
Published as a conference paper at ICLR 2022

MaGNET : UNIFORM SAMPLING FROM DEEP GENERA-
TIVE NETWORK MANIFOLDS WITHOUT RETRAINING

Ahmed Imtiaz Humayun
Rice University
imtiaz@rice.edu

Randall Balestriero
Rice University
randallbalestriero@gmail.com

Richard Baraniuk
Rice University
richb@rice.edu

ABSTRACT

Deep Generative Networks (DGNs) are extensively employed in Generative Ad-
versarial Networks (GANs), Variational Autoencoders (VAEs), and their variants
to approximate the data manifold and distribution. However, training samples are
often distributed non-uniformly on the manifold, due to the cost or convenience
of collection. For example, the CelebA dataset contains a large fraction of smiling
faces. These inconsistencies will be reproduced when sampling from the trained
DGN, which is not always preferred, e.g., for fairness or data augmentation. In
response, we develop MaGNET, a novel and theoretically motivated latent space
sampler for any pre-trained DGN that produces samples uniformly distributed on
the learned manifold. We perform a range of experiments on several datasets and
DGNs, e.g., for the state-of-the-art StyleGAN2 trained on the FFHQ dataset, uni-
form sampling via MaGNET increases distribution precision by 4.1% and recall
by 3.0% and decreases gender bias by 41.2%, without requiring labels or retrain-
ing. Since uniform sample distribution does not imply uniform semantic distri-
bution, we also explore how semantic attributes of generated samples vary under
MaGNET sampling. Colab and codes at bit.ly/magnet-sampling

Figure 1: Random batches of StyleGAN2 (ψ = 0.5) samples with 1024 × 1024 resolution, generated using
standard sampling (left), uniform sampling via MaGNET on the learned pixel-space manifold (middle), and
uniform sampling on the style-space manifold (right) of the same model. MaGNET sampling yields a higher
number of young faces, better gender balance, and greater background/accessory variation, without the need
for labels or retraining. Images are sorted by gender-age and color coded red-green (female-male) according
to Microsoft Cognitive API predictions. Larger batches of images and attribute distributions are furnished in
Appendix E.
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1 INTRODUCTION

Deep Generative Networks (DGNs) are Deep Networks (DNs) trained to learn latent representations
of datasets; such frameworks include Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014), Variational Autoencoders (VAEs) (Kingma & Welling, 2013), flow-based models such as
NICE (Dinh et al., 2014), and their variants (Dziugaite et al., 2015; Zhao et al., 2016; Durugkar et al.,
2017; Arjovsky et al., 2017; Mao et al., 2017; Yang et al., 2019; Fabius & van Amersfoort, 2014;
van den Oord et al., 2017; Higgins et al., 2017; Tomczak & Welling, 2017; Davidson et al., 2018;
Dinh et al., 2017; Grathwohl et al., 2018; Kingma & Dhariwal, 2018). A common assumption that
we will carry through our study is that the datasets of interest are not uniformly distributed in their
ambient space, but rather are concentrated on, or around, manifolds of lower intrinsic dimension,
e.g., the manifold of natural images (Peyré, 2009). Different DGN training methods have been
developed and refined to obtain models that approximate as closely as possible the training set
distribution. This becomes an Achilles heel when the training set, regardless of its size, is not
representative of the true data distribution, i.e., when the training samples have been curated based
on cost or availability that result in implicit/explicit biases. In such scenarios, while the training
samples will lie on the true data manifold, the density distribution of the training set will be different
from the natural distribution of the data.

Deploying a DGN trained with a biased data distribution can be catastrophic, in particular, when
employed for tasks such as data augmentation (Sandfort et al., 2019), controlled data generation for
exploration/interpretation (Thirumuruganathan et al., 2020), or estimation of statistical quantities
of the data geometry, such as the Lipschitz constant of the data manifold (Gulrajani et al., 2017;
Scaman & Virmaux, 2018). Biased data generation from DGNs due to skewed training distributions
also raises serious concerns in terms of fair machine learning (Hwang et al., 2020; Tan et al., 2020).

While ensuring semantic uniformity in samples is an extremely challenging task, we take one step
in the more reachable goal of controlling the DGN sampling distribution to be uniform in terms of
the sample distribution on the data manifold. To that end, we propose MaGNET (for Maximum
entropy Generative NETwork), a simple and efficient modification to any DGN that adapts its latent
space distribution to provably produce samples uniformly distributed on the learned DGN manifold.
Importantly, MaGNET can be employed on any pre-trained and differentiable DGN regardless of its
training setting, reducing the requirement of fine-tuning or retraining of the DGN. This is crucial
as many models, such as BigGAN (Brock et al., 2019) and StyleGAN (Karras et al., 2020), have
significant computational and energy requirements for training. A plug-and-play method is thus
greatly preferred to ease deployment in any already built/trained deep learning pipeline.

Previously, there has been rigorous work on DGNs aimed at improving the training stability of mod-
els, deriving theoretical approximation results, understanding the role of the DGN architectures,
and numerical approximations to speed-up training and deployment of trained models (Mao et al.,
2017; Chen et al., 2018; Arjovsky & Bottou; Miyato et al., 2018; Xu & Durrett, 2018; Liu et al.,
2017; Zhang et al., 2017; Biau et al., 2018; Li et al., 2017; Kodali et al., 2017; Roy et al., 2018;
Andrés-Terré & Lió, 2019; Chen et al., 2018; Balestriero et al., 2020; Tomczak & Welling, 2016;
Berg et al., 2018). Existing methods (Metz et al., 2016; Tanaka, 2019; Che et al., 2020) also try to
tackle mode dropping by improving approximation of the data distribution, but this can potentially
increase the bias learned implicitly by the DGN. We are the first to consider the task of providing
uniform sampling on the DGN underlying manifold, which has far-reaching consequences, rang-
ing from producing DGNs stable to data curation and capable of handling inconsistencies such as
repeated samples in the training set. We provide a first-of-its-kind provable uniform sampling on
the data manifold that can be used to speed up estimation of various geometric quantities, such as
estimation of the Lipschitz constant.

