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NEARLY d-LINEAR CONVERGENCE BOUNDS FOR
DIFFUSION MODELS VIA STOCHASTIC LOCALIZATION

Joe Benton∗, Valentin De Bortoli†, Arnaud Doucet∗, George Deligiannidis∗

ABSTRACT

Denoising diffusions are a powerful method to generate approximate samples
from high-dimensional data distributions. Recent results provide polynomial
bounds on their convergence rate, assuming L2-accurate scores. Until now, the
tightest bounds were either superlinear in the data dimension or required strong
smoothness assumptions. We provide the first convergence bounds which are lin-
ear in the data dimension (up to logarithmic factors) assuming only finite second
moments of the data distribution. We show that diffusion models require at most
Õ(d log2(1/δ)

ε2 ) steps to approximate an arbitrary distribution on Rd corrupted with
Gaussian noise of variance δ to within ε2 in KL divergence. Our proof extends
the Girsanov-based methods of previous works. We introduce a refined treatment
of the error from discretizing the reverse SDE inspired by stochastic localization.

1 INTRODUCTION

Denoising diffusion models are a recent advance in generative modeling which have produced state-
of-the-art results in many domains (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al.,
2020; Song et al., 2021b), including image and text generation (Dhariwal & Nichol, 2021; Austin
et al., 2021; Ramesh et al., 2022; Saharia et al., 2022), text-to-speech synthesis (Popov et al., 2021),
and molecular structure modeling (Xu et al., 2022; Trippe et al., 2023; Watson et al., 2023). De-
noising diffusion models take data samples, corrupt them through the iterated application of noise,
and learn to reverse this noising procedure. For data on Rd, we typically use a stochastic differential
equation (SDE) as the noising process. Then, learning the reverse process is equivalent to learning
the score of the noised distributions (Vincent, 2011; Song & Ermon, 2019; Song et al., 2021b).

Recently, significant progress has been made on improving our theoretical understanding of diffu-
sion models, including several works which have established polynomial convergence bounds for
such models (Chen et al., 2023a;d; Lee et al., 2023; Li et al., 2023). The current state-of-the-art
bound without Lipschitz assumptions on the score of the data distribution is provided by Chen et al.
(2023a), who show that diffusion models require at most Õ

(d2 log2(1/δ)
ε2

)
steps to approximate a

given distribution to within ε2 in KL divergence, assuming only a finite second moment of the target
distribution and early stopping at time δ. However, Chen et al. (2023a;d) suggest that the iteration
complexity ought to scale linearly in the data dimension (see e.g. Chen et al. (2023d, Theorem 6)).

In this work, we close this gap. We derive the first convergence bounds for diffusion models which
are linear in the data dimension (up to logarithmic factors) without smoothness assumptions. We de-
duce that an early stopped diffusion model has iteration complexity Õ(d log2(1/δ)

ε2 ). Our proof builds
on Chen et al. (2023a;d), who use Girsanov’s theorem to measure the distance between the true and
approximate reverse paths. However, we provide a refined treatment of the time discretization error,
using techniques from stochastic calculus to derive a differential inequality for the expected differ-
ence between the drift terms at different times. By bounding the terms of this differential inequality,
we achieve tighter bounds on the difference between the true and approximate path measures.

A key ingredient in our proof will be Lemma 1, which allows us to perform several calculations ex-
plicitly. This result is inspired by stochastic localization (Eldan, 2013; 2020), developed to study the
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KLS conjecture and applied to sampling. Stochastic localization sampling is equivalent to diffusion
models (Montanari, 2023), letting us transfer insights from stochastic localization to our proof.

1.1 DIFFUSION MODELS

A diffusion model starts with a stochastic process (Xt)t∈[0,T ] constructed by initializing X0 in the
data distribution pdata and then evolving according to the Ornstein–Uhlenbeck (OU) SDE

dXt = −Xtdt+
√
2dBt for 0 ≤ t ≤ T, (1)

where (Bt)t∈[0,T ] is a Brownian motion on Rd (Song et al., 2021b). We then learn the dynamics of
the reverse process (Yt)t∈[0,T ] defined by Yt = XT−t. If we let qt(xt) denote the marginals of the
forward process, then under mild regularity conditions on pdata, the reverse process satisfies the SDE

dYt = {Yt + 2∇ log qT−t(Yt)}dt+
√
2dB′

t, Y0 ∼ qT , (2)

where (B′
t)t∈[0,T ] is another Brownian motion (Anderson, 1982; Cattiaux et al., 2022). We can thus

generate samples ξ ∼ pdata by sampling Y0 ∼ qT , running the reverse SDE, and setting ξ = YT .

The OU process is a convenient choice of forward process as its transition densities are analytically
tractable, with qt|0(xt|x0) = N (xt;x0e

−t, σ2
t Id) where σ2

t := 1 − e−2t. In what follows, we will
denote the posterior mean mt(xt) := Eq0|t(·|xt) [X0] and variance Σt(xt) := Covq0|t(·|xt)(X0);
mt is related to the score function via ∇ log qt(xt) = −σ−2

t xt + e−tσ−2
t mt (see Lemma 5 below).

For convenience, we will assume throughout that our data distribution pdata has identity covariance
matrix (as is standard in applications), though our analysis holds similarly without this assumption.
We also focus on an OU noising process rather than a general noising SDE (as in e.g. Chen et al.
(2023e)), since the OU process is most common in practice. However, our results can be straight-
forwardly extended to any linear SDE (including in particular the VE SDE (Song et al., 2021b)).

To simulate (2), we must make three approximations. First, as we do not have access to ∇ log qt(xt)
directly, we learn an approximation sθ(xt, t) to ∇ log qt(xt) for t ∈ [0, T ] by minimising

L(sθ) =
∫ T

0

Eqt

[
∥sθ(Xt, t)−∇ log qt(Xt)∥2

]
dt. (3)

Although L(sθ) cannot be estimated directly, there are techniques such as denoising or implicit
score matching which provide equivalent tractable objectives (Hyvärinen, 2005; Vincent, 2011). In
practice, we empirically estimate these objectives using samples drawn from the forward process,
which can be analytically simulated. We typically parameterize sθ(xt, t) via a neural network for a
vector of parameters θ ∈ RD and minimise the objective function using stochastic gradient descent.

Second, since we do not have access to the initial distribution qT of the reverse process, we instead
initialize the reverse process in the standard Gaussian, which we denote πd. This is a reasonable
approximation since the OU process converges exponentially quickly to πd (Bakry et al., 2014).

Third, since (2) is a continuous-time process we must discretize time in order to simulate it. We pick
time steps 0 = t0 < t1 < · · · < tN ≤ T , sample Ŷ0 ∼ πd and define (Ŷt)t∈[0,T ] via the SDE

dŶt = {Ŷt + 2sθ(Ŷtk , T − tk)}dt+ dB̂t (4)

for each interval [tk, tk+1] and k = 0, . . . , N − 1, for a Brownian motion (B̂t)t∈[0,T ]. We use the
notation γk := tk+1 − tk for the step size and denote the marginals of the approximate reverse
process by pt(x). The sampling scheme defined via (4) is known as the exponential integrator
(Zhang & Chen, 2023; De Bortoli, 2022; Chen et al., 2023a). An alternative is the Euler–Maruyama
(EM) scheme, which replaces the time-dependent drift term in (4) with its value at the start of the
associated interval (Song et al., 2021b; Chen et al., 2023a). Both methods give similar asymptotic
convergence rates, as indicated by Chen et al. (2023a), so we focus on the exponential integrator.

