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Sublinear-Time Opinion Estimation in the Friedkin–Johnsen
Model

Anonymous Author(s)

ABSTRACT
Online social networks are ubiquitous parts of modern societies

and the discussions that take place in these networks impact peo-

ple’s opinions on diverse topics, such as politics or vaccination.

One of the most popular models to formally describe this opinion

formation process is the Friedkin–Johnsen (FJ) model, which allows

to define measures, such as the polarization and the disagreement

of a network. Recently, Xu, Bao and Zhang (WebConf’21) showed

that all opinions and relevant measures in the FJ model can be ap-

proximated in near-linear time. However, their algorithm requires

the entire network and the opinions of all nodes as input. Given
the sheer size of online social networks and increasing data-access

limitations, obtaining the entirety of this data might however be

unrealistic in practice. In this paper, we show that node opinions

and all relevant measures, like polarization and disagreement, can

be efficiently approximated in time that is sublinear in the size of the
network. Particularly, our algorithms only require query-access to

the network and do not have to preprocess the graph. Furthermore,

we provide a formal connection between FJ opinion dynamics and

personalized PageRank, and show that in 𝑑-regular graphs, we can

deterministically approximate each node opinion by only looking

at a constant-size neighborhood, independently of the network size.

We also experimentally validate that our estimation algorithms

perform well in practice.
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KEYWORDS
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1 INTRODUCTION
Online social networks are used by billions of people on a daily basis

and they are central to today’s societies. However, recently they
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have come under scrutiny for allegedly creating echo chambers

or filter bubbles, and for increasing the polarization in societies.

Research on the (non-)existence of such phenomena is a highly

active topic and typically studied empirically [18, 19, 25].

Besides the empirical work, in recent years it has become popular

to study such questions also theoretically [6, 13, 23, 24, 32]. These

works typically rely on opinion formation models from sociology,

which provide an abstraction of how people form their opinions,

based on their inner beliefs and peer pressure from their neighbors.

A popular model in this line of work is the Friedkin–Johnsen (FJ)

model [16], which stipulates that every node has an innate opinion,
which is fixed and kept private, and an expressed opinion which is

updated over time and publicly known in the network.

More formally, the Friedkin–Johnsen opinion dynamics [16] are
as follows. Let 𝐺 = (𝑉 , 𝐸,𝑤) be an undirected, weighted graph.

Each node 𝑢 has an innate opinion 𝑠𝑢 ∈ [0, 1] and an expressed
opinion 𝑧𝑢 ∈ [0, 1]. While the innate opinions are fixed over time,

the expressed opinions are updated over time 𝑡 based on the update

rule

𝑧
(𝑡+1)
𝑢 =

𝑠𝑢 +
∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣𝑧

(𝑡 )
𝑢

1 +∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣

, (1)

i.e., the expressