
Under review as a conference paper at ICLR 2024

RESHAPE AND ADAPT FOR OUTPUT QUANTIZATION
(RAOQ): QUANTIZATION-AWARE TRAINING FOR IN-
MEMORY COMPUTING SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

In-memory computing (IMC) has emerged as a promising solution to address
both the computation and data-movement challenges posed by modern AI mod-
els. IMC takes advantage of the intrinsic parallelism of memory hardware and
performs computation on data in-place directly in the memory array. To do this,
IMC typically relies on analog operation, which enables high energy and area ef-
ficiency. However, analog operation makes analog-to-digital converters (ADCs)
necessary, for converting results back to the digital domain. This introduces an
important new source of quantization error, impacting inference accuracy. This
paper proposes a Reshape and Adapt for Output Quantization (RAOQ) approach
to overcome this issue, which comprises two classes of mechanisms motivated
by the fundamental impact and constraints of ADC quantization, including: 1)
mitigating ADC quantization error by adjusting the statistics of activations and
weights, through an activation-shifting approach (A-shift) and a weight reshaping
technique (W-reshape); 2) adapting AI models to better tolerate ADC quantiza-
tion, through a bit augmentation method (BitAug) to aid SGD-based optimiza-
tion. RAOQ demonstrates consistently high performance across different scales
of neural network models for image classification, object detection, and natural
language processing (NLP) tasks at various bit precisions, achieving state-of-the-
art accuracy with practical IMC implementations.

1 INTRODUCTION

Rapid advances in AI have greatly impacted various application domains, including computer vi-
sion, natural language processing, speech, etc. Recent generative AI breakthroughs have pushed
the strength of AI even further, producing remarkably realistic and imaginative outputs, blurring
the line between human- and machine-generated content (OpenAI, 2023; Chowdhery et al., 2022).
However, increasing AI capability has come from increasing model complexity, with a sharp rise in
both the number of compute operations and the number of model parameters, placing huge demands
on hardware resources (Villalobos et al., 2022; Smith et al., 2022).

This has driven the development of specialized hardware architectures to accelerate AI model com-
putations. While digital accelerators have been widely deployed to improve compute efficiency,
they do not address the large amount of data movement involved, which has been shown to pose a
critical energy and performance bottleneck in state-of-the-art (SOTA) models (Verma et al., 2019).
In-memory computing (IMC), on the other hand, performs computations in place on stored data,
providing an approach to simultaneously address both compute efficiency and data movement.

While both digital and analog IMC have been proposed, providing various advantages and trade-
offs towards energy efficiency and accuracy, this work focuses on energy-aggressive highly-parallel
analog IMC, addressing the critical bottleneck within the architecture via algorithmic solutions. A
fundamental requirement of analog IMC is the need for analog-to-digital converters (ADCs), to
provide compute outputs back to the digital domain for further processing. Importantly, ADCs
introduce an additional source of quantization, which can substantially degrade accuracy in SOTA
AI models. The level of quantization error from the ADC is fundamentally set by the level of IMC
parallelism, which also directly sets the compute efficiency and throughput advantage.

1

Under review as a conference paper at ICLR 2024

Unlike quantization of activations and weights, whose clipping parameters can be directly optimized
during training, ADC quantization on the compute results does not provide this degree of freedom
and thus requires new methods to address. Previous works introduce artificial clipping to model
ADC quantization at the hardware design stage (Gonugondla et al., 2020; Sakr & Shanbhag, 2021).
However, this limits hardware flexibility in supporting various types of models, which may present
different ADC-input data distributions and thus require different optimal clipping values.

To address such quantization challenges, this paper presents Reshape and Adapt for Output Quanti-
zation (RAOQ), to tackle the challenges at the algorithmic level. As neural networks generally are
sensitive to drastic changes, we first perform quantization-aware training (QAT) for activations and
weights only, and then apply RAOQ, in another stage of training with ADC quantization introduced.
We explore RAOQ across multiple applications, i.e., image classification, object detection, and nat-
ural language processing (NLP), on ImageNet (Deng et al., 2009), COCO 2017 (Lin et al., 2014),
and SQuAD 1.1 (Rajpurkar et al., 2016) datasets, respectively. To the best of our knowledge, this
work is the first to demonstrate approaches that enable IMC for inference across various scales of
models and challenging datasets/tasks. The major contributions of our work are as follows:

1. We conduct an analysis of the relationship between neural network activations, weights, and
ADC quantization. We identify the statistical attributes of activations and weights that yield a
high signal-to-quantization-noise ratio (SQNR) in the presence of ADC quantization.

2. We propose an activation-shifting method (A-shift) motivated by the preferred statistical at-
tributes for activations, and a weight-reshaping technique via kurtosis regularization (W-shape)
motivated by the preferred statistical attributes for weights.

3. We propose bit augmentation (BitAug), where the model is augmented in the dimension of ADC
bit precision to aid the optimization process, assisting model adaptation to ADC quantization.

4. We conduct experiments on different models and tasks (i.e., ReNet18/50 (He et al., 2016), Mo-
bileNetV2 (Sandler et al., 2018), EfficientNet-lite0 (Tan & Le, 2019), YOLOv5s (Jocher et al.,
2022), BERT-base/large (Devlin et al., 2018)), and across different quantization levels for activa-
tions, weights, and ADCs. The consistently high performance achieved by our proposed methods
provides promise for their generalizability across challenging AI tasks.

2 BACKGROUND AND RELATED WORKS

2.1 IN-MEMORY COMPUTING (IMC)

IMC aims to address both compute and data-movement costs in matrix-vector multiplications
(MVMs), which are dominant operations in modern AI models. This is achieved by storing ma-
trix weights in a 2D array of memory bit cells as shown in Fig. 1a, and accessing compute results
over many weight bits, rather than accessing the individual weight bits themselves. Specifically, this
is achieved by performing multiplication in each bit cell between stored weight data and provided
input data, and then accumulation to reduce the products in each column to a single compute result.
The level of reduction, set by the row parallelism of IMC operation, thus determines the energy
efficiency and throughput gains.

To enable energy- and area-efficient computation within the constrained bit cells, IMC can leverage
analog operation, where the compute results then need to be converted back to the digital domain via
ADCs (Valavi et al., 2019; Lee et al., 2021b; Deaville et al., 2022; Yin et al., 2020; Hsieh et al., 2023).
Such analog operation raises two challenges. First, it is sensitive to noise sources, which degrade
the output signal-to-noise ratio (SNR). Researchers have proposed algorithmic noise-aware training
approaches to overcome this (Zhang et al., 2022; He et al., 2019), but which have only shown success
in simple tasks (MNIST, CIFAR-10/100 datasets) at low levels of IMC row parallelism. Instead,
recent work has moved to a high-SNR form of IMC, overcoming such analog noise, enabling scale-
up to higher levels of row parallelism (Jia et al., 2022; Lee et al., 2021a). This has left SOTA analog
IMC primarily subject to the second challenge, which is ADC quantization. As an example, Fig.
1b shows the degraded SQNR due to ADC quantization and inference accuracy in ResNet50 on
ImageNet. Consequently, such quantization prevents IMC from scaling up and poses an ultimate
limitation to the IMC efficiency and throughput. While ADC precision can be increased for higher
SQNR and accuracy, this brings substantial hardware cost, with ADCs showing dominating energy

2

Under review as a conference paper at ICLR 2024

consumption (Lee et al., 2021a). This work introduces efficient algorithmic approaches to address
the critical challenge in IMC systems today, which is ADC quantization, doing so without incurring
additional hardware costs, to demonstrate applicability on a critical set of models.

�𝒘𝒘𝟏𝟏,𝟏𝟏 �𝒘𝒘𝟐𝟐,𝟏𝟏 �𝒘𝒘𝑵𝑵,𝟏𝟏

�𝒘𝒘𝟏𝟏,𝟐𝟐 �𝒘𝒘𝟐𝟐,𝟐𝟐 �𝒘𝒘𝑵𝑵,𝟐𝟐

�𝒘𝒘𝑵𝑵,𝑴𝑴�𝒘𝒘𝟐𝟐,𝑴𝑴�𝒘𝒘𝟏𝟏,𝑴𝑴

⋯

⋯

⋯

⋯ ⋯ ⋯

�𝒙𝒙𝟏𝟏

�𝒙𝒙𝟐𝟐

�𝒙𝒙𝑴𝑴

⋯

�𝒚𝒚𝟏𝟏 �𝒚𝒚𝟐𝟐 �𝒚𝒚𝑵𝑵

Memory Array

⋯

+ + +

ADC

(a)

6 7 8 9 10 11
ADC bit precision

0

5

10

15

SQ
NR

 (d
B)

6 8 10
ADC bit precision

0

25

50

75

Ac
cu

ra
cy

 (%
) w/ ADC

w/o ADC

(b)

0 10 20 30
Epoch

30

50

70

Ac
cu

ra
cy

 (%
)

No ADC
6b ADC
7b ADC
8b ADC
9b ADC

(c)

Figure 1: (a) An illustration of an MVM operation via IMC. (b) SQNR and accuracy degradation due
to ADC quantization. (c) Learning curves for conventional QAT with ADC quantization involved.

