188

rules involved in the PCFGs). These 5 PCFGs differ in difficulty, based on the number of rules1189

per non-terminal and the ambiguities in the rules per non-terminal. Under a PCFG, each string is1190
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generated by generation trees of depth 7. We give differences in the PCFGs, as outlined by Allen-Zhu1191

& Li (2023a) below.1192

• In cfg3b, the PCFG is constructed such that the degree |R(A)| = 2 for every non-terminal1193

A. In any generation rule, consecutive pairs of symbols on the generated symbols are1194

distinct. The 25%, 50%, 75%, and 95% percentile string lengths generated by the PCFG are1195

251, 278, 308, 342 respectively.1196

• In cfg3i, |R(A)| = 2 for every non-terminal A. However, the consecutive pairs of symbols1197

needn’t be distinct in generation rules. he 25%, 50%, 75%, and 95% percentile string lengths1198

generated by the PCFG are 276, 307, 340, 386 respectively.1199

• In cfg3h, |R(A)| ∈ {2, 3} for every non-terminal A. he 25%, 50%, 75%, and 95% percentile1200

string lengths generated by the PCFG are 202, 238, 270, 300 respectively.1201

• In cfg3g, |R(A)| = 3 for every non-terminal A. he 25%, 50%, 75%, and 95% percentile1202

string lengths generated by the PCFG are 212, 258, 294, 341 respectively.1203

• In cfg3f, |R(A)| ∈ {3, 4} for every non-terminal A. he 25%, 50%, 75%, and 95% percentile1204

string lengths generated by the PCFG are 191, 247, 302, 364 respectively.1205
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Figure 20: The synthetic PCFGs considered from Allen-Zhu & Li (2023b). Vocabulary is {1, 2, 3}
in each setting. More details on the differences between the PCFGs are in Appendix D.4.

D.5 Extensive experiments on BERT1206

We first give some details on the architecture of BERT and its pre-training loss function.1207

D.5.1 A primer on BERT1208

BERT (Devlin et al., 2018) is an encoder-only transformer that is trained with masked language1209

modeling (MLM) (Figure 21). In encoder-only architecture, the contextual information are shared1210

across the tokens using bidirectional self-attention layers. During pre-training, the model is trained1211

with MLM loss, that perturbs certain fraction of the tokens in the input at random and the model is1212

trained to predict the original tokens at positions of the perturbed tokens. The pre-training recipe1213
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follows a 80-10-10 principle, where tokens at 80% of the perturbed positions are replaced by a special1214

⟨mask⟩ token, while tokens at 10% of the perturbed positions are replaced by random tokens from1215

the vocabulary, while remaining positions are filled with the original tokens themselves. We stick to1216

this principle, while creating data for training from different PCFGs.1217

Model architecture considered: We train depth-4 BERT models with {8, 16, 32} attention heads,1218

each of which operates on 8 dimensions, using a 30% masking rate. The head dimension is fixed to 8,1219

with the corresponding width of the 4 models being {64, 128, 256} respectively.1220

The cat <mask> away

ran 0.4
danced 0.1
cried 0.01

 

BERT

Bi-directional attention

Figure 21: An informal representation of BERT (Devlin et al., 2018). The model uses bidirectional
attention layers to share contextual information across the tokens. During pre-training, few of input to-
kens are replaced by special < mask > tokens, and the model is trained to predict the masked tokens.

D.5.2 Data Generations1221

Data for masked language modeling: We generate 8 × 106 random sequences for each PCFG.1222

We follow Devlin et al. (2018) to create masked input sequences and output labels, i.e. for each1223

sampled sequence we mask p% of tokens for input and the labels are given by the tokens in the1224

masked positions of the original sequence. We also follow the 80-10-10 principle, where for input,1225

the tokens in 80% of the masked positions are represented by a special mask token [mask], while1226

10% of the masked positions are represented by a randomly sampled token from the vocabulary and1227

the remaining 10% are represented by tokens from the original sequence.1228

D.6 Hyperparameter details1229

We use a batch size of 512 in each setting. We use Adam (Kingma & Ba, 2014) optimizer with1230