Finally, instead of running (4) all the way back to the start time, we perform early stopping and set
tN = T − δ for some small δ. We do this because for non-smooth data distributions ∇ log qt can
blow up as t → 0. This means that our model will approximate qδ rather than q0 = pdata, which is
acceptable since for small δ the distance (e.g. in Wasserstein-p metric) between qδ and pdata is small.
Early stopping is frequently used in practical applications of diffusion models (Song et al., 2021b).
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1.2 STOCHASTIC LOCALIZATION

Stochastic localization sampling schemes were developed by El Alaoui et al. (2022); Montanari
(2023). To sample from a distribution pdata, we construct a measure-valued stochastic process
(µs)s≥0 such that µs “localizes” as s → ∞, meaning that there a.s. exists some ξ such that µs → δξ
as s → ∞, and ξ ∼ pdata. We construct this process by sampling ξ ∼ pdata and defining a sequence
(Us)s≥0 of noisy observations of ξ via

Us = sξ +Ws, (5)

where (Ws)s≥0 is a Brownian motion on Rd (Montanari, 2023). We then define µs = Law(ξ | Us),
so that µs is a random measure depending on Us. Since Us/s → ξ almost surely as s → ∞, we see
(µs)s≥0 does indeed localize and lims→∞ Us/s is distributed according to pdata.

However, constructing (Us)s≥0 via (5) requires sampling ξ ∼ pdata, which we cannot do. Fortu-
nately, we avoid this using the observation that if pdata has finite second moments, then (Us)s≥0 is
equivalent in law to the unique solution to the SDE

dUs = as(Us)ds+ dW ′
s, (6)

where (W ′
s)s≥0 is a Brownian motion and as(Us) = Eµs [ξ] = E [ξ | Us] (Liptser & Shiryaev,

1977; Montanari, 2023). This allows us to construct the stochastic localization process without direct
access to pdata, so long as we have access to the function as(Us). We also define As(Us) = Cov(µs).

Diffusion models and stochastic localization are equivalent under a time change (Montanari, 2023).
If we define (Xt)t≥0, (Us)s≥0 according to (1), (5) respectively and let t(s) := 1

2 log(1+s−1), then
(Us)s≥0 and (set(s)Xt(s))s≥0 have the same law. In addition, as(Us) and mt(Xt) have the same
law and As(Us) and Σt(Xt) have the same law when t = t(s). We will sometimes suppress the
dependence of as,As and mt,Σt on Us and Xt respectively when the meaning is clear. For more
details and an explicit derivation of the equivalence, see Appendix A.

We now recall two lemmas from the stochastic localization literature. The first can be found in Eldan
(2013); Alaoui & Montanari (2022). The second follows from the first plus the argument in Eldan
(2020). We provide proofs for both results in Appendix B for the reader’s convenience.

Proposition 1 (Alaoui & Montanari (2022), Theorem 2). If we define Ls(x) = dµs

dpdata
(x), then

dLs(x) = Ls(x)(x− as) · dW ′
s for all s ≥ 0.

Proposition 2 (Eldan (2020), Equation 11). For all s ≥ 0, d
dsE [As] = −E

[
A2

s

]
.

Translating Proposition 2 into the language of diffusion models, using that As and Σt are equal in
law when t = 1

2 log(1 + s−1), we get the following directly from Proposition 2 and the chain rule.

Lemma 1. For all t > 0, σ3
t

2σ̇t

d
dtE [Σt] = E

[
Σ2

t

]
.

Lemma 1 is the key insight that allows us to control the discretization error more precisely than
previous works. In Lemma 5, we will see that Σt is related to the Jacobian of the score. Control of
Σt via Lemma 1 will thus allow us to control time-discretization terms Es,t (defined in Section 3).

1.3 RELATED WORK

Convergence of diffusion models Initial results on the convergence of diffusion models required
restrictive assumptions on the data distribution such as a log-Sobolev inequality (Lee et al., 2022;
Yang & Wibisono, 2022), or produced bounds that were non-quantitative (Pidstrigach, 2022; Liu
et al., 2022) or exponential in the problem parameters (De Bortoli et al., 2021; De Bortoli, 2022;
Block et al., 2022). Recently however, several works have proven polynomial convergence rates for
diffusion models (Chen et al., 2023a;d; Lee et al., 2023; Li et al., 2023).

First, Chen et al. (2023d) gave polynomial TV error bounds, assuming a Lipschitz score for all
t ≥ 0. They used Girsanov’s theorem to measure the KL divergence between the true and ap-
proximate reverse processes (similar to Song et al. (2021a)), with an approximation argument since
the standard assumptions for Girsanov’s theorem do not hold in their setting. Second, Chen et al.
(2023a) developed this method, introducing a tighter bound on the drift terms and an exponentially

3



Published as a conference paper at ICLR 2024

Regularity condition Metric Complexity Result
∀t, ∇ log qt L-Lipschitz TV(q0, pT )

2 Õ
(
dL2

ε2

)
(Chen et al., 2023d, Thm 2)

∀t, ∇ log qt L-Lipschitz KL(q0||pT ) Õ
(
dL2

ε2

)
(Chen et al., 2023a, Thm 1)

None KL(qδ||ptN ) Õ
(d2 log2(1/δ)

ε2

)
(Chen et al., 2023a, Thm 2)

None KL(qδ||ptN ) Õ
(d log2(1/δ)

ε2

)
This work: Corollary 1

Table 1: Summary of previous bounds and our results. Bounds expressed in terms of the number
of steps required to guarantee an error of at most ε2 in the stated metric, assuming perfect score
estimation. We assume pdata has finite second moments and is normalized so that Cov(pdata) = Id.

decaying sequence of time steps. They provide two bounds on the KL error. The first (Theorem 1) is
linear in the data dimension d but requires Lipschitz scores for t ≥ 0 and depends quadratically on
the Lipschitz constant. This is unideal since the Lipschitz assumption excludes many distributions
of interest, such as those supported on a submanifold. In addition, the Lipschitz constant can hide
additional dimension dependence in some cases (such as when the data are approximately supported
on a submanifold). The second (Theorem 2) uses early stopping and applies to any data distribution
with finite second moments but is quadratic in d. The latter gives the current best bound on the
iteration complexity of diffusion models without smoothness assumptions of Õ

(d2 log2(1/δ)
ε2

)
1.

In parallel, Lee et al. (2023) derived weaker polynomial convergence bounds using a χ2-based anal-
ysis and a method to convert L∞-accurate score estimates into L2-accurate estimates. Most recently,
Li et al. (2023) demonstrated bounds for several deterministic and non-deterministic discrete-time
sampling methods using elementary techniques, assuming control of the approximate score and its
derivative. We summarise the results of Chen et al. (2023a;d) and compare them to ours in Table 1.

In addition, several works have studied the convergence properties of deterministic or approximately
deterministic sampling schemes based on diffusion models (Chen et al., 2023c;e; Albergo & Vanden-
Eijnden, 2023; Albergo et al., 2023; Benton et al., 2023; Li et al., 2023). Other work has focused on
the problem of score estimation. In particular, Oko et al. (2023) bound the error when approximating
the score with a neural network and show that diffusion models are approximately minimax optimal
for a certain class of target distributions, while Chen et al. (2023b) study the sample complexity and
convergence properties of diffusion models when the data lies on a linear submanifold.

Stochastic localization Stochastic localization was developed by Ronen Eldan to study isoperi-
metric inequalities (Eldan, 2013) such as the Kannan–Lovász–Simonovits (KLS) conjecture (Kan-
nan et al., 1995) and the thin shell conjecture (Anttila et al., 2003; Bobkov & Koldobsky, 2003). It
was based on the original localization methodologies of Lovász, Simonovits and Kannan (Lovász &
Simonovits, 1993; Kannan et al., 1995) used to study high-dimensional and isoperimetric inequal-
ities. Subsequently, stochastic localization has been used to make significant progress towards the
KLS conjecture (Lee & Vempala, 2017; Chen, 2021), as well as to prove measure decomposition
results (Eldan, 2020; Alaoui & Montanari, 2022) and for studying mixing times of Markov Chains
(Chen & Eldan, 2022). Recently, several works developed algorithmic sampling techniques based
on stochastic localization (El Alaoui et al., 2022; Montanari & Wu, 2023), and Montanari (2023) has
shown that these sampling approaches are equivalent in the Gaussian setting to diffusion models.

Concurrent work: After the first version of our work was made publicly available, an independent
work appeared by Conforti et al. (2023) who derive similar bounds. In contrast to our work, they take
a stochastic control perspective and work under a finite Fisher information smoothness condition.
This condition can be removed with early stopping, giving bounds that are linear in data dimension
up to logarithmic factors, similar to our own.

