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Abstract

To build intelligent machine learning systems, modern representation learning
attempts to recover latent generative factors from data, such as in causal representa-
tion learning. A key question in this growing field is to provide rigorous conditions
under which latent factors can be identified and thus, potentially learned. Motivated
by extensive empirical literature on linear representations and concept learning, we
propose to relax causal notions with a geometric notion of concepts. We formally
define a notion of concepts and show rigorously that they can be provably recov-
ered from diverse data. Instead of imposing assumptions on the “true” generative
latent space, we assume that concepts can be represented linearly in this latent
space. The tradeoff is that instead of identifying the “true” generative factors, we
identify a subset of desired human-interpretable concepts that are relevant for a
given application. Experiments on synthetic data, multimodal CLIP models and
large language models supplement our results and show the utility of our approach.
In this way, we provide a foundation for moving from causal representations to
interpretable, concept-based representations by bringing together ideas from these
two neighboring disciplines.

1 Introduction

A key goal of modern machine learning is to learn representations of complex data that are human-
interpretable and can be controlled. Although existing models are known to extract features that are
useful and intuitive to humans (e.g. color, shape, size), the sensitivity of these models in capturing
these features is notorious [10, 25, 71]: The enormous capacity of contemporary models means that
it is possible to reconstruct the input data with meaningless representations (e.g. posterior collapse
[39, 24, 129]). Accordingly, understanding how and when useful features can be captured, along with
providing assurances on the quality of learned representations, is an ongoing endeavor [27].

A natural approach to this problem is to model the input data X = (X1, . . . , Xdx
) as X = f(Z),

where f is a nonlinear transformation that maps structured underlying latent generative factors
Z = (Z1, . . . , Zdz

) to X , and then to attempt to recover the model parameters Z, f from X . This is
an appealing approach since it implies no restrictions on the data X , and has the interpretation of
recovering “ground truth” factors that generated the data. It is well-known that without additional
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assumptions, this is impossible [46, 71], a fact which has led to a long line of work on nonlinear
ICA [21, 45] and unsupervised disentanglement [9, 88, 62]. One approach to resolve this limitation
is to assume that Z has an intrinsic causal interpretation. This is known as Causal Representation
Learning (CRL) [102, 101], which endeavors to identify useful representations through the lens
of causality. Structurally, the latent factors Z are assumed to have causal relationships among
them, which enables us to reason about effects of interventions and conditioning on these latent
factors. CRL studies this setting via an intricate interplay of ideas from causality, latent variable
modeling and deep learning, with the main goal being to reconstruct the mixing function f and Z,
the true generative factors of data, by leveraging causal assumptions. Recent years have witnessed
a surge of rigorous results on provably learning causal representations under different assumptions
[53, 33, 70, 60, 78, 142, 36, 123, 49, 115]. For example, as long as we have access to interventions on
each latent variable Zj (a total of at least dz interventions), under weak assumptions on Z and/or f ,
the causal model over Z as well as the model parameters (Z, f) can be uniquely identified [111, 14].

While causal features are intrinsically desirable in many applications, the assumption that we can
feasibly perform Ω(dz) interventions merits relaxing: Indeed, in complex models, the number of
true generative factors dz = dim(Z) might be intractably large (e.g. consider all of the latent factors
that could be used to describe natural images, video, or text). At the same time, there are yet many
other applications where the strict notion of causality may not be needed, and moreover it may not be
necessary to learn the full causal model over every causal factor. Is there a middle ground where we
can simultaneously identify a smaller set of interpretable latent representations, without the need for
a huge number of interventions?

In this paper, we study this problem in detail and provide an alternative setting under which latent
representations can be provably recovered. Instead of recovering a (potentially huge) number of
causal latents with interventions, we settle for recovering a smaller number of interpretable concepts
without strict interventions. The basic idea is to recover projections AZ of the generative factors
Z that correspond to meaningful, human-interpretable concepts through conditioning instead of
intervention. The idea to model concepts as linear projections of the generative factors is derived
from a growing body of literature (e.g. [90, 55, 130, 77, 5, 22, 30, 17, 118, 81, 38, 75, 103], see
Section 3 for even more references) showing that the embeddings learned by modern, high-performant
foundation models are not inherently interpretable, and instead capture interpretable concepts as
linear projections of the (apriori) unintelligible embeddings. While this approach sacrifices causal
semantics, it makes up for this with two crucial advantages: 1) Instead of strict interventions in the
latent space, it suffices to condition on the concepts, and 2) When there are n concepts of interest to
be learned, only n+ 2 ≪ dz such concept conditionals are needed.

We validate and utilize our theoretical ideas via experiments. First, we validate these theoretical
insights on synthetic data, where we use a contrastive algorithm to learn such representations for a
given collection of concepts. Moving ahead to real-world data, we probe our theory on embeddings
learned by multimodal CLIP models [92]. The training scheme for CLIP aligns with our theoretical
setting and therefore, it’s reasonable to ask whether they satisfy our observations. Indeed, we show
that the concepts in the 3d-Shapes dataset approximately lie in hyperplanes, further supporting our
theoretical results. Lastly, we show an effective application of our framework to alignment of large
language models (LLMs) where we extend the alignment technique of [66] to make LLMs more
truthful.

Contributions In summary, our contributions are:

1. We formalize the notion of distributions induced by abstract concepts in complex domains
such as images or text (see Secion 2 for an overview and Section 4.2 for formal defini-
tions). Our definition of concept conditional distributions allows both continuous and fuzzy
concepts.

2. We prove near-optimal identifiability results for learning a collection of concepts from
a diverse set of environments in Theorem 1. Thus our work can be interpreted as a new
direction for identifiable representation learning in order to study when interpretable concepts
can be recovered from data.

3. We then verify our guarantees via a contrastive learning algorithm on synthetic data. In
addition in Section 6, we support our geometric definition of concepts and our identifiability
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result by analysing image embeddings of CLIP-models and we utilize our ideas to improve
alignment of LLMs to make them more truthful.

2 Overview

In this section, we describe our approach and put it in context of prior developments.

Defining concepts geometrically Our starting point is a geometric no-
tion that concepts live in linear directions in neural representation space,
known as linearity of representations (see extensive references in Section 3).

Figure 1: Concepts live in affine sub-
spaces. The two subspaces in the figure
correspond to the same concept but of
different valuations.

To make this precise we assume that for observed data X
that has an underlying representation Z with X = f(Z)
where the latent variables Z follow an arbitrary distribu-
tion and f is a (potentially complicated) nonlinear un-
derlying mixing map. We do not assume that f and Z
correspond to a ground truth model or that the latent vari-
ables Z themselves are related to a causal model or are
interpretable and instead only assume linearity of repre-
sentations (well supported by prior works). In agreement
with this hypothesis we define concepts as affine subspaces
AZ = b of the latent space of Zs, i.e., to a concept C we
assign an affine hyperplane HC = {Z ∈ Rdz : AZ = b}
in the embedding space and we say that X = f(Z) satis-
fies a concept C if Z ∈ HC . In this setting the usual goal
of CRL to reconstruct f and Z seems to be unneccesary
for many applications. Instead we focus on the more mod-
est goal of identifying only a (small) set of concepts we
care about, i.e., we want to be able to decide whether a
datapoint X satisfies a concept C. Our main result shows that it is possible to identify n concepts
given access to n+ 2 concept conditional distributions. We now compare natural assumptions on
type of data for causal representation learning and the setting considered here.

From interventions to conditioning It is worth contrasting here the difference between viewing
a concept as a generic latent generative factor Zi that non-linearly mixes together with other latent
factors to yield the inputs X , versus the geometric notion above, as specifying a linear subspace.
In the former, the natural way to provide supervision, i.e. define concept distributions, is to simply
intervene on a specific factor Zi and set it to a particular value (see Section 3 for references).In the
latter however, it is most natural to condition on the concept, i.e., Z ∈ H .

This shift is aligned with the growing interest to relax the notion of interventions, and consequently
dilute the notion of causality [15, 100, 4], although it is still open how to properly achieve this. Two
key drivers of this trend are as follows. The first is that the number of additional datasets required is
dz [46, 71, 53, 14], which is infeasible in many settings 2. The second is that the various assumptions
that go into these works are often difficult to achieve, such as requiring perfect interventions [111, 14].
Compared to interventional data, conditional data is often easier to acquire, obtained by conditioning
on particular values of the latent factors (see also Appendix B.2).

Concept conditional distributions We now formalize conditioning on a concept. The obvious
approach to define concept conditional distributions is to simply condition on Z ∈ HC , so pC(Z) =
p(Z|Z ∈ HC) where p is a base distribution of Z on Rdz . However, this suffers from the drawbacks
that it is mathematically subtle to condition on sets of measure 0 and this does not account for inherent
noise in the learned representations. Therefore we relax this strict conditioning by drawing inspiration
from how data is collected in practice: We sample X from the base distribution and then keep it if
it satisfies our concept C. This leads us to define pC(Z) ∝ p(Z)q(Z|C) where q is defined to be
the probability that Z is perceived to be in H by the data collector and can be chosen to incorporate
noise in our data gathering scheme. Therefore, this can also be viewed from a Bayesian information
gathering viewpoint, as well as a stochastic filter standpoint. This is the notion we study in this work

2Exceptions are [57, 42], which use clever inductive biases to limit the number of environments needed.
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(Definition 3) and we develop theoretical techniques to guarantee identifiability in this formulation.
Depending on the specific setting other types of conditional distributions might be utilized to describe
the available data and we discuss some options in Appendix C.

Connection to XAI One important class of applications is human-in-the-loop (HIL) settings,
where the hope is to recover human interpretable concepts. Apriori, there is no reason why the
high-dimensional underlying latent Zs should be interpretable, particularly for large dz . To make
the situation worse, there may be other potentially composite concepts that humans can conjure up;
indeed, there is no limit to the number of concepts that humans can conjure, and these almost certainly
are not going to correspond to the true Zs. Because of this mismatch between the “true” Zs and
interpretable concepts, even if we could recover the Zs, they may not be interpretable to humans and
therefore less useful for downstream HIL purposes. The second caveat, and which follows from the
first as a soft corollary, is that interventions on these will be much harder to obtain, particularly perfect
interventions which require us to isolate the generative mechanisms of the latent factor with the
other factors. Furthermore, some concepts are not manipulable, e.g. psychological traits, biological
mechanisms, so obtaining interventional data is not possible in these applications. Accordingly,
there has been considerable recent work, especially in the explainable AI (XAI) community on
extracting human-interpretable concepts from latent generative factors, or more generally from
complex foundation model representations [55, 103, 18, 41, 137]. To do so in an identifiable and
automated way with as little supervision as possible is a significant open problem.

3 Related work

Causal representation learning and concept discovery Causal representation learning (CRL)
[102, 101] aims to learn generative factors of high-dimensional data. This exciting field has seen
significant progress in the last few years [53, 11, 106, 60, 78, 57, 114, 14, 36, 1, 127, 63]. A
fundamental perspective in this field is to ensure that the model parameters we attempt to recover
are identifiable [53, 25, 129]. We will elaborate more on the connection of our framework to CRL
in Appendix B. Concept discovery is an important sub-field of machine learning which extracts
human-intepretable concepts from pre-trained models. We do not attempt to list the numerous works
in this direction, see e.g., [103, 18, 135, 74, 82, 99, 58, 104, 89, 114]. However, theoretical progress
in this direction is relatively limited. The work [63] studies when concepts can be identified provided
the non-linear model is known in advance, whereas we show concept identifiability for unknown
non-linearity, while simultaneously allowing entangled concepts. Prior works have also attempted to
formalize the notion of concepts [130, 85, 103, 61], however their definitions seem specific to the
model and domain under consideration, e.g., [85, 52] focus on binary concepts via large language
model representations of counterfactual word pairs, whereas our general concept definitions are
applicable to all domains.

Linearity of representations Sometimes referred to as the linear representation hypothesis,
it is commonly believed that well-trained foundation models in multiple domains learn lin-
ear representations of human-interpretable concepts, with experimental evidence going back at
least a decade [77, 113, 5]. This has been experimentally observed in computer vision models
[90, 94, 8, 31, 55, 19, 130, 120], language models [77, 87, 5, 22, 117, 30], large language models
[17, 118, 81, 79, 66, 85, 38, 52], and other intelligent systems [75, 103]. Various works have also
attempted to justify why this happens [64, 5, 35, 3, 32, 105]. We take a different angle: Given that
this phenomenon has been observed for certain concepts of interest, how does this enable recovery of
the concepts themselves? Consequently, our model assumptions are well-founded and our theory
applies to multiple domains of wide interest.

4 Setup

In this section, we provide a formal definition of concepts, which are high-level abstractions present
in data. This allows us to develop a theoretical framework for associated data distributions and
identifiability theory. For the sake of intuition, we can think of the data as images of different objects
and the color of the object as a concept.
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4.1 Generative model

We assume that the observed data X lies in a space X ⊆ Rdx of dimension dx and has an underlying
representation X = f(Z) for latent variables Z that lie in a latent concept space Rdz of dimension dz .
In contrast to most prior works we do not necessarily assume that Z represents the true underlying
mechanism that generated the data. Instead we simply assume that the latent representation has the
geometric property that it maps certain regions of the observation space to linear subspaces of the
latent space (motivated by previous work; see Section 3). Our first assumption is standard:
Assumption 1 (Mixing function). The non-linear f is injective and differentiable.

We make no additional assumptions on f : The map from Z → X can be arbitrarily non-linear.