0 weight decay, β1, β2 = (0.9, 0.95). We use cosine decay learning rate. We extensively tune the1231

learning rate in the grid {10−2, 7.5× 10−3, 5× 10−3, 2.5× 10−3, 10−3} in each setting. We train1232

the teacher on 4× 106 training samples (equal to 8× 103 steps).1233

Distillation experiments at different training horizons: To thoroughly compare the sample1234

complexity requirements of one-shot and progressive distillation, we evaluate both algorithms using1235

a smaller student model across various training sample sizes. The smaller student is trained with1236

{1, 2, 4, 8}×106 training samples (equal to {2×103, 4×103, 8×103, 16×103} training steps) and1237

the performance is compared in each horizon. For example, Figure 1 (right) plot contains 4 distinct1238

points for each method which represents the performance of the smaller model under the 4 different1239

training steps (sample sizes).1240

Training split for (2, T )-progressive distillation for PCFGs: We report the performance in1241

Figure 4 for 4000 training steps. We find the best training time split T between the intermediate1242

checkpoint and the final checkpoint in the grid {500, 1000, 15000, 2000}, i.e. the student is trained1243

with the logits of the first intermediate teacher checkpoint till step T and then the teacher is switched1244

to the final teacher checkpoint.1245
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Figure 22: We conduct additional probing experiments on the teacher’s (4 layer, 32 attention head
BERT) logits during training to indicate curriculum learning. (left) TV distance between model’s
predictions with full context and context with only n-gram tokens (Mclose). We observe that the
teacher’s logits get closer to higher n-gram context predictions, and the inflection appears at the middle
of the second phase (our first selected checkpoint for progressive distillation) (right) Performance of
linear classifier probe on teacher’s intermediate checkpoints to predict the non-terminals at different
levels of the PCFG generation tree. We observe that the probe’s performance is > 95% of the final
probe performance by the middle of the second phase, indicating the model has almost learned the
underlying PCFG features by this time.

Low-temperature distillation: We focus on distillation with a small temperature of τ = 10−4 (in1246

Equation (1)), for the following reasons. First, as discussed in Section 3, it removes any potential1247

regularization effects induced by soft labels. Moreover, using such a small temperature corresponds1248

to training with the top-1 predictions of the teacher model, which is more memory-efficient compared1249

to training with the full teacher logits, especially when the vocabulary size is large.1250

D.7 Additional Curriculum probing on the teacher’s checkpoints1251

In this section, we study the performance of different progressive distillation variants and compare1252

them to one-shot distillation. As per our experiments in Figure 4, we use the 8 teacher checkpoints1253

selected for supervision. In Figure 24, we compare one-shot distillation to the two variants of1254

progressive distillation, i.e. 8-shot Equal-split and 8-shot T0

2 -Equal-split distillation. We observe that1255

both variants of progressive distillation help the student learn faster than one-shot distillation, and the1256

gap diminishes as the students are trained for longer. The optimal strategy for progressive distillation1257

depends on the training budget for the student. For training steps lower than the teacher’s T0 budget,1258
T0

2 -Equal-split distillation slightly performs better than T0-Equal-split distillation, which changes as1259

we train longer. To keep things simple, we focus on T0

2 -Equal-split progressive distillation in all1260

of our subsequent experiments.1261

D.8 Ablations with hyperparameters1262

Ablation with temperature Here, we compare progressive distillation and one-shot distillation at1263

temperature 1 and temperature 10−4 (representing hard label supervision) (Figure 25). We observe1264

that progressive distillation at temperature 10−4 performs better than one-shot distillation at both1265

temperatures. However, progressive distillation at temperature 1 can perform worse than one-shot1266

distillation for a stronger student. We keep explorations on the effect of temperature on the algorithms1267

as future work.1268

Ablation with mask rate In Figure 26, we compare progressive distillation with one-shot distilla-1269

tion at different masking rates. We observe that at all masking rates, progressive distillation performs1270

better than one-shot distillation.1271

Ablation with difficulty of PCFG In Figure 27, we compare progressive distillation with one-shot1272

distillation with increasing difficulty of the underlying PCFG. The benefit of progressive distillation1273