2 MAIN RESULTS

The core assumption required for our main result is the following control of the score approximation.

1Note that their bound is stated incorrectly in their abstract; the correct bound can be found in their Table 1.
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Figure 1: Illustration of a typical choice of step sizes satisfying γk ≤ κmin{1, T − tk+1}.

Assumption 1. The score approximation function sθ(x, t) satisfies
N−1∑
k=0

γkEqtk

[
∥∇ log qT−tk(Xtk)− sθ(Xtk , T − tk)∥2

]
≤ ε2score. (7)

We can view (7) as a time-discretized version of L(sθ), so Assumption 1 suggests we learn a score
approximation with L2 error at most εscore, adjusting for the discretization of the reverse process.
Though this assumption is standard in the literature (Chen et al., 2023a;b), there may be statistical
barriers to efficient estimation of the score in high dimensions (Biroli & Mézard, 2023; Ghio et al.,
2023) and Assumption 1 may not capture the full practical difficulty of learning the score.
Assumption 2. The data distribution pdata has finite second moments, and Cov(pdata) = Id.

The first part of Assumption 2 is required for the convergence of the forward SDE. We include the
second part for convenience when stating our results. Our analysis is not dependent on it, and we
outline how to adapt our proofs for a general covariance matrix in Appendix C.
Theorem 1. Suppose that Assumptions 1 and 2 hold, that T ≥ 1, and that there is some κ > 0 such
that for each k = 0, . . . , N − 1 we have γk ≤ κmin{1, T − tk+1}. Then,

KL(qδ||ptN ) ≲ ε2score + κ2dN + κdT + de−2T ,

where f1 ≲ f2 denotes that there is a universal constant C such that f1 ≤ Cf2.

This is our main bound, and it consists of three parts. The first term ε2score measures the error from
using a learned rather than exact score. The second terms κ2dN + κdT are due to the discretization
of the reverse SDE. The final term de−2T controls the convergence of the forward SDE.

We interpret κ as controlling the maximum step size; γk is bounded by κ for t ∈ [0, T − 1], and for
t ∈ [T − 1, T ] the condition γk ≤ κ(T − tk+1) forces γk to decay exponentially at rate (1 + κ)−1.
We visualise this in Figure 1. As in Corollary 1 below, for any N there is a choice of time steps such
that κ = Õ(1/N), up to factors which are linear in T and logarithmic in 1/δ. Since T will scale
logarithmically in d and εscore, we think of the second terms in Theorem 1 as scaling like Õ(d/N).

We expect the first term ε2score to scale linearly in d in many cases, e.g. if the target distribution were
the product of i.i.d. components. The convergence of the forward process is also linear in d. As
such, Theorem 1 improves upon the previous state-of-the-art bounds (Chen et al., 2023a;d), which
either require strong smoothness assumptions on pdata or have at least quadratic dependence on d.

We next show that given N we can choose a suitable sequence of time steps. This results in a bound
on the iteration complexity of the diffusion model.
Corollary 1. For T ≥ 1, δ < 1 and N ≥ log(1/δ), there exist 0 = t0 < t1 < · · · < tN = T − δ

such that for some κ = Θ
(T+log(1/δ)

N

)
we have γk ≤ κmin{1, T−tk+1} for each k = 0, . . . , N−1.

Then, if we take T = 1
2 log

(
d

ε2score

)
and N = Θ

(d(T+log(1/δ))2

ε2score

)
, we have KL(qδ||ptN ) = O(ε2score).

Hence, the diffusion model requires at most Õ
(d log2(1/δ)

ε2

)
steps to approximate qδ to within ε2 in

KL divergence, assuming a sufficiently accurate score estimator.

Corollary 1 shows that by making a suitable choice of T , N and t0, . . . , tN we achieve a bound
on the iteration complexity which is linear in the data dimension (up to logarithmic factors) under
minimal smoothness assumptions, resolving the question raised in Chen et al. (2023a). The proof of
Corollary 1 is deferred to Appendix D, where we show that taking half the time steps to be linearly
spaced between 0 and T − 1 and half to be exponentially spaced between T − 1 and T − δ, as illus-
trated in Figure 1 is sufficient. This choice is similar to that made in Chen et al. (2023a), reflecting
their observation that exponentially decaying time steps appear optimal, at least theoretically.
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The tightest previous bounds on the iteration complexity were obtained by Chen et al. (2023a;d).
Assuming only finite second moments of pdata, Chen et al. (2023a) showed that diffusion models with
early stopping have an iteration complexity of Õ

(d2 log2(1/δ)
ε2

)
. Alternatively, Chen et al. (2023a;d)

showed that if the score is L-Lipschitz for all t ≥ 0 then the iteration complexity is Õ
(
dL2

ε2

)
. The

Lipschitz assumption can be removed using early stopping at the cost of an additional factor of 1/δ4,
arising from the fact that for an arbitrary data distribution the Lipschitz constant of ∇ log qt explodes
at rate 1/t2 as t → 0 (Chen et al., 2023d, Lemma 20). As the distance between q0 and qδ scales with
d1/2 (e.g. in Wasserstein-p metric), for a fixed Wasserstein-plus-KL (or Wasserstein-plus-TV) error
we should scale δ proportionally to d−1/2. As a result, for a fixed approximation error for pdata, the
bounds of Chen et al. (2023d) and Chen et al. (2023a, Theorem 2) also scale superlinearly with d.

3 PROOF OF THEOREM 1

We now provide the proof of Theorem 1, which comes in three steps. We view Step 1 as our main
novel contribution, while Steps 2 and 3 closely follow Chen et al. (2023a;d).

Step 1: We bound the error from discretizing the reverse SDE (see Lemma 2 below). Previous
works bound Es,t := E

[
∥∇ log qT−t(Yt)−∇ log qT−s(Ys)∥2

]
using a Lipschitz assumption. We

use a new Itô calculus argument to get a differential inequality for Es,t (Lemmas 3 and 4), relate
the coefficients of this inequality to mt and Σt using known results (Lemma 5), and bound the
differential inequality coefficients using our key Lemma 1 (resulting in Lemmas 6 and 7).

Step 2: We bound the KL distance between the path measures of the true and approximate reverse
process (Lemma 8). We use an analogous Girsanov-based method to Chen et al. (2023a;d).

Step 3: We use the data processing inequality to bound KL(qδ||ptN ) in terms of the distance between
reverse path measures and the distance between qT and πd. We bound the former using Step 2 and
the latter using the convergence of the OU process (Proposition 4), as in Chen et al. (2023a;d).

Rather than work with two processes (Yt)t∈[0,T ] and (Ŷt)t∈[0,T ] which are solutions to (2) and (4)
under the same probability measure, it is more convenient to follow Chen et al. (2023a;d) and fix a
single process (Yt)t∈[0,T ] and then define Q and Pπd to be two different probability measures such
that (Yt)t∈[0,T ] is a solution to (2) under Q and to (4) under Pπd . In addition, we define a probability
measure P qT under which (Yt)t∈[0,T ] is a solution to (4) but with the initial condition Y0 ∼ qT .

3.1 BOUNDING THE DISCRETIZATION ERROR

Lemma 2 (Bound on discretization error). If (Yt)t∈[0,T ] is the solution to the SDE (2), then we have

N−1∑
k=0

∫ tk+1

tk

EQ

[
∥∇ log qT−t(Yt)−∇ log qT−tk(Ytk)∥2

]
dt ≲ κ2dN + κdT.

Proof. We start by controlling Es,t for 0 ≤ s ≤ t < T , where (Yt)t≥0 follows the law Q of the
exact reverse process (2). Since ∇ log qT−t(x) is smooth, we may apply Itô’s lemma to get the
following result, proved in Appendix E.

Lemma 3. If (Yt)t∈[0,T ] is the solution to the SDE (2), then for all t ∈ [0, T ) we have

d(∇ log qT−t(Yt)) = −∇ log qT−t(Yt)dt+
√
2∇2 log qT−t(Yt) · dB′

t.