MaGNET applies to any (pretrained) DGN architecture (GAN, VAE, NF, etc.) using continuous
piecewise affine (CPA) nonlinearities, such as the (leaky) ReLU; smooth nonlinearities can be dealt
with via a first-order Taylor approximation argument. Our main contributions are as follows:
[C1] We characterize the transformation incurred by a density distribution when composed with a
CPA mapping (Sec. 3.1) and derive the analytical sampling strategy that enables one to obtain a
uniform distribution on a manifold that is continuous and piecewise affine (Sec 3.2).
[C2] We observe that current DGNs produce CPA manifolds, and we demonstrate how to leverage
[C1] to produce uniform sampling on the manifold of any DGN (Sec. 3.2).
[C3] We conduct several carefully controlled experiments that validate the importance of uniform
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sampling and showcase the performance of MaGNET on pretrained models such as BigGAN (Brock
et al., 2019), StyleGAN2 (Karras et al., 2020), progGAN (Karras et al., 2017), and NVAE (Vahdat &
Kautz, 2020), e.g., we show that MaGNET can be used to increase distribution precision by 4% and
recall by 3% for StyleGAN2 and decrease gender bias by 41%, without requiring labels or retraining
(Sec. 4.2 and Sec. 4.3).

Plug and play codes for various models are made available at our Github repository. Computation
and software details are provided in Appendix H, with the proofs of our results in Appendix I.
Discussion of the settings in which MaGNET is desirable and possible limitations is provided in
Sec. 5.

2 BACKGROUND
Continuous Piecewise Affine (CPA) Mappings. A rich class of functions emerges from piecewise
polynomials: spline operators. In short, given a partition Ω of a domain RS , a spline of order k is
a mapping defined by a polynomial of order k on each region ω ∈ Ω with continuity constraints on
the entire domain for the derivatives of order 0,. . . ,k−1. As we will focus on affine splines (k = 1),
we only define this case for concreteness. An affine spline S produces its output via

S(z) =
∑
ω∈Ω

(Aωz + bω)1{z∈ω}, (1)

with input z and Aω, bω the per-region slope and offset parameters respectively, with the key
constraint that the entire mapping is continuous over the domain S ∈ C0(RS). Spline operators
and especially affine spline operators have been extensively used in function approximation theory
(Cheney & Light, 2009), optimal control (Egerstedt & Martin, 2009), statistics (Fantuzzi et al.,
2002), and related fields.
Deep Generative Networks. A deep generative network (DGN) is a (nonlinear) operator GΘ

with parameters Θ mapping a latent input z ∈ RS to an observation x ∈ RD by composing L
intermediate layer mappings. The only assumption we require for our study is that the nonlinearities
present in the DGN are CPA, as is the case with (leaky-)ReLU, absolute value, max-pooling. For
smooth nonlinearities, our results hold from a first-order Taylor approximation argument. Precise
definitions of DGN operators can be found in Goodfellow et al. (2016). We will omit Θ from
the GΘ operator for conciseness unless needed. It is also common to refer to z as the latent
representation, and x as the generated/observed data, e.g., a time-series or image. One property
of DGNs that employ nonlinearities such as (leaky-)ReLU, max-pooling, and the likes, is that the
entire input-output mapping becomes a CPA spline.

3 CONTINUOUS PIECEWISE AFFINE MAPPING OF A PROBABILITY DENSITY

In this section, we study the properties of a probability density that is transformed by a CPA map-
ping. Our goal is to derive the produced density and characterize its properties, such as how the
per-region affine mappings in Eq. 1 impact the density concentration. We present some key results
that serve as the backbone of our core result in the next section: how to sample uniformly from the
manifold generated by DGNs.

3.1 DENSITY ON THE GENERATED MANIFOLD

Consider an affine spline operator S (Eq. 1) going from a space of dimension S to a space of
dimension D with D ≥ S. The image of this mapping is a CPA manifold of dimension at most S,
the exact dimension is determined by the rank of the per-region slope matrices. Formally, the span,
or the image, of S is given by

Im(S) , {S(z) : z ∈ RS} =
⋃
ω∈Ω

Aff(ω;Aω, bω) (2)

with Aff(ω;Aω, bω) = {Aωz+bω : z ∈ ω} the affine transformation of region ω by the per-region
parameters Aω, bω .

From Eq. 2 ,we observe that the generated manifold surface is made of regions that are the affine
transformations of the latent space partition regions ω ∈ Ω based on the coordinate change induced
by Aω and the shift induced by bω . We visualize this in Fig. 2 for a toy spline operator with a
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Figure 2: Visual depiction of Eq. 2
with a toy affine spline mapping S :
R2 7→ R3. Left: latent space parti-
tion Ω made of different regions shown
with different colors and with bound-
aries shown in black. Right: affine
spline image Im(S) which is a contin-
uous piecewise affine surface composed
of the latent space regions affinely trans-
formed by the per-region affine mappings
(Eq. 1). The per-region colors maintain
correspondence from the left to the right.

2-dimensional latent space and 3-dimensional ambient/output space. In the remainder of our study
we will denote for conciseness S(ω) , Aff(ω;Aω, bω).

When the input space is equipped with a density distribution, then this density is transformed by the
mapping S and “lives” on the surface of the CPA manifold generated by S. Given a distribution pz

over the latent space, we can explicitly compute the output distribution after the application of S,
which leads to an intuitive result exploiting the CPA property of the generator. For this result, we
require that the operator S be bijective between its domain and range. That is, each slope matrix
Aω,∀ω ∈ Ω should be full rank, and there should not be any folding of the generated CPA surface
that intersects with itself, i.e., S(ω) ∩ S(ω′) 6= {} ⇐⇒ ω = ω′. We now derive the key result of
this section that characterizes the density distribution on the manifold.

Lemma 1. The volume of a region ω ∈ Ω denoted by µ(ω) is related to the volume of the affinely
transformed region S(ω) by

µ(S(ω))

µ(ω)
=
√

det(AT
ωAω), (3)

where µ(S(ω)) is the measure on the S-dimensional affine subspace spanned by the CPA mapping.
(Proof in Appendix I.1.)

Theorem 1. The probability density pS(x) generated by S for latent space distribution pz is given
by,

pS(x) =
∑
ω∈Ω

pz

((
AT
ωAω

)−1
AT
ω (x− bω)

)
√

det(AT
ωAω)

1{x∈S(ω)}. (4)

(Proof in Appendix I.2.)