over one-shot distillation is influenced by the model’s capacity and the specific PCFG being trained.1274
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Figure 23: Comparison of BERT’s training behavior on cfg3b with varying numbers of attention
heads (where the embedding dimension scales linearly with the number of attention heads) over
8× 103 training steps. The x-axis represents the number of training steps and is in log scale. Larger
BERT models show an earlier and more pronounced drop in loss/increase in accuracy compared to
smaller models. For reference, each training curve is annotated at the point where the model reaches
80% of its performance at the final step.
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Figure 24: Experiments on BERT (Left to right/top to bottom): (a), (b) show the comparisons for an
8-attention head student, (c), (d) show the comparisons for a 16-attention head student. We observe
differences between the different variants of progressive distillation at different training steps. For
training steps lower than the teacher’s (marked by T0), T0/2-Equal-split progressive distillation is
better, implying that for shorter training, we shouldn’t try to fit all the teacher’s checkpoints. The
trend reverses as the training sample budget approaches T0 and beyond.
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Figure 25: The experiments above compare progressive distillation and one-shot distillation at
temperature 1 and 10−4 (representing hard label supervision) for PCFGs cfg3b at masking rate
30% using a BERT model with 8 attention heads (left)/ 16 attention heads (right), per head dimension
8, and 4 layers. We observe that progressive distillation with hard labels performs better than
one-shot distillation at temperatures 1 and 10−4. However, progressive distillation at temperature 1
can perform worse than one-shot distillation for stronger student. We keep explorations on the effect
of temperature on the algorithms as future work. Here, we use T0

2 -Equal-split progressive distillation
as progressive distillation, where T0 = 8000 is the total number steps used for teacher training.
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Figure 26: The experiments above compare progressive distillation and one-shot distillation for
PCFGs cfg3b at different masking rates using a BERT model with 8 attention heads, per head
dimension 8, and 4 layers. The relative gap between the performance of progressive distillation and
one-shot distillation have been reported on the bar plots. We observe that progressive distillation
performs better than one-shot distillation at all masking rates, with the gap diminishing with
the number of training steps. Here, we use T0

2 -Equal-split progressive distillation as progressive
distillation, where T0 = 8000 is the total number steps used for teacher training.

E Autoregressive training with GPT21275

Setting: Similar to experiments on BERT, we train GPT2 models of depth 4 with {8, 16, 32} attention1276

heads, while keeping the dimension per attention head fixed at 8.1277

A brief introduction into GPT models: GPT models are trained with the auto-regressive loss.
The teacher and student models operate on sequences of input domain fT : X h → RC and
fS : X h → RC , where the input sequence length h can be arbitrary. Denote the length-h input
sequence as x := [x1, · · · , xh], and denote xi:j as the subsequence [xi, · · · , xj ] (i.e. the indexing is
inclusive on both ends). The cross entropy loss for next-token prediction training on x is given by

1

h

h∑
i=1

KL(exi
∥pS(x1:i−1))),

where exi denotes a one-hot vector with 1 in xith coordinate. We take a different approach, where we1278

compare the algorithms at different difficult levels, by training on a subset of tokens in each sequence.1279

The subsets that we consider are the boundary tokens at different levels of PCFG generation (recall1280

Figure 3).1281
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Figure 27: The experiments above compare progressive distillation and one-shot distillation for
PCFGs cfg3b, cfg3h, and cfg3i at masking rate 30% using BERT models with 8/16 attention
heads, per head dimension 8, and 4 layers. The relative gap between the performance of progressive
distillation and one-shot distillation have been reported on the bar plots. The benefit of progressive
distillation over one-shot distillation is influenced by the model’s capacity and the specific PCFG
being trained. For instance, on cfg3i, the student model can only achieve a top-1 accuracy of
75%. Progressive distillation reaches this within 2000 steps but fails to improve further, resulting
in minimal gains over one-shot distillation when compared with cfg3b. The comparisons are
at temperature τ = 10−4. Here, we use T0

2 -Equal-Split Progressive Distillation as Progressive
Distillation, where T0 = 8000 is the total number steps used for teacher training. Our teacher is
a BERT model with 32 attention heads, per head dimension 8, and 4 layers, which doesn’t train on
cfg3g and cfg3f, hence we don’t report the performance of the student on these PCFGs.