From Lemma 3 and the product rule, we have d(et∇ log qT−t(Yt)) =
√
2et∇2 log qT−t(Yt) · dB′

t.
Since, by (13) below,

∫ t

s
e2rEQ

[
∥∇2 log qT−r(Yr)∥2F

]
dr < ∞ for 0 ≤ s ≤ t < T , where we

denote by ∥A∥F = Tr(ATA)1/2 the Frobenius norm of a matrix A, the RHS is a square-integrable
martingale. So, we may apply Itô’s isometry (Le Gall, 2016, Equation 5.8) and differentiate to get

d

dt
EQ

[
∥et∇ log qT−t(Yt)− es∇ log qT−s(Ys)∥2

]
= 2e2tEQ

[
∥∇2 log qT−t(Yt)∥2F

]
. (8)
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In addition, for 0 ≤ s ≤ t < T where s is considered fixed and t may vary, from Lemma 3 we have

d(∇ log qT−s(Ys) · ∇ log qT−t(Yt)) = −∇ log qT−s(Ys) · ∇ log qT−t(Yt)dt

+
√
2∇ log qT−s(Ys) · ∇2 log qT−t(Yt) · dB′

t.

Since
∫ t

s
EQ

[
∥∇2 log qT−r(Yr)∥2F

]
dr < ∞ for 0 ≤ s ≤ t < T , the final term is a square-

integrable martingale. Integrating and taking expectations, we get
d

dt
EQ [∇ log qT−s(Ys) · ∇ log qT−t(Yt)] = −EQ [∇ log qT−s(Ys) · ∇ log qT−t(Yt)] , (9)

where again we may interchange integration and expectation using Fubini. Combining (8) and (9),
we deduce the following differential inequality for Es,t. (See Appendix E for full derivation.)

Lemma 4. For all 0 ≤ s ≤ t < T , we have

dEs,t

dt
= 2EQ

[
∥∇2 log qT−t(Yt)∥2F

]
− 2EQ

[
∥∇ log qT−t(Yt)−∇ log qT−s(Ys)∥2

]
+ 2EQ [{∇ log qT−s(Ys)−∇ log qT−t(Yt)} · ∇ log qT−s(Ys)] . (10)

To further bound the RHS of (10), note that by Young’s inequality

EQ [{∇ log qT−s(Ys)−∇ log qT−t(Yt)} · ∇ log qT−s(Ys)]

≤ 1

2

{
EQ

[
∥∇ log qT−t(Yt)−∇ log qT−s(Ys)∥2

]
+ EQ

[
∥∇ log qT−s(Ys)∥2

] }
.

Therefore,
dEs,t

dt
≤ EQ

[
∥∇ log qT−s(Ys)∥2

]
+ 2EQ

[
∥∇2 log qT−t(Yt)∥2F

]
. (11)

We must thus bound EQ

[
∥∇ log qT−s(Ys)∥2

]
and EQ

[
∥∇2 log qT−t(Yt)∥2F

]
. We make use of the

following lemma, which is found in previous work on diffusion models (see e.g. De Bortoli (2022);
Lee et al. (2023); Benton et al. (2023)) and which we prove for completeness in Appendix E.

Lemma 5. For all t > 0, we have ∇ log qt(xt) = −σ−2
t xt + e−tσ−2

t mt and ∇2 log qt(xt) =
−σ−2

t I + e−2tσ−4
t Σt.

We may use Lemma 5 to rewrite ∥∇ log qT−s(Ys)∥2 and ∥∇2 log qT−t(Yt)∥2F in terms of Yt, mt and
Σt. Expanding out the resulting expressions, the first can be bounded using elementary properties
of the OU process, while the second can be bounded using properties of the OU process plus our
key Lemma 1. We obtain the following inequalities (see Appendix E for derivations).

Lemma 6. If (Yt)t∈[0,T ] is the solution to the reverse SDE (2), then for all t, s ∈ [0, T ) we have

EQ

[
∥∇ log qT−s(Ys)∥2

]
≤ dσ−2

T−s, (12)

and

EQ

[
∥∇2 log qT−t(Yt)∥2F

]
≤ dσ−4

T−t −
1

2

d

dr

(
σ−4
T−rE [Tr(ΣT−r)]

)
|r=t. (13)

Putting the bounds in (12) and (13) together, we get

EQ

[
∥∇ log qT−s(Ys)∥2

]
+ 2EQ

[
∥∇2 log qT−t(Yt)∥2F

]
≤ dσ−2

T−s + 2dσ−4
T−t −

d

dr

(
σ−4
T−rE [Tr(ΣT−r)]

)
|r=t.

Let us denote the two parts of this error term by

E
(1)
s,t := dσ−2

T−s + 2dσ−4
T−t, E

(2)
s,t := − d

dr

(
σ−4
T−rE [Tr(ΣT−r)]

)
|r=t.

From (11), it follows that

Etk,t ≤
∫ t

tk

EQ

[
∥∇ log qT−tk(Ytk)∥2

]
+ 2EQ

[
∥∇2 log qT−s(Ys)∥2F

]
ds ≤

∫ t

tk

E
(1)
tk,s

+ E
(2)
tk,s

ds.

(14)
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We now bound the contributions to Etk,t from E
(1)
tk,s

and E
(2)
tk,s

. It will be convenient to divide our
time period into intervals [0, T−1] and [T−1, T−δ] and treat these separately. We therefore assume
there is an index M with tM = T − 1. This assumption is purely for presentation clarity and our
argument works similarly without it. Then, the following lemma bounds the various contributions
to Etk,t. The proof of Lemma 7 is elementary but technical, so we defer it to Appendix E.

Lemma 7. The error terms E(1)
tk,s

satisfy

M−1∑
k=0

∫ tk+1

tk

(∫ t

tk

E
(1)
tk,s

ds

)
dt ≲ κdT,

N−1∑
k=M

∫ tk+1

tk

(∫ t

tk

E
(1)
tk,s

ds

)
dt ≲ κ2dN, (15)

and the error terms E(2)
tk,s

satisfy

N−1∑
k=0

∫ tk+1

tk

(∫ t

tk

E
(2)
tk,s

ds

)
dt ≲ κd+ κ2dN. (16)

Finally, by combining (14) with (15) and (16) we complete the proof of Lemma 2.

3.2 BOUNDING THE KL DISTANCE BETWEEN PATH MEASURES

Lemma 8 (Bound on distance between path measures). If Q and P qT are the true and approximate
path measures respectively then KL(Q||P qT ) ≲ ε2score + κ2dN + κdT .

Proof. We use the following result from Chen et al. (2023d) (proof recalled in Appendix F).

Proposition 3 (Section 5.2 of Chen et al. (2023d)). Let Q and P qT be the path measures of the
solutions to (2) and (4) respectively, both started in Y0 ∼ qT and run from t = 0 to t = tN . Assume
that

N−1∑
k=0

∫ tk+1

tk

EQ

[
∥∇ log qT−t(Yt)− sθ(Ytk , T − tk)∥2

]
dt < ∞.

Then, we have

KL(Q||P qT ) ≤
N−1∑
k=0

∫ tk+1

tk

EQ

[
∥∇ log qT−t(Yt)− sθ(Ytk , T − tk)∥2

]
dt.

To apply Proposition 3, we note that by Lemma 2 and Assumption 1 we have

N−1∑
k=0

∫ tk+1

tk

EQ

[
∥∇ log qT−t(Yt)− sθ(Ytk , T − tk)∥2

]
dt

≲
N−1∑
k=0

γkEQ

[
∥∇ log qT−tk(Ytk)− sθ(Ytk , T − tk)∥2

]
+

N−1∑
k=0

∫ tk+1

tk

EQ

[
∥∇ log qT−t(Yt)−∇ log qT−tk(Ytk)∥2

]
dt

≲ ε2score + κ2dN + κdT < ∞.

Therefore, the conditions of Proposition 3 hold and Lemma 8 follows by applying Proposition 3.