We now define concepts living in the latent space Rdz . Before presenting the general definition of
multidimensional concepts, we outline the basic ideas in the simplified setting of a one-dimensional
concept. Consider the color “red” as a concept. Different images have different levels of “redness”
in them, so this concept is measured on a continuous scale, represented by a valuation b ∈ R. An
(atomic) concept is then represented by a vector a ∈ Rdz such that ⟨a, Z⟩ = ⟨a, f−1(X)⟩ encodes
the “value” of the concept in X , as measured in the latent space. More precisely, for a given valuation
b ∈ R, the set of all observations X that satisfy this concept is given by {X = f(Z)|⟨a, Z⟩ = b}.
For instance, for an object in an image X , if a ∈ Rdz is the concept of red color, b ∈ R could indicate
the intensity; then all datapoints X satisfying this concept, i.e., all images with an object that has
color red with intensity b, can be characterized as X = f(Z) where Z satisfies ⟨a, Z⟩ = b. For a 3D
visualization, see Fig. 1 We make this intuition formal below.
Definition 1 (Concepts). A concept C is a linear transformation A : Rdz → RdC . The dimension of
the concept will be denoted by dim(C) = dC . A valuation is a vector b ∈ RdC and we say that a
datapoint X satisfies the concept C with valuation b if AZ = b where Z = f−1(X).

In this work, we are interested in learning a collection of m concepts C1, . . . , Cm from observed
data. By left multiplying by the pseudo-inverse A+, we can equivalently assume A is a projector
matrix. However, the current definition is more suitable for embeddings of real models.

When we talk of learning concepts C, we are in particular interested in learning the evaluation map
Af−1(x). This is a more modest objective than learning the entire map f which is the usual goal in,
say, CRL. While the latter typically requires stringent assumptions, in particular Ω(dz) environments
are necessary, our weaker identifiability results only need O(dC) ≪ O(dz) environments. To simplify
our analysis, we make use of the following definition:
Definition 2 (Atoms). An atom (short for atomic concept) is any concept C with dim(C) = 1.

The idea is that we can view each concept as being composed of atomic concepts in the following
sense: Atomic concepts are fundamental concepts that live in a space of co-dimension 1 in latent
space, and thus are equivalently defined by vectors a ∈ Rdz . For example, concepts such red color,
size of object, etc., may be atomic concepts. Any generic concept is then composed of a collection of
atomic concepts, e.g., the concept C of all small dark red objects will correspond to dim(C) = 2
with row 1 corresponding to the atomic concept of red color with large valuation (dark red objects)
and row 2 corresponding to the atomic concept of object size with low valuation (small objects).

4.2 Data distributions

We now define the distributions of datasets over concepts. We will predominantly work with
distributions of Z over Rdz , as the resulting distribution of X = f(Z) over Rdx can be obtained via
a simple change of variables.

To build intuition, consider the case where we first collect a base dataset with some underlying
distribution and then collect concept datasets via filtering. For instance, we could first collect a set of
images of all objects and then, to collect a dataset of dark red colored objects, we filter them to only
keep images of dark red colored objects. We call the former the base distribution and the latter the
concept conditional distribution corresponding to our concept.

Fix a nonlinearity f . We assume that the base data distribution is the distribution of X = f(Z) with
Z ∼ p, where p is the underlying distribution on Rdz . In what follows, we will abuse notation and
use p for both the distribution and the corresponding probability density which we assume exists. We

5



make no further assumptions on p since we do not wish to model the collection of real-life datasets
that have been collected from nature and which could be very arbitrary.

We now define the concept conditional distribution, which is a distribution over X that is induced
by noisy observations of a particular concept at a particular valuation. Formally, assume we want
to condition on some atomic concept a ∈ Rdz with valuation b. It is reasonable to assume that this
conditioning is a noisy operation. For instance, humans are great at distilling concepts from noisy
images, e.g., they recognize cars in a misty environment. We formalize this by assuming that data
collection is based on a noisy estimate b̃ = ⟨a, z⟩+ ϵ where ϵ is independent of z and its density is a
symmetric distribution with density q(ϵ). Then we consider the distribution

pC(z) = p(z |̃b = b) ∝ p(̃b = b|z)p(z)
= q(b− ⟨a, z⟩)p(z)

(1)

where we used Bayes theorem in the last step. This definition directly extends to higher dimensional
concepts which are concisely defined as follows.
Definition 3 (Concept conditional distribution). For a concept C with associated linear map A and
an arbitrary valuation b ∈ Rdim(C), we define the concept conditional distribution to be the set of
observations X respecting this concept, which is defined as the distribution of X = f(Z) where
Z ∼ pC with

pC(Z) ∝ p(Z)

dim(C)∏
k=1

q((AZ − b)k). (2)

This is by no means the only possible definition, and we present feasible alternate definitions in
Appendix C. We remark that our formulation is related to the iVAE setting [53] and the auxiliary
variable setting for identifiable ICA in Hyvarinen et al. [48] and we discuss the relation later.
The majority of recent identifiability results relied on interventional data while we only consider
conditional information here.

4.3 Concept learning and identifiability

We are ready to define our main problem of interest.
Problem 1. We are given an observational dataset X0 = f(Z0) corresponding to the latent base
distribution p along with datasets X1, . . . , Xm from m environments corresponding to concept
conditional datasets for different concepts C1, . . . , Cm and corresponding valuations b1, . . . , bm
over the same latent space Rdz with the same mixing f . Under what conditions (and up to which
symmetries) can we learn the concepts C1, . . . , Cm, which includes the linear maps A1, . . . , Am,
and the concept valuations A1f−1(x), . . . , Amf−1(x)?

Toward this end, a fundamental question is whether this problem is even possible, i.e., whether it
is well-defined. This is known as the question of identifiability [53, 25, 129, 57, 43]. Therefore,
we make the following definition. Informally, for the setting above, we say that the concepts
(C1, A1), . . . , (Cm, Am) with associated nonlinearity f are identifiable (and thus learnable) if for
any other collection of different parameters that fit the data, they are linearly related to the true
parameters.
Definition 4 (Identifiability). Given datasets X0, X1, . . . , Xm corresponding to the observa-
tional distribution and m concepts C1, . . . , Cm with underlying latent base distribution p on
Rdz , nonlinearity f , linear maps A1, . . . , Am and valuations b1, . . . , bm, we say the concepts
are identifiable if the following holds: Consider any different collection of parameters f̃ , d̃z, p̃,
concepts (C̃1, Ã1), . . . , (C̃m, Ãm) and valuations b̃1, . . . , b̃m that also generate the same observa-
tions X0, X1, . . . , Xm. Then there exists a shift w ∈ Rdz , permutation matrices P e and invertible
diagonal matrices Λe such that for all e and x,

Ãef̃−1(x) = ΛeP eAe(f−1(x) + w), (3)

i.e., we can evaluate the concept evaluations on the data up to linear reparametrizations. Moreover,
there exists a linear map T : Rd̃z → Rdz such that the concepts and their evaluations satisfy

Ãe = P eAeT−1, b̃e = ΛeP e(be −Aew). (4)
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Identifiability implies we can identify the nonlinear map f−1 within the span of the subspace of the
concepts of interest, and therefore we can recover the concepts of interest from our data. That is, if
certain concepts are identifiable, then we will be able to learn these concept representations up to
linearity, even if they can be highly nonlinear functions of our data. Such concept discovery is useful
because they can then be used for further downstream tasks such as controllable generative modeling.

We emphasize that in contrast to previous work we are not aiming to identify f completely and
indeed, no stronger identifiability results on f can be expected. First, we cannot hope to resolve the
linear transformation ambiguity because the latent space is not directly observed. In other words, a
concept evaluation can be defined either as ⟨a, Z⟩ or as ⟨Ta, T−⊤Z⟩ for an invertible linear map T .
For the purposes of downstream tasks, however, this is fine since the learned concepts will still be
the same. Second, we cannot expect to recover f−1 outside the span of the concepts because we do
not manipulate the linear spaces outside the span therefore we do not learn this information from
our observed data so this is also tight. The permutation matrix captures the fact that the ordering
of the concepts does not matter. Therefore, this definition captures the most general identifiability
guarantee that we can hope for in our setting and furthermore, this suffices for downstream tasks such
as controllable data generation.

Because we will only be interested in recovering the set of concepts up to linear transformations,
without loss of generality, we will fix the base collection of atomic concepts. That is, we assume
that each concept Ce (where 1 ≤ e ≤ m indexes the environment) corresponds to a linear map Ae

whose rows are a subset of C, where C = {a1, . . . , an} is a set of atomic concepts that we wish to
learn. Moreover, we assume that they are linearly independent, since we want them to encode distinct
concepts. This is formalized as follows.
Assumption 2. There exists a set of atomic concepts C = {a1, . . . , an} of linearly independent
vectors such that for each concept Ce under consideration the rows of the concept matrix Ae are
contained in C, i.e., (Ae)tei ∈ C. We denote the indices of the subset of C that appear as rows of Ae

by Se and we assume that all concepts in C appear in some environment e (where an environment
corresponds to a concept conditional distribution), i.e.,

⋃
e S

e = [n].
Remark 1. Definition 4 implies that the atoms can be identified in the sense that there is a permutation
π ∈ Sn and λi ̸= 0 such that for T as in Definition 4 and some λi

ã⊤π(i) = a⊤i T
−1 (5)

⟨ãπ(i), f̃−1(x)⟩ = λi

(
⟨ai, f−1(x)⟩+ ⟨ai, w⟩

)
, (6)

i.e., we can evaluate the valuations of the atomic concepts up to linear reparametrization.

5 Main Result

In this section, we present our main result on identifying concepts from data. The punchline is that
when we have rich datasets, i.e., sufficiently rich concept conditional datasets, then we can recover
the concepts. Crucially, we only require a number of datasets that depends only on the number of
atoms n we wish to learn (in fact, O(n) datasets), and not on the underlying latent dimension dz
of the true generative process. This is a significant departure from many existing works, since the
true underlying generative process could have dz = 1000, say, whereas we may be interested to
learn only n = 5 concepts, say. In this case, approaches based on CRL necessitate at least ∼ 1000
interventional datasets, whereas we show that ∼ n+ 2 = 7 conditional datasets are enough if we
only want to learn the n atomic concepts. We will explain the connection to CRL in Appendix B. Let
us now discuss our main assumptions.
Assumption 3. The noise distribution q is Gaussian, i.e. q ∼ N(0, σ2) for some σ2 > 0.

We choose Gaussian noise since it is a conventional modeling choice. However, it would be feasible
to consider other noise families and we expect similar results to hold (albeit with modified proof
techniques). We now relate the concepts Ce to the atoms. Recall that we defined the index sets
Se = {i ∈ [n] : ai ∈ C is a row of Ae} of atomic concepts in environment e.

We define the environment-concept matrix M ∈ Rm×n indexed by environments and atoms by

Mei =

{
1
σ2 if i ∈ Se

0 otherwise.
(7)

7



Similarly, we consider the environment-valuation matrix B ∈ Rm×n given by

Bei =

{
bek
σ2 if i ∈ Se and row k of Ae is ai,
0 otherwise.

(8)

Our first assumption ensures that the concept conditional distributions are sufficiently diverse.
Assumption 4 (Environment diversity I). The environment-concept matrix M ∈ Rm×n has rank
n and there is a vector v ∈ Rm such that v⊤M = 0 and all entries of v⊤B are non-zero where B
denotes the environment-valuation matrix.

We remark that this assumption can only hold for m ≥ n + 1 and indeed is satisfied under mild
assumptions on the environments if m = n + 1, as the following lemma shows. Note that the
condition on B ensures that the concept valuations bek are not equal for all environments e which
would prevent identifiability.
Lemma 1. Assumption 4 is satisfied almost-surely if there are n+1 concept conditional distributions
such that every n rows of the environment-concept matrix are linearly independent and the be are
drawn independently according to a continuous distribution.

We also assume one additional diversity condition. To motivate this, observe if two concepts always
occur together, it’s information-theoretically impossible to distinguish them, e.g., if an agent only
sees red large objects (i.e. all red objects are large and all large objects are red), it will be unable
to disambiguate the “red” concept from the ”large” concept. Therefore, we make the following
assumption.
Assumption 5 (Environment diversity II). For every pair of atoms ai and aj with i ̸= j there is an
environment e such that i ∈ Se and j /∈ Se.

We remark that these are the only assumptions about the sets Se. In particular, we do not need to
know the sets Se. In the proof, we will extract these sets based on a the signatures they leave on the
datasets. We can now state our main result.
Theorem 1. Suppose we are given m context conditional datasets X1, . . . , Xm and the observational
dataset X0 such that Assumptions 1-5 hold. Then the concepts are identifiable as in Definition 4.
Remark 2. Assumption 4 can only be satisfied for m ≥ n+ 1, i.e., the result requires at least n+ 2
environments. On the other hand, Lemma 1 assures that n+ 2 environments are typically sufficient.
We expect that the result could be slightly improved by showing identifiability for n+ 1 environments
under suitable assumptions. However, this would probably require more advanced techniques from
algebraic statistics [28] compared to the techniques we employ here.

As mentioned before, our setting somewhat resembles the iVAE setting in Khemakhem et al. [53]
and therefore, their proof techniques can also be applied, with several modifications, to derive
identifiability results in our setting (however our formulation and application are very different).
However, this approach will require more environments because their main assumption is that the
matrix Λ = (M,B) ∈ Rm×2n has rank 2n so that 2n + 1 environments are necessary. Moreover,
this rank condition is much stronger than Assumption 4. For completeness and as a warm-up we
prove this result in Appendix A. The full proof of Theorem 1 is fairly involved and is deferred to
Appendix A.

6 Experiments

In this section, we present experiments to validate and utilize our framework. We first verify our
results on synthetic data, via a contrastive learning algorithm for concept learning. Then, we focus
on experiments involving real-world settings, in particular on image data using multimodal CLIP
models and text data using large language models (LLMs).

End-to-end Contrastive learning algorithm and Synthetic experiments We validate our frame-
work on synthetic data as follows. We sample the base distribution from a Gaussian Mixture model
and experiment with both linear and nonlinear mixing functions (details deferred to Appendix G).
The number of concepts n is intentionally chosen to be less than the ground truth dimension dz and
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the number of concept condtional distributions is m = n + 1 as per our theory. Inspired by [14],
we use a contrastive learning algorithm to extract the concepts. Here we sketch the key ideas of the
algorithm and defer details to Appendix F.