Formally, if C(ℓ)(x) represents the set of level-ℓ boundary tokens, then we define the cross entropy1282

loss and the distillation loss corresponding to boundary tokens at any level ℓ of the PCFG as1283

ℓ(ℓ)(x; fS) =
1∣∣C(ℓ)(x)∣∣ ∑

i:xi∈C(ℓ)(x)

KL(exi∥pS(x1:i−1)); (9)

ℓ
(ℓ)
DL(x; fS , fT ) =

1∣∣C(ℓ)(x)∣∣ ∑
i:xi∈C(ℓ)(x)

KL(pT (x1:i−1; τ)∥pS(x1:i−1)). (10)

There are a few remarks that need to be made about the above loss function. First, note that the1284

subsets satisfy the condition C(ℓ1)(x) ⊆ C(ℓ2)(x) for all ℓ1 ≥ ℓ2. Hence, the loss L(ℓ2) includes loss1285

L(ℓ1) for all ℓ1 ≥ ℓ2 and losses L ∈ {ℓ, ℓDL}. Second, L(1) will average the losses at all tokens,1286

which is the standard auto-regressive loss used in practice to train large language models.1287

We focus on cfg3f that has 6 levels in the generation process, and we report the behavior of the1288

models when trained with losses L(2), L(3), L(4), with L ∈ {ℓ, ℓDL}. We focus on T0

2 -Equal-split1289

progressive distillation.1290

Definitions for Mrobust and Mclose. Similar to our experiments on BERT, we track the change in1291

the model’s predictions with and without the n-gram context tokens. However, as the model is trained1292

autoregressively, we need to change our definitions of Mrobust and Mclose from Equations (5) and (6),1293

as well as the definition of n-grams.1294

For a h length sentence x ∈ vh and for i ∈ [h], we define the n-gram neighboring context around the1295

ith token as the set of tokens at positions within n− 1 distance to the left from i, i.e. the set {xj} for1296

i− n < j < i.1297
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For Mclose on a teacher fT and ngram length n, we measure the TV distance between the model’s1298

probability distributions of the model at any position i when all the tokens at positions 1, 2, · · · , i− 11299

are available, and when only the tokens in the neighboring n-gram context window are available (i.e.1300

at positions i− n+ 2, · · · , i− 1)151301

Mclose(fT ,x, i, n) = TV(pT (x1:i−1), pT (xi−n+1:i−1)). (11)

For Mrobust on a teacher fT and an n-gram length n, we measure the total variation (TV) distance1302

between the model’s probability distributions at any position i, considering two scenarios: one where1303

all tokens at positions 1, 2, . . . , i− 1 are available, and another where the tokens within the n-gram1304

context window are masked. However, since the attention mechanism in GPT requires a token at1305

position i− 1 before it can predict xi and we don’t have a special token to replace the masked tokens,1306

we cannot remove that specific token from the context. Therefore, we keep the token at position i− 11307

intact while masking the other tokens within the n-gram context window. We refer to this modified1308

approach as “skip n-gram.”1309

Mrobust(fT ,x, i, n) = TV(pT (x1:i)), pT (x{1,··· ,i−n+1,i}))). (12)

E.1 Observations1310

Teacher’s behavior during training Figure 29 shows the loss behavior of a teacher run. We observe1311

2 distinct phases of training: a rapid loss drop phase in the first 10% of training, and a final phase1312

of slow loss drop till end of training. In Figure 28, we compare the training accuracy behavior1313

across models of different sizes. At log scale, we observe a very small dormant phase in the training1314

behavior at the start of training. Larger models transition to the rapid loss drop phase faster than1315

smaller models and also show a more prominent change in this phase.1316

Teacher’s checkpoint selection for progressive distillation As outlined in the previous section,1317

we select the first supervision checkpoint at roughly the middle of the first phase (1/20th fraction of1318

training), and the other checkpoints are selected at {i/20}20i=2 fractions of training.1319

Similar inflection points in loss as BERT and an implicit curriculum:1320

We observe inflection points in the model’s behaviors at the first selected checkpoint. Similar to our1321

observations on BERT, we observe a curriculum on the reliance of the model’s predictions on 3-gram1322

predictions (Figure 29). Hence, we check whether progressive distillation can help train a smaller1323

model faser.1324

(R7) Progressive distillation helps train smaller model faster In Figures 30 and 31, we compare1325

one-shot distillation to T0

2 -Equal-split progressive distillation. We observe that progressive distillation1326

help the student learn faster than one-shot distillation, and the gap diminishes as the students are1327

trained for longer. However, the gap between progressive distillation and distillation decreases as1328

more tokens are involved in the loss function i.e. the gap is smaller for loss L(2)
0 compared to loss L(4)