3.3 COMPLETING THE PROOF

Finally, we show how to complete the proof of Theorem 1 from Lemma 8. As a corollary of Lemma
8, we see that Q is absolutely continuous with respect to P qT . Since P qT and Pπd differ only by
a change of starting distribution, we can write dP qT

dPπd
(y) = dqT

dπd
(y0) for a path y = (yt)t∈[0,tN ],

8
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and deduce that P qT and Pπd are mutually absolutely continuous. It follows that Q is absolutely
continuous with respect to Pπd and dQ

dPπd
(y) = dQ

dP qT
(y)dP

qT

dPπd
(y) = dQ

dP qT
(y)dqTdπd

(y0). Therefore,

KL(Q||Pπd) = EQ

[
log

(
dQ

dP qT
(Y )

dqT
dπd

(Y0)

)]
= KL(Q||P qT ) + KL(qT ||πd) (17)

The first term is bounded by Lemma 8. The second is controlled by the convergence of the forward
process in KL divergence and can be bounded using the following proposition (which is very similar
to Lemma 9 in Chen et al. (2023a)). We defer the proof of Proposition 4 to Appendix G.

Proposition 4. Under Assumption 2, we have KL(qT ||πd) ≲ de−2T for T ≥ 1.

Since qδ and ptN are the pushfowards of the path measures Q and Pπd under f : (ωt)t∈[0,tN ] 7→ ωtN ,
the data processing inequality implies that KL(qδ||ptN ) ≤ KL(Q||Pπd). Finally, combining this
with (17), Lemma 8, and Proposition 4 completes the proof of Theorem 1.

4 DISCUSSION

Inspecting our bound in Theorem 1, the error from approximating qT by πd decays exponentially in
T and so is typically negligible. If the L2 error of our score approximation is ε2score, then we cannot
hope to improve on the term of order ε2score for the KL error due to using an approximate score. It
remains to consider how tight the term corresponding to the discretization of the reverse process is.

Our proof shows that under our assumptions, with perfect score approximation and initializing the
reverse SDE in qT , the KL error induced by discretizing time is of order κ2dN+κdT . As explained
in Section 2, we can think of this as being Õ(d/N), assuming a suitable choice of time steps and κ,
or equivalently Õ(dη) where η is the average step size. We note that the linear dependence on d (up
to logarithmic factors) here is optimal (for justification, see Appendix H).

However, it is unclear whether the linear dependence on η is optimal here. On the one hand, the
KL divergence between the true and approximate reverse path measures is Θ(dη) in the worst case
(consider the case where pdata is a point mass, or see Theorem 7 in Chen et al. (2023d) in the
critically damped Langevin setting). Thus, our Girsanov-based method cannot improve upon the
rate of Õ(dη) without significant modification. In addition, the best known convergence rates in
KL divergence for Langevin Monte Carlo (LMC) under various functional inequalities are Õ(dη)
(Cheng & Bartlett, 2018; Vempala & Wibisono, 2019; Chewi et al., 2022; Yang & Wibisono, 2022).

On the other hand, the increasing noise schedule of diffusion models may allow for improved con-
vergence rates compared to LMC. As evidence, Mou et al. (2022) show that the EM discretization
of an SDE has error O(η2) in reverse KL divergence, under smoothness assumptions which should
be satisfied under early stopping, making only mild additional assumptions on the data distribution
such as bounded support. We could apply their results to get O(η2) convergence bounds for the
diffusion model, but the implicit constant would depend on d and on the smoothness parameters,
which in turn depend polynomially on d and 1/δ. This leads to bounds which are quadratic in η but
superlinear in d. We expect such bounds to be tighter than our own when η−1 ≫ poly(d).

We may also get better convergence bounds by working in weaker metrics. Under some smoothness
assumptions on pdata, our KL error bounds imply a bound of Õ(

√
η) in Wasserstein-2 distance via a

Talagrand inequality (Otto & Villani, 2000). However, there is evidence that this rate is suboptimal.
Under smoothness assumptions on the drift, the EM discretization has error Õ(η) in Wasserstein-ρ
metric for ρ ≥ 1 (Alfonsi et al., 2015). Under smoothness and convexity assumptions on the data
distribution, LMC converges at rate O(η) (Durmus & Moulines, 2019; Li et al., 2022). However,
these results require additional smoothness assumptions and have superlinear dependence on d.

Ultimately, there appears to be a trade off between the dependence on the data dimension and the
step size. Our key to obtaining bounds which are tight in d was to use bounds on the drift coefficient
of the reverse SDE which hold in expectation. All methods of which we are aware that achieve a
better dependence on η require stronger (e.g. L∞) control on the drift. These necessitate worse
dimension dependence and additional smoothness assumptions. We leave bridging the gap between
these two strands of proofs to future work.
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justed Langevin Algorithm Using Estimated Score. In NeurIPS 2022 Workshop on Score-Based
Methods, 2022.

Qinsheng Zhang and Yongxin Chen. Fast Sampling of Diffusion Models with Exponential Integra-
tor. In International Conference on Learning Representations, 2023.

13



Published as a conference paper at ICLR 2024

A EQUIVALENCE OF DIFFUSION MODELS AND STOCHASTIC LOCALIZATION

Suppose that (Xt)t≥0 follows the OU SDE defined in (1). Using the integration by parts formula
for continuous semimartingales (Le Gall, 2016),

d(etXt) = etXtdt+ et{−Xtdt+
√
2dBt} =

√
2etdBt.

By the Dubins–Schwarz theorem (Le Gall, 2016, Theorem 5.13), there is a process (Ŵs)s≥0 such
that

Ŵe2s−1 =

∫ s

0

√
2erdBr

and (Ŵs)s≥0 is a standard Brownian motion with respect to the filtration (Fτ(s))s≥0 where τ(s) =
1
2 log(1 + s). Then, for all s ∈ (0,∞) we can write

eτ(s)Xτ(s) = X0 + Ŵs.

If we set U0 = 0 and
Us := seτ(1/s)Xτ(1/s) = sX0 + sŴ1/s

for s ∈ (0,∞), then we observe that (Us)s≥0 satisfies the definition of the stochastic localization
process in (5), since the law of (sŴ1/s)s≥0 is the same as the law of (Ws)s≥0. Thus the forward
diffusion process and the stochastic localization process are equivalent under the chance of time
variables t(s) = 1

2 log(1 + s−1).

In addition, we see that conditioning on Us is equivalent to conditioning on Xt(s) and thus µs and
q0|t( · |Xt) define the same distributions when t = t(s). It follows that as(Us) and mt(Xt) have the
same law and As(Us) and Σt(Xt) have the same law when t = t(s).

B PROOFS OF STOCHASTIC LOCALIZATION RESULTS

Propositions 1 and 2 are well-known and we reproduce the proofs here for convenience. Proposition
1 can be found for example in Eldan (2013); Alaoui & Montanari (2022); El Alaoui et al. (2022)
and our proof of Proposition 2 is based on the argument on pages 8–9 of Eldan (2020).

Proof of Proposition 1. From (5), we can deduce that

µs(dx) =
1

Zs
exp

{
x · Us −

s

2
∥x∥2

}
pdata(dx),

where Zs =
∫
Rd exp

{
x · Us − s

2∥x∥
2
}
pdata(dx) is the normalizing constant. Therefore,

d logLs(x) = x · dUs −
1

2
∥x∥2ds− d logZs. (18)

Writing hs(x) = x · Us − s
2∥x∥

2 and using the definition of Us in (5) plus d[W,W ]s = ds, we
have dhs(x) = x · dUs − 1

2∥x∥
2ds and d[h(x), h(x)]s = ∥x∥2ds. Since hs(x) is a continuous

semi-martingale and exp is smooth, we may apply Itô’s lemma to exp {hs(x)} and integrate with
respect to pdata(x) to get

dZs =

∫
Rd

(
dhs(x) +

1

2
d[h(x), h(x)]s

)
ehs(x)pdata(dx)

=

∫
Rd

x · dUse
hs(x)pdata(dx)

= Zs(as · dUs).

Then, via another application of Itô’s lemma, since Zs is continuous and log is smooth,

d logZs =
dZs

Zs
− 1

2

d[Z]s
Z2
s

= as · dUs −
1

2
∥as∥2ds.
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Substituting this into (18), we see that

d logLs(x) = (x− as) · (dUs − asds)−
1

2
∥x− as∥2ds

= (x− as) · dW ′
s −

1

2
∥x− as∥2ds

where we recall the definition of (W ′
s)s≥0 from (6). The result then follows via a final application

of Itô’s lemma.

Proof of Proposition 2. First, using Proposition 1 we have

das = d

(∫
Rd

xLs(x)pdata(dx)

)
=

∫
Rd

xdLs(x)pdata(dx)

=

∫
Rd

x⊗ (x− as)Ls(x) · dW ′
s pdata(dx).

This implies that
das = Eµs

[ξ ⊗ (ξ − as)] dW
′
s = As · dW ′

s.

It then follows from Itô’s isometry that
d

ds
E
[
a⊗2
s

]
= E

[
A2

s

]
.

The result then follows from the fact that E [As] = Eµs

[
ξ⊗2

]
− E

[
a⊗2
s

]
.

C ADAPTATIONS REQUIRED TO HANDLE A GENERAL COVARIANCE OF pdata

We briefly outline the changes required in our proofs to handle a data distribution with a general
covariance matrix. The main changes required are in the proofs of Lemmas 6 and 7 and Proposition
4. In this section, we replace Assumption 2 with the following.
Assumption 3. The data distribution pdata has finite second moments, with M2 := Epdata

[
∥X0∥2

]
.

First, we note that the proofs of Lemmas 3, 4 and 5 go through unchanged, and so these results also
hold in the more general setting. For Lemma 6, the proof of (12) can be adapted, replacing each
time we use E

[
∥X0∥2

]
= d with E

[
∥X0∥2

]
= M2 and noting that since X0 and Xt − e−tX0 are

independent, we have E
[
∥Xt∥2

]
= E

[
∥(Xt − e−tX0) + e−tX0∥2

]
= dσ2

t + e−2tM2. We find
that all instances of M2 cancel in the final result and (12) holds unchanged. In addition, the proof of
(13) needs no alteration.

The only change in the proof of Lemma 7 comes towards the end, when we assert that E [Tr(Σt)] =
E
[
E
[
∥X0∥2|Xt

]
− ∥E [X0|Xt] ∥2

]
≤ E

[
∥X0∥2

]
= d for t ∈ [1, T ]. Under Assumption 3, this

becomes E [Tr(Σt)] ≤ E
[
∥X0∥2

]
= M2. Propagating this through the rest of the proof, we find

that (16) should be replaced by
N−1∑
k=0

∫ tk+1

tk

(∫ t

tk

E
(2)
tk,s

ds

)
dt ≲ κM2 + κ2dN. (19)

The final change that must be made is to Proposition 4, which must be replaced by the following
more general version that can be proved along identical lines.
Proposition 5. Under Assumption 3, we have KL(qT ||πd) ≲ (d+M2)e

−2T for T ≥ 1.

Putting all of these changes together, we arrive at the following more general version of Theorem 1.
Theorem 2. Suppose that Assumptions 1 and 3 hold, that T ≥ 1, and that there is some κ > 0 such
that for each k = 0, . . . , N − 1 we have γk ≤ κmin{1, T − tk+1}. Then,

KL(qδ||ptN ) ≲ ε2score + κ2dN + κdT + κM2 + (d+M2)e
−2T .

Theorem 2 holds even in the case where the covariance is not strictly positive definite, and in the
case where it is unknown to our diffusion model algorithm. Since we expect M2 to scale linearly in
d in most cases, we consider this result to be in essentially the same spirit as Theorem 1.
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D PROOF OF COROLLARY 1

Proof of Corollary 1. For convenience, we assume that N is even. We take t0 = 0, tN/2 = T − 1,
and tN = T − δ, and pick t1, . . . , tN−1 such that t0, . . . , tN/2 are linearly spaced on [0, T − 1] and
T − tN/2, . . . , T − tN are an exponentially decaying sequence from 1 to δ (illustrated in Figure 1).

Then, γk ≤ κmin{1, T − tk+1} for each k = 0, . . . , N − 1 if and only if κ ≥ (T − 1)/(N/2) and
κ ≥ (1/δ)1/N −1. The former is satisfied if we take κ = Ω

(
T
N

)
and the second is satisfied provided

that κ = Ω
( log(1/δ)

N

)
, since N ≥ log(1/δ) and ex ≤ 1 + (e − 1)x for x ≤ 1. Therefore, for some

κ = Θ
(T+log(1/δ)

N

)
we have γk ≤ κmin{1, T − tk+1} for each k = 0, . . . , N − 1, proving the first

part of Corollary 1.

For the second part, suppose that we set T = 1
2 log

(
d

ε2score

)
and N = Θ

(d(T+log(1/δ))2

ε2score

)
. Then,

we have κ2dN = O(ε2score), κdT = O(ε2score), and de−2T = O(ε2score). We may therefore apply
Theorem 1 to get that KL(qδ||ptN ) = O(ε2score). The bound on the iteration complexity then follows
since T depends only logarithmically on d and εscore.

E OMITTED PROOFS FROM SECTION 3

Here, we provide the proofs of Lemmas 3, 4, 5, 6 and 7 which were omitted from Section 3.

Proof of Lemma 3. Recall that the reverse process (Yt)t∈[0,T ] satisfies

dYt = {Yt + 2∇ log qT−t(Yt)}dt+
√
2dB′

t.

Since ∇ log qT−t(x) is smooth for t ∈ [0, T ), by Itô’s lemma we can write

d(∇ log qT−t(Yt)) =
{
∇2 log qT−t(Xt) · {Yt + 2∇ log qT−t(Yt)}+∆(∇ log qT−t)(Yt)

}
dt

+
d(∇ log qT−t)(Yt)

dt
dt+

√
2∇2 log qT−t(Yt) · dB′

t. (20)

The Fokker–Planck equation for the forward process is

dqt(x) = {−∇ · (−xqt(x)) + ∆qt(x)}dt,
from which we can deduce

d(log qt)(x) = {d+ x · ∇ log qt(x) + ∆ log qt(x) + ∥∇ log qt(x)∥2}dt.
It follows that

d(∇ log qT−t)

dt
(x) = −{∇ log qT−t(x) +∇2 log qT−t(x) · x+∇(∆ log qT−t(x))

+ 2∇2 log qT−t(x) · ∇ log qT−t(x)},
by interchanging the order of the derivative operators. Substituting this into (20) and simplifying,
we obtain the desired result.

Proof of Lemma 4. First, expanding (8) we get

d

dt
EQ

[
∥∇ log qT−t(Yt)∥2

]
+ 2EQ

[
∥∇ log qT−t(Yt)∥2

]
− 2e−(t−s) d

dt
EQ [∇ log qT−s(Ys) · ∇ log qT−t(Yt)]

− 2e−(t−s)EQ [∇ log qT−s(Ys) · ∇ log qT−t(Yt)]

= 2EQ

[
∥∇2 log qT−t(Yt)∥2F

]
.

Combined with (9), this shows that

d

dt
EQ

[
∥∇ log qT−t(Yt)∥2

]
+ 2EQ

[
∥∇ log qT−t(Yt)∥2

]
= 2EQ

[
∥∇2 log qT−t(Yt)∥2F

]
.
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Then,
dEs,t

dt
=

d

dt
EQ

[
∥∇ log qT−t(Yt)∥2

]
− 2

d

dt
EQ [∇ log qT−s(Ys) · ∇ log qT−t(Yt)]

= 2EQ

[
∥∇2 log qT−t(Yt)∥2F

]
− 2EQ

[
∥∇ log qT−t(Yt)∥2

]
+ 2EQ [∇ log qT−s(Ys) · ∇ log qT−t(Yt)]

which rearranges to give (10).

Proof of Lemma 5. Part (i) is a classical result, sometimes known as Tweedie’s formula (Robbins,
1956). Part (ii) has been established in previous works (see e.g. De Bortoli (2022, Lemma C.2) or
Lee et al. (2023, Lemma 4.13)). We provide proofs of both results for reference.