2.2 QUANTIZATION-AWARE TRAINING (QAT)

QAT restores model accuracy, which may otherwise degrade due to quantization noise, through a
training process that adapts the model parameters. QAT methods have been proposed to successfully
demonstrate SOTA accuracy in aggressively quantized networks (Jacob et al., 2017; Gupta et al.,
2015; Louizos et al., 2018; Bhalgat et al., 2020; Jain et al., 2019; Zhou et al., 2016; Nagel et al.,
2022; Wang et al., 2022; Park et al., 2022; Esser et al., 2019). However, previous QAT mainly
focuses on quantization from inputs (i.e., weight and activation), not considering ADC quantization
on the compute outputs in IMC. As a result, IMC shows substantially degraded model accuracy even
with conventional QAT, as seen in Fig. 1c.

To address ADC quantization in IMC, Jin et al. (2022) introduces a modified straight-through es-
timator (STE) (Bengio et al., 2013) along with calibration and rescaling techniques to assist the
QAT process, demonstrating ResNet models on CIFAR-10/100 datasets. Sun et al. (2021) pro-
poses a non-uniform activation quantization scheme and a reduced quantization range, validating
on the CIFAR-10 dataset. Wei et al. (2020) proposes modified minmax quantizers for activations
and weights to incorporate hardware statistics of IMC, testing on MNIST and CIFAR-10 datasets.
While these prior works show success on relatively simple datasets, their success has not transferred
to more complicated datasets and AI tasks. In this work, we propose improved QAT techniques to
enable SOTA accuracy applicable to various bit precisions on more challenging models and tasks.

3 ANALYSIS AND RATIONALE FROM ADC QUANTIZATION

To formally define the IMC ADC quantization problem, let x ∈ RM be a data vector of the activation
X and let w ∈ RM be a vector of an output channel of the weight W . Denote x and w as their
quantized counterparts, an IMC column then computes a portion of MVM:

y =< x,w >=
∑M

i=1
wixi. (1)

Note that convolutions can be converted to MVMs via im2col operations. For a bx-bit activation,
bw-bit weight, ba-bit ADC, and memory with dimension M ×N , assuming symmetric quantization
is applied to weights, the ADC quantization and its quantization step ∆a is defined as

y =

⌊
clip

(
y

∆a
, na, pa

)⌋
(2)

∆a =
2M(2bx − 1)(2bw−1 − 1)

2bak
, (3)

where ⌊·⌋ denotes the floor operation. Similar to conventional QAT, the gradient of the floor opera-
tion is approximated using STE (Bengio et al., 2013). Above, (na, pa) = (−2ba−1, 2ba−1 − 1), and

3

Under review as a conference paper at ICLR 2024

k is a positive integer, serving as a hardware design parameter to provide fixed clipping (due to the
ADC’s supported input range). Eq. 3 assumes unsigned activations. For signed activations, we can
simply replace 2bx − 1 by 2bx−1 − 1. In general, ∆a is fixed for given hardware and is not trainable
at the algorithmic level. Fig. 2a shows the distribution of an ADC input from ImageNet dataset via
the ResNet50 model. We see that the input concentrates around a small portion of the ADC range,
resulting in a small signal, relative to the quantization step ∆a. A choice of large k could help to
have a finer step ∆a, but would potentially introduce substantial clipping error. As different layers
and models lead to different statistics of the compute outputs (ADC inputs), there is no optimal ∆a

to rule them all. Thus, with no algorithmically controllable parameters for ADC quantization, the
only degrees of freedom left are parameters applicable to the activations and weights.

100000 0 100000
ADC input (pre-activation)

101

103

105

0 2000

102

105

(a)

0 10000 40000
Variance of ADC Input

10 3

10 2

10 1

100

101
SQ

NR
 (d

B)

k=1
k=2
k=4
k=8

(b)

20 40 60
E[X2]

2

7

11

Va
r[Y

]

(c)

1 3 5
Var[W]

0

5

10

Va
r[Y

]

(d)

Figure 2: (a) Distributions of ADC input (compute output). (b) Relationship between ADC SQNR
and the variance of ADC input V ar [Y]. (c-d) Relationship of the variance of ADC input to the 2nd

moment of the quantized activation and the variance of the quantized weight.

Based on observations in Fig. 2a, we prefer the variance of the ADC input V ar [Y] to be maximized
in order to maximize signal power and utilize as many ADC quantization levels as possible. This is
explicitly shown in Fig. 2b, via the post-ADC SQNR. This focus on 2nd-order statistics, makes it
natural to consider the dependence on the 2nd moment of the activation X and weight W . Before the
training starts, activations and weights are independent of each other, and V ar [Y] is proportionally
set by E[X2

] and E[W 2
]. However, during and after training, generally the assumption of indepen-

dence does not hold, as X and W exhibit correlation through the neural network learning process.
Nonetheless, we postulate that a more narrow relationship holds, namely that there is direct depen-
dence between the 2nd moments, and we conduct an empirical study to validate this. We randomly
sample images from CIFAR10 and ImageNet datasets, and also randomly generate input data. We
use ResNet50 and MobileNetV2 as example networks to perform standard QAT, since these contain
the network structures encountered in most SOTA models. To manage computation complexity, we
only take the first few layers of these models for this study. In Fig. 2c-2d, we plot the variance of
the ADC input V ar[Y] vs. E[X2

] and E[W 2
], respectively, and observe a proportional relationship.

Further, since neural network weights are typically symmetrically distributed around zero (Bhalgat
et al., 2020), E[W 2

] can be taken to be V ar[W], and we postulate that V ar [Y] can be increased by
maximizing V ar[W] and E[X2

], to improve IMC SQNR in the presence of ADC quantization. This
rationale forms the basis of the W-reshape and A-shift techniques that form the proposed ROAQ
approach described below. In the following sections, we use LQ to denote the loss during the QAT
stage of training and use LA to denote the loss during the RAOQ stage of training, after QAT.

4 RESHAPE AND ADAPT FOR OUTPUT QUANTIZATION (RAOQ)

4.1 SQNR ENHANCEMENT

Weight reshaping (W-reshape). To maximize V ar[W], one option is to perform aggressive scaling
during quantization. However, this is expected to introduce substantial clipping error, posing an
adverse trade-off with weight distortion. Thus, we seek an alternate approach to increasing V ar[W],
by adapting the distribution shape to avoid severe clipping.

Neural network weights typically exhibit a symmetric distribution in the exponential family, e.g.,
normal distribution or Laplace distribution (Banner et al., 2019; Shkolnik et al., 2020), which results

4

Under review as a conference paper at ICLR 2024

in relatively low variance. We therefore propose a penalty on weights to drive towards a distribution
with a large variance, in a manner where the penalty does not degrade previous accuracy. This is
achieved by introducing a kurtosis loss as a function of the quantized weights. Kurtosis describes
the tailedness of a distribution, and such loss is defined as the standardized 4th moment, i.e.,

κ = E

[(
W − µW

σW

)4
]
, (4)

where W is the quantized weight, µW and σW denote the mean and standard deviation of W .

This encourages the majority of W to be concentrated in the tails of the distribution (Moors, 1986).
This is different from (Shkolnik et al., 2020), where kurtosis loss is applied on the floating-point
weights specifically to drive them towards a uniform distribution, which maximizes their quantiza-
tion robustness. Since our interest is in improving ADC quantization, rather than weight quantiza-
tion, we apply more aggressive kurtosis loss on the already quantized weights, which are determined
by both the statistics of the floating point weights and the quantization parameters. We analyze the
impact of W-reshape on the QAT accuracy and provide details in Appendix A. This loss, computed at
each layer, is summed up to produce the final loss and then combined with the original loss function
Lc against the ground truth during the QAT stage, i.e.,

LQ = Lc + λκ

∑
l
κl, (5)

where λκ is a coefficient to balance the two loss terms, and l is an index for neural network layers.
Fig. 3a (top) shows a comparison between the quantized weight with and without incorporating the
kurtosis loss. We can see that the proposed method successfully reshapes the weight distribution to
have a much larger variance, i.e., 4× more than the case without Lκ.

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(
𝒙𝒙 − 𝜷𝜷
𝒔𝒔𝒙𝒙

,𝟎𝟎,𝟏𝟏𝟏𝟏) �𝒙𝒙𝒔𝒔 = �𝒙𝒙 − 𝟖𝟖

𝜿𝜿

A-shift

W-reshape

(a)

Improved SQNR of ADC quantization

A-shift + W-reshape

Distributions of ADC Input

(b)

Figure 3: (a) Demonstration of W-reshape and A-shift for 4b weights and activations. (b) SQNR
improvement under ADC quantization. This can be directly observed in terms of the utilization of
the ADC intervals. The proposed techniques provide nearly 5× utilization improvement.

Activation shifting (A-shift) In order to maximize the 2nd moment of the activation, it is desir-
able for activations to exhibit a concentration of mass at considerably large absolute values, i.e.,
distancing the mass from zero, so that the input distribution to the ADC has maximum variance.
However, this is typically not the case with activations derived from functions like SiLU (Elfwing
et al., 2018) and GELU (Hendrycks & Gimpel, 2016), which inherently exhibit significant mass
distribution around small values in close proximity to zero, as shown in Fig. 3a (bottom left).