0 .1329

We conjecture that auto-regressive training with all tokens involved provides a strong curriculum for1330

the model to learn the structure of the language. We keep a thorough study of this analysis to future1331

work.1332

F Details on Wikipedia + Books experiments1333

We use the same hyperparameters for Adam training as our experiments on BERT and PCFG in1334

Appendix D.6. However, we fix the peak learning rate to 10−4 (Devlin et al., 2018) in each case to1335

minimize computation costs.1336

1337

15others are simply masked out during attention score computation to avoid shifts in position embeddings.

45



100 1000 8000

0.6

0.8
To

p-
1 

Ac
cu

ra
cy

80%

100 1000 8000
Steps of Training

0.6

0.8
80%

100 1000 8000
0.6

0.7

0.8
80%

4
8
16
32

Figure 28: (left to right) Models are trained with the cross entropy loss ℓ(4), ℓ(3), ℓ(2) respectively.
Here, we compare GPT’s training behavior with cross entropy loss on cfg3f with varying numbers
of attention heads (where the embedding dimension scales linearly with the number of attention
heads) over 8 × 103 training steps. Larger models show an earlier and more pronounced increase
in performance compared to smaller models. For reference, each training curve is annotated at the
point where the model reaches 80% of its performance at the final step.
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Figure 29: Experiments on GPT: Behavior of teacher model when trained on cfg3f with cross
entropy loss: ℓ(3). We observe two distinct phases; (2) a rapid drop in loss phase, and (3) slow drop
in loss till end of training. The rapid loss drop phase signifies a transition phase for the model, similar
to one we observed for hierarchical boolean data (Section 3). All selected checkpoints for progressive
distillation are marked by triangles. The first teacher checkpoint is roughly picked at the center of the
second phase. The rest of the checkpoints are picked at training steps that are multiples of the first
one. (b) and (c) show inflection points in the teacher’s predictions with full context and with/without
n-gram contexts at the selected checkpoint.
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Figure 30: Experiments on GPT (Left to right) for an 8- attention head model at different losses.
Here, progressive distillation refers to T0

2 -Equal-split progressive distillation. We observe that
progressive distillation outperforms one-shot distillation at all training sample budgets, with the gap
diminishing with increasing training sample budget. The gap between progressive distillation and
distillation decreases as the number of tokens involved in the loss function increases i.e. the gap
is smaller for loss L(2)

0 compared to loss L(4)
0 .
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(a) Loss: ℓ(4)DL
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(b) Loss: ℓ(3)DL
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(c) Loss: ℓ(2)DL
Figure 31: Experiments on GPT (Left to right) for a 16-attention head model at different losses. Here,
progressive distillation refers to T0

2 -Equal-split progressive distillation. We observe that progressive
distillation outperforms one-shot distillation at all training sample budgets, with the gap diminishing
with increasing training sample budget. The gap between progressive distillation and distillation
decreases as the number of tokens involved in the loss function increases i.e. the gap is smaller for
loss L(2)

0 compared to loss L(4)
0 .
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Figure 32: The experiments above compare progressive distillation and one-shot distillation for
PCFGs cfg3h, cfg3g, and cfg3f on GPT models with 8 attention heads (each head having a
dimension of 8) and 4 layers. The models were trained using the distillation loss L(3)

0 . The relative
performance gap between progressive and one-shot distillation is presented in the bar plots. Notably,
the advantage of progressive distillation over one-shot distillation depends on the specific PCFG
being trained. For example, with cfg3f, the student model can achieve beyond 90% top-1 accuracy,
and progressive distillation allows it to reach this more quickly. In contrast, for cfg3g, the student
model’s top-1 accuracy plateaus at 84%, and after 500 steps, progressive distillation shows only
marginal gains over one-shot distillation. All comparisons were made at a temperature τ = 10−4.
Here, progressive distillation refers to T0

2 -Equal-split progressive distillation, where T0 = 8000
denotes the total number of steps for teacher training. The teacher model is a GPT with 32 attention
heads, each with a dimension of 8, and 4 layers.
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