In words, the distribution obtained in the output space naturally corresponds to a piecewise affine
transformation of the original latent space distribution, weighted by the change in volume of the
per-region mappings from Eq. 3. For Gaussian and Uniform distributed pz , we use the above results
to obtain the analytical form of the density covering the output manifold, we have provided proof
and differential entropy derivations in Appendix B.

3.2 MAKING THE DENSITY ON THE MANIFOLD UNIFORM

The goal of this section is to build on Thm. 1 to provide a novel latent space distribution such that
the density distribution lying on the generated manifold is uniform.

One important point that we highlight is that having a Uniform density distribution in the latent
space of the affine spline is not sufficient to have a uniform density lying on the manifold; it would
be if det(AT

ωAω) = det(AT
ω′Aω′),∀ω 6= ω′ (in words, the change in volume of the per region

mapping is equal for all ω). This is evident from Appendix B (Eq. 8). Therefore we propose here a
novel latent space sampler with the purpose that once it is transformed by the affine spline (i.e., the
DGN) a distribution becomes uniform on the DGN manifold. We focus here on the technical aspect
and defer precise motivations behind such construction to the next section that deals with practical
applications. To obtain K samples uniformly distributed on the output manifold of S using the
proposed MaGNET procedure:
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1. For K MaGNET samples, sample N � K (as large as possible) iid latent vectors with U
being the latent space domain of S (z1, . . . ,zN ), with zi ∼ U(U).

2. Compute the per-region slope matrices Ai , JS(zi) (Eq. 1), and the change of volume

scalar (σ1, . . . , σN ) ,

(√
det(AT

1 A1), . . . ,
√

det(AT
NAN )

)
, where Ai = Aω1{zi∈ω} .

3. Sample (with replacement)K latent vectors (z1, . . . ,zK) with probability∝ (σ1, . . . , σN )

We discuss possible choices of N and K in Appendix D, where we observe that even for state-of-
the-art models like StyleGAN2, N =250,000 is sufficient to provide a stable approximation of the
true latent space target distribution. In practice, Ai is simply obtained through backpropagation,
since it is the Jacobian matrix of the DGN at zi, as in Ai = JS(zi).

The above Monte-Carlo approximation does not require knowledge of the DGN spline partition Ω
nor the per-region slope matrices (Eq. 1). Those are computed on-demand as zi are sampled. The
above procedure produces uniform samples on the manifold learned by a DGN regardless of how it
has been trained.

4 MAGNET: MAXIMUM ENTROPY GENERATIVE NETWORK SAMPLING
The goal of this section is to first bridge current DGNs with affine splines & leverage Thm. 1 and
Sec. 3.2 to effectively produce uniform samples on the manifold of DGNs such as BigGAN, Style-
GAN. We build this affine spline DGN bridge and motivate for uniform sampling in Sec. 4.1 and
present various experiments across architectures in Sec. 4.2, 4.3, and 4.4.

4.1 UNIFORM SAMPLING ON THE DEEP GENERATIVE NETWORK MANIFOLD

We provided in Sec. 3.2 a thorough study of affine splines and how those mappings transform a
given input distribution. This now takes high relevance as per the following remark.

Remark 1. Any DGN (or part of it) that employs CPA nonlinearities (as in Sec. 2) is itself a CPA;
that is, the input-output mapping can be expressed as in (Eq. 1).

This observation in the context of classifier DNs goes back to Montufar et al. (2014) and has been
further studied in Unser (2018); Balestriero & Baraniuk (2018). We also shall emphasize that op-
erators such as Batch-Normalization (Ioffe & Szegedy, 2015) are not continuous piecewise affine
during training but become affine operators during evaluation time. For completeness, we also pro-
vide that analytical form of the per-region affine mappings Aω, bω of Eq. 1 for the DGNs featured
Appendix C. The key for our method is thus to combine the above with the results from Sec. 3.2 to
obtain the following statement.

Theorem 2. Consider a training set sampled from a manifold M and a (trained) CPA DGN S. As
long as M ⊂ Im(S), sampling from S as per Sec. 3.2 produces uniform samples on M, regardless
of the training set sampling. (Proof in I.4.)

This result follows by leveraging the analytical DGN distribution from Thm. 1 and by replacing
pz with the proposed one, leading to pS(x) ∝

∑
ω∈Ω 1{x∈S(ω)} which is uniform on the DGN

manifold. By using the above one can take any (trained) DGN and produce uniform samples on
the learned underlying manifold. Hence, our solution produces a generative process that becomes
invariant to the training set distribution. While this provides a theoretical guarantee for uniform
sampling, it also highlights the main limitation of MaGNET: the uniform samples will lie on a
CPA manifold. That is, unless the true manifold M is also continuous, MaGNET will occasionally
introduce abnormal samples that correspond to sampling from the regions of discontinuity of M.
We will see in the following sections how even on high-quality image datasets, MaGNET produces
very few abnormal samples, one reason being that for complicated data manifolds, state-of-the-art
DGNs are often built with (class) conditioning. In such cases, the above continuity assumption on
M lessens only to a within-class continuity assumption which is much more realistic. Sampling
uniformly on the DGN manifold has many important applications that are deferred to the following
sections.

4.2 QUANTITATIVE VALIDATION: ε-BALL CONCENTRATION, GMM LIKELIHOOD AND
FRÉCHET INCEPTION DISTANCE

We now report three controlled experiments to validate the applicability of the theoretical results
from Sec. 3.2 for the MaGNET sampling procedure.
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Figure 3: Distribution of the number of MNIST training samples with η neighbors generated within an ε-ball
radius. N samples are generated using standard sampling and MaGNET sampling using an NVAE model. Here
ε is taken to be the average nearest neighbor distance for the training samples. For Vanilla NVAE, heavier tails
are indicative of larger density variations on the manifold as N is increased, whereas for MaGNET the shorter
tails are indicative of fewer variations in neighborhood density, i.e., uniform generation on the data manifold.
10,000 MNIST samples are used for comparison, for additional ε see Fig. 13 and Fig. 14 in the Appendix.

First, we consider MNIST and assume that the entire data manifold is approximately covered by
the training samples. Regardless of the training data distribution on the manifold (uniform or not),
we can pick a datum at random, count how many generated samples (η) are within this datum ε-
ball neighborhood and repeat this process for 10,000 training samples. If η does not vary between
training datum, then it strongly indicates that the generated samples are uniformly distributed on
the manifold covered by the training data. We perform this experiment using a pretrained state-of-
the-art variational autoencoder NVAE (Vahdat & Kautz, 2020) to compare between standard and
MaGNET sampling with the number of generated samples N ranging from 1,000 to 10,000. We
report the distribution of η in Fig. 3. Again, uniform sampling is equivalent to having the same η for
all training samples, i.e., a Dirac distribution in the reported histograms. We can see that MaGNET
sampling approaches that distribution while standard sampling has a heavy-tail η distribution, i.e.,
the generated digits have different concentrations at different parts of the data manifold. Another
quantitative measure consists of fitting a Gaussian Mixture Model (GMM) with varying number of
clusters, on the generated data, and comparing the likelihood obtained for standard and MaGNET
sampling. As we know that in both cases the samples lie on the same manifold and domain, the sam-
pling with lower likelihood will correspond to the one for which samples are spread more uniformly
on the manifold. We report this in Fig. 4, further confirming the ability of MaGNET to produce
uniformly spread samples. We report the generated samples in Appendix E. Lastly, we compare
the Fréchet Inception Distance (FID) (Heusel et al., 2017) between 50,000 generated samples and
70,000 training samples for StyleGAN2 (config-f) trained on FFHQ. Since uniform sampling via
MaGNET increases the diversity of generated samples, we see that MaGNET sampling improves
the FID for truncation (Karras et al., 2019), ψ = {.4, .5, .6, .7} by 2.76 points on average (see Ap-
pendix F). While for the aforementioned ψ MaGNET samples alone provide an improved FID, for
higher ψ values, we introduce an increasing amount of MaGNET samples for FID calculation. We
observe in Fig. 4 that by progressively increasing the percentage of MaGNET samples, we are able
to exceed the state-of-the-art FID of 2.74 for StyleGAN2 (ψ = 1), reaching an FID of 2.66 with
∼ 4% of MaGNET samples.

4.3 QUALITATIVE VALIDATION: HIGH-DIMENSIONAL STATE-OF-THE-ART IMAGE
GENERATION

We now turn into the qualitative evaluation of MaGNET sampling, to do so we propose extensive
experiments on various state-of-the-art image DGNs. We also remind the reader that in all cases,
standard and MaGNET sampling are performed on the same DGN (same weights) as discussed in
Sec. 3.2.

2-Dimensional Dataset and Colored-MNIST. The first set of controlled experiments is designed
such that the training set contains inconsistencies while it is known that the original distribution is
uniform on the data manifold. Such inconsistencies can occur in real datasets due to challenges
related to dataset compilation. We provide illustrative examples in Fig. 5, where we demonstrate
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Figure 4: (Left) Average log-likelihood and 10σ-bandwidth for 5 runs of a GMM trained on 10,000 samples
using standard sampling (blue) and MaGNET sampling (black) for an NVAE trained on MNIST. The higher
log-likelihood (given the same number of clusters) in the standard sampling case demonstrates an increased
concentration around a few modes, as opposed MaGNET. (Right) FID (↓) of StyleGAN2 (config-f) trained on
FFHQ for 50,000 generated samples and 7 runs. With an increasing percentage of uniformly generated samples
to increase diversity, MaGNET reaches state-of-the-art FID of 2.66 achieved at a 4.1% mixture.

Samples from original distribution Artificially biased training set Standard DGN Sampling MaGNET sampling

Figure 5: From left to right, samples from a toy 2D distribution with triangular support, biased samples ob-
tained for training a GAN, standard sampling showing a biased distribution learned by the GAN, and MaGNET
sampling recovering uniformly distributed samples on the support of the true distribution. Note that the same
number of samples are obtained for both standard and MaGNET sampling.
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Figure 6: Hue (color) distribution of samples ob-
tained from standard and MaGNET sampling from a
trained BVAE model on colored 8 digits from MNIST.
The original dataset purposefully favored cyan color-
ing to represent training set inconsistency. MaGNET
BVAE can approximately generate uniformly colored
MNIST samples. The density drop around red repre-
sent regions where training density was low, therefore
the DGN manifold approximation was incorrect and
uniform sampling can not recover those samples.

that unless uniform sampling is employed, the trained DGN reproduces the inconsistencies present
in the training set, as expected. This toy dataset visualization validates our method from Sec. 3.2.
Going further, we take the MNIST dataset (in this case, only digit 8 samples) and apply imbalanced
coloring based on the hue distribution provided in Appendix Fig. 12, which favors cyan color. We
train a β-VAE DGN (BVAE) on that cyan-inclined dataset, and present in Fig. 6 the hue distributions
for samples obtained via standard sampling and MaGNET sampling. We observe that MaGNET cor-
rects the hue distribution back to uniformity.
Uniform Face Generation: CelebA-HQ and Flickr-Faces-HQ with progGAN and Style-
GAN2. Our first experiment concerns sampling from the StyleGAN2 (Karras et al., 2020) model
pretrained on the Flickr-Faces-HQ (FFHQ) dataset. StyleGAN2 has two DGNs, one that maps to
an intermediate latent space, termed style-space and another DGN that maps style-space vectors
to the pixels-space (output of StyleGAN2). Implementation details are contained in Appendix H.
We focus here on applying MaGNET onto the entire StyleGAN2 model (the composition of both
DGNs), in Sec. 4.4 we discuss applying MaGNET to the style-space DGN. In Fig. 1 we provide
random samples from the same StyleGAN2 model obtained via standard and MaGNET sampling.
Upon qualitative evaluation, it can be seen that the samples obtained via MaGNET (MaGNET Style-
GAN2) have a significantly larger variety of age distribution, background variations and wearable
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Figure 7: Random batch of samples generated from BigGAN (left) and MaGNET BigGAN (right), condi-
tioned on the Samoyed class of ImageNet. While BigGAN samples contain homogeneous postures, MaGNET
samples represent the true span of the data manifold learned by BigGAN.