The core idea for the algorithm is as follows. For each concept conditional distribution Xe, we train
a neural network to distinguish concept samples x ∼ Xe from base samples x ∼ X0. Under our
assumptions the log-odds of these two distributions have the following simple parametric form in
terms of the environment-concept matrix and the environment-valuation matrix

ln(pe(Z))− ln(p(Z)) =

n∑
i=1

(
−1

2
Mei⟨ai, Ze⟩2 +Bei⟨ai, Ze⟩

)
+ ce (9)

for some constants ce (see Lemma 3 for the precise statement).

Then, to learn the n atomic concepts up to linearity, we build a neural architecture for this classification
problem with the final layer mimicking the log-odds expression above, which can then be trained
end-to-end. Because of the careful parametrization of the last layer, this will encourage the model to
learn the representations as guaranteed by our results. We can assume without loss of generality that
the concept vectors we learn are the first coordinate vectors because concepts are only identifiable up
to linear transformations (see Definition 4). In other words, we consider an encoder neural network
hθ with parameters θ and the valuation of atomic concept i is hθ

i . Therefore, for each environment e,
we train classifiers of the form

ge(X,αe, βe
k, γ

e
k, θ) = αe −

n∑
k=1

βk
e (h

θ
k(X))2 +

n∑
k=1

γk
eh

θ
k(X) (10)

using standard cross-entropy loss, where αe, βe
k, γ

e
k are the parameter of the last layer and θ

parametrizes the decoder.

Table 1: Linear identifiability when number of
concepts n is less than latent dimension dz with
observed dimension dx, averaged over 5 seeds.

Mixing (f ) (n, dz, dx) R2↑ MCC↑
Linear (2, 3, 4) 0.98 ± 0.01 0.98 ± 0.03

Nonlinear (2, 3, 4) 0.94 ± 0.06 0.96 ± 0.04

Linear (3, 4, 6) 0.99 ± 0.01 0.86 ± 0.08

Nonlinear (3, 4, 6) 0.97 ± 0.03 0.92 ± 0.07

Linear (4, 8, 10) 0.97 ± 0.01 0.87 ± 0.06

Nonlinear (4, 8, 10) 0.94 ± 0.03 0.87 ± 0.06

In Table 1, we report the R2 and Mean Corre-
lation Coefficient (MCC) metrics [53, 54] with
respect to the ground truth concept valuations.
In addition we provide results for larger values
of dx and dz in Table 7 in Appendix G. There are
no baselines since we are in a novel setting, but
our metrics are comparable to and often surpass
what’s usually reported in such highly nonlinear
settings [132, 14]. We remark that variations
of the contrastive method can be designed for
harder synthetic settings and different problems
related to concept discovery. However, we will
move onto real-life data experiments next.

Probing the theory on multimodal CLIP models A real world example that approximately
matches the setting considered in this paper is the training of the multimodal CLIP models [92]. They
are trained by aligning the embeddings of images and their captions. We can view the caption as
an indicator of the concepts present in the image. Thus the data provides access to several concept
conditional distributions such as the collection of all images having the label ‘A dog’, but also to
more complex distributions consisting of more than one atomic concept such as images labeled ‘A
red flower’. We embed images from the 3d-Shapes Dataset [16] with known factors of variation
into the latent space of two different pretrained CLIP models. Using logistic regression we learn
atomic concepts for each of the factors of variations (see Appendix D.1 for details) and then evaluate
the concept valuations of the learned atomic concept on held out images. We show the results for
the shape attribute in Figure 2 (further results are in Appendix D.2). The results show that there
are indeed linear subspaces of the embeddings space that represent certain concepts. Moreover, the
learned valuations for different models are approximately linearly related as predicted by Theorem 1.
We emphasize that, while these observations highlight the relevance of the theory developed in this
paper, they do not explain the behavior of CLIP models, as their training objective does not directly
align with our theoretical framework.

Alignment of LLMs Finally, we show an application of our framework to interpret representations
of LLMs and improve alignment techniques. In particular, we exploit our ideas to improve the
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Figure 2: Violin plot of the concept valuations ⟨aShape, Z⟩ for the different shapes and a vision
transformer CLIP embedding (left) and a residual network CLIP embedding (right). Results show
concentration of the concept valuations around the concept planes indicated by the horizontal lines.

Inference-Time Intervention technique [66] to promote LLMs to be more truthful, i.e. the downstream
task is to take pre-trained LLMs and during inference, change the valuation of the truthfulness concept
from false to true, without affecting any other orthogonal concepts. Motivated by our framework,
we propose to replace steering vectors by steering matrices for better alignment. Experiments on
LLaMA [119] show an improvement of the TruthfulQA dataset [68] accuracy. Additional details,
including a self-contained introduction to large language models (LLMs) and the Inference-Time
Intervention (ITI) technique are deferred to Appendix E.

7 Conclusion

In this work, we study the problem of extracting concepts from data, inspired by techniques from
causal representation learning. This is an approach to bridge identifiability theory in (causal) repre-
sentation learning and the field of concept-based learning. For this, we geometrically define concepts
as linear subspaces, well-supported via extensive empirical literature. With this formal definition of
concepts, we study under what conditions they can be provably recovered from data. Our rigorous
results show that this is possible under the presence of only conditional data,requiring far fewer
distributions than the underlying latent dimension. Finally, synthetic experiments, multimodal CLIP
experiments and LLM alignment experiments verify and showcase the utility of our ideas.
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A Proofs of the main results

In this appendix we provide the proofs of our results, in particular the proof of our main result,
Theorem 1. However, as a warm-up we first start in Appendix A.1 with a proof of the simpler
result that can be shown based on the iVAE approach. In Appendix A.2 we prove Theorem 1 and in
Appendix A.3 we prove the additional lemmas that appear in the paper.

A.1 Proof of identifiability with 2n+ 1 environments

As a warm-up and to provide a connection to earlier results we show here how to obtain identifiability
by adapting the iVAE framework to our context. Indeed, our mathematical setting is related to the
setting used in [53] in the sense that the environments are generated by modulation with certain
exponential families. Therefore, we can essentially apply their proof techniques to prove identifiability
(with some modifications), albeit this requires the suboptimal number of 2m+ 1 environments (there
are two sufficient statistics for the Gaussian distribution).
Theorem 2. Suppose data satisfies Assumption 1, 2, and 3 and the environment statistics matrix Λ
has rank 2n. Assume we know the number of atoms n. Then identifiability in the sense of Definition 4
holds.

We remark that the rank condition can only be satisfied for 2n + 1 environments (observational
distribution and 2n concept conditional distributions. For this theorem the assumption that the
filtering distribution is always the same is not necessary. Instead we could consider variances (σe

k)
2

depending on environment e and row k, i.e., the filtering distribution q(σe
k)

2 is Gaussian with varying
variance. The generalization of the environment-concept matrix M ∈ Rm×n is given by

Mei =

{
1

(σe
k)

2 if i ∈ Se and row k of Ae is ai
0 otherwise.

(11)

Similarly the generalization of the environment-valuation matrix B ∈ Rm×n is given by

Bei =

{
bek

(σe
k)

2 if i ∈ Se and row k of Ae is ai,

0 otherwise.
(12)

We now prove Theorem 2. We use essentially the same ideas as in the proof of Theorem 1 in
Khemakhem et al. [53] (followed by the same reasoning as in Sorrenson et al. [108], Kivva et al. [57]
but since our concepts are not axis aligned and we only extract some information about the mixing
we give a complete proof.

Proof of Theorem 2. Suppose there are 2 sets of parameters that generate the same data
X0, X1, . . . , Xm. Denote by .̃ the latter set of parameters, e.g., Xe is distributed as f̃(Z̃e) where
Z̃e ∈ Rd̃z corresponds to the concept class C̃e with distribution Z̃e ∼ p̃e and the same distribution is
generated by f(Ze) where f and f̃ are injective and differentiable. Let C = {a1, . . . , an} be the set
of atomic concepts in the first setting and let C̃ = {ã1, . . . , ãn} be the set of atomic concepts in the
second setting (here we use that n is assumed to be known). We also consider the transition function
φ = f̃−1f and in the following we always write Z̃ = φ(Z). The equality f(Ze)

D
= Xe D

= f̃(Z̃e)

implies φ(Ze)
D
= Z̃e. This implies that for all environments e

pe(Z) = |det Jφ−1 | · p̃e(Z̃) (13)
Taking the logarithm and subtracting this for some e = 1, . . . ,m from the base distribution we obtain

ln(p(Z))− ln(pe(Z)) = ln(p̃(Z̃))− ln(p̃e(Z̃)). (14)
Using the definition (2) we can rewrite for some constants ce and c′e

ln(p(Z))− ln(pe(Z)) =

dim(Ce)∑
k=1

(AeZe − be)2k
2(σe

k)
2

− c′e

=

n∑
i=1

(
1

2
Mei⟨ai, Ze⟩2 −Bei⟨ai, Ze⟩

)
− ce.

(15)
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Here we used the environment-concept matrix and the environment-valuation matrix in the second
step which were defined in (7) and (8) (in (11) and (12) for varying variance). We define the vector
p(Z) with components pe(Z) = ln(p(Z))− ln(pe(Z)). Then we find the relation

p(Z) =
1

2
M

⟨a1, Z⟩2
...

⟨an, Z⟩2

−B

⟨a1, Z⟩
...

⟨an, Z⟩

 . (16)

Together with (14) we conclude that

1

2
M

⟨a1, Z⟩2
...

⟨an, Z⟩2

−B

⟨a1, Z⟩
...

⟨an, Z⟩

 =
1

2
M̃

⟨ã1, Z̃⟩2
...

⟨ãn, Z̃⟩2

− B̃

⟨ã1, Z̃⟩
...

⟨ãn, Z̃⟩

 (17)

Since by assumption Λ̃ = (M̃, B̃) ∈ Rm×2n has rank 2n there is a vector v such that v⊤M̃ = 0 and
v⊤B̃ = −ei (ei ∈ Rdz denotes the i-th standard basis vector). Thus we find that

⟨ãi, Z̃⟩ = 1

2
v⊤M

⟨a1, Z⟩2
...

⟨an, Z⟩2

− v⊤B

⟨a1, Z⟩
...

⟨an, Z⟩

 . (18)

In other words ⟨ãi, Z̃⟩ can be expressed as a quadratic polynomial in Z. We apply the same reasoning
for ⟨ãi, Z̃⟩2, i.e., pick a vector v′ such that 1

2v
′⊤M̃ = ei and v′⊤B̃ = 0 to obtain a relation

⟨ãi, Z̃⟩2 =
∑
j

ηj⟨aj , Z⟩2 + ℓ(Z) (19)

for some coefficients ηj and some affine function ℓ of Z. The following reasoning is now the same as
in Kivva et al. [57], Sorrenson et al. [108]. We thus find that ⟨ãi, Z̃⟩ and its square can be written
as polynimials of degree at most 2 in Z. This implies that in fact ⟨ãi, Z̃⟩ is an affine function of Z
(otherwise its square would be a quartic polynomial), i.e., we can write

⟨ãi, Z̃⟩ =
∑
j

λj⟨aj , Z⟩+ Ci = ⟨
∑
j

λjaj , Z⟩+ Ci. (20)

Equating the square of this relation with (19) and taking the gradient with respect to Z (as a polynomial
the function is differentiable) we find

2
∑
j

ηjaj⟨aj , Z⟩+ w = 2
∑
j

λjaj⟨
∑
j

λjaj , Z⟩+ w′ (21)

for two vectors w and w′. The equality (for Z = 0) implies w = w′. Now linear independence of aj
implies that for each r

ηrar = λr

∑
j

λjaj . (22)

Applying linear independence again we conclude that either λr = 0 or λj = 0 for all j ̸= r. This
implies that there is at most one r such that λr ̸= 0. The relation (20) and the bijectivity of φ implies
that there is exactly on r(i) such that λr(i) ̸= 0 and therefore

⟨ãi, Z̃⟩ = λr(i)⟨ar(i), Z⟩+ Ci. (23)

Applying the same argument in the reverse direction we conclude that there is a permutation π ∈ Sn

such that

⟨ãπ(i), Z̃⟩ = λi⟨ai, Z⟩+ Ci. (24)

By linear independence we can find an invertible linear map T such that

ã⊤π(i) = a⊤i T
−1 (25)
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(i.e, T⊤ãπ(i) = ai) and a vector w ∈ Rdz (the ai are linearly independent) such that

⟨ãπ(i), Z̃⟩ = λi(⟨ai, Z⟩+ ⟨ai, w⟩). (26)

In particular the relations (5) and (6) hold. Now it is straightforward to see that if i ∈ Se, i.e., ai is a
row of Ae then ãπ(i) is a row of Ãe and vice versa. Indeed, this follows from (17) for environment e
together with (26) and linear independence of the atoms. Therefore we conclude from (25) that there
is a permutation P e such that

Ãe = P eAeT−1. (27)

Moreover, (26) then implies setting Z = f−1(x), Z̃ = f̃−1(x)

Ãef̃−1(x) = ΛeP eAe(f−1(x) + w) (28)

holds for the same permutation matrix P e and a diagonal matrix Λe whose diagonal entries can be
related to (26). Let us assume now that row k of Ae is ai and row k′ of Ãe is ãπ(i). Now we consider
the subspace H ⊂ Rdz containing all Z such that ⟨Z, aj⟩ = 0 for j ̸= i. Via (26) this implies that
⟨ãj , Z̃⟩ is constant for j ̸= π(i). Then we conclude from (17) that for Z ∈ H

(⟨ai, Z⟩ − bek)
2

2(σe
k)

2
=

(⟨ãπ(i), Z̃⟩ − b̃ek′)2

2(σ̃e
k′)2

+ cek (29)

for some constant cek. Using (26) this implies that

(⟨ai, Z⟩ − bek)
2

2(σe
k)

2
=

(λi(⟨ai, Z⟩+ ⟨ai, w⟩)− b̃ek′)2

2(σ̃e
k′)2

+ cek. (30)

Comparing the quadratic term and the linear term (note that ⟨ai, Z⟩ can take any value on H) we find

1

2(σe
k)

2
=

λ2
i

2(σ̃e
k′)2

(31)

− bek
2(σe

k)
2
= −λib̃

e
k′ − λ2

i ⟨ai, w⟩
2(σ̃e

k′)2
(32)

Combining the equation we obtain

b̃ek′ = λi(b
e
k − ⟨ai, w⟩) (33)

This implies then the relation

b̃ = ΛeP e(b+Aew). (34)

A.2 Proof of Theorem 1

In this section we prove our main Theorem 1. The proof is structured in several steps: First we remove
the symmetries of the representation and derive the key relations underlying the proof. Then we show
that we can identify the environment-concept matrix M and then also the valuations collected in B.
Once this is done we can complete the proof. We will need the following lemma to conclude the
proof.
Lemma 2. The relations (3) and (6) in Definition 4 define an equivalence relation of representations
if we assume that the underlying atoms form a linearly independent set.