Exploiting the fact that quantizing these activations as a signed number or unsigned number does
not have much impact on the overall performance (Bhalgat et al., 2020), we propose to treat them
as an unsigned number during quantization, and then convert them to a signed number. This yields
a distribution moved away from zero, to the advantage of ADC quantization. Such an unsigned-to-
signed conversion can be implemented by a simple shift:

xs =

⌊
clip

(
x− β

sx
, 0, 2bx − 1

)⌉
− 2bx−1 = x− 2bx−1 (6)

5

Under review as a conference paper at ICLR 2024

where ⌊·⌉ denotes round operation, β and sx are trainable quantization parameters. Fig. 3a (bottom)
shows the entire A-shift process. We observe that the mass of xs is concentrated at the most neg-
ative values, hence having an extremely large 2nd moment. On the contrary, quantizing activations
directly to a signed number prevents such a shift operation, resulting in a much smaller 2nd mo-
ment. To quantitatively verify our arguments, we compute the numerical values of the 2nd moment
for the quantized activation from the proposed method and from signed quantization based on Fig.
3a, ending up with 57.9 and 3.89, respectively. Our proposed approach produces a much greater
2nd moment, roughly 15× higher. Additionally, ReLU activation functions naturally suit the A-shift
approach, as they explicitly force the output activations to be unsigned numbers. With such shifting,
the IMC computation becomes

y =
∑M

i=1
wixi =

∑M

i=1
wixs,i + 2bx−1wi︸ ︷︷ ︸

offset

(7)

The additional offset introduced by A-shift can be precomputed offline and thus does not add any
overhead when performing inference on IMC systems. The applicability of A-shift on IMC with
other number representations are described in Appendix B.

Impact of W-reshape and A-shift Fig. 3b summarizes the results obtained by applying W-reshape
and A-shift on ImageNet dataset. A particularly useful view is looking at the distribution of the ADC
input. We consider the utilization of ADC quantization range to quantitatively analyze the results,
i.e., # of occupied ADC quantization intervals

Total ADC quantization invervals . Fig. 3b (top) shows an example of an 8-bit ADC, resulting in
3.52% and 21.7% utilization without and with W-reshape and A-shift, respectively. We also compute
the variance of these two cases to justify our results, which leads to 0.094 and 8.535 respectively.
These improvements can be directly related to the increased SQNR illustrated in Fig. 3b (bottom).

4.2 SQNR ADAPTATION FOR NEURAL NETWORKS

0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

1.600
2.100

2.600
3.100

3.
60

0

4.1
00

4.600

4.6
00

5.100

5.1
00

5.600

6.
10

0

6.600

6.600
7.100 7.100
7.600

7.600

(a) w/o ADC
0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

1.600

2.100

2.6003.100

3.600

4.100

4.600

5.
10

05.
60

0
6.

10
06.600

6.600

6.600
7.100 7.600

(b) 8-bit ADC
0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

2.100

2.600

3.100

3.600

4.100

4.600

5.100

5.600

6.1
00

6.100

6.6
00

6.600 7.100

7.6008.100

8.100
8.600

9.100
9.600

(c) 7-bit ADC
0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

2.100

2.
60

0

3.100

3.
60

0

4.100

4.600

4.600

5.100 5.1
00

5.100

5.1
00

5.600

5.600 5.600
6.100 6.100

(d) 6-bit ADC

Figure 4: Loss surfaces with A-shift and W-reshape applied for 4-bit activations and weights.

Bit augmentation (BitAug). Quantization fundamentally sacrifices information in exchange for
model compression. While the SQNR is improved through Eq. 4 - Eq. 7, quantization imposed by
the ADC is observed to make SGD-based optimization more challenging during training. Fig. 4
shows the loss surfaces of MobileNetV2 in two randomly selected parameter dimensions for visu-
alization (Li et al., 2018). As seen, ADC quantization causes a less smooth surface with additional
local minima. These attributes reduce the likelihood of arriving at preferred (low-loss) minima dur-
ing the training process. Approaches are thus required to adapt the model to this extra quantization.
We seek an approach that facilitates a greater volume of information to be backpropagated so that the
model parameters can be optimized more effectively. Inspired by NetAug (Cai et al., 2021) where
a tiny model is inserted into larger models during training, we augment the network with ADCs of
different bit precisions. At each iteration, we first pass the desired ADC bit to the model and then
pass other bit precisions from a pre-defined set B to the model. The general form of BitAug is

LA = L(θ, ba) + λb

∑B

i=1
L(θ, ba,i), (8)

where θ denotes the network parameters, λb is the coefficient of the BitAug loss, B is the size of
the BitAug set B, and ba,i is a sample from the set. Elements in B are chosen to be neighbors of the
target ADC bit precision. Given the complexity of optimization with ADC quantization, we simply
employ the assistance of other bit precisions. The information associated with the various ADC bit

6

Under review as a conference paper at ICLR 2024

precisions is subsequently represented in their respective gradients, which get accumulated during
the backward path for more optimal updating of model parameters, i.e.,

θt+1 = θt − η
∂L(θt, ba)

∂θt
− ηλb

∑B

i=1

∂L(θt, ba,i)
∂θt

, (9)

where t indicates the current training step and η denotes learning rate. However, such an aggregation
of multiple augmented models is computationally expensive. Following a similar strategy as (Cai
et al., 2021), we randomly sample an ADC bit precision for each iteration, i.e.,

LA = L(θ, ba) + λbL(θ, b̃a), (10)

where b̃a is a uniformly sampled bit precision from B. We observe that doing this not only improves
the computational efficiency by a factor of B, but also achieves better performance than running all
ADC bit precisions simultaneously. We include a quantitative study in Appendix C. The selection
of B is also critical. For instance, if we only sample lower precision ADC, we are essentially adding
noise to the training process, which causes accuracy degradation. Our empirical results show that
a good choice is to choose 1-bit lower and 2-bit higher than the desired ADC bit precision, i.e.,
B = {ba − 1, ba + 1, ba + 2}. A more detailed analysis of BitAug is provided in Appendix F.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We consider a general IMC architecture as shown in Fig. 1a. While exploring different IMC archi-
tectures is not the focus of this paper, we include experiments on the impact of RAOQ on various
IMC configurations in Appendix D for interested readers. In this section, we focus on an IMC
system with aggressive memory dimensions of 512 × 512, taking 4-bit inputs and processing 4-bit
weights, with ADCs having k = 4. Higher-precision activations and weights are mapped to the IMC
via matrix tiling.

The proposed methods are evaluated on different AI tasks. To preserve the fidelity of critical in-
formation, we do not map depthwise convolutions in the MobileNet family, and the second matrix-
matrix multiplication in the self-attention module of BERT (BMM2) to the IMC system. This is
justified as these layers account for a small number of computations in the overall model (i.e., < 7%
for depthwise convolutions in MobileNetV2 and < 1.5% for BMM2 in BERT), thus giving minor
energy-efficiency advantage by execution via IMC. The first and last layers are kept in 8-bit. We
start from pre-trained FP32 models, and first perform QAT based on LSQ+ (Bhalgat et al., 2020) on
activations and weights with the proposed W-reshape and A-shift methods. We then add ADC quan-
tization along with other RAOQ techniques for another stage of training. Experiments are performed
on Nvidia A100 GPUs. Further training details are described in Appendix E.

5.2 RESULTS

Table 1 summarizes the results for 4-bit and 8-bit activations and weights. We sweep the ADC bit
precision to demonstrate the robustness and generalizability of our approaches. All QAT (without
ADC involved) accuracy matches SOTA results. For a fair comparison, we also perform conven-
tional QAT (i.e., without any proposed methods involved) for ADC quantization. As seen, the
proposed RAOQ significantly outperforms conventional QAT in all cases.

Image classification. We choose ResNet, MobileNet, and EfficientNet-lite models for evaluation
using top-1 accuracy on ImageNet dataset. Our proposed RAOQ restores the performance to high
accuracy across the activation/weight and ADC bit precisions considered. Particularly, some cases
of 9-bit ADC even outperform the no-ADC baseline. We start to observe accuracy degradation at
low precision ADCs, with ≤ 0.3% drop in the 8-bit case, and with < 0.8% drop in the 7-bit case.

Object detection. We evaluate YOLOv5s on COCO 2017 dataset in terms of mAP. Although
YOLOv5s involves more complicated network structures compared to the above CNN models for
image classification, our approach restores the significantly degraded accuracy to the level close to
no-ADC case, with a < 1% drop for 8-bit and 9-bit ADCs, and < 2% drop for 7-bit ADC.

7

Under review as a conference paper at ICLR 2024

Table 1: Evaluation of RAOQ with various activation, weight, and ADC bit precisions.

ba = 7 ba = 8 ba = 9

Model FP32 bx, bw
No

ADC QAT∗ RAOQ QAT∗ RAOQ QAT∗ RAOQ
8,8 70.66 60.12 70.28 66.03 70.46 66.65 70.60ResNet18 69.76 4,4 70.49 59.42 70.23 65.71 70.45 66.61 70.49
8,8 76.53 65.47 76.25 73.83 76.46 75.01 76.51ResNet50 76.23 4,4 76.31 65.25 76.15 72.05 76.27 74.16 76.32
8,8 71.89 62.09 71.57 66.72 71.79 69.13 71.93MobileNetV2 71.81 4,4 70.47 61.51 70.22 66.67 70.46 68.55 70.45
8,8 74.31 61.27 73.58 68.11 74.08 68.85 74.21EfficientNet-lite0 75.12 4,4 72.84 61.21 72.18 67.03 72.76 67.85 72.82
8,8 36.60 1.30 34.73 8.02 35.82 24.03 36.41YOLOv5s 37.20⋄ 4,4 33.78 10.13 32.23 20.32 33.49 28.49 33.89
8,8 88.24 66.35 87.40 83.04 87.84 84.82 88.11BERT-base 88.58 4,4 87.75 64.46 87.31 82.43 87.67 84.53 87.75
8,8 90.58 58.37 89.60 79.58 90.09 85.92 90.38BERT-large 91.00 4,4 89.57 62.11 88.67 80.18 89.08 85.01 89.55

∗ Conventional QAT (i.e., without RAOQ techniques) with ADC quantization present. ⋄ Result
trained by ourselves in FP32 rather than original mixed-precision.

NLP. We use BERT models, implemented based on (Wolf et al., 2020), to demonstrate for the
question-answering task on SQuAD 1.1 dataset. The results are evaluated in terms of the F1 score.
Once again, our proposed RAOQ successfully restores the degraded accuracy, with < 1%, < 0.5%,
and < 0.2% accuracy drops for 7-bit, 8-bit, and 9-bit ADCs, respectively.

5.3 COMPARISON WITH OTHER METHODS

As mentioned, previous algorithmic works focus on ADC quantization in IMC on small datasets.
Thus, Table 2 shows a comparison of our proposed RAOQ approach with other works on the CIFAR-
10 dataset. These works are based on various memory technologies (e.g., SRAM, ReRAM). For a
fair comparison, we construct the same model, following the same configurations as these works
(e.g., bit precisions, memory dimensions, applicable hardware noise levels), and then apply our
RAOQ approach. We see that RAOQ outperforms all other methods, leading to much less degrada-
tion regardless of IMC technology and configurations.

Table 2: Comparison of different methods for ADC quantization on CIFAR-10. M denotes the
memory inner-dimension, and the column IMC indicates accuracy under ADC quantization.

Model Method bx, bw, ba M FP32 No ADC IMC Degradation

ResNet20
(Jin et al., 2022) 4,4,7 9 − 91.60 91.00 -0.60b

4,4,3 9 81.70 -9.30b

RAOQ 4,4,7 9 92.32 92.23 92.32 +0.09b

4,4,3 9 89.34 -2.89b

ResNet18a (Sun et al., 2021) 4,4,4 256 88.87 − 86.55 -2.32c

RAOQ 4,4,4 256 92.10 92.13 90.48 -1.65c

ResNet18
(Wei et al., 2020) 2,2,4 9 92.01 89.62 83.37 -6.25b

2,2,4 36 87.56 -2.06b

RAOQ 2,2,4 9 93.21 92.26 91.90 -0.36b

2,2,4 36 91.81 -0.45b

a Channels are reduced to 1/4 of the original ResNet18. b Accuracy drop of IMC ADC quantiza-
tion with respect to no-ADC case. c Accuracy drop with respect to FP32.

8

Under review as a conference paper at ICLR 2024

5.4 ABLATION STUDY

We investigate the impact of each proposed technique in RAOQ. In particular, we use BERT-base,
MobileNetV2, and ResNet50 with 4-bit activations and weights, and an 8-bit ADC to perform the
study. The results are summarized in Table 3. The first row corresponds to the case where con-
ventional QAT methods are applied to IMC with ADC quantization. Each check mark indicates
the presence of a specific technique. As seen, all of the proposed techniques improve the degraded
performance due to ADC quantization. Comparatively, A-shift and BitAug exhibit more significant
impacts on the network performance, one contributing to boosting SQNR and the other responsible
for model optimization.

Table 3: Impact of different methods. The check mark indicates the use of the corresponding
method.

A-shift W-reshape BitAug BERT-base MobileNetV2 ResNet50
82.43 66.67 72.05

√
84.24 68.07 75.77

√
83.06 67.61 75.01

√
85.10 68.13 75.65

√ √
86.12 69.73 76.02

√ √ √
87.67 70.46 76.27

6 IMC SYSTEM PERFORMANCE

6 8 10 12 14 16
ADC bit precision

10 3

10 2

10 1

100

101

102

TO
PS

/W

IMC
Digital accelerators

6 9 12 15
ADC bit precision

100

102

104

En
er

gy
 (p

J)

Figure 5: Energy efficiency of IMC.

In this section, we analyze the value of our proposed ap-
proaches in handling ADC quantization. Generally, scaling
up ADC bit precision brings costs in hardware energy, as
shown in Fig. 5 based on a survey of design reported in the
literature (Murmann). The ADC energy cost scales consid-
erably at higher precision, and thus directly affects the en-
ergy efficiency advantages of IMC systems. Fig. 5 further
depicts the IMC energy efficiency for various ADC preci-
sions, compared to fully-optimized digital accelerators. The
IMC efficiency is modeled from (Lee et al., 2021a), while
the digital-accelerator energy is from (Jouppi et al., 2017),
both in the same silicon technology (28nm CMOS), mea-
sured as the number of Tera operations per second per Watt
(TOPS/W) for 8-bit activation and weight computations.
While IMC demonstrates a dramatic energy efficiency ad-
vantage over digital accelerators, the advantage drops sig-
nificantly as ADC precision is increased. With the observed trade-off between conventional QAT-
based inference accuracy and energy efficiency, our proposed algorithmic RAOQ approach enables
significant improvement in this trade-off.

7 CONCLUSION

Analog IMC has shown substantial promise to simultaneously enhance compute efficiency and data-
movement costs for AI inference. However, the associated ADC quantization restricts the accuracy
of SOTA models applied to challenging tasks. While increasing ADC bit precision reduces the ef-
fects of quantization, this comes with a significant energy cost. In this work, we propose RAOQ to
tackle such quantization. Specifically, we propose W-reshape and A-shift, to maximize the SQNR
following ADC quantization via adjusting the statistics of weights and activations. We further pro-
pose BitAug to improve the optimization process. Our work has been evaluated on various datasets,
models, and bit precisions, achieving consistently high accuracy. The generalizability and robust-
ness of our proposed methods demonstrate the feasibility of applying IMC to challenging AI tasks.

9

Under review as a conference paper at ICLR 2024

8 REPRODUCIBILITY

The detailed training configurations are described in Appendix E, including the training procedure,
hyperparameter settings, learning curves, as well as compute resources needed to perform our exper-
iments. The training of each model is described separately for clarity. In Appendix E.4, we provide
a code example to implement our proposed RAOQ method, associated with a sample log file of Mo-
bileNetV2 training. For readers who are interested in other IMC configurations, we provide studies
on different IMC configurations in Appendix D, other than those presented in the main manuscript.
All of our proposed methods can be directly applied except that a small adjustment needs to be made
for A-shift for different IMC types, as detailed in Appendix B.

REFERENCES

Ron Banner, Yury Nahshan, and Daniel Soudry. Post Training 4-Bit Quantization of Convolutional
Networks for Rapid-Deployment. Curran Associates Inc., Red Hook, NY, USA, 2019.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. ArXiv, abs/1308.3432, 2013.

Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak. Lsq+: Improving
low-bit quantization through learnable offsets and better initialization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 696–697,
2020.

Han Cai, Chuang Gan, Ji Lin, and Song Han. Network augmentation for tiny deep learning. arXiv
preprint arXiv:2110.08890, 2021.

Jungwook Choi, Swagath Venkataramani, Vijayalakshmi Srinivasan, K. Gopalakrishnan, Zhuo
Wang, and Pierce I-Jen Chuang. Accurate and efficient 2-bit quantized neural networks. In Con-
ference on Machine Learning and Systems, 2019. URL https://api.semanticscholar.
org/CorpusID:96438794.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Peter Deaville, Bonan Zhang, and Naveen Verma. A 22nm 128-kb mram row/column-parallel in-
memory computing macro with memory-resistance boosting and multi-column adc readout. In
2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), pp.
268–269, 2022. doi: 10.1109/VLSITechnologyandCir46769.2022.9830153.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Qing Dong, Mahmut E. Sinangil, Burak Erbagci, Dar Sun, Win-San Khwa, Hung-Jen Liao, Yih
Wang, and Jonathan Chang. A 351tops/w and 372.4gops compute-in-memory sram macro in 7nm
finfet cmos for machine-learning applications. In 2020 IEEE International Solid- State Circuits
Conference - (ISSCC), pp. 242–244, 2020. doi: 10.1109/ISSCC19947.2020.9062985.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S Modha. Learned step size quantization. arXiv preprint arXiv:1902.08153, 2019.

Sujan Kumar Gonugondla, Charbel Sakr, Hassan Dbouk, and Naresh R Shanbhag. Fundamental lim-
its on energy-delay-accuracy of in-memory architectures in inference applications. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 41:3188–3201, 2020.

10

https://api.semanticscholar.org/CorpusID:96438794
https://api.semanticscholar.org/CorpusID:96438794

Under review as a conference paper at ICLR 2024

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In Proceedings of the 32nd International Conference on Interna-
tional Conference on Machine Learning - Volume 37, ICML’15, pp. 1737–1746. JMLR.org, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Zhezhi He, Jie Lin, Rickard Ewetz, Jiann-Shiun Yuan, and Deliang Fan. Noise injection adaption:
End-to-end reram crossbar non-ideal effect adaption for neural network mapping. In 2019 56th
ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 2019.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Sung-En Hsieh, Chun-Hao Wei, Cheng-Xin Xue, Hung-Wei Lin, Wei-Hsuan Tu, En-Jui Chang,
Kai-Taing Yang, Po-Heng Chen, Wei-Nan Liao, Li Lian Low, Chia-Da Lee, Allen-CL Lu, Jenwei
Liang, Chih-Chung Cheng, and Tzung-Hung Kang. 7.6 a 70.85-86.27tops/w pvt-insensitive 8b
word-wise acim with post-processing relaxation. In 2023 IEEE International Solid- State Circuits
Conference (ISSCC), pp. 136–138, 2023. doi: 10.1109/ISSCC42615.2023.10067335.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2704–2713, 2017.

Sambhav R. Jain, Albert Gural, Michael Wu, and Chris Dick. Trained uniform quantization for
accurate and efficient neural network inference on fixed-point hardware. ArXiv, abs/1903.08066,
2019.

Hongyang Jia, Murat Ozatay, Yinqi Tang, Hossein Valavi, Rakshit Pathak, Jinseok Lee, and Naveen
Verma. Scalable and programmable neural network inference accelerator based on in-memory
computing. IEEE Journal of Solid-State Circuits, 57(1):198–211, 2022. doi: 10.1109/JSSC.
2021.3119018.

Qing Jin, Zhiyu Chen, Jian Ren, Yanyu Li, Yanzhi Wang, and Kaiyuan Yang. Pim-qat: Neural
network quantization for processing-in-memory (pim) systems. arXiv preprint arXiv:2209.08617,
2022.

Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012, Yonghye Kwon, Kalen
Michael, TaoXie, Jiacong Fang, imyhxy, Lorna, Yifu Zeng, Colin Wong, Abhiram V, Diego
Montes, Zhiqiang Wang, Cristi Fati, Jebastin Nadar, Laughing, UnglvKitDe, Victor Sonck,
tkianai, yxNONG, Piotr Skalski, Adam Hogan, Dhruv Nair, Max Strobel, and Mrinal Jain. ultr-
alytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation, November 2022. URL
https://doi.org/10.5281/zenodo.7347926.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. In Proceedings of the 44th annual international symposium on computer
architecture, pp. 1–12, 2017.

Jinseok Lee, Hossein Valavi, Yinqi Tang, and Naveen Verma. Fully row/column-parallel in-memory
computing sram macro employing capacitor-based mixed-signal computation with 5-b inputs. In
2021 Symposium on VLSI Circuits, pp. 1–2, 2021a. doi: 10.23919/VLSICircuits52068.2021.
9492444.

Kyeongho Lee, Sungsoo Cheon, Joongho Jo, Woong Choi, and Jongsun Park. A charge-sharing
based 8t sram in-memory computing for edge dnn acceleration. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pp. 739–744, 2021b. doi: 10.1109/DAC18074.2021.9586103.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018.

11

https://doi.org/10.5281/zenodo.7347926

Under review as a conference paper at ICLR 2024

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling. Re-
laxed quantization for discretized neural networks. ArXiv, abs/1810.01875, 2018.

Johannes J A Moors. The meaning of kurtosis: Darlington reexamined. The American Statistician,
40(4):283–284, 1986.

Boris Murmann. ADC Performance Survey 1997-2023. [Online]. Available: https://github.
com/bmurmann/ADC-survey.

Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort. Overcoming
oscillations in quantization-aware training. ArXiv, abs/2203.11086, 2022.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

Sein Park, Yeongsang Jang, and Eunhyeok Park. Symmetry regularization and saturating nonlinear-
ity for robust quantization. In European Conference on Computer Vision, 2022.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Charbel Sakr and Naresh R. Shanbhag. Signal processing methods to enhance the energy efficiency
of in-memory computing architectures. IEEE Transactions on Signal Processing, 69:6462–6472,
2021. doi: 10.1109/TSP.2021.3130488.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Moran Shkolnik, Brian Chmiel, Ron Banner, Gil Shomron, Yury Nahshan, Alexander M. Bronstein,
and Uri C. Weiser. Robust quantization: One model to rule them all. ArXiv, abs/2002.07686,
2020.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deep-
speed and megatron to train megatron-turing nlg 530b, a large-scale generative language model.
arXiv preprint arXiv:2201.11990, 2022.

Hanbo Sun, Zhenhua Zhu, Yi Cai, Shulin Zeng, Kaizhong Qiu, Yu Wang, and Huazhong Yang.
Reliability-aware training and performance modeling for processing-in-memory systems. In 2021
26th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 847–852, 2021.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Hossein Valavi, Peter J. Ramadge, Eric Nestler, and Naveen Verma. A 64-tile 2.4-mb in-memory-
computing cnn accelerator employing charge-domain compute. IEEE Journal of Solid-State Cir-
cuits, 54(6):1789–1799, 2019. doi: 10.1109/JSSC.2019.2899730.

Naveen Verma, Hongyang Jia, Hossein Valavi, Yinqi Tang, Murat Ozatay, Lung-Yen Chen, Bonan
Zhang, and Peter Deaville. In-memory computing: Advances and prospects. IEEE Solid-State
Circuits Magazine, 11(3):43–55, 2019. doi: 10.1109/MSSC.2019.2922889.

Pablo Villalobos, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, Anson Ho, and Marius Hobbhahn.
Machine learning model sizes and the parameter gap. arXiv preprint arXiv:2207.02852, 2022.

Naigang Wang, Chi-Chun Charlie Liu, Swagath Venkataramani, Sanchari Sen, Chia-Yu Chen,
Kaoutar El Maghraoui, Vijayalakshmi Viji Srinivasan, and Leland Chang. Deep compression of
pre-trained transformer models. Advances in Neural Information Processing Systems, 35:14140–
14154, 2022.

12

https://github.com/bmurmann/ADC-survey
https://github.com/bmurmann/ADC-survey

Under review as a conference paper at ICLR 2024

Wei-Chen Wei, Chuan-Jia Jhang, Yi-Ren Chen, Cheng-Xin Xue, Syuan-Hao Sie, Jye-Luen Lee,
Hao-Wen Kuo, Chih-Cheng Lu, Meng-Fan Chang, and Kea-Tiong Tang. A relaxed quantiza-
tion training method for hardware limitations of resistive random access memory (reram)-based
computing-in-memory. IEEE Journal on Exploratory Solid-State Computational Devices and
Circuits, 6:45–52, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Shihui Yin, Zhewei Jiang, Jae-Sun Seo, and Mingoo Seok. Xnor-sram: In-memory computing
sram macro for binary/ternary deep neural networks. IEEE Journal of Solid-State Circuits, 55(6):
1733–1743, 2020. doi: 10.1109/JSSC.2019.2963616.

Bonan Zhang, Peter Deaville, and Naveen Verma. Statistical computing framework and demonstra-
tion for in-memory computing systems. In Proceedings of the 59th ACM/IEEE Design Automa-
tion Conference, DAC ’22, pp. 979–984, 2022. doi: 10.1145/3489517.3530557.

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. ArXiv, abs/1606.06160,
2016.

A IMPACT OF W-RESHAPE ON INFERENCE ACCURACY

In Section 4.1 of the paper, we introduce a weight reshaping method (W-reshape) to adjust weight
statistics to improve SQNR following ADC quantization. In this section, we study the impact of
W-reshape on inference accuracy. Specifically, we use ResNet50 as an example in this study. We
first visualize kurtosis with different λκ in Fig. 6a by computing the kurtosis for quantized weights
at each layer. As seen, increasing λκ reduces kurtosis, but saturates when λκ becomes too large.
We also observe that weights in the later layers are more resistive to the effects of kurtosis loss. As
shown in Fig. 6b, the blue dots represent the case when we apply a constant λκ to all layers, where
we can observe larger kurtosis in later layers. We can therefore adjust the kurtosis-loss coefficient
for these layers, applying 4× higher weighting, i.e.,

LQ = Lc + λκ

(∑J

l=1
κl + 4

∑L

l=J+1
κl

)
(11)

where L is the number of layers, and J is the boundary to split front layers and later layers. The
result is illustrated as orange dots in Fig. 6b, which show reduced kurtosis in later layers.