For (i), we have

∇ log qt(xt) =
1

qt(xt)

∫
Rd

∇ log qt|0(xt|x0)q0,t(x0,xt)dx0.

Since qt|0(xt|x0) = N (xt;x0e
−t, σ2

t I), it follows that ∇ log qt|0(xt|x0) = −σ−2
t (xt − x0e

−t).
Therefore,

∇ log qt(xt) = Eq0|t(·|xt)

[
−σ−2

t (xt −X0e
−t)

]
= −σ−2

t xt + e−tσ−2
t mt.

For (ii), we can write

∇2 log qt(xt)

=
1

qt(xt)

∫
Rd

∇2 log qt|0(xt|x0)q0,t(x0,xt)dx0

+
1

qt(xt)

∫
Rd

(∇ log qt|0(xt|x0)(∇ log qt|0(xt|x0))
T q0,t(x0,xt)dx0

− 1

qt(x2
t )

(∫
Rd

∇ log qt|0(xt|x0)q0,t(x0,xt)dx0

)(∫
Rd

∇ log qt|0(xt|x0)q0,t(x0,xt)dx0

)T

= − 1

σ2
t

I + Eq0|t(·|xt)

[
σ−4
t (xt −X0e

−t)(xt −X0e
−t)T

]
− Eq0|t(·|xt)

[
−σ2

t (xt −X0e
−t)

]
Eq0|t(·|xt)

[
−σ2

t (xt −X0e
−t)

]T
= −σ−2

t I + σ−4
t Covq0|t(·|xt)(xt −X0e

−t)

= −σ−2
t I + e−2tσ−4

t Σt.

Proof of Lemma 6. First, using the first part of Lemma 5 and expanding, we see that

Eqt

[
∥∇ log qt(Xt)∥2

]
= σ−4

t E
[
∥Xt∥2

]
− 2e−tσ−4

t E [Xt ·mt] + e−2tσ−4
t E

[
∥mt∥2

]
,

where all expectations are with respect to Xt ∼ qt. Then,

E [Xt ·mt] = E [Xt · E [X0|Xt]] = E [Xt ·X0] = E [X0 · E [Xt|X0]] = e−tE
[
∥X0∥2

]
= de−t.

Also, Tr(Σt) = E
[
∥X0∥2|xt

]
− ∥mt∥2, so E

[
∥mt∥2

]
= d− E [Tr(Σt)]. We conclude that

Eqt

[
∥∇ log qt(Xt)∥2

]
= dσ−2

t − σ̇tσ
−3
t E [Tr(Σt)] ,

where we have used σ̇tσt = e−2t. This implies that

EQ

[
∥∇ log qT−s(Ys)∥2

]
≤ dσ−2

T−s.

Second, using the second part of Lemma 5 along with the definition ∥A∥2F = Tr(ATA) and expand-
ing, we see that

Eqt

[
∥∇2 log qt(Xt)∥2F

]
= dσ−4

t − 2σ̇tσ
−5
t E [Tr(Σt)] + σ̇2

t σ
−6
t E

[
Tr(Σ2

t )
]
.
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Taking traces in Lemma 1, we get

σ4
t

2e−2t

d

dt
E [Tr(Σt)] =

σ4
t

2σ̇tσt

d

dt
E [Tr(Σt)] =

σ3
t

2σ̇t

d

dt
E [Tr(Σt)] = E

[
Tr(Σ2

t )
]
,

and since E
[
Tr(Σ2

t )
]
≥ 0, it follows that d

dtE [Tr(Σt)] ≥ 0. Therefore,

Eqt

[
∥∇2 log qt(Xt)∥2F

]
= dσ−4

t − 2σ̇tσ
−5
t E [Tr(Σt)] +

1

2
σ̇tσ

−3
t

d

dt
E [Tr(Σt)]

≤ dσ−4
t +

1

2

d

dt

(
σ−4
t E [Tr(Σt)]

)
,

where we have used that σtσ̇t ≤ 1. This implies that

EQ

[
∥∇2 log qT−t(Yt)∥2F

]
≤ dσ−4

T−t +
1

2

d

dr

(
σ−4
r E [Tr(Σr)]

)
|r=T−t

≤ dσ−4
T−t −

1

2

d

dr

(
σ−4
T−rE [Tr(ΣT−r)]

)
|r=t.

Proof of Lemma 7. First we control the error terms E(1)
tk,s

. If s, t ∈ [0, T−1] then σ2
T−s, σ

2
T−t ≥ 1/2

and so E
(1)
s,t ≤ 10d. We therefore have

M−1∑
k=0

∫ tk+1

tk

(∫ t

tk

E
(1)
tk,s

ds

)
dt ≤ 5d

M−1∑
k=0

γ2
k

≲ κdT,

since we have assumed that γk ≤ κ. This proves the first part of (15).

If s, t ∈ [T − 1, T − δ] then (T − s)/2 ≤ σ2
T−s ≤ 2(T − s) and similarly for t. Therefore,

N−1∑
k=M

∫ tk+1

tk

(∫ t

tk

E
(1)
tk,s

ds

)
dt ≤ 12d

N−1∑
k=M

∫ tk+1

tk

(∫ t

tk

(T − s)−2ds

)

≤ 12d

N−1∑
k=M

γ2
k

(T − tk+1)2

≲ κ2dN

since we have assumed that γk ≤ κ(T − tk+1). This proves the second part of (15).

Next, we control the error terms E
(2)
tk,s

. Note that σ−4
T−t is increasing in t and E [Tr(ΣT−t)] is

decreasing in t by Lemma 1. Therefore,
N−1∑
k=0

∫ tk+1

tk

(∫ t

tk

E
(2)
tk,s

ds

)
dt ≤

N−1∑
k=0

∫ tk+1

tk

(
σ−4
T−tk

E [Tr(ΣT−tk)]− σ−4
T−tE [Tr(ΣT−t)]

)
dt

≤
N−1∑
k=0

γk
(
σ−4
T−tk

E [Tr(ΣT−tk)]− σ−4
T−tk

E
[
Tr(ΣT−tk+1

)
])

.

We split this sum into k = 0, . . . ,M − 1 and k = M, . . . , N − 1. For k = 0, . . . ,M − 1, we have
γkσ

−4
T−tk

≤ 4γk ≤ 4κ and so

M−1∑
k=0

γk
(
σ−4
T−tk

E [Tr(ΣT−tk)]− σ−4
T−tk

E
[
Tr(ΣT−tk+1

)
])

≤ 4κ

N−1∑
k=0

(
E [Tr(ΣT−tk)]− E

[
Tr(ΣT−tk+1

)
])

≤ 4κE [Tr(ΣT )] .
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For k = M, . . . , N − 1 we have γkσ
−4
T−tk

≤ 4γk/(T − tk)
2 ≤ 4κ/(T − tk) and so

N−1∑
k=M

γk
(
σ−4
T−tk

E [Tr(ΣT−tk)]− σ−4
T−tk

E
[
Tr(ΣT−tk+1

)
])

≤ 4κ

N−1∑
k=M

1

(T − tk)

(
E [Tr(ΣT−tk)]− E

[
Tr(ΣT−tk+1

)
])

≤ 4κE [Tr(Σ1)] + 4κ

N−1∑
k=M+1

γk−1

(T − tk)(T − tk−1)
E [Tr(ΣT−tk)]

≤ 4κE [Tr(Σ1)] + 4κ2
N−1∑

k=M+1

1

(T − tk)
E [Tr(ΣT−tk)] .

We then have E [Tr(Σt)] = E
[
E
[
∥X0∥2|Xt

]
− ∥E [X0|Xt] ∥2

]
≤ E

[
∥X0∥2

]
= d for t ∈ [1, T ]

and

E [Tr(Σt)] = e2tE
[
Tr(Cov(X0e

−t −Xt|Xt))
]

= e2tE
[
E
[
∥X0e

−t −Xt∥2|Xt

]
− ∥E

[
X0e

−t −Xt|Xt

]
∥2
]

≤ e2tE
[
∥X0e

−t −Xt∥2
]

≤ de2tσ2
t

≤ 16dt

for t ∈ (0, 1]. Putting this together, we conclude that
N−1∑
k=0

∫ tk+1

tk

(∫ t

tk

E
(2)
tk,s

ds

)
dt ≤ 4κE [Tr(ΣT )] + 4κE [Tr(Σ1)]

+ 4κ2
N−1∑

k=M+1

1

(T − tk)
E [Tr(ΣT−tk)]

≲ κd+ κ2dN.