The proof of this lemma can be found in Appendix A.3.
Remark 3. Without the assumption on the underlying atoms the lemma is not true. In this case
a slightly different scaling must be chosen (e.g., (Λe)−1b̃e = ΛeP ebe − P eAew instead of b̃e =
ΛeP e(be −Aew)). Since our results address the case of atoms we used the simpler definition in the
main paper.
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We can allow slightly more general filtering distributions where q is Gaussian with variance σ2
i if we

filter on concept i, i.e., the variance needs to be constant for different environments and the same
atom but might depend on the atom. The proof will cover this case, the simple case stated in the main
paper is obtained by setting σ2

i = σ2. Some steps of the proof (e.g., the expressions for the difference
of the log-densities) agree with the proof of Theorem 2. To keep the proof self contained we repeat a
few equations.

Proof of Theorem 1. We proceed in several steps.

Step 1: Reduction to standard form. Let us first transform every possible data representation into
a standard form. Recall that we have the set of atomic concepts C = {a1, . . . , an}. Recall that we
defined the environment-concept matrix M ∈ Rm×n in (7) and note that the natural generalisation
reads

Mei =

{
1
σ2
i

if ai is a row of Ae,

0 otherwise.
(35)

We say that concept an is conditioned on the environment e. Note that the nonzero entries of row e
of M encode the set Se. To pass from Ae to its rows ai we assume that the e-th row of Ae is aiej , i.e.,
aiej = (Ae)⊤ej . Recall also consider the environment-valuation matrix B which is given by

Bei =

{
bek
σ2
i

if ai is row k of Ae,

0 otherwise.
(36)

Denoting by qσ2 the centered Gaussian distribution with variance σ2 we find in environment e

ln(p(Z))− ln(pe(Z)) = −
dim(Ce)∑

k=1

ln q(σe
k)

2((AeZe − be)k) =

dim(Ce)∑
k=1

(AeZe − be)2k
2(σe

k)
2

− c′e

=

n∑
i=1

1

2
Mei⟨ai, Ze⟩2 −Bei⟨ai, Ze⟩ − ce.

(37)

Now we consider an invertible linear map T : Rdz → Rdz such that T−⊤ai = ei for all 1 ≤ i ≤ n.
Such a map exists because we assume that the ai are linearly independent. Moreover, we consider
a shift vector λ ∈ Rdz with λi = 0 for i > n which we fix later. We define Σ ∈ Rdz×dz to be the
diagonal matrix with entries Σii = σi for 1 ≤ i ≤ n and Σii = 1 for i > n. Now we consider the
linear map L(z) = Σ−1Tz − λ and a new representation given by

z = L(z), f = f ◦ L−1, C = {e1, . . . , en}, σi = 1, A
e
= AeT−1,

p(z̃) = p(L−1z̃)|detT−1|.
(38)

We also define

b
e

k =
bek
σi

− λi if row k of Ae is ai. (39)

Define M and B in terms of A
e
, b

e
and σ2

i as before. We remark that all entries of M are either 0 or
1 and note that

M = MDiag(σ2
1 , . . . , σ

2
n) (40)

B = BDiag(σ−1
1 , . . . , σ−1

n )−MDiag(λ1, . . . , λn). (41)
We claim that this model generates the same observations as the original model. By definition
L∗p = p (as mentioned before, we slightly abuse notation and here refer to the distributions). Next,
we calculate for any δ

−2 ln q1(⟨ei, L(z)⟩ − δ) = (⟨ei, L(z)⟩ − δ)2

= (⟨ei,ΣTz − λ⟩ − δ)2

= (σ−1
i ⟨T⊤ei, z⟩ − λi − δ)2

=
(⟨ai, z⟩ − σiλi − σiδ)

2

σ2
i

= −2 ln qσ2
i
(⟨ai, z⟩ − σiλi − σiδ).

(42)
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Using this for δ = b
e

k and some k such that row k of Ae is ai we find

−2 ln q1(⟨ei, L(z)⟩ − b
e

k) = −2 ln qσ2
i
(⟨ai, z⟩ − σiλi − σib

e

k) = −2 ln qσ2
i
(⟨ai, z⟩ − bek). (43)

This then implies that for z̃ = L(z)∏
k

q1((Ã
ez̃ − b̃e)k) ∝

∏
k

qσe
k
((Aez − be)k) . (44)

Combining this with the definition (2) and the definition p(z̃) = p(L−1z̃)|detT−1| we find that for
z = L(z)

pe(z̃) ∝ pe(z) (45)

and thus f(Z
e
)

D
= f(Ze)

D
= Xe. Moreover, one directly sees that the two representations are also

equivalent in the sense of Definition 4. We now fix the vector λ such that each row of B has mean zero.
Finally, by changing the sign of z̃i we can in addition assume that for every i the first non-zero Bei

is positive. Finally we remark that Assumption 4 is still satisfied for M and B. Indeed, w⊤M = 0
implies w⊤M = 0 by (40). But then w⊤B = w⊤BDiag(σ−1

1 , . . . , σ−1
n ) by (41) which has all

entries different from zero if this holds for w⊤B. In the following we will therefore always assume
that the representation satisfies the properties of the Z variables and we remove the modifier in the
following. The plan is now to show that M and B can be identified up to permutations of the rows
(under the fixed normalization we derived in this step) and then show that every two representations
with the same M and B can be identified.

Step 2: The key identity Let us here restate the key identity based on the difference of the log-
densities. As is common in identifiability results for multi-environment data with general mixing we
consider the difference in log densities. Consider

ln p0(z)− ln pe(z) =

n∑
i=1

1

2
Mei⟨ei, z⟩2 −Bei⟨ei, z⟩ − c′e

=

n∑
i=1

1

2
Meiz

2
i −Beizi − c′e

(46)

for some constant c′e. Those functions will play a crucial role in the following and we will denote

ge(z) = ln p0(z)− ln pe(z) (47)

Note that since the log-density changes only by the Jacobian for pushforward measures we find that

ge(z) = ln p0(z)− ln pe(z) = ln p0X(f(z))− ln peX(f(z)) = Ge(f(z)) = Ge(x). (48)

Note that the functions Ge(x) can be estimated from the distributions of Xe. We remark X might be
supported on a submanifold if dz and dx do not agree making the definition of the density subtle. But
we can just consider any chart locally and consider the density of the pushforward with respect to the
Lebesgue measure. The resulting difference expressed in Ge will be independent of the chart as the
determinant cancels thus Ge is a well defined function. The relation

ge(z) = Ge(f(z)) = Ge(x) (49)

will be crucial in the following because it shows that properties of ge are closely linked to the
identifiable functions Ge.

Step 3: Identifiability of environment-concept matrix Let us now show that we can identify
which concepts are contained in which environment (up to relabeling of the concepts). Recall that
Se = {i ∈ [n] : ai is a row of Ae } and we similarly define ST =

⋃
e∈T Se for all subsets T ⊂ [m].

The main observation is that we can identify |ST | = |
⋃

e∈T Se| for all subsets T ⊂ [m]. To show
this we consider the set

IT = argmin
z

∑
e∈T

ge(z). (50)
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Note that the function ge are convex functions, and they can be decomposed as sums of functions in
zi, i.e., for some functions hT

i ∑
e∈T

ge(z) =

n∑
i=1

hT
i (zi). (51)

Now if i ∈ ST then i ∈ Se for some e and thus Mei ̸= 0 for the e and hT
i is the sum of quadratic

function in xi which as a strictly convex function has a unique minimum zTi . On the other hand, if
i /∈ ST then i /∈ Se for e ∈ T and thus Mei = 0 for all e ∈ T and hT

i (zi) = 0. Thus we conclude
that

IT = {z ∈ Rdz : zi = zTi for i ∈ ST }. (52)
This is an affine subspace of dimension dz − |ST |. The relations Ge(f(z)) = ge(z) imply that

f(IT ) = argmin
x

∑
e∈T

Ge(x). (53)

Note that Ge(x) is identifiable from the datasets Xe and thus the submanifold (by assumption on f )
f(IT ) is identifiable and by finding its dimension we obtain dz − |ST |. Since dz is the dimension of
the data manifold f(X) we can indeed identify |ST | for all T ⊂ [m]. In particular, the total number
of atomic concepts n = |S[m]| is identifiable (assuming that all atomic concepts are filtered upon at
least once). Now, it is a standard result that we can identify the matrix M up to permutation of the
atomic concepts. Indeed, we can argue by induction in m to show this. For m = 1 we just have |S1|
atomic concepts appearing in environment 1 and n− |S1| concepts not appearing. For the induction
step m → m+ 1 we consider the sizes |ST∪{m+1}| for T ⊂ [m]. Applying the induction hypothesis
we can complete Mei for all columns such that Mm+1,i = 1. Similarly, we can consider the sizes
|ST | − |ST∪{m+1}| to identify the matrix M for concepts not used in environment m+ 1.

Thus, we can and will assume after permuting the atomic concepts that M is some fixed matrix.

Step 4: Identifiability of concept valuations Next, we show that we can also identify the matrix
B. We do this column by column, i.e., for one atomic concept after another. Assume we consider
atomic concept i. Then we consider the set Ti = {e : Mei = 0} of concepts that not filter on atomic
concept i. By Assumption 5 there is for every i′ ̸= i an environment e such that i′ is filtered on, i.e.,
Mei′ ̸= 0. This implies STi

= [n] \ {i}. Then we consider as in (52) the set ITi
given by

ITi
= {z ∈ Rdz : zi′ = zTi

i′ for i′ ∈ [n] \ {i}}. (54)
Note that all zi′ for i ̸= i′ are constant on ITi . Thus we find for any environment e such that i ∈ Se.

ge(z) =

n∑
j=1

1

2
Mejz

2
j −Bejzj − c′e

=
n∑

j ̸=i

1

2
Mejz

2
j −Bejzj − c′e +

1

2
z2i −Beizi

= cTi,e +
1

2
z2i −Beizi

(55)

on ITi
for some constant cTi

.

Now we consider two concepts e1 ̸= e2 such that atomic concept i is contained in these two
environments. Then we consider the set

Ie1Ti
= argmin

z∈ITi

ge1(z) = {z ∈ Rdz : zi′ = zTi

i′ for i′ ∈ [n] \ {i}, zi = Be1i}. (56)

Note that in the second equality we used that ge1(z) depends on zi through z2i /2−Be1izi so it is
minimized at Be1i. Now we find using (55)

min
z∈I

e1
Ti

ge2(z)−min
ITi

ge2(z) = min
z∈I

e1
Ti

cTi,e2 +
1

2
z2i −Be2izi −min

ITi

(
cTi,e2 +

1

2
z2i −Be2izi

)
= cTi,e2 +

1

2
B2

e1i −Be1iBe2i −
(
cTi,e2 +

1

2
B2

e2i −B2
e2i

)
=

(Be1i −Be2i)
2

2
.

(57)
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As before, this quantity is identifiable from observations because f(Ti) can be identified and we can
minimize Ge2(x) over f(Ti).

This allows us to identify Be1i −Be2i up to a sign. However, we can evaluate this expression over
all pairs e1 and e2 and pick the one with the maximal difference. Then all remaining values Bei

for e such that i is filtered on in e must satisfy Bei ∈ [Be1i, Be2i]. Together with identifiability of
|Bei − Be1i| this allows us to identify all Bei up to one sign indeterminacy and a constant shift.
However, in the first step we ensured that

∑
e Bei = 0 for all i which determines the shift and the

sign is fixed by our choice of making the first non-zero entry positive. Thus, we can assume that our
two representations have the same M and B.

Step 5: Identifiability of concepts We are now ready to prove our identifiability result.