Table 4 and Table 5 show both the ResNet50 and MobileNetv2 accuracy of QAT (i.e., without ADC)
and the accuracy after incorporating ADC quantization under different strengths of the kurtosis loss.
As we can see, there are clearly a trade-off between QAT accuracy and the amount of kurtosis loss
applied, which therefore impacts the overall accuracy with ADC quantization. First, we can see that
small λκ provides slightly higher accuracy for QAT without ADC quantization. However, large kur-
tosis of the quantized-weight distribution leads to low variance of the IMC compute output (ADC
input). Consequently, accuracy after incorporating ADC quantization is low. An extremely large λκ

starts to degrade accuracy of QAT without ADC quantization, and thus limits the accuracy achiev-
able after incorporating ADC quantization, despite larger variance of the IMC compute output. This
can be further understood by plotting the distributions of quantized weights for each λκ, as shown
in Fig. 6c-6e. As seen, a large λκ leads to significant clipping error, eliminating almost all infor-
mation, and thus resulting in degraded accuracy. Therefore, in this work, we choose λκ = 0.0005
to maximize the variance of quantized weights with accuracy degradation less than 0.1% during
the QAT stage (i.e., without ADC quantization), but boosting > 0.3% accuracy when incorporating
ADC quantization.

13

Under review as a conference paper at ICLR 2024

lay
er

 1
lay

er
 2

lay
er

 3
lay

er
 4

lay
er

 5
lay

er
 6

lay
er

 7
lay

er
 8

lay
er

 9
lay

er
 10

lay
er

 11
lay

er
 12

lay
er

 13
lay

er
 14

lay
er

 15
lay

er
 16

lay
er

 17
lay

er
 18

lay
er

 19
lay

er
 20

lay
er

 21
lay

er
 22

lay
er

 23
lay

er
 24

lay
er

 25
lay

er
 26

lay
er

 27
lay

er
 28

lay
er

 29
lay

er
 30

lay
er

 31
lay

er
 32

lay
er

 33
lay

er
 34

lay
er

 35
lay

er
 36

lay
er

 37
lay

er
 38

lay
er

 39
lay

er
 40

lay
er

 41
lay

er
 42

lay
er

 43
lay

er
 44

lay
er

 45
lay

er
 46

lay
er

 47
lay

er
 48

Layer index

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ku
rto

sis

= 0.00005
= 0.0005
= 0.005

(a) Kurtosis of each layer.

lay
er

 1
lay

er
 2

lay
er

 3
lay

er
 4

lay
er

 5
lay

er
 6

lay
er

 7
lay

er
 8

lay
er

 9
lay

er
 10

lay
er

 11
lay

er
 12

lay
er

 13
lay

er
 14

lay
er

 15
lay

er
 16

lay
er

 17
lay

er
 18

lay
er

 19
lay

er
 20

lay
er

 21
lay

er
 22

lay
er

 23
lay

er
 24

lay
er

 25
lay

er
 26

lay
er

 27
lay

er
 28

lay
er

 29
lay

er
 30

lay
er

 31
lay

er
 32

lay
er

 33
lay

er
 34

lay
er

 35
lay

er
 36

lay
er

 37
lay

er
 38

lay
er

 39
lay

er
 40

lay
er

 41
lay

er
 42

lay
er

 43
lay

er
 44

lay
er

 45
lay

er
 46

lay
er

 47
lay

er
 48

Layer index

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ku
rto

sis

Constant for all layers
4X weight coefficient on later layers

(b) Comparison of different strategies to assign λκ to neural network layers.

6 3 0 3 60

1000

2000

3000

(c) λκ = 0.00005

6 3 0 3 60

1000

2000

(d) λκ = 0.0005

6 3 0 3 60

2000

4000

6000

(e) λκ = 0.005

Figure 6: Visualize the impact of W-reshape on quantized weights.

Table 4: ResNet accuracy with different λκ.
λκ 0 0.000025 0.00005 0.0005 0.005 0.01

Accuracy (w/o ADC) 76.35 76.36 76.32 76.31 76.15 75.51

Accuracy (w/ ADC) 75.91 75.92 76.05 76.27 75.77 75.02

14

Under review as a conference paper at ICLR 2024

Table 5: MobileNetv2 accuracy with different λκ.
λκ 0 0.00004 0.00065 0.0008 0.002 0.01

Accuracy (w/o ADC) 70.44 70.51 70.47 70.33 69.98 69.05

Accuracy (w/ ADC) 69.92 70.02 70.46 70.24 69.65 68.86

B IMC COMPATIBILITY

All techniques in RAOQ are compatible generally across IMC hardware. W-reshape and BitAug
simply impact the weight parameters derived from neural network training. A-shift is a little differ-
ent, in that it is affected by how activations are mapped for IMC computation after training, and here
we examine its impact from different IMC hardware approaches. Previous IMC works employ dif-
ferent ways of encoding multi-bit activations and weights. For example, Dong et al. (2020) follows
conventional 2’s complement format, which we refer to as 0/1 representation, corresponding to the
mathematical value of individual binary-weighted bits. However, other works like (Lee et al., 2021a)
represent a multi-bit number with individual binary-weighted bits taking mathematical values of -1
or 1, thus enabling multiplication simply by performing logical XNOR operations. We refer to this
format as -1/1 representation. These two types of number representations are illustrated in Fig. 7,
taking 2-bit as an example. In Section 4.1 of the paper, we show A-shift for 0/1 representation,
which is the default number representation in neural network training. In fact, our proposed A-shift
can be easily adapted to -1/1 representation as well. This is because these two representations can
be converted to each other via a linear transformation. Let x0/1 and x−1/1 denote the IMC input for
0/1 representation and -1/1 representation, respectively, then:

x−1/1 = 2 x0/1 + 1. (12)

Therefore, A-shift for -1/1 representation can be expressed as:

xs = 2

⌊
clip

(
x− β

sx
, 0, 2bx − 1

)⌉
− (2bx − 1) (13)

= 2 x−1/1 − (2bx − 1). (14)

We can see that while A-shift for 0/1 representation shifts the range from {n : n ∈ Z and n ≥
0 and n ≤ 2bx − 1} to {n : n ∈ Z and n ≥ −2bx−1 and n ≤ 2bx−1 − 1}, A-shift for -1/1
representation shifts to {2n+ 1 : n ∈ Z and n ≥ −2bx−1 and n ≤ 2bx−1 − 1}. Similar to the case
of 0/1 representation, the extra offset introduced by A-shift can be computed offline. In summary,
all of our proposed approaches are compatible with various IMC types.

Number Representation

-2 1 0

-1 1 1

0 0 0

1 0 1

(a) 0/1 representation.

Number Representation

-3 -1 -1

-1 -1 1

1 1 -1

3 1 1

(b) -1/1 representation.

𝟏𝟏 𝟑𝟑 −𝟏𝟏

−𝟑𝟑 𝟏𝟏 𝟏𝟏

𝟑𝟑𝟏𝟏−𝟏𝟏

⋯

⋯

⋯

⋯ ⋯ ⋯

−𝟑𝟑

𝟏𝟏

𝟑𝟑

⋯

𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝑵𝑵

Memory Array

⋯

+ + +

ADC

(c) IMC.

Figure 7: (a-b) Number representations of different IMCs. (c) Example IMC system using -1/1
representation.

C CHOOSING BIT PRECISION CANDIDATES FOR BITAUG

In Section 4.2 of the paper, we introduced BitAug, and proposed the optimal bit precision can-
didate set as containing 1-bit lower and 2-bit higher than the target ADC bit precision. In this

15

Under review as a conference paper at ICLR 2024

Table 6: Accuracy of different choices of candidate sets.

Model {} {−2,−1} {−1, 1} {+1,+2} {−1, 1, 2} {−2,−1,
+1,+2}

{−1,+1,
+2,+3}

MobileNetv2 68.45 66.65 68.98 68.70 69.92 69.11 69.41
ResNet50 74.47 71.12 73.37 73.42 75.83 74.77 75.21

BERT-base 85.45 82.13 85.41 86.88 86.92 86.04 86.58

section, we first explore the impact of different candidate sets. Table 6 shows the model accuracy of
different candidates using MobileNetV2, ResNet50, and BERT-base as examples, with 4-bit activa-
tions/weights and 8-bit ADCs. In order to see the more obvious effects from BitAug, we use ADCs
with k = 1, i.e., more quantization noise. Each candidate set is represented by the offset of element
values from the target ADC bit precision ba, e.g., {−2,−1} implies {ba − 2, ba − 1}. As seen, our
proposed candidate set achieves the highest accuracy.

Table 7: Evaluation accuracy by executing BitAug in
different modes.

Mode Sample single bit Run all candidates

Accuracy 69.92 69.04

We also explore the relationship between
the training complexity and the model ac-
curacy. Table 7 compares the accuracy
achieved by randomly sampling one ele-
ment from the candidate set as well as run-
ning all elements from the candidate set si-
multaneously. As seen, our proposed exe-
cution of BitAug not only has lower com-
putational complexity compared to running all bits at once, but demonstrates higher accuracy.

D IMPACT OF IMC CONFIGURATIONS

In this section, we explore our proposed RAOQ under different hardware configurations. First,
we choose ResNet50, MobileNetV2, and BERT-base for different IMC rows, corresponding to the
inner-product accumulation dimension. Table 8 shows the evaluation accuracy for different mem-
ory inner-product dimensions with 4-bit activations and weights, and 8-bit ADCs having k = 4,
demonstrating the consistently high accuracy. As we can see, our proposed RAOQ is robust across
different memory sizes, indicating promise for deriving substantial benefits from in-memory com-
puting. We can also see that different models slightly favor different memory dimensions. For
example, ResNet50 and MobileNetV2 degrade slightly for the case of 256 rows, while BERT-base
achieves the best accuracy in this case. This is related to the size of different neural network layers
and their mapping to IMC systems, which is out of the scope of this work.