This proves completes the proof of (16).

F APPLICATION OF GIRSANOV’S THEOREM

We now recall the proof of Proposition 3. The following approximation argument is essentially
identical to that of Chen et al. (2023d, Section 5.2) and we reproduce it here simply for clarity of
presentation.

The main ingredient in the proof will be Girsanov’s theorem, which we recall below. The version
we state can be obtained from Theorem 4.13 combined with Theorem 5.22 and Pages 136–139 in
Le Gall (2016).
Proposition 6 (Girsanov’s Theorem). Suppose that (Ω,F , (Ft)t≥0, Q) is a filtered probability
space and (bt)t∈[0,T ] is an adapted process on this space such that EQ

[ ∫ T

0
∥bs∥2ds

]
< ∞. Let

(Bt)t≥0 be a Q-Brownian motion and define Lt =
∫ t

0
bsdBs. Then, L is a square-integrable Q-

martingale. Moreover, if we define

E(L)t = exp

{∫ t

0

bsdBs −
1

2

∫ t

0

∥bs∥2ds
}

for t ∈ [0, T ] and suppose that EQ [E(L)T ] = 1 then E(L) is a Q-martingale and so we may define
a new measure P = E(L)TQ. Then, the process

βt = Bt −
∫ t

0

bsds

is a P -Brownian motion.
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Proof of Proposition 3. We will apply Girsanov’s theorem on the interval [0, tN ] in the case where
Q is the path measure of the solution to (2), (B′

t)t≥0 is our Q-Brownian motion, and

bt =
√
2 {sθ(Ytk , T − tk)−∇ log qT−t(Yt)}

for t ∈ [tk, tk+1] and each k = 0, . . . , N − 1. Note that (bt)t∈[0,tN ] is an adapted process and we
have

EQ

[∫ tN

0

∥bs∥2ds
]
= 2

N−1∑
k=0

∫ tk+1

tk

EQ

[
∥∇ log qT−t(Yt)− sθ(Ytk , T − tk)∥2

]
dt < ∞

by the assumptions of Proposition 3. Therefore, if we define Lt =
∫ t

0
bsdB

′
s as in Proposition

6 then (E(L)t)t∈[0,T ] is a continuous local martingale (Le Gall, 2016, Proposition 5.11). So, we
can find an increasing sequence of stopping times (Tn)n≥1 such that Tn → tN almost surely and
(E(L)t∧Tn

)t∈[0,tN ] is a continuous martingale for each n.

Let us define Ln
t =

∫ t

0
bs1[0,Tn](s)dB

′
s for all t ∈ [0, tN ] and n ≥ 1. Then we have E(L)t∧Tn =

E(Ln)t, so E(Ln) is a continuous martingale, and it follows that EQ [E(Ln)tN ] = 1. Therefore, we
may apply Girsanov’s theorem (Proposition 6) to Ln on the interval [0, tN ]. We deduce that we may
define a new probability measure Pn := E(Ln)tNQ and a new process

βn
t = B′

t −
∫ t

0

bs1[0,Tn](s)ds

such that (βn
t )t∈[0,tN ] is a Pn-Brownian motion.

Since (2) holds almost surely under Q, we see that

dYt = {Yt + 2sθ(Ytk , T − tk)}1[0,Tn](t)dt+ {Yt + 2∇ log qT−t(Yt)}1[Tn,tN ](t)dt+
√
2dβn

t .

In addition,

KL(Q||Pn) = EQ

[
log

dQ

dPn

]
= −EQ [log E(Ln)tN ]

= EQ

[
−LTn +

1

2

∫ Tn

0

∥bs∥2ds

]

≤
N−1∑
k=0

∫ tk+1

tk

EQ

[
∥∇ log qT−t(Yt)− sθ(Ytk , T − tk)∥2

]
dt, (21)

since L is a Q-martingale.

Now, we consider coupling Pn for each n and P qT by taking a fixed probability space and a single
Brownian motion (Wt)t≥0 on that space and defining the processes (Y n

t )t∈[0,tN ] and (Yt)t∈[0,tN ]

via

dY n
t = {Y n

t + 2sθ(Y
n
tk
, T − tk)}1[0,Tn](t)dt+ {Y n

t + 2∇ log qT−t(Y
n
t )}1[Tn,tN ](t)dt+

√
2dWt

and
dYt = {Yt + 2sθ(Ytk , T − tk)}dt+

√
2dWt,

and taking X0 ∼ qT and setting Xn
0 = X0 for each n. Then, the law of Y n is Pn for each n and

the law of Y is P qT .

Fix ε > 0 and define πε : C([0, tN ];Rd) → C([0, tN ];Rd) by πε(ω)(t) = ω(t ∧ (tN − ε)) for
t ∈ [0, tN ]. Then, πε(Y

n) → πε(Y ) uniformly over [0, tN ] almost surely and hence (πε)#P
n →

(πε)#P
qT weakly (Chen et al., 2023d, Lemma 12). We then have that

KL((πε)#Q||(πε)#P
qT ) ≤ lim inf

n→∞
KL((πε)#Q||(πε)#P

n)

≤ lim inf
n→∞

KL(Q||Pn)

≤
N−1∑
k=0

∫ tk+1

tk

EQ

[
∥∇ log qT−t(Yt)− sθ(Ytk , T − tk)∥2

]
dt, (22)
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where in the first line we have used the lower semicontinuity of the KL divergence (Ambrosio et al.,
2005, Lemma 9.4.3), in the second line we have used the data processing inequality, and in the third
line we have used (21).

Finally, letting ε → 0 we have that πε(ω) → ω uniformly on [0, T ] (Chen et al., 2023d, Lemma 13),
and hence KL((πε)#Q||(πε)#P

qT ) → KL(Q||P qT ) (Ambrosio et al., 2005, Corollary 9.4.6). We
therefore conclude by taking ε → 0 in (22).

G CONVERGENCE OF FORWARD PROCESS

We show that the forward OU process converges exponentially in KL divergence under Assumption
2. We note that the exponential convergence of the OU process under various metrics is well-
established, and the particular result we prove here is very similar to Lemma 9 in Chen et al. (2023a).

Proof of Proposition 4. Since qt|0(xt|x0) = N (xt;x0e
−t, σ2

t Id), we have

KL(qt|0( · |x0)||πd) =
1

2

{
d log σ−2

t − d+ dσ2
t + ∥e−tx0∥2

}
.

By the convexity of the KL divergence,

KL(qT ||πd) = KL
(∫

Rd

qT |0( · |x0)pdata(dx0)
∥∥∥πd

)
≤

∫
Rd

KL(qT |0( · |x0)||πd)pdata(dx0)

=
1

2

{
d log σ−2

T − d+ dσ2
T + e−2TEpdata

[
∥X0∥2

]}
= −d log(1− e−2T )

≲ de−2T

for T ≥ 1, where we have used that Epdata

[
∥X0∥2

]
= d since Cov(pdata) = Id.

H LINEAR DEPENDENCE ON DATA DIMENSION IS OPTIMAL

Suppose that we have a data distribution p∗ on Rd such that a diffusion model approximating p∗
using the exact scores, initialized from qT rather than πd, and using a given sequence of discretiza-
tion times t0, . . . , tN has a KL error of ε2∗. Then, if we consider approximating the product measure
p⊗m
∗ on (Rd)m, again using the exact score, initializing from q⊗m

T , and using the same sequence of
discretization times, the reverse process will factorize across the m copies of Rd. Consequently, the
total KL error will be mε2∗ by tensorization of the KL divergence. Thus the KL error of the diffusion
model scales linearly in the data dimension in this case, demonstrating that the linear dependence of
our KL bounds on d is optimal.
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