Assume we have two representations Ze, f , p and Z̃e, f̃ , and p̃ such that the corresponding
environment-concept and environment-valuation matrices agree, i.e., M = M̃ and B = B̃. We
consider the transition function φ = f̃−1 ◦ f which is by assumption differentiable. What we want to
show is that φ(z)i = zi for all z ∈ Rdz and 1 ≤ i ≤ n. We now decompose z = (zc, zo) into the
concept part and the orthogonal part. We fix zo ∈ Rdz−n and define the function ιo(zc) = (zc, zo),
the projection πc((zc, zo)) = zc, and φo : Rn → Rn given by φo(zc)i = φ(ιo(zc) = φ((zc, zo))i.
Note that φo is differentiable but not necessarily injective. Let us denote by g : Rdz → Rm the
function with coordinates ge = ge and similarly we define G : M → Rd. Identifiability will be
based on the crucial relation

g(ιo(zc)) = G(f(ιo(zc))) = G(f̃(φo(zc))) = g(φo(zc)). (58)

Here we used in the last step that ge is defined in terms of M and B and thus agrees for both
representations. Note that g is just a quadratic function. Differentiating we obtain

Dig
e(z) = Meizi −Bei. (59)

Concisely this can be written as

Dg = MDiag(z1, . . . , zn)−B. (60)

Differentiating (58) we find

MDiag(z1, . . . , zn)−B = (MDiag(z̃1, . . . , z̃n)−B)Dφo(zc). (61)

Let v be a vector as in Assumption 4. Denote by M+ ∈ Rn×m the pseudoinverse of M which has
rank n because M has. We consider the matrix M̃+ ∈ Rn+1×m given by

M̃+ =

(
M+

v⊤

)
(62)

Let us multiply the relation (61) by M̃+ and find that
z1 0

. . .
0 zn
0 . . . 0

− M̃+B =



z̃1 0

. . .
0 z̃n
0 . . . 0

− M̃+B

Dφo(zc) (63)

Note that the first n rows of the left hand side are Diag(z1, . . . , zn)−M+B. This matrix is invertible
for almost all values of zc = (z1, . . . , zn)

⊤ because its determinant is a non-zero polynomial (the
coefficient of the term z1 · . . . zn is 1) which vanishes only on a set of measure zero. Outside of this
set the left hand side of has rank n. Then the equality (63) implies that also the right hand side has
rank n and thus Dφo(zc) has rank n and thus is invertible. For zc outside of this set there is up to
scaling a unique vector w ̸= 0 (depending on z1, . . . , zn such that

w⊤



z1 0

. . .
0 zn
0 . . . 0

− M̃+B

 = 0 (64)
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From (63) we conclude using the invertibility of Dφo(zc) that

w⊤



z̃1 0

. . .
0 z̃n
0 . . . 0

− M̃+B

 = 0. (65)

Next, we claim that for almost all values of zc the vector w has all entries different from 0 (this
property is invariant under rescaling). Actually we need this only for entries 1 to n but the case n+ 1
is a bit simpler so we show it first. We show this by proving that for each entry wi there is only a null
set of zc such that wi = 0. Let w = (w′, 0) for some w′ ∈ Rn and w′ ̸= 0, i.e., wn+1 = 0. Then

0 = w⊤



z1 0

. . .
0 zn
0 . . . 0

− M̃+B

 = w′⊤(Diag(z1, . . . , zn)−M+B) (66)

But this implies that Diag(z1, . . . , zn)−M+B has non-trivial kernel, i.e., does not have full rank
and we have seen above that this happens only for a subset of measure 0 of all zc. Next we show that
the same is true if w1 = 0. Decompose 0 ̸= w = (0, w′). Then we find

0 = w⊤



z1 0

. . .
0 zn
0 . . . 0

− M̃+B

 = w′⊤




0 z2 0 0

. . .
. . .

0 zn
0 . . . . . . 0

− (M̃+B)2:(n+1)


(67)

Thus we conclude that the matrix on the right hand side is not invertible. Its determinant is a
polynomial in z2, . . . , zn and its highest degree term is ±z2 · . . . · zn · (M̃+B)(n+1),1. By definition
of M̃+B we find (M̃+B)(n+1),1 = (v⊤B)1 ̸= 0 by Assumption 4 (recall that we showed invariance
of the assumption under the transformation of M and B). We find that the determinant is a non-zero
polynomial and the set of its zeros is a set of measure 0 of all z2, . . . , zn but since it does not depend
on z1 this holds true for almost all zc. The same reasoning for i = 2, . . . , n implies that for every
i the set of zc such that wi = 0 is a set of measure zero. We have therefore shown that for almost
all zc the rank of the left hand side of (63) is n and the corresponding vector w ̸= 0 has all entries
different from zero. Subtracting (64) and (65) we obtain

0 = w⊤


z1 0

. . .
0 zn
0 . . . 0

− w⊤


z̃1 0

. . .
0 z̃n
0 . . . 0

 = (w1(z1 − z̃1), . . . wn(zn − z̃n), 0) . (68)

Now wi ̸= 0 implies zi = z̃i. We conclude that for almost all zc the relation φo(zc) = zc

holds. By continuity this implies that the relation actually holds everywhere. We conclude that
πcf̃−1f((zc, zo)) = zc for a fixed zo but since zo was arbitrary the relation holds for all zo and all
zc. Thus we conclude that for 1 ≤ i ≤ n

⟨ei, f̃−1(x)⟩ = ⟨ei, φ(f−1(x))⟩ = ⟨ei, f−1(x)⟩ (69)

holds. This implies that those two representations satisfy (3) and (4) (with P e = Λe = Id and
T = Id). But since this relation is an equivalence relation in our setting by Lemma 2 and since we
showed equivalence to a representation in standard form in the first step we conclude that also any
two representations are related through (3) and (4) thus finishing the proof.

A.3 Remaining proofs

Here we prove the remaining auxiliary results.

Proof of Lemma 1. Since M ∈ Rm×n has rank n and m = n+1 there is exactly one vector v ∈ Rm

such that v⊤M = 0 and v ̸= 0. We claim that this vector has all entries different from zero.
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Indeed suppose vm = 0 which then implies v⊤1:(m−1)M1:(m−1) = 0. But by assumption every n× n

submatrix of M is invertible (this is equivalent to the rows being linearly independent) so we conclude
that v1:(m−1) = 0 which is a contradiction to v ̸= 0. The same reasoning applies to every entry.
Note that the assumption on M implies that every column has at least one non-zero entry, i.e., every
column of B has one entry sampled from a continuous distribution. But then the probability that v is
orthogonal to a column is zero because this is a codimension 1 hyperplane of all valuations of this
row (since all entries of v are non-zero).

Proof of Lemma 2. Reflexivity is obvious, just pick T = Id, w = 0, Λe = P e = Iddim(Ce). To show
symmetry we first consider the atoms. Let T̃ = T−1 and π̃ = π−1. Then

a⊤π̃(i) = a⊤π−1(i)T
−1T = ãπ◦π−1(i)T̃

−1 = ãiT̃
−1. (70)

Let w̃ be a vector such that for all 1 ≤ i ≤ n

⟨ai, w⟩ = − 1

λi
⟨ãπ(i), w̃⟩. (71)

Such a vector exists by linear independence of ãi. Let λ̃i = λ−1
π̃(i). Then we find that the relation (6),

namely

⟨ãπ(i), f̃−1(x)⟩ = λi

(
⟨ai, f−1(x)⟩+ ⟨ai, w⟩

)
(72)

implies

⟨aπ̃(i), f−1(x)⟩ = 1

λπ̃(i)
⟨ãπ◦π̃(i), f̃−1(x)⟩ − ⟨aπ̃(i), w⟩ =

1

λπ̃(i)
⟨ãi, f̃−1(x)⟩+ 1

λπ̃(i)
⟨ãπ◦π̃(i), w̃⟩

= λ̃i(⟨ãi, f̃−1(x)⟩+ ⟨ãi, w̃⟩).
(73)

It remains to be shown that this lifts to the concepts Ce. We first note that the relation (6) together
with (71) and (3) implies that

ΛeP eAew = −Ãew̃. (74)

Let P̃ e = (P e)−1 and Λ̃e = (P e)−1(Λe)−1P e. Then (3) combined with the previous disply implies

Aef−1(x) = (P e)−1(Λe)−1Ãef̃−1(x)−Aew

= Λ̃eP̃ eÃef̃−1(x) + (P e)−1(Λe)−1Ãw̃

= Λ̃eP̃ eÃe(f̃−1(x) + w̃).

(75)

The relation

Ae = P̃ eÃeT̃−1 (76)

is a direct consequence of the definitions of P̃ e and T̃ and (4) and the relation

be = Λ̃eP̃ e(̃be − Ãew) (77)

follows exactly as in (75). The proof of transitivity is similar (first establish the relations on the
atomic concepts then lift it to Ce).

B Comparison to Causal Representation Learning

In this appendix we describe causal representation learning and discuss the similarities and differences
between the viewpoint taken in this paper and the standard setting in causal representation learning.

Causal Representation Learning (CRL) [102, 101] aims to learn representations of data that corre-
spond to true causal generative processes. More precisely, if we assume that data X is generated as
X = f(Z) where Z are latent causal factors and f is some arbitrary nonlinearity, the goal is to learn f
as well as the distribution of Z. Since the latent variables Z are assumed to have causal relationships
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among them, many works exploit the presence of interventional data to learn the generative model.
CRL incorporates ideas from the field of causality [109, 86, 88, 95, 110] into the field of latent
variable models and is a generalization of nonlinear independent component analysis [21, 45, 47]
and disentangled representation learning [9, 88, 62]. The field has seen a surge of advances in
the last few years, e.g., [53, 56, 33, 70, 60, 13, 78, 142, 36, 96, 123, 50, 49, 115, 124, 136, 133].
As motivated in Schölkopf et al. [102], CRL enables many desiderata such as robustness, out of
distribution generalization, and in addition enables planning and alignment. CRL has also been
successful in many domains such as computer vision [53, 126, 2], robotics [73, 11, 69, 140] and
genomics [111, 139].

In our work, we take significant inspiration from this framework of causal representation learning and
present a relaxed framework that is weaker, but more general and also importantly, aligns better with
empirical works on interpretability of large pre-trained models in the literature. We now describe
the setup of CRL more formally in Appendix B.1. Then, in Appendix B.2, we discuss conceptual
differences between causal representation learning and our framework.

B.1 Formal setup

We assume that we observe data X ∈ Rdx with the generative model X = f(Z) where Z ∈ Rdz

are the latent variables and f is a deterministic mixing function. The dataset X is sampled from
a distribution p and the goal is to recover the mixing function f as well as the distributions of
the underlying latent variables Z1, . . . , Zdz . To this end, this problem is over-parameterized since
multiple pairs of Z and f could fit the dataset apriori, so the common practice in CRL is to impose
various assumptions that will make this model identifiable. Here, identifiability is the notion that
a unique set of parameters fit the model (up to trivial transformations). This makes the problem
well-defined and feasible, although it could still be a hard problem to solve in practice. Below, we
informally summarize two classes of prior works that enable such identifiability guarantees.

1. Disentangled representation learning: In this setting, we assume that the distributions of
Z1, . . . , Zdz

are jointly independent. Different studies constrain the distribution of the
variables Z1, . . . , Zdz

, e.g., each Zi is independently sampled from N(0, 1). This is also
the setting studied in nonlinear independent component analysis [21, 45].

2. Causal Representation Learning: This setting is more general than the one above where we
relax the independence assumption on the Zi, and instead assume that they have (typically
unknown) causal relationships among them. For instance, they could satisfy a linear
structural causal model with Gaussian noise, i.e., Z = AZ + ϵ, ϵ ∼ N(0, I) where A
encodes a weighted directed acyclic graph. This setting is generalizes the previous setting,
since having no causal relationships (i.e., A = 0) implies joint independence.

As explained earlier, in both these domains, a critical notion is that of identifiability [53, 25, 129],
which posits that the given dataset(s) are diverse enough for the modeling assumptions, in order to
ensure that a unique set of parameters fit the data. It’s folklore that the disentangled representation
learning model is not identifiable if all Zi are Gaussian [46, 71]. However, under appropriate assump-
tions, e.g., distributional, sparsity or observed side-information, the model becomes identifiable, see
e.g., [53, 44, 11, 106, 60, 78, 141, 57, 13, 12, 142, 36, 96]. In addition, various works have proposed
methods to learn them [33, 132, 26, 134, 67, 23, 13, 63, 14].

B.2 Conceptual differences

In this section, we highlight the conceptual differences between causal representation learning and
our framework.

Are causal generative concepts necessarily interpretable? Moreover, we are constantly conjuring
new concepts of interest since human-interpretable concepts are constantly evolving, e.g., the concept
of mobile phones did not exist 100 years ago, but is a valid concept to learn now. Therefore, as
opposed to working with a rigid model as in causal representation learning, we take the approach of
working with a dynamic representation learning model. Finally, even if individual causal factors are
interpretable (which may be the case in certain applications), the perspective that we take in this work
is that the number of true generative factors could be prohibitively large so that attempting to extract
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and interpret all of them together is infeasible, whereas the number of desired human-interpretable
concepts is much smaller and more manageable.

Number of environments needed When the ground truth generative process has ambient latent
dimention dz , for causal representation learning to be feasible, we usually require dz environments or
datasets. For instance, in the iVAE setting [53] with k sufficient statistics, we require dzk+1 ≥ dz+1
environments. This is indeed necessary, as counterexamples show. However, it’s not clear what the
value of dz is for complex datasets, and it could potentially be prohibitively large.

But the question remains, do we need to learn the entire generative model for solving downstream
tasks? Along these lines, there is a tremendous research effort attempting to relax such requirements
by imposing various inductive or domain biases and by building a theory of partial identifiability
[57, 69, 59]. This is for good reason, since even though it would be ideal to learn the full ground
truth generative model, it may be prohibitively large and moreover it may not be necessary for the
downstream tasks we care about, therefore it suffices to learn what is necessary. On this note, the
related task of learning only a subset of the generative latent variables is also not easy as the latent
variables interact in potentially complicated ways.

In this work, we show that if we only wish to learn n ≪ dz concepts, it suffices to have O(n)
environments instead of Ω(dz) environments. Therefore, our results can be viewed as a result on
partial identifiability with a sublinear number of environments.

Multi-node interventions Multi-node interventions are an exciting area of study in CRL, since
they are a natural extension of existing works and are more useful for modeling various real-life
datasets where it can be hard to control precisely one factor of variation. This is easily incorporated in
our setting by utilizing non-atomic concepts, since each non-atomic concept is a collection of vectors
corresponding to atomic concepts and can be modified simultaneously by changing the valuation.

Conditional vs. interventional data In this work we focus on conditional data and identification of
concept structure, while a recent trend in CRL is to focus on interventional data and identification of
the causal structure [110, 122, 14, 50, 126]. For causal models, interventions are a natural approach
to solving the identifiability problem, however, in the absence of an assumed causal model (as in
our framework), interventions may not even be formally well-defined. In our framework, we do not
think of concepts as being causal variables that are connected by a graph. (We note that an interesting
approach would be to study learning concepts over a given causal generative model, which is an
intriguing direction for future study that we do not pursue in this work).