Table 8: Evaluation accuracy of different memory inner-dimensions.
of rows 128 256 512 768 1024

ResNet50 76.33 76.28 76.27 76.31 76.24
MobileNetV2 70.53 70.40 70.46 70.45 70.43

BERT-base 87.45 87.81 87.67 87.59 87.32

Fig. 9 shows the performance of our proposed RAOQ with different values of k, i.e., the clipping
set by hardware designers. As observed, these models generally favor some clipping in exchange
for finer ADC quantization steps. Despite employing aggressive clipping with k = 8, these models
preserve relatively high accuracy. This can be attributed to the fact that even with the use of our
proposed W-reshape and A-shift, the distribution of ADC-input data still concentrates within a nar-
row portion of the entire ADC range. Therefore, ADC quantization error still dominates clipping
error. However, a significant degradation in model accuracy becomes apparent when k is set to 16,
even with the help of our proposed RAOQ. At this point, clipping errors start to dominant, leading
to considerable loss of information.

16

Under review as a conference paper at ICLR 2024

Table 9: Evaluation accuracy of different k.
k 1 2 4 8 16

ResNet50 75.84 76.21 76.27 76.13 75.67
MobileNetV2 69.92 70.36 70.46 70.48 69.47

BERT-base 86.74 86.97 87.67 87.28 6.62

E TRAINING DETAILS

In this section, we describe the models, datasets, and hyperparameter settings used in our exper-
iments. We implement our models in the PyTorch framework. The first and last layers are kept
in 8-bit, and are not mapped to the IMC. Mapping these layers to IMC provides marginal benefit,
since the first layers have few input channels and thus limited opportunity for row parallelism, while
the last layers have low data reuse, contributing a small number of total operations and restricting
amortization of the IMC weight-loading overheads. λb for BitAug is initialized to be 1, and drops
following a cosine scheduling for all models. We first perform QAT for these models based on
LSQ+ (Bhalgat et al., 2020) without ADC quantization. Then we perform our proposed RAOQ
with ADC quantization incorporated. The training overhead of A-shift and W-reshape is negligible.
BitAug increases the GPU memory usage by 14% and reduces the training speed by 1.5× during
the last training phase, due to the accumulation of gradients associated with different ADC bit pre-
cisions. In the following sections, we show the training curves for both QAT stage (without ADC
quantization) and the training stage with ADC quantization involved for each model, with 4-bit
activations and weights, and 8-bit ADCs as examples.

E.1 IMAGE CLASSIFICATION

We perform image classification using the ImageNet dataset (Deng et al., 2009), including 1000
classes of objects with over 1.2 million training images and 50,000 validation images. Our experi-
ments consist of models from the ResNet family and the MobileNet family, whose training settings
are discussed in detail as follows.

ResNet18. For 4-bit QAT (i.e., 4-bit activations and weights), we perform training for 90 epochs,
with a batch size of 256. We use SGD optimizer with a momentum of 0.9 and weight decay of
0.0001. The learning rate starts at 0.01 and gradually drops, following a cosine annealing scheduler.
λκ is set to 0.002. For 8-bit QAT, we follow the same optimizer and batch size as the 4-bit case. We
train for 30 epochs with an initial learning rate of 0.005. λκ is set to 0.0014. When ADC quantization
is added to the model, we perform another 30-epoch training, using the cosine annealing learning
rate scheduler with an initial learning rate of 0.004. The optimizer and batch size remain the same
as those used in the previous QAT phase. All experiments for ResNet18 are conducted on 2 Nvidia
A100 GPUs.

0 20 40 60 80
Epoch

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Ac
cu

ra
cy

 (%
)

(a) QAT without ADC

0 5 10 15 20 25 30
Epoch

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Ac
cu

ra
cy

 (%
)

(b) RAOQ with ADC

Figure 8: Training curves for ResNet18.

ResNet50. During the QAT phase, we train for 80 epochs, with batch size 256 for 4-bit activations
and weights. We use the same optimizer and learning rate scheduler as used for ResNet18. λκ

for ResNet50 is set to 0.0005. For 8-bit QAT, we maintain the same optimizer and learning rate

17

Under review as a conference paper at ICLR 2024

scheduler, but with a different initial learning rate of 0.002. We train for 40 epochs with a batch
size of 256. λκ is set to 0.00011. For the next stage incorporating ADC quantization, we train for
another 40 epochs with an initial learning rate of 0.002. The rest of the settings are the same as those
used for ResNet18. All experiments for ResNet50 are performed on 2 Nvidia A100 GPUs.

0 10 20 30 40 50 60 70 80
Epoch

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Ac
cu

ra
cy

 (%
)

(a) QAT without ADC

0 5 10 15 20 25 30 35 40
Epoch

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Ac
cu

ra
cy

 (%
)

(b) RAOQ with ADC

Figure 9: Training curves for ResNet50.

MobileNetV2. We perform 4-bit QAT for 70 epochs with batch size 256. We use SGD optimizer
with a momentum of 0.9 and weight decay of 0.00004. The initial learning rate is set to 0.01, with
a cosine annealing scheduler. λκ is set to 0.00065. For 8-bit QAT, we keep the same optimizer,
scheduler, λκ, and batch size, training for 40 epochs with an initial learning rate of 0.002. We then
perform another phase of training with ADC quantization added for 50 epochs. We use the same
optimizer, scheduler, and batch size as used in QAT. The learning rate starts at 0.004. The entire
training for MobileNetV2 is on 2 Nvidia A100 GPUs.

0 10 20 30 40 50 60 70
Epoch

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Ac
cu

ra
cy

 (%
)

(a) QAT without ADC

0 10 20 30 40 50
Epoch

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Ac
cu

ra
cy

 (%
)

(b) RAOQ with ADC

Figure 10: Training curves for MobileNetV2.

EfficientNet-lite0. The settings are the same as MobileNetV2, except that λκ is set to 0.002. We
perform training for 80 epochs with an initial learning rate of 0.01 for both 4-bit and 8-bit QAT.
When ADC quantization is added for the subsequent training phase, we use the same optimizer,
scheduler, and batch size, running for 50 epochs. The initial learning rate is set to 0.004. Once
again, we perform the experiments on 2 Nvidia A100 GPUs.

0 10 20 30 40 50 60 70 80
Epoch

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Ac
cu

ra
cy

 (%
)

(a) QAT without ADC

0 10 20 30 40 50
Epoch

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

(b) RAOQ with ADC

Figure 11: Training curves for EfficientNet-lite0.

18

Under review as a conference paper at ICLR 2024

E.2 OBJECT DETECTION

We perform object detection on the COCO dataset (Lin et al., 2014), including 118K images for
training and 5K images for validation. YOLOv5s is used to conduct the task.

YOLOv5s. We first retrain the floating point (FP) model by using hyperparameters indicated
in (Jocher et al., 2022). However, we remove the automatic mixed precision (AMP) features sup-
ported by PyTorch, since we would like to perform quantization to the target bit precisions later on.
Most of our hyperparameters remain the same as (Jocher et al., 2022) suggested, and we specify
those we customized for this work here. For 4-bit QAT, we train for 100 epochs with a batch size
of 64 with a weight decay of 0.0001. The initial learning rate is set to 0.004 following a cosine
scheduler, and the momentum for the optimizer is changed to 0.9 from 0.937 in (Jocher et al., 2022).
The 8-bit QAT runs for 80 epochs with the same optimizer, scheduler, and batch size as used for the
4-bit QAT, and an adjusted initial learning rate of 0.004. λκ is set to 0.0001. For training with ADC
quantization incorporated, we perform the training for 20 epochs for the 4-bit case, with the initial
learning rate of 0.0001 and weight decay of 0.00005. We train the 8-bit YOLO model with ADC
quantization for 90 epochs, using the same hyperparameters as used in the QAT phase except for the
batch size increased to 128. Our experiments are performed on 4 Nvidia A100 GPUs.

0 20 40 60 80 100
Epoch

10

20

30

m
AP

(a) QAT without ADC

0 5 10 15 20
Epoch

32.0

32.5

33.0
m

AP
 (%

)

(b) RAOQ with ADC

Figure 12: Training curves for YOLOv5s.

E.3 NATURAL LANGUAGE PROCESSING (NLP)

We perform the question-answering task on SQuAD 1.1 (Rajpurkar et al., 2016), a reading com-
prehension dataset, containing more than 100k question-and-answer pairs. We use BERT-base and
BERT-large to accomplish this task. As only a small number of activations in the BERT models
follow non-linear functions (i.e., GELU), we can apply A-shift to only these layers. Activations
from other layers are directly taken as the result of matrix multiplications. We find that forcing their
quantization to unsigned numbers causes accuracy degradation. The sequence length is kept at 384
for all training stages and all models. BMM2 layers in BERT are kept in 8-bit for fidelity reasons.
As suggested by (Wang et al., 2022), we first fine-tune the pre-trained FP BERT-base for 2 epochs
to adapt to the downstream SQuAD 1.1 dataset before any quantization gets involved. This is per-
formed on a single Nvidia A100 GPU with an initial learning rate of 0.00003 and a batch size of
12.