Figure 8: Lipschitz constant estimation using standard DGN sampling and MaGNET sampling (left). Each
line represents the mean over 200 Monte-Carlo runs. As expected, estimation of such statistics from samples
converges faster when employed on uniformly distributed samples. The standard deviation of the Monte-Carlo
estimations are also provided (right), where it is clear that the uniform sampling via MaGNET reaches smaller
standard deviation at earlier steps i.e., it is faster to converge. This is a key application of MaGNET: speeding-
up convergence of statistical estimation of quantities, such as the Lipschitz constant in this case. The x-axis
represents the number of samples used for estimation in log-scale.

accessories compared to standard sampling.
For experiments with the CelebA-HQ dataset, we adopt the Progressively Growing GAN (prog-
GAN) (Karras et al., 2017), trained on 1024× 1024 resolution images. In Fig. 9 we provide random
samples from standard and MaGNET sampling, the latter portraying more qualitative diversity. We
see that uniform manifold sampling via MaGNET recovers samples containing a number of at-
tributes that are generally underrepresented in the samples generated by vanilla progGAN. (See Ap-
pendix E for larger batches and attribute distributions.) Note that uniform sampling not only recovers
under-represented groups e.g., age < 30, head-wear, and bald hair, it also increases the presence of
neutral emotion and black hair. One interesting observation is that MaGNET also increases the
number of samples off the true data manifold (images that are not celebrity faces), exposing regions
where the manifold is not well approximated by progGAN.
Conditionally Uniform Generation: ImageNet with BigGAN. We present experiments on the
state-of-the-art conditional generative model BigGAN (Brock et al., 2019) using MaGNET sam-
pling. In Fig. 7 we provide random samples from standard and MaGNET sampling. More ex-
periments on different classes are presented in Appendix E. We see that uniform sampling on the
learned data manifold yields a large span of backgrounds and textures, including humans, while
standard sampling produces examples closer to the modes of the training dataset. This is quite un-
derstandable considering that ImageNet was curated using a large number of images scraped from
the internet. MaGNET therefore could be used for data exploration/model interpretation and also as
a diagnostic tool to assess the quality of the learned manifold a posteriori of training.

4.4 APPLICATION: MONTE-CARLO ESTIMATION AND ATTRIBUTE REBALANCING

We conclude this section with two more practical aspects of MaGNET.
Reduced-Variance Monte-Carlo Estimator. The first is to speed-up (in terms of number of re-
quired samples) basic Monte-Carlo estimation of arbitrary topological quantities of the generated
manifold. Suppose that one’s goal is to estimate the Lipschitz constant of a DGN. A direct estima-
tion method would use the known bound given by maxz ‖JS(z)‖F (Wood & Zhang, 1996). This
estimation can be done by repeatedly sampling latent vectors z from the same distribution that one
used for training a DGN. However, this implies that the produced samples will not be uniformly dis-
tributed on the manifold in turn leading to slower convergence of the estimator. Instead, we propose
to use MaGNET, and report our findings in Fig. 8. More domains of application, where MaGNET
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Figure 9: Random batch of samples generated from vanilla progGAN (left) and MaGNET progGAN (right).
Some samples contain fusion of attributes which are not frequently represented in the data distribution, e.g.
female w/ facial hair, male w/ makeup, etc. MaGNET also generates more samples from regions of the manifold
less approximated by the DGN. Larger batches in Appendix E.

can be used for estimator variance reduction, can be found in Baggenstoss (2017).
Style-space MaGNET sampling rebalances attributes. When thinking of uniform sampling on a
manifold, it might seem natural to expect fairness i.e., fair representation of different attributes such
as equal representation of gender, ethnicity, hair color, etc. However, this is not necessarily true
in all cases. In fact, it is trivial to show that each attribute category will be equally represented iff
their support on the true data manifold is of equal volume (integrated with respect to the data man-
ifold). Fortunately, as we mentioned in Sec. 4.3, architectures such as StyleGAN2 have explicitly
built a style-space, which is a latent space in which attributes are organized along affine subspaces
occupying similar volumes (Karras et al., 2019) i.e., MaGNET applied on the style-space DGN
should improve fairness. By applying MaGNET sampling on the style-space, we are able to reduce
gender bias from 67–33% (female-male) in standard StyleGAN2 to 60–40%. This simple result
demonstrates the importance of our proposed sampling and how it can be used to increase fairness
for DGNs trained on biased training sets. MaGNET in the style-space also yields improvements
in terms of recall and precision (Sajjadi et al., 2018). Given a reference distribution (e.g., FFHQ
dataset) and a learned distribution, precision measures the fidelity of generated samples while recall
measures diversity. We compare the metrics for face images generated via z ∼ N(0, aI) where
a ∈ 0.5, 1, 1.5, 2, z ∼ U [−2, 2], and MaGNET sampling on style-space. For 70k samples generated
for each case, MaGNET sampling obtains a recall and precision of (0.822, 0.92) with a 4.12% rela-
tive increase in recall and 3.01% relative increase in precision compared to the other latent sampling
methods (metrics were averaged for 10 seeds).

5 CONCLUSIONS, LIMITATIONS AND FUTURE WORK
We have demonstrated how the affine spline formulation of DGN provides new theoretical results to
provably provide uniform sampling on the manifold learned by a DGN. This allows becoming robust
to possibly incorrect training set distributions that any DGN would learn to replicate after its train-
ing. We have reported on several experiments using pretrained state-of-the-art generative models
and demonstrated that uniform sampling on the manifold offers many benefits from data exploration
to statistical estimation. Beyond the sole goal of uniform sampling on a manifold, MaGNET opens
many avenues, yet MaGNET is not a “one size fits all” solution.
When not to sample uniformly. We can identify the general cases in which one should not em-
ploy uniform sampling of the DGN manifold. The first case occurs whenever the true manifold is
known to be discontinuous and one needs to avoid sampling in those regions of discontinuities. In
fact, in the discontinuous case, DGN training will adapt to put zero (or near zero) density in those
discontinuous regions preventing standard sampling to reach those regions (Balestriero et al., 2020).
However, MaGNET will reverse this process and introduce samples back in those regions. The
second case occurs if one aims to produce samples from the same distribution as the training set
distribution (assuming training of the DGN was successful). In this scenario, one should use the
same latent distribution at evaluation time as the one used during training.
Future work. Currently, there are two main limitations of our MaGNET sampling strategy. The
first one lies in the assumption that the trained DGN is able to learn a good enough approximation
of the true underlying data manifold. In future work, we plan to explore how MaGNET can be
used to test such an assumption. One potential direction is as follows; train a DGN using several
sub-sampled datasets (similar to bootstrap methods) and then study if MaGNET samples populate
manifolds that all coincide between the different DGNs. If training is successful, then those sam-
pled manifolds should coincide. Another direction could be understanding the relationship between
uniform sampling and uniform attribute representation. We demonstrated how uniform sampling in
the style-space of StyleGAN2 ensures that relationship by construction.
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6 REPRODUCIBILITY STATEMENT

Reproducible data and code for various experiments is made available at
bit.ly/magnet-sampling. Computation and software details are provided in Appendix H,
with the proofs of our results in Appendix I.
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SUPPLEMENTARY MATERIAL

The following appendices support the main paper and are organized as follows: Appendix A ad-
dresses some details on the background of continuous piecewise affine deep networks, that were
omitted in the main paper. Appendices E and H provide additional figures and training details for
all the experiments that were studied in the main text, and Appendix I provides the proofs of all the
theoretical results. Due to filesize constraints, the high-quality batch of samples are provided in
the supplementary files.