By contrast, conditional data does not require the formal framework of causal models, and is often
more frequently available in practice. Conditional data can be obtained by selection through filtering,
e.g., patients that are admitted to different hospitals based on the severity of their condition or by the
availability of label information as in the CLIP setting [92]. Thus conditional data can be obtained
by observing the system in different condtions. On the other hand interventional data requires
manipulation of the system which is more difficult to obtain in general.

C Alternate definitions of concept conditional measure

In this section, we present alternate feasible definitions for data distributions than the one we
introduced in Section 4.2. While we went with the definition most suited for practice, these alternate
definitions are also justifiable in different scenarios and are exciting avenues for further study.

We want to essentially define a concept C via a conditional measure pC where the concept C is
identified with an affine subspace C = {Z ∈ Rdz : ACZ = bC} for some AC ∈ Rk×dz , bC ∈ Rk.
We consider the shifted parallel linear subspace C0 = {Z : ACZ = 0} and the orthogonal splitting
Rdz = C0⊕V . Suppose we have a distribution qV on the space V which will typically be a Gaussian
centered around vC ∈ V which is the unique solution of ACvC = bC . In addition we have a base
distribution p on Rdz . We will assume that all distributions have a smooth density so that conditional
probabilities are pointwise well defined. There are at least three ways to create the context conditional
measure pC .
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1. The first option is to enforce that the distribution of the V marginal pC(v) =
∫
C0

pC(v, c) dc

exactly matches qV (v) while the in-plane distribution pC(c|v = v0) ∝ pC(c, v0) remains
invariant, i.e., equals p(c|v = v0). Under this condition, there is a unique measure pC given
by

pC(c, v) ∝ qV (v)
p(c, v)∫

C0
p(c′, v) dc′

.

In other words, to get (c, v) we sample v ∼ qV and then c ∼ p(c|v) according to the
conditional distribution.

2. The second option is to again enforce the V marginal but instead of keeping the in plane
distribution we average over the V space. Then we obtain

pC(c, v) ∝ qV (v)

∫
V

p(c, v′) dv′.

This corresponds (vaguely) to a do(v) operation from causal inference, i.e., we sample
according to p(v, c) and then do a random intervention on v with target distribution qV .

3. The third option is to take a Bayesian standpoint. Then we view p as a prior and qV as
the context dependent acceptance probability, i.e., we sample by p and then accept with
probability qV . Then we find

pC(c, v) =
p(c, v)qV (v)∫

p(c, v)qV (v) dv dc
∝ p(c, v)qV (v). (78)

This is probably the closest aligned to practice, so this is the one we study in this work. To
justify this option, imagine the following scenario. If we wish to learn the concept of red
color, a first step would be to curate a dataset of red objects. To do this, we first consider
a collection of photos of objects of varying color and then filter out the ones that look red.
The concept conditional measure we define aligns with this process. To learn the actual
red concept accurately, our theory predicts that it is sufficient to have additional datasets
of objects that are not red, from which we can distinguish red objects, thereby learning the
concept of red color.

The next question is how to define the measure qV . When considering a single concept ACZ = bC the
most natural option to consider N(vC , σ2IdV ) where vC ∈ V is the unique solution of ACvC = bC

and σ > 0 is a positive constant. This is what we do in this work (note that σ2 can be set to 1 by
scaling the concept and valuation accordingly).

However, we can also use alternate definitions as suggested above. For instance, we can set AZ
D
=

N(bC , Id). Then Z ∼ N(vC , (A⊤A)−1). However, this runs into some technical issues we sketch
(and leave to future work to handle this). Consider the intersection of multiple concepts Ce. In this
case the concept space is given by the intersection C =

⋂
Ce and C0 =

⋂
(Ce)0 and we have the

orthogonal decomposition Rdz = C0⊕
∑

V e. In general the spaces V e are not necessarily orthogonal
but it is reasonable to assume that the non-degeneracy condition dim(

∑
V i) =

∑
dim(V e) holds.

Now set V =
∑

V e. If we choose just the standard normal distribution for qV e we can define just as
in our approach

qV ∼ N(vC , σ2IdV ). (79)

The second option is to enforce that the marginals of qV agree with qV e , i.e., qV (ΠV e(v) ∈ O) =
qV e(O) for O ⊂ V e. This results in the set of equations for all i

AeΣ(Ae)⊤ = IdV e . (80)

It is likely that this system has a unique solution when non-degeneracy holds for V e and this is clearly
true for orthogonal spaces but it is not clear how to solve this in general.

D Analysis of pretrained CLIP models

In this section we provide additional experimental details and further results for the analysis of
pretrained CLIP models [92].
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D.1 Experimental Details

We transform the images from the 3d-Shapes dataset to match the CLIP training data, i.e., reshape
to images of size 224 and match the channel distributions. Then we calculate the embeddings
for all images in the dataset using two CLIP models, a model with a vision transformer backbone
(‘ViT-B/32’) and a model with a Resnet backbone (‘RN101’)3. We split the embedded images in to
training and test sets of equal size. Then for any factor of variation (orientation of the scene, shape
and scale of the object, and hue of floor, wall, and object) we perform the following procedure. For
each pair of values of a factor of variation we run logistic regression on the embeddings for those
two values of the concept to classify which value is taken for a given embedding. We average the
directions of the logistic regression vectors βi, i.e., consider β̄ = N−1

∑N
i=1 βi. Since the direction

is defined only up to a sign (depending on the order of the two groups) we repeatedly replace βi by
−βi if the scalar product with the current mean is negative (this is a heuristic procedure to align βi

with β̄). We then use the learned concept vectors a = β̄ to evaluate the concept valuations on the
held out test data, i.e., we evaluate ⟨a, Z⟩ where Z = f−1(X) is the embedding of an image X . The
preprocessing to calculate the CLIP image embeddings required few hours on a A100-GPU. The
remaining evaluations were performed on a standard notebook.

D.2 Further results

Here we report the mean and standard deviations of the per-class concept valuations ⟨a, Z⟩ for the
concept vectors learned as described in Section D.1. The results for the six factors of variation
can be found in Tables 2, 3, and 4. We observe that shape, scale, and orientation are well aligned
with linear subspaces. For the hue variables this still holds to some degree the discrepancy might
be attributed to hue not being an atomic concept (colours are typically represented by at least two
numbers). Moreover, we consider the correlation coefficient of the valuastions obtained for different
embedding models, i.e., for ⟨aM1 , ZM1

i ⟩ and ⟨aM2 , ZM2
i ⟩ where aM1 and aM2 are concept vectors

for the same concept and two different models and ZM1
i and ZM2

i denote the embeddings of the
two models M1 and M2 of sample Xi. We report these correlation coefficients for the two CLIP
models in Table 5. The results indicate that the valuations indeed approximately agree up to a linear
transformation. Note that for the scene orientation attribute the valuation corresponds to the absolute
value of the angle.

Table 2: Mean valuations and standard deviation on the test set for the floor hue and wall hue
attributes.

Floor hue Vit-B/32 RN101

0.0 −1.4± 1.4 −0.3± 0.9
0.1 4.5± 1.5 1.4± 0.8
0.2 4.3± 1.3 3.2± 0.8
0.3 2.2± 1.4 3.0± 0.8
0.4 1.2± 1.5 2.2± 0.8
0.5 0.0± 1.1 0.5± 0.8
0.6 −2.8± 1.3 −0.4± 0.9
0.7 −5.8± 1.5 −2.0± 1.0
0.8 −3.8± 1.4 −1.3± 0.9
0.9 −3.2± 1.4 −1.0± 0.8

Wall hue Vit-B/32 RN101

0.0 1.1± 1.3 −1.5± 1.4
0.1 2.8± 1.3 1.8± 1.0
0.2 3.3± 1.1 1.5± 0.9
0.3 1.7± 1.0 0.8± 0.8
0.4 0.8± 1.3 0.5± 0.9
0.5 −0.6± 1.2 −0.6± 1.1
0.6 −3.3± 1.2 −2.3± 1.1
0.7 −3.6± 1.2 −3.7± 1.0
0.8 −1.4± 1.1 −2.0± 1.0
0.9 −0.6± 1.2 −2.0± 1.1

E Inference-Time Intervention of Large Language Models

In this section, we first briefly describe Large Language Models and the recent Inference-Time
Intervention (ITI) technique proposed for LLM alignment, which we build on. Then, we use our
framework to provide better intuition on some intriguing observations about ITI, including why it
works. And then we exploit our ideas to improve the performance of ITI by choosing the steering
direction to be a matrix instead of a vector.

3Models are publicly available under https://github.com/openai/CLIP

31

https://github.com/openai/CLIP


Table 3: Mean valuations and standard deviation on the test set for the object hue and scene orientation
attributes.

Object hue Vit-B/32 RN101

0.0 −0.3± 1.5 −0.1± 1.1
0.1 4.8± 2.1 1.4± 1.0
0.2 6.0± 2.0 2.7± 0.8
0.3 3.9± 1.7 2.6± 0.7
0.4 2.3± 1.4 2.2± 0.7
0.5 −0.5± 1.6 0.3± 0.9
0.6 −4.8± 1.8 −1.8± 0.9
0.7 −5.6± 1.9 −2.4± 1.0
0.8 −3.4± 1.4 −1.3± 0.9
0.9 −1.9± 1.4 −0.6± 1.0

Scene orientation (◦) Vit-B/32 RN101

-30.0 −4.9± 1.4 −0.0± 1.1
-25.7 −4.0± 1.3 0.4± 1.2
-21.4 −2.9± 1.3 −0.8± 1.2
-17.1 −0.2± 1.4 −1.4± 1.1
-12.9 3.3± 1.5 −3.9± 1.1
-8.6 7.5± 2.1 −6.7± 0.9
-4.3 7.2± 2.4 −7.4± 1.1
0.0 8.2± 2.7 −8.2± 1.2
4.3 5.8± 2.3 −7.6± 1.1
8.6 6.5± 1.9 −7.0± 1.0
12.9 2.0± 1.6 −4.7± 0.9
17.1 −2.9± 1.3 −2.2± 0.9
21.4 −4.8± 1.3 −1.8± 1.1
25.7 −5.7± 1.5 −0.7± 1.1
30.0 −6.6± 1.8 −0.7± 1.1

Table 4: Mean valuations and standard deviation on the test set for the scale and shape attributes.

Scale Vit-B/32 RN101

0.8 10.6± 2.6 7.0± 1.5
0.8 8.3± 2.1 5.2± 1.4
0.9 5.0± 1.9 3.6± 1.3
1.0 1.9± 1.9 1.8± 1.1
1.0 −1.3± 1.8 0.2± 1.1
1.1 −4.3± 2.0 −1.4± 1.2
1.2 −7.1± 2.1 −2.8± 1.2
1.2 −9.3± 2.3 −3.9± 1.3

Shape Vit-B/32 RN101

Cube 8.2± 1.4 6.9± 0.9
Cylinder 2.9± 1.6 2.9± 0.9
Ball −3.6± 1.6 −1.2± 0.7
Ellipsiod −11.8± 3.1 −5.5± 1.7

E.1 Preliminaries

Large Language Models (LLMs) LLMs are large models capable of generating meaningful
text given a context sentence. Due to large-scale training, modern LLMs have shown remarkable
capabilities and achieve expert-human-like performance in many benchmarks simultaneously. The
architecture of many generative pre-trained transformers (GPT)-style LLMs consists of several
transformer layers stacked on top of each other. Since we’ll be intervening on them during inference,
we’ll describe the transformer architecture [125, 29] briefly here. First, the sequence of input tokens
(tokens are sub-word units) are encoded into a vector x0 using a (learned) text embedding matrix and
in many cases also a positional embedding matrix. Then, a series of transformer layers act on this
vector which passes through a residual stream, to obtain vectors x0, x1, . . . , xn. The final vector xn

is then decoded back into token probabilities with a (learned) unembedding matrix. Each transformer
layer consists of a multi-head attention mechanism and a standard multilayer perceptron, which
captures the nonlinearity.

In the lth layer, each single multi-head attention mechanism can be described as

xl+1 = xl +

H∑
h=1

Qh
l x

h
l , xh

l = Atthl (P
h
l xl)

Here, Ph
l and Qh

l are matrices that linearly map the vector to an activation space and back respectively,
and Att denotes the attention mechanism that allows communication across tokens. Here, we have
kept the notation consistent with Li et al. [66] for the sake of clarity.

32



Table 5: Correlation coefficients of the evaluations learned for two different CLIP models evaluated
on the full dataset.

Concept ρ

Floor hue 0.86
Wall hue 0.83
Object hue 0.86
Scale 0.53
Shape 0.95
Orientation -0.70

In our setting, we consider the entire set of activations as the learnt latent vector Z. That is, the
input is x = x0 and the pre-trained model is essentially the function f such that f(x) consists of
the concatenation of the vectors {xl}l≥1, the intermediate activations {xh

l }l≥0 and also the output
of the linear transformations {Ph

l xl}l≥0, {Qh
l x

h
l }l≥0. Our theory hinges on the assumption that

pre-trained LLMs satisfy the linear representation hypothesis, that is, various relevant concepts
can be realized via linear transformations of the latent transformation f(x). Indeed, this has been
empirically observed to hold in many prior works [17, 118, 81, 79, 66, 85, 38, 52] (see also related
works on geometry of representations [51, 52] and references therein). It’s a fascinating question
why such models trained with next token prediction loss also learn linear representations of various
human-interpretable concepts such as sentiment, see Jiang et al. [52] for recent progress on this
problem.

It’s well-known that despite large-scale pretraining and subsequent improvement of pre-trained
models via techniques like Reinforcement Learning with Human Feedback (RLHF) and Supervised
Fine-Tuning (SFT) [84, 6, 119], significant issues still remain [107], e.g., the model can hallucinate
or generate incorrect responses (even though the model knows the correct response which can be
extracted via other means, e.g., Chain-of-Thought prompting [131]). Various methods have been
proposed to fine-tune the models [84, 6, 7, 119, 93] but many of them are expensive and time-
and resource-intensive as they requires huge annotation and computation resources. Therefore,
more efficient techniques are highly desired, one of which is the category of methods known as
activation patching. activation patching (also called activation editing or activation engineering)
[40, 128, 112, 121, 143, 138, 65, 76].