BERT-base. For this model, we use the same hyperparameters for 4-bit and 8-bit QAT. Specifically,
we use AdamW as the optimizer and a batch size of 16, running for 4 epochs. The initial learning rate
is kept at 0.00003, following a linear decay. The dropout rate is raised to 0.2. The training phase
with ADC quantization incorporated uses the same hyperparameters as used in the QAT phase.
Experiments for BERT-base with quantization are performed on 2 Nvidia A100 GPUs.

BERT-large. For 4-bit QAT, our optimizer, batch size, and learning rate scheduler is the same as
those used in BERT-base. We perform training for 8 epochs. We observe that 4-bit QAT is sensitive
to the change in dropout rate. Thus, we start with a dropout rate of 0.1 for the first epoch, and then
raise to 0.2 for the rest of the training. 8-bit QAT is performed for 4 epochs with a constant dropout
rate of 0.2. The rest of the hyperparameters are the same as 4-bit QAT. Regarding training with
ADC quantization, we use the same parameters as those used in BERT-base. Experiments in 8-bit
and 4-bit are performed on 4 and 2 Nvidia A100 GPUs, respectively.

19

Under review as a conference paper at ICLR 2024

0 5000 10000 15000 20000
Step

75

80

85

90

F1
 sc

or
e

(a) QAT without ADC

0 5000 10000 15000 20000
Step

86.0

86.5

87.0

87.5

F1
 sc

or
e

(b) RAOQ with ADC

Figure 13: Training curves for BERT-base.

0 10000 20000 30000 40000
Step

82

83

84

85

86

87

88

89

F1
 sc

or
e

(a) QAT without ADC

0 5000 10000 15000 20000
Step

85

86

87

88

89

F1
 sc

or
e

(b) RAOQ with ADC

Figure 14: Training curves for BERT-large.

E.4 CODE EXAMPLE

All models are implemented using PyToch framework. Specifically, we customized nn.Conv2d
and nn.Linear modules to incorporate quantization of activations/weights/ADCs, mapping to IMC
systems, and our proposed A-shift and W-reshape methods. The proposed BitAug technique is
integrated with top-level training. Fig. 15a-15b shows example code snippets for a convolution
layer with all quantization sources integrated and the implementation of our proposed approaches.
Fig. 15c illustrates a screenshot of the training log of MobileNetV2.

F ANALYSIS OF BITAUG

In this section, we provide further study of BitAug. We argue that BitAug can assist the training
process to avoid getting stuck in local minima. To demonstrate this, we consider a toy example, i.e.,
a single layer neural network with randomly generated input X ∈ RM×M and a randomly generated
weight W ∈ RM×N , followed by a simple spiking function g(x) = x2 − 60cos(x) (with global
minimum at x = 0), as shown in Fig. 16a. We define the loss function as:

L =
∑
i,j

g(XW)i,j (15)

To study the effects of BitAug, we introduce quantizers for the activations, weights, and outputs
of this network. Clearly, L gets its global minimum when all weights are zero. We first perform
training without BitAug. The statistics of the weight parameters from the last iteration are shown in
Fig. 16b with a standard deviation of 18.07. Rather than converging to zero, most of the weights
are concentrated at some negative value, which indicates a possible local minima. Comparatively,
the results after applying BitAug are shown in Fig. 16c with a standard deviation of 12.39. As seen,
it shows a stronger convergence towards zero compared to without BitAug, improving the ability to
escape from the local minima.

We further plot the loss surfaces at the pre-trained checkpoints for both cases (i.e., without and with
BitAug), illustrated in Fig. 16d and Fig. 16e. We observe a reduction of the number local minimum
after applying BitAug. Fig. 16f further confirms this observation, which shows the loss surface with

20

Under review as a conference paper at ICLR 2024

(a) (b)

(c)

Figure 15: (a) Code for Conv2d module with all sources of quantization, proposed W-reshape and
A-shift implemented. (b) Code for top-level training with the proposed BitAug implemented. (c)
Example training log for MobileNetV2.

21

Under review as a conference paper at ICLR 2024

6-bit ADC and with BitAug applied. Compared to Fig. 4d where BitAug is not present, we can see
a reduced number of local minimum.

40 20 0 20 40
0

500

1000

1500

2000

2500

(a)
20 0 200

1000

2000

3000

4000

(b)
20 10 0 10 20 300

1000

2000

3000

4000

5000

(c)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

46
.44

46.44

46
.3

8

46.38

46.38

46.
38

46.32

46.32

46.32
46.26

46.26

46.20

46.14

(d)
1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

52
.1

0

52.05

52.00

52.00

51.95

51
.95 51.95

51.90
51.9051.85

(e)
0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

2.12.
6

3.13.6

4.1

4.
6

4.6

4.
6

4.6

5.1

5.
1

5.
6

5.6

5.
6

5.6

6.1

6.1

6.1

6.6

6.67.1

(f)

Figure 16: (a) Illustration of g(·). (b-c) Weight distribution collected at the last iteration without and
with BitAug applied, respectively. (d-e) Loss surfaces starting from pre-trained checkpoints without
and with BitAug applied, separately. (f) Loss surface of a 6-bit ADC with BitAug applied.

G COMPARISON OF QAT METHODS

Table 10 shows a comparison between different QAT methods based on the BERT-base model with
4-bit weights and activations, and 8-bit ADCs. The first column shows the name of each tested QAT
method. The resting columns show the accuracy without ADC present, with ADC present but with-
out RAOQ techniques, with ADC present and with RAOQ applied, respectively. As seen, RAOQ
demonstrates a stable behavior on all of these methods, significantly restoring their performance to
baseline level.

Table 10: Comparison of different QAT methods.
Methods QAT without ADC QAT only RAOQ

LSQ+ Bhalgat et al. (2020) 87.75 82.43 87.67
LSQ Esser et al. (2019) 87.60 82.02 87.41

PACT+SAWB Choi et al. (2019) 87.49 80.88 87.34

H FRAMEWORK

Algorithm 1 summarizes our training framework, including the proposed A-shift, W-reshape, and
BitAug approaches. All implementations are done in PyTorch. Once the model is trained, it is
employed for inference using IMC, as shown in Fig. 17. During inference, we first transfer the input
data and model parameters to the IMC system. The output is then collected and sent back to the host
for further processing.

22

Under review as a conference paper at ICLR 2024

Algorithm 1 Training framework for RAOQ. J is the number of layers, QX(·) and QW (·) are
conventional quantizers for activations and weights respectively, QA(·) is the ADC quantizer defined
in Eq. 2, IQ and IA denote the total number of iterations for QAT and ADC phases separately.
Require: pre-trained floating-point model, input x
{Phase 1 (QAT)}
for i = 1 to IQ do
Lκ = 0
for j = 1 to J do

x← QX(x, bx)
w ← QW (w, bw)
y ← MVM(x,w)
Lκ ← Lκ + κ(w) # κ is defined in Eq. 4 for W-reshape

end for
▷ Compute cross-entropy loss Lc

LQ ← Lc + λκLκ

▷ Backprop based on LQ and update model parameters
end for
▷ Collect updated model parameters
{Phase 2 (ADC)}
for i = 1 to IA do

for j = 1 to J do
x← QX(x, bx)− 2bx−1 # for A-shift
w ← QW (w, bw)
y ← IMC(x,w) # IMC(·) indicates performing computation in IMC systems
y ← QA(y, ba)

end for
▷ Compute cross-entropy loss Lc(ba) based on ba and backprop
▷ Sample b̃a from candidate set B # prepare for BitAug
for j = 1 to J do

x← QX(x, bx)− 2bx−1

w ← QW (w, bw)
y ← IMC(x,w) # IMC(·) indicates performing computation in IMC systems
y ← QA(y, b̃a)

end for
▷ Compute cross-entropy loss Lc(̃ba) based on b̃a and backprop
LA ← Lc(ba) + λbLc(̃ba)
▷ Accumulate gradients from BitAug and update model parameters (refer eq...)

end for

Host IMC

Input data

Model parameters

Output data
Collect

Figure 17: Inference flow using IMC.

23

	Introduction
	Background and Related Works
	In-memory Computing (IMC)
	Quantization-aware Training (QAT)

	Analysis and Rationale from ADC Quantization
	Reshape and Adapt for Output Quantization (RAOQ)
	SQNR Enhancement
	SQNR Adaptation for Neural Networks

	Experiments
	Experimental Setup
	Results
	Comparison with Other Methods
	Ablation Study

	IMC System Performance
	Conclusion
	Reproducibility
	Impact of W-reshape on Inference Accuracy
	IMC Compatibility
	Choosing Bit precision Candidates for BitAug
	Impact of IMC Configurations
	Training Details
	Image Classification
	Object Detection
	Natural Language Processing (NLP)
	Code example

	Analysis of BitAug
	Comparison of QAT methods
	Framework