A BACKGROUND ON CONTINUOUS PIECEWISE AFFINE DEEP NETWORKS

A max-affine spline operator (MASO) concatenates independent max-affine spline (MAS) functions,
with each MAS formed from the point-wise maximum of R affine mappings (Magnani & Boyd,
2009; Hannah & Dunson, 2013). For our purpose each MASO will express a DN layer and is thus
an operator producing a D` dimensional vector from a D`−1 dimensional vector and is formally
given by

MASO(v; {Ar, br}Rr=1) = max
r=1,...,R

Arv + br, (5)

where Ar ∈ RD`×D`−1

are the slopes and br ∈ RD`

are the offset/bias parameters and the max-
imum is taken coordinate-wise. For example, a layer comprising a fully connected operator with
weights W ` and biases b` followed by a ReLU activation operator corresponds to a (single) MASO
with R = 2,A1 = W `,A2 = 0, b1 = b`, b2 = 0. Note that a MASO is a continuous piecewise-
affine (CPA) operator (Wang & Sun, 2005).

The key background result for this paper is that the layers of DNs constructed from piecewise affine
operators (e.g., convolution, ReLU, and max-pooling) are MASOs (Balestriero & Baraniuk, 2018):

∃R ∈ N∗,∃{Ar, br}Rr=1 s.t. MASO(v; {Ar, br}Rr=1) = g`(v),∀v ∈ RD
`−1

, (6)

making the entire DGN a composition of MASOs.
The CPA spline interpretation enabled from a MASO formulation of DGNs provides a powerful
global geometric interpretation of the network mapping based on a partition of its input space RS
into polyhedral regions and a per-region affine transformation producing the network output. The
partition regions are built up over the layers via a subdivision process and are closely related to
Voronoi and power diagrams (Balestriero et al., 2019). We now propose to greatly extend such
insights to carefully characterize and understand DGNs as well as provide theoretical justifications
to various observed behaviors e.g. mode collapse.

B UNIFORM AND GAUSSIAN MANIFOLD DISTRIBUTIONS

We now demonstrate the use of the above result by considering practical examples for which we
are able to gain insights into the DGN data modeling and generation. We consider the two most
common cases: (i) the latent distribution is set as z ∼ N(0, 1) and (ii) the latent distribution is set as
z ∼ U(0, 1) (on the hypercube of dimension S). We obtain the following result by direct application
of Thm. 1.

Corollary 1. The generated density distribution pS of the Gaussian and uniform densities are given
by

pS(x) =
∑
ω∈Ω

e−
1
2 (x−bω)T (A+

ω )TA+
ω (x−bω)√

(2π)S det(AT
ωAω)

1{x∈G(ω)}, (Gaussian) (7)

pS(x) =
∑
ω∈Ω

V ol(U)−1√
det(AT

ωAω)
1{x∈S(ω)}. (Uniform) (8)

The two above formulae provide a precise description of the produced density given that the latent
space density is Gaussian or Uniform. In the Gaussian case, the per-region slope matrices act upon
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the `2 distance by rescaling it from the coordinates of Aω and the per-region offset parameters bω
are the mean against which the input x is compared against. In the Uniform case, the change of
volume (recall Eq. 3) is the only quantity that impacts the produced density. We will heavily rely on
this observation for the next section where we study how to produce a uniform sampling onto the
CPA manifold of an affine spline.

We derive the analytical form for the case of Gaussian and Uniform latent distribution in Ap-
pendix I.3. From the analytical derivation of the generator density distribution, we obtain its dif-
ferential entropy.

Corollary 2. The differential Shannon entropy of the output distribution pG of the DGN is given by
E(pG) = E(pz) +

∑
ω∈Ω P (z ∈ ω) log(

√
det(AT

ωAω)).

As a result, the differential entropy of the output distribution pG corresponds to the differential
entropy of the latent distribution pz plus a convex combination of the per-region volume changes.
It is thus possible to optimize the latent distribution pz to better fit the target distribution entropy
as in Ben-Yosef & Weinshall (2018) and whenever the prior distribution is fixed, any gap between
the latent and output distribution entropy imply the need for high change in volumes between ω and
G(ω).

C PER-REGION AFFINE MAPPINGS

For completeness we also provide that analytical form of the per-region affine mappings

Aω =

(
L−1∏
i=0

diag
(
σ̇L−i(ω)

)
WL−i

)
, (9)

bω =bL +

L−1∑
`=1

[(
L−`−1∏
i=0

diag
(
σ̇L−i(ω)

)
WL−i

)
diag

(
σ̇`(ω)

)
b`

]
, (10)

where σ̇`(z) is the pointwise derivative of the activation function of layer ` based on its input
W `z`−1 + b`, which we note as a function of z directly. For precise definitions of those oper-
ators see Balestriero & Baraniuk (2020). The diag operator simply puts the given vector into a
diagonal square matrix. For convolutional layers (or else) one can simply replace the corresponding
W ` with the correct slope matrix parametrization as discussed in Sec. 2. Notice that since the em-
ployed activation functions σ`,∀` ∈ {1, . . . , L} are piecewise affine, their derivative is piecewise
constant, in particular with values [σ̇`(z)]k ∈ {α, 1} with α = 0 for ReLU, α = −1 for absolute
value, and in general with α > 0 for Leaky-ReLU for k ∈ {1, . . . , D`}.

D NUMBER OF SAMPLES AND UNIFORMITY

Exact uniformity is reached when the Monte Carlo samples have covered each region of the DGN
partition boundary. For large state-of-the-art models this condition requires sampling on the order of
millions. However, we conducted an experiment to see how the number of samples really impacted
the uniformity of the generated manifold as follows. We compute precision and recall metrics [4]
for StyleGAN2 with K generated samples obtained from N Monte Carlo samples based on our
sampling strategy by varying N . We use K = 5000 and N ranging from 10,000 to 500,000. Based
on the metrics, we identify that increasing beyond K = 250, 000 no longer impacts the metrics,
showing that this number of monte carlo samples is enough to converge (approximately) to the
uniform sampling in that case; see Fig. 10.

We report here the Jacobian computation times for Tensorflow 2.5 with CUDA 11 and Cudnn 8 on an
NVIDIA Titan RTX GPU. For StyleGAN2 pixel space, 5.03s/it; StyleGAN2 style-space, 1.12s/it;
BigGAN 5.95s/it; ProgGAN 3.02s/it. For NVAE on Torch 1.6 it takes 20.3s/it. Singular value
calculation for StyleGAN2 pixel space takes 0.005s/it, StyleGAN2 style space 0.008s/it, BigGAN
0.001s/it, ProgGAN 0.004s/it and NVAE 0.02s/it on NumPy.

E ADDITIONAL FIGURES

This section contains samples from our proposed methods, more samples along with attribute data
and pretrained weights are available at our project link.
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Figure 10: Evolution of the precision/recall
curves for varying number of samples N form
the monte-carlo sampling against the number of
samples K = 5k for StyleGAN2.
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Figure 11: Precision-recall curves for K = 70k
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Figure 12: Depiction of the imbalance hue distri-
bution applied to color the MNIST digits.
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Figure 13: Reprise of Fig. 3. Vanilla NVAE Left, MaGNET NVAE Right
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Figure 15: Random batches of 245 samples from a StyleGAN2 trained on FFHQ, generated via
standard sampling (left), MaGNET sampling in the pixel-space (middle) and MaGNET sampling in
the style-space.
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Figure 16: Random Samples from vanilla progGAN (left) and MaGNET progGAN (right) trained
on the CelebA-HQ dataset. Samples are sorted by gender & age and color coded by gender as
visually predicted by the Microsoft Cognitive API. Samples not recognized by the API are color
coded as white at the bottom.
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Figure 17: Random Samples from vanilla BigGAN (left) and MaGNET BigGAN (right) from the
Collie class of Imagenet.
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Figure 18: Random Samples from vanilla BigGAN (left) and MaGNET BigGAN (right) from the
Siamese class of Imagenet.
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Figure 19: Random Samples from vanilla BigGAN (left) and MaGNET BigGAN (right) from the
Tabby class of Imagenet.
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Figure 20: Facial Attributes of 5000 StyleGAN2 samples using vanilla sampling, MaGNET style-
space sampling and MaGNET pixel-space sampling. We see that MaGNET style-space increases
uniformity in gender and age distributions whereas MaGNET pixel-space yields more variations in
physical attributes and accessories.

Figure 21: Facial Attributes of 5000 ProgGAN samples using standard sampling and MaGNET
sampling.
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Figure 22: Random Samples from vanilla NVAE (left) and MaGNET NVAE (right) trained on the
MNIST dataset.

Figure 23: Random Samples from vanilla NVAE (left) and MaGNET NVAE (right) trained on the
CIFAR dataset.
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F ADDITIONAL TABLES

Table 1: FID obtained by StyleGAN2 (config-f) trained on FFHQ using standard and MaGNET
sampling (pixel-space) for varying degrees of truncation (ψ). (Left) FID score obtained for 50,000
samples generated by a mixture of MaGNET and standard sampling. MaGNET samples can be used
to increase diversity of the model, resulting in better FID than current state-of-the-art. (Right) FID
score for varying truncation without mixing.

Truncation
ψ

Sampling
Method

Percent
Mixture FID (↓) Truncation

ψ
Sampling
Method FID (↓)

1 Standard - 2.74 .5 Standard 58.33
MaGNET 4.1% 2.66 MaGNET 54.47

.9 Standard - 5.05 .4 Standard 83.84
MaGNET 20% 4.29 MaGNET 82.41

.8 Standard - 10.94 .3 Standard 112.08
MaGNET 33% 8.57 MaGNET 112.89

.7 Standard - 21.34 .2 Standard 142.27
MaGNET 100% 19.41 MaGNET 144.93

.6 Standard - 36.98 .1 Standard 176.20
MaGNET 100% 33.19 MaGNET 178.75

G ALGORITHMS

Algorithm 1: MaGNET Sampling as described in Sec. 3.2
Input: Latent space domain, U ; Generator G; Number of regions to sample N ; Number of

samples K;
Output: MaGNET Samples, {xi}Ki=1;
Initialize, Z, S← [], [] ;
for n = 1, . . . , N do

z ∼ U(U);
Get Slope Matrix, A = JG(z);
Get volume scalar at z, σz =

√
det(ATA);

Z.append(z);
S.append(σz)

end
for n = 1, . . . ,K do

i ∼ Categorical(prob = softmax(S));
xi ← Z[i]

end

Algorithm 2: Online Rejection Sampling algorithm for MaGNET
Input: Latent space domain, U ; Generator G; N change of volume scalars {σ1, σ2, ..., σN};
Output: MaGNET Sample, x;
while True do

Sample z ∼ U(U);
Sample α ∼ U[0, 1];
Get Slope Matrix, A = JG(z);
Get volume scalar at z, σz =

√
det(ATA);

if σz

σz+
∑N

i=1 σi
≥ α then

x = G(z);
break;

end
end
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H ARCHITECTURE, HARDWARE AND IMPLEMENTATION DETAILS

All the experiments were run on a Quadro RTX 8000 GPU, which has 48 GB of high-speed GDDR6
memory and 576 Tensor cores. For the software details we refer the reader to the provided codebase.
In short, we employed TF2 (2.4 at the time of writing), all the usual Python scientific libraries such
as NumPy and PyTorch. We employed the official repositories of the various models we employed
with official pre-trained weights. As a note, most of the architectures can not be run on GPUs with
less or equal to 12 GB of memory.

For StyleGAN2, we use the official config-e provided in the GitHub StyleGAN2 repo1, unless spec-
ified. We use the recommended default of ψ = 0.5 as the interpolating stylespace truncation, to
ensure generation quality of faces for the qualitative experiments. For BigGAN we use the BigGAN-
deep architecture with no truncation, available on TFHub2. We also use the NVAE3 and ProgGAN4

models and weights from their respective official implementations. For the Jacobian determinant
calculation of images w.r.t latents, we first use a random orthogonal matrix to project generated im-
ages into a lower dimensional space, calculate the Jacobian of the projection w.r.t the latents and
calculate the singular values of the jacobian to estimate the volume scalar. We use a projection of
256 dimensions for StyleGAN2-pixel, ProgGAN and BigGAN, and 128 dimensions for NVAE. To
estimate the volume scalar we use the top 30, 20, 15 singular values for StyleGAN2 MaGNET pixel,
ProgGAN and BigGAN; 40 for StyleGAN2 MaGNET style, and 30 for NVAE.

I PROOFS

I.1 PROOF OF LEMMA 1

Proof. In the special case of an affine transform of the coordinate given by the matrixA ∈ RD×D the
well known result from demonstrates that the change of volume is given by |det(A)| (see Theorem
7.26 in Rudin (2006)). However in our case the mapping is a rectangular matrix as we span an affine
subspace in the ambient space RD making |det(A)| not defined.

First, we shall note that in the case of a Riemannian manifold (as is the produced surface from the
per-region affine mapping) the volume form used in the usual change of variable formula can be
defined via the square root of the determinant of the metric tensor. Now, for a surface of intrin-
sic dimension n embedded in Euclidean space of dimension m (in our case, the per-region affine
mapping produces an affine subspace) parametrized by the mapping M : Rn 7→ Rm (in our case
this mapping is simply the affine mapping M(z) = zωz + bω for each region) the metric tensor is
given by g = DMTDM with D the jacobian/differential operator (in our case g = AT

ωAω for each
region). This result is also known as Sard’s theorem (Spivak, 2018). We thus obtain that the change
of volume from the region ω to the affine subspace G(ω) is given by

√
det(ATA) which can also

be written as follows with USV T the svd-decomposition of the matrix A:√
det(ATA) =

√
det((USV T )T (USV T )) =

√
det((V STUT )(USV T ))

=
√

det(V STSV T )

=
√

det(STS)

=
∏
i:σi 6=0

σi(A)

leading to ∫
Aff(ω,A,b)

dx =
1√

det(ATA)

∫
ω

dz

1https://github.com/NVlabs/stylegan2
2https://tfhub.dev/deepmind/biggan-deep-256/1
3https://github.com/NVlabs/NVAE
4https://github.com/tkarras/progressive growing of gans
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I.2 PROOF OF THEOREM 1
Proof. We will be doing the change of variables z = (AT

ωAω)−1AT
ω (x − bω) = A+

ω (x − bω),
also notice that JG−1(x) = A+. First, we know that PG(z)(x ∈ w) = Pz(z ∈ G−1(w)) =∫
G−1(w)

pz(z)dz which is well defined based on our full rank assumptions. We then proceed by

PG(x ∈ w) =
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))
√

det(JG−1(x)TJG−1(x))dx

=
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))

√
det((A+

ω )TA+
ω )dx

=
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))(
∏

i:σi(A
+
ω )>0

σi(A
+
ω ))dx

=
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))(
∏

i:σi(Aω)>0

σi(Aω))−1dx Etape 1

=
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))
1√

det(AT
ωAω)

dx

Let now prove the Etape 1 step by proving that σi(A+) = (σi(A))−1 where we lighten notations as
A := Aω and USV T is the svd-decomposition of A:

A+ = (ATA)−1AT =((USV T )T (USV T ))−1(USV T )T

=(V STUTUSV T )−1(USV T )T

=(V STSV T )−1V STUT

=V (STS)−1STUT

=⇒ σi(A
+) = (σi(A))−1

with the above it is direct to see that
√

det((A+
ω )TA+

ω ) = 1√
det(AT

ωAω)
as follows√

det((A+
ω )TA+

ω ) =
∏
i:σi 6=0

σi(A
+
ω ) =

∏
i:σi 6=0

σi(Aω)−1

=

 ∏
i:σi 6=0

σi(Aω)

−1

=
1√

det(AT
ωAω)

which gives the desired result.

I.3 PROOF OF COROLLARY 1
Proof. We now demonstrate the use of Thm. 1 where we consider that the latent distribution is set
as z ∼ N(0, 1). We obtain that

pG(x ∈ w) =
∑
ω∈Ω

∫
ω∩w

1x∈G(ω)pz(G−1(x)) det(AT
ωAω)−

1
2 dx

=
∑
ω∈Ω

∫
ω∩w

1x∈G(ω)
1

(2π)S/2
√

det(AT
ωAω)

e−
1
2‖G

−1(x)‖22dx

=
∑
ω∈Ω

∫
ω∩w

1x∈G(ω)
1

(2π)S/2
√

det(AT
ωAω)

e−
1
2 ((A+

ω (x−bω))T ((A+(x−bω))dx

=
∑
ω∈Ω

∫
ω∩w

1x∈G(ω)
1

(2π)S/2
√

det(AT
ωAω)

e−
1
2 (x−bω)T (A+

ω )TA+
ω (x−bω)dx
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giving the desired result that is reminiscent of Kernel Density Estimation (KDE) (Rosenblatt, 1956)
and in particular adaptive KDE (Breiman et al., 1977), where a partitioning of the data manifold is
performed on each cell (ω in our case) different kernel parameters are used.

Proof. We now turn into the uniform latent distribution case on a bounded domain U in the DGN
input space. By employing again Thm. 1, the given formula one can directly obtain that the output
density is given by

pG(x) =

∑
ω∈Ω 1x∈ω det(AT

ωAω)−
1
2

V ol(U)
(11)

I.4 PROOF OF THM. 2
Proof. As we assume successful training, then regardless of the actual distribution px, the DGN will
learn the correct underlying manifold, and learn the best approximation to px as possible onto this
manifold. Now, applying MaGNET sampling i.e. Sec. 3.2 is equivalent to sampling from a distri-
bution pmz such that after DGN mapping, that distribution is uniform on the learned manifold (see
Thm. 1). As we assumed that regardless of px the DGN approximates correctly the true manifold,
and as we then adapt the sampling distribution pmz to always obtain uniform sampling on that man-
ifold, we see that this final sampling becomes invariant upon the data distribution (on the manifold)
leading to the desired result.
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