Inference-Time Intervention, an activation patching method for truthfulness Activation patch-
ing is a simple minimally invasive technique to align LLMs to human-preferences. Specifically, given
various concepts such as truthfulness, activation patching makes modifications to the model during
inference time so that the desired concepts can be aligned. This technique can be thought of as an
application of the emerging field of mechanistic interpretability [83], which aims to interpret the
learnt latent vector in terms of human-interpretable concepts, thereby allowing us to reverse-engineer
what large models learn.

Activation patching has many variants [65, 40, 76], but we’ll focus on the simple technique of adding
steering vectors to various intermediate layers during intervention [112, 121, 66, 98]. This means that
during inference, the output activations are modified by adding a constant vector in order to promote
alignment of some concept. The vector will be learnt independently based on separate training data.

In particular, a recent technique called Inference-Time Intervention (ITI) was proposed to do this
for the specific concept of truthfulness. ITI focuses on the activation heads {Atthl (P

h
l xl)}l≥0 and

add to them steering vectors in order to promote truthfulness. To learn the steering vectors, a subset
of the TruthfulQA dataset [68], namely a dataset of questions qi with annotated true (ai,j , 0) and
false answers (ai,j , 1), are prepared as {qi, ai, yi}i=1,2,.... For each sample, the question and answer
are concatenated as a pair and the corresponding activations of the heads xh

l (for the final token) are
computed via forward passes. Then, a linear probe sigmoid(⟨θ, xh

l ⟩) is independently trained on each
activation head to distinguish true from false answers. Finally, the top K heads based on the accuracy
of this classification task are chosen (for a tunable hyperparameter K) and the steering vector θhl for
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the h-th head in layer l is chosen to be the mean difference of the activations between the true and
false inputs. The intuition is that this direction roughly captures the direction towards truthfulness.

Formally, for the hth head of the lth layer, ITI adds the steering vector ασh
l θ

h
l so as to get

xl+1 = xl +

H∑
h=1

Qh
l (x

h
l + ασh

l θ
h
l ), xh

l = Atthl (P
h
l xl)

during inference. Here, θhl is the steering vector, σh
l is the standard deviation of the activations of this

head along the chosen direction and α is a hyperparameter. That is, the activations are shifted along
the truthful directions by a multiple of the standard deviation, and this is repeated autoregressively.
Note that this does not depend on the specific GPT-like model being used. The intuition is that during
inference, the activations are intervened upon to shift towards the truthful direction. The top K heads
are chosen to be minimally intrusive and also a design choice based on observations of the probing
metrics.

Performance of ITI In Li et al. [66], ITI was shown to significantly improve the truthfulness of
various LLMs after having been trained on as few as a few dozen samples, compared to what’s
needed for Reinforcement Learning based techqniues [84, 34]. ITI was evaluated on the TruthfulQA
benchmark [68], which is a hard adversarial benchmark to evaluate truthfulness of language models.
In particular, it contains 817 questions with a multiple-choice and generation tracks, spanning 38
categories such as logical falsehoods, conspiracies and common points of confusion. For the multiple-
choice questions, the accuracy is determined by the conditional probabilities of candidate answers
given the question. Evaluating the generation track questions is harder, and it is done by generating a
model output and then evaluating it via a finetuned GPT-3-13B model [68, 80]. Moreover, the choice
of the intervention strength α is calibrated so that it’s neither too small (to promote truthfulness)
nor too large (to ensure the original capabilities of the LLM are not lost). To check if the original
capabilies are preserved, [66] compute two additional quantities to measure how far the modified
model deviates from the original model. These are the Cross-Entropy (CE) loss, which is standard in
language modeling and the Kullback–Leibler divergence (KL div.) of the next token probabilities
before and after intervention. To compute these quantities, a subset of Open Web Text is used [91].
Finally, it was shown that ITI implemented on the LLaMA [119], Alpaca [116] and Vicuna [20]
models significantly improved their performance on the TruthfulQA benchmark compared to the
baseline models. Moreover, in many cases, it also beat other techniques such as few-shot prompting
and supervised fine-tuning. Please see Li et al. [66] for additional details.

E.2 Interesting observations of ITI

While the elegant ITI technique was designed to align LLMs towards truthfulness in practice, it also
raised fascinating and intriguing questions in mechanistic interpretability. In addition to improving the
technique of ITI itself, our work makes progress towards some of these questions via our framework.

1. The authors of Li et al. [66] state in section 2 that although the technique works well in
practice, it’s not clear what ITI does to the model’s internal representations. In addition, prior
works [17, 118, 81, 79, 85, 52] have observed empirically that the latent representations
learned by LLMs seem to have interpretable linear directions, which ITI exploits. We use
our framework to illustrate in more detail one possible explanation of what ITI does to the
model representations and why it works, in the next section.

2. The authors visualize the geometry of “truth” representations in section 3.2 of their work via
the following experiment: For the most significant head (layer 14, head 18), after finding the
first truthful direction via the linear probing technique, they remove it and attempt to find a
second probe orthogonal to the first. They find surprisingly that the second probe is also
very informative, leading them to predict that the concept of “truth” lies in a subspace, not
a single direction. Restated in our framework, the concept of truthfulness is a non-atomic
concept (as per Definition 2). This served as an inspiration for our proposed technique in
the next section, where we propose to use steering matrices instead of steering vectors for
LLM alignment.

3. As α was increased, the authors observed that truthfulness of the model increased however
helpfulness decreased. This suggests that the “truthfulness” and “helpfulness” concepts

34



are not atomic (as per Definition 2) however they share certain atomic concepts. We leave
to future work the exciting question of mechanistically extracting such common atomic
concepts.

E.3 The choice of the steering vector

In this section, we will use our theoretical framework to get insights about the ITI technique and
use it to improve alignment. First, similar to the multimodal CLIP setting, we will assume that the
non-linearity has already been learned up to a linear transformation (by large-scale training of LLMs).
This aligns with our theoretical insights because the training data for powerful LLMs are diverse, so
they essentially satisfy our core assumptions (see also the related work [37] that proposes that context
is environment in LLM training). Therefore, we simply focus on the downstream tasks, which in this
section is LLM alignment. The difficulty, of course, is that we do not know the concept matrix nor
the valuations.

We will now analyze the truthfulness concept via our framework and give more insight on why the
mean of the differences is a reasonable choice of steering vector for ITI. Based on our theory, we
will then provide a modification to this choice that uses steering matrices instead of steering vectors.
Since this section is based on heuristics and informal assumptions, we will refrain from making any
formal claims or analyses. Indeed, a formal analysis of concepts in natural language is a hard problem
in general and we do not attempt it here. We conclude with ideas for potential extensions that’re
worth exploring in future work.

Denote the function h to be the sequence of head activations h(x) = (xh
l )l,h ∈ Rd. Note that while

we can study general steering vectors for the entire latent space of representations f(x) learned by
LLMs as some works do, ITI focuses only on steering the head activations h(x), so we will apply
our framework to this subset representation space. In addition, we will make the simplification that
we neglect the effects of the steering vector from bottom layers towards the top layers, which we do
because we are dealing with sparse steering vectors and also, each single head shift is minor and does
not in isolation change the behavior of the model as verified by experiments [66][Appendix B.1].

Applying our framework, we model the concept of truth via the concept matrix A ∈ RdC×d and two
valuations b0, b1 ∈ RdC corresponding to False and True respectively. In other words, the set of false
sentences and true sentences lie respectively in

Sfalse = {x|Ah(x) = b0}, Strue = {x|Ah(x) = b1}

Note that they only approximately lie in these spaces because of our notion of concept conditional
distribution. However, if we reasonably assume that the Gaussian concentration region is much
smaller than the separation between these hyperplanes, then the rest of the arguments in this section
should apply.

Now, a steering vector η is a vector such that it moves the activations from the false space to the true
space, while keeping other concepts unaffected. That is, if we pick a false sentence x, i.e., Ah(x) = b0,
then the steering vector η ∈ Rd essentially steers the activations so that A(h(x) + η) = b1. In other
words, it moves the sentence from false to true. Indeed, many vectors η do satisfy this equality,
because we could move h(x) to any point in the hyperplane {AZ = b1}. Therefore the goal is to find
an optimal η that does not (significantly) affect other concepts of interest, i.e., B(h(x) + η) ≈ Bh(x)
(equivalently Bη = 0) for any other concept of interest B. Indeed, a natural choice of the steering
vector will be A+(b1 − b0) where A+ is the pseudoinverse of A. This vector will precisely affect this
concept space and will not affect the concept valuations for any concept orthogonal to A. However,
there are two issues with this approach: We do not know A and therefore we will approximate this
steering vector from training samples and there is no guarantee that other concepts of interest are
orthogonal to A (note that angles between concepts are not even identifiable).

Previous approaches are based on a collection of counterfactual sentence pairs cFi , c
T
i which corre-

spond to a false answer and a true answer for the same question qi. Consider the ith counterfactual
pair cFi , c

T
i . We will assume the reasonable scenario that the only difference among their concepts is

the concept of truthfulness. That is, for any other concept of interest Bi for this sample the valuations
of Bi for these pairs cFi and cTi are identical. A common strategy is to use the mean

η =
1

n

n∑
i=1

h(cTi )− h(cFi ) (81)
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as a steering vector. Note that if

A(h(cTi )− h(cFi )) ≈ b1 − b0, (82)

i.e., the truthfulness valuation is changed as desired for all samples then

Aη = b1 − b0. (83)

Moreover, concepts of interest are preserved in two prototypical settings. First, if concepts of interest
are the same for all samples and the new datapoint, i.e., B = Bi = Bj in which case

Bη =
1

n

n∑
i=1

Bi(h(c
T
i )− h(cFi )) = 0. (84)

Similarly, if concepts of interest for a new point x are Bx and the valuations of Bx(h(c
T
i )−h(cFi )) of

the counterfactual pairs are random, independent, and centered, then we expect them to approximately
cancel and

Bxη ≈ 0. (85)

Note that in this case, this is not true if just a single steering vector h(cTi ) − h(cFi ) is used as a
steering vector.

This explains why the choice of mean of the activation differences across counterfactual pairs is a
reasonable choice of steering vector. This is precisely the technique used in ITI. While they also
experiment with other steering vectors, they found that this works the best for their experiments.

Now, we will continue on our insights to analyze whether we can build better steering vectors η. We
present two crucial insights based on our analysis so far.

1. Looking at our desired equations, any weighted combination of ηi = h(cTi )− h(cFi ) will
satisfy Ah(x) = b0, A(h(x) + η) = b1 exactly.

2. We could potentially choose the steering vector η to be a function of x instead of being a
constant vector, provided η(x) is efficiently computable during inference time.

Exploiting our first insight, we conclude that choosing any weighted combination of the ηi should be
a reasonable choice of steering vector provided we can control its effects on the spaces orthogonal to
A. That is, we can choose

η =
∑
i

wiηi =
∑
i

wi(h(c
T
i )− h(cFi ))

as our steering vector. This gives us the extra freedom to tune the weights w1, w2, . . . based on other
heuristics. Note that this also captures the choice of the top principal component of the steering vector
as experimented in [118].

Our second observation suggests that even the steering vector η could be a function of x, namely
η(x), provided it’s efficiently computable during inference. Therefore, this suggests the usage of

η(x) =
∑
i

wi(x)(h(c
T
i )− h(cFi ))

as our steering vector where the weights wi(x) depend on x.

Based on these two observations, we propose our ITI modification. We choose the steering vector
to be dependent on the context x, with weights chosen to be wi = ⟨λ(x), λ(cFi )⟩ for a sentence
embedding λ (such as Sentence-BERT [97]). That is,

η(x) =
∑
i

⟨λ(x), λ(cFi )⟩(h(cTi )− h(cFi ))

Indeed, this is reasonable as if a context x is close to cFi for a specific training sample i in terms of
their sentence embeddings λ(x) and λ(cFi ), then this particular sample’s steering vector should be
upsampled. In other words, we can think of the training sample contexts as voting on their respective
counterfactual steering vector, with weights determined by the similarity between the representation
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of the test context and the representation of the sample context. A justification would be that B(x)
(the relevant concepts for a datapoint) depend smoothly on x (proximity is measured by similarity of
embeddings) so it makes sense to upweight close points to enforce that x preserves similar concepts.

Finally, we need to argue that we can compute this efficiently during inference. For this, we exploit
the structure of our steering vector representation as follows.

η(x) =
∑
i

⟨λ(x), λ(cFi )⟩(h(cTi )− h(cFi ))

=

(∑
i

(h(cTi )− h(cFi ))λ(c
F
i )

′
)
h(x)

= Mh(x)

for the matrix M =
∑

i(h(c
T
i )− h(cFi ))λ(c

F
i )

′, where v′ denotes the tranposed vector. We remark
that the weights wi(x) as used could potentially be negative but this is not an issue since the
projection of the corresponding counterfactual vector in the direction of B is still random and we
finally normalize η(x), so the magnitude doesn’t matter.

Therefore, this steering can be done efficiently by precomputing the steering matrix M and then
during inference, we simply compute the steering vector η(x) as η(x) = Mh(x).

Table 6: Comparison of steering vectors for LLM alignment

Technique α Acc. CE loss KL div.

Baseline - 0.257 ±0.00005 2.16±0.02 0.0±0.00

Random direction 20 0.258±0.002 2.19 ±0.02 0.02 ±0.002

CCS direction 5 0.262 2.21 0.06
ITI: Probe weight dir. 15 0.270 ±0.004 2.21 ±0.02 0.06 ±0.005

ITI: Mass mean shift 20 0.288 ±0.004 2.41 ±0.08 0.27±0.007

Steering matrices (ours) 15 0.295 ±0.02 2.61 ±0.07 0.41 ±0.04

In Table 6, we show the results of
our experiments with steering matri-
ces. We use the open-source large lan-
guage model LLaMA [119] with 7 bil-
lion parameters (open sourced version
from Hugging Face) and the sentence
transformer SBERT [97] for the sen-
tence embedding. We report the ac-
curacy of the multiple-choice track of
TruthfulQA [66] over 3 random seeds
and also the Cross-Entropy Loss and
KL divergence of the model pre- and post-intervention. All hyperparameters are tuned as per [66]
and the experiments are performed on eight A6000 GPUs. Higher accuracy is better and lower CE
loss, and KL divergence indicate that the original model has not been significantly modified. Here,
the baselines are the unmodified model, random direction intervention, Contrast-Consistent Search
(CCS) direction [17] and two different direction choices using vanilla ITI; and 2-fold cross validation
is used.

We see that the multiple-choice accuracy improved, showcasing the potential of our steering matrices
technique which is novel in the field of LLM alignment to the best of our knowledge. This is meant
to be a proof of concept and not meant to be a comprehensive study of this specific technique.
For exploratory purposes, we outline potential modifications to our technique below, which could
potentially improve the performance, both in terms of accuracy as well as in terms of invasiveness.
These form an exciting direction for a more comprehensive study of our proposed ideas, which we
leave for future work.

Implementation considerations We briefly note down some design choices we made in our
implementation of the above method.

1. Since η(x) is a function of x, the standard deviation of the activation projection on this
direction, i.e., σh

l (x) cannot be precomputed (as Li et al. [66] do), therefore we compute
them dynamically during inference, which takes little overhead with fast tensorization
operations (in particular, this is not the slow step).

2. We opted to go with evaluating the model only on the multiple-choice questions. This is
partly because to evaluate the generated text, the recommended method is to use fine-tuned
GPT-3-13B models but OpenAI have retired many of their older models as of this year,
and therefore, the entire batch of experiments would have to be rerun with their newer
models which could potentially change the baselines, and also because this work is a
proof-of-concept rather than a comprehensive evaluation.
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3. For computing the sentence embeddings, we only use the question prompts, as they contain
all relevant contexts. And we normalize η(x) during inference time.

Additional ideas for improvement We re-iterate that our experimental exploration is not exhaustive
and the preliminary experiments are merely meant to be a proof-of-concept. In this section, building
on our insights, we outline some further ideas to improve the performance of ITI. We leave to future
work to comprehensively explore these techniques in order to extract better performance towards
LLM alignment.

1. Note that we opted to go with the weights ⟨λ(x), λ(cFi )⟩ where λ was chosen to be a
sentence transformer embedding [97]. While this is a reasonable choice, similarity metrics
could be measured in other ways, e.g., with other sentence embedding models.

2. Going further, the weights do not have to be similarity scores and could be chosen via other
heuristics. For instance, they could be chosen to be constants but potentially be optimized
using a hold-out test set.

3. As Li et al. [66] noted, the ITI technique could be applied on top of fine-tuned models in
order to further improve their performance. Therefore, our proposed modification could also
potentially be applied on top of fine-tuned models.

F Contrastive algorithm for end-to-end concept learning

In this section, we present an end-to-end framework based on contrastive learning to learn the
nonlinearity as well as concepts from data. This is inspired by the methods of the CRL work [14].
The model architecture is designed based on our concept conditional distribution parametrization.
The core idea is as follows. For each concept conditional distribution Xe, we train a neural network
to distinguish concept samples x ∼ Xe from base samples x ∼ X0. In Lemma 3, we derive the
log-odds for this problem. Then, to learn the n atomic concepts up to linearity, we build a neural
architecture for this classification problem with the final layer mimicking the log-odds expression
above, which can then be trained end-to-end. Because of the careful parametrization of the last layer,
this will encourage the model to learn the representations as guaranteed by our results.

First, we will derive the computation of the true log-odds.
Lemma 3. For any concept index e, there exist some constants ce such that

ln(pe(Z))− ln(p(Z)) =

n∑
i=1

(
−1

2
Mei⟨ai, Ze⟩2 +Bei⟨ai, Ze⟩

)
+ ce (86)

where M,B are the environment-concept matrix and the environment-valuation matrix defined in (7)
and (8).

Proof. This follows from Eq. (15) in the proof of Theorem 2.

From our main identifiability results, we can assume without loss of generality that the concept vectors
we learn are coordinate vectors. In other words, we consider a neural network hθ with parameters θ
with output neurons hθ

1, . . . , h
θ
n such that the n atomic concepts will now correspond to the concept

vectors e1, . . . , en (which is reasonable as they are only identifiable up to linear transformations).
Therefore, for each environment e, we can train classifiers of the form

ge(X,αe, βe
k, γ

e
k, θ) = αe −

n∑
k=1

βk
e (h

θ
k(X))2 +

n∑
k=1

γk
eh

θ
k(X) (87)

equipped with standard cross-entropy loss, for hyperparameters αe, βe
k, γ

e
k, θ. Indeed, this is reason-

able since if the training reaches the global optima in the ideal case, then the loss function will corre-
spond to the Bayes optimal classifier and therefore, ge(X,αe, βe

k, γ
e
k, θ) = ln(pe(Z)) − ln(p(Z)),

which along with Lemma 3 will suggest that the learnt network h is linearly related to the function
Aef−1, as desired. Lastly, we choose the loss function to be the aggregated CE loss and an extra
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regularization term. That is,

L =
∑
e

−Ej∼Unif({0,e})EX∼Xe

(
ln

e1j=ege(X)

1 + ege(X)

)
︸ ︷︷ ︸

CE loss for environment e

+ η∥β∥1 (88)

for a regularization hyperparameter η.

Sampling from concept conditional distributions A common task in controllable generative
modeling is being able to generate data from a known concept. Note that this is not straightforward
in our setting because the normalization term in Eq. (2) is not efficiently computable. To do this
efficiently, we also outline a simple algorithm (Algorithm 1 in Appendix H) to sample from the
concept conditional distribution for a known concept. Our proposed algorithm is based on rejection
sampling and the algorithm as well as the complexity analysis is deferred to Appendix H.

G Additional details about the synthetic setup

In this section, we detail the synthetic setup in Section 6. The base distribution is sampled from a
Gaussian mixture model with 3 components whose parameters are chosen randomly. The weights are
randomly chosen from Unif(0.3, 1) (and then normalized), the entries of the means are chosen from
Unif(−1, 1) and the covariance is chosen to be a diagonal matrix with entries in Unif(0.01, 0.015)
(note that the diagonal nature doesn’t really matter since a map f will be applied to this distribution).
The mixing function f is chosen to be either (i) linear or (ii) nonlinear with a 1-layer MLP containing
16 hidden neurons and LeakyReLU(0.2) activations.

The number of concepts n is intentionally chosen to be less than the ground truth dimension dz
and the number of concepts is m = n + 1 as per our theory. The concepts are taken to be atomic,
with the concept vectors and valuations chosen randomly, where each entry of the concept vector
is chosen i.i.d from Unif(−0.3, 0.3), and the resampling distribution is chosen to be a Gaussian
with variance 0.005. Finally, we choose 5000 samples per environment, sampled via the rejection
sampling Algorithm 1. For the contrastive algorithm, we choose the architecture to either be linear or
nonlinear with a 2-layer MLP with 32 hidden neurons in each layer, with the final parametric layer
chosen based on the known concept, to have the form described above. We train for 100 epochs,
on a single A6000 GPU, with η = 0.0001 and use Adam optimizer with learning rates 0.5 for the
parametric layer and 0.005 for the non-parametric layer, with a Cosine Annealing schedule [72].

Additional results for higher dimensional settings can be found in Table 7.

Table 7: Linear identifiability of synthetic settings, averaged over 5 seeds. Same setup as in Table 1
with larger values of dx and dz .

Mixing (f ) (n, dz, dx) R2↑ MCC↑
Linear (4, 15, 18) 0.98 ± 0.01 0.98 ± 0.03

Nonlinear (4, 15, 18) 0.89 ± 0.04 0.84 ± 0.08

Linear (4, 20, 22) 0.94 ± 0.04 0.80 ± 0.06

Nonlinear (4, 20, 22) 0.93 ± 0.03 0.84 ± 0.08

Linear (4, 25, 28) 0.85 ± 0.03 0.79 ± 0.07

Nonlinear (4, 25, 28) 0.76 ± 0.11 0.72 ± 0.15

H Controllable generative modeling via rejection sampling

In this section, we will describe how to sample from a concept conditional distribution with a known
concept. Once the concepts are learned in our framework, we can use this technique to generate new
data satisfying various desired concepts, which will aid in controllable generative modeling.

Consider the base distribution on Z ∈ Rdz with density p(Z). Suppose we wish to sample from
a concept C given by AZ = b and resampling distribution q. We additionally assume that q is
efficiently computable and an upper bound L is known for its density, i.e., L ≥ max(q).
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Recall that the desired density is defined as

pC(Z) ∝ p(Z)
∏

i≤dim(C)

q((AZ − b)i)

Note that it’s infeasible to compute the normalization constant for such complex distributions.
However, we bypass this by using rejection sampling. We describe the procedure in Algorithm 1.

Algorithm 1: Rejection sampling for controllable generative modeling
Input:

• Base distribution p

• Resampling distribution q with upper bound L ≥ max(q)

• Concept C with transformation A and valuation C

Output: Returns a single sample from pC(Z)
1 M = Ldim(C)

// Repeat trials until condition is met
2 while True do
3 Z = yield(p)
4 U = yield(Unif(0, 1))
5 R = 1

M

∏
i≤dim(C) q((AZ − b)i)

6 if R ≥ U then
7 return Z

Informally, we first sample Z ∼ p (we overload notation for both density and the distribution) and an
independent variable U ∼ Unif(0, 1), the uniform distribution on (0, 1). We accept the variable Z if

1

M

∏
i≤dim(C)

q((AZ − b)i) ≥ U

for a predetermined upper bound M on the quantity
∏

i≤dim(C) q((AZ − b)i). If the inequality is
false, we simply reject the sample and repeat.

Now we will argue why this algorithm is correct, which is accomplished in Theorem 3. Let

NC =

∫
Z

p(Z)
∏

i≤dim(C)

q((AZ − b)i)

be the normalization constant in the definition of pC(Z). Therefore

pC(Z) =
1

NC
p(Z)

∏
i≤dim(C)

q((AZ − b)i)

Lemma 4. Let M ≥ max(q)dim(C) The acceptance probability of each iteration of the while loop
in Algorithm 1 is Pr[Z accepted] = NC

M

Proof. We have

Pr[Z accepted] = PrU,Z

U ≤ 1

M

∏
i≤dim(C)

q((AZ − b)i)


= PrU,Z

U ≤
∏

i≤dim(C)

q((AZ − b)i)

max(q)

 since M ≥ max(q)dim(C)

=

∫
Z

PrU

U ≤
∏

i≤dim(C)

q((AZ − b)i)

max(q)

 p(Z) dZ as U,Z are independent
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=

∫
Z

 ∏
i≤dim(C)

q((AZ − b)i)

max(q)

 p(Z) dZ since
q((AZ − b)i)

max(q)
≤ 1 always

=

∫
Z

NCpC(Z)

M
dZ

=
NC

M

Before we prove correctness, we will remark on the expected number of trials needed for accepting
each sample.
Corollary 1. The expected number of trials needed to generate a single sample is M

NC

Proof. Note that each iteration of the while loop is independent, therefore the number of trials until
acceptance is distributed as a geometric random variable whose expectation is the inverse of the
parameter.

This suggests that for our algorithm to be efficient in practice, M should be chosen as small as
possible, i.e., estimates of max(q) should be as tight as possible.
Theorem 3. Algorithm 1 yields samples from the concept conditional distribution pC .

Proof. The proof is at heart the proof of correctness of rejection sampling. For arbitrary parameters
t1, . . . , tdz ∈ R, let’s compute the cumulative density of the samples output by Algorithm 1 and show
that it matches the cumulative distribution function of pC(Z) evaluated at t1, . . . , tdz , which will
complete the proof. That is, we wish to calculate

Pr[Z1 ≤ t1, . . . , Zdz ≤ tdz |Z accepted] =
Pr[Z1 ≤ t1, . . . , Zdz ≤ tdz , Z accepted]

Pr[Z accepted]

We already computed the denominator in Lemma 4. Therefore,

Pr[Z1 ≤ t1, . . . , Zdz ≤ tdz |Z accepted]

=
M

NC
Pr[Z1 ≤ t1, . . . , Zdz

≤ tdz
, Z accepted]

=
M

NC
EZ

[
1Z1≤t1 . . .1Zdz≤tdz

· EU [1Z accepted]
]

=
M

NC
EZ

1Z1≤t1 . . .1Zdz≤tdz
· 1

M

∏
i≤dim(C)

q((AZ − b)i)

 from the proof of Lemma 4

=

∫
Z

1Z1≤t1 . . .1Zdz≤tdz
· 1

NC

∏
i≤dim(C)

q((AZ − b)i)p(Z) dZ

=

∫
Z

1Z1≤t1 . . .1Zdz≤tdz
· pC(Z) dZ

which is precisely the cumulative distribution function of pC(Z) evaluated at t1, . . . , tdz
.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See, e.g., Section 2, and 4 for the general framework, Section 5 for the main
result and Section 6 for the experiments (with details in the Appendix).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The assumptions for this work are stated in Assumptions 1- 5 in Sections 4, 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Assumptions are stated in Section 4-5 and the proof can be found in Ap-
pendix A.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details for the synthetic dataset can be found in Appendix F. The remaining
experiments rely on publicly available pretrained models and the experimental details are in
Appendix D and E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The codes, along with instructions on how to run them, is attached in supple-
mentary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Appendices D, E, F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please see Tables 1 and 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendices D, E, F for the individual experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The focus of the paper is theoretical and no immediate societal impact is
expected.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No models or data are released.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See Appendices on experimental details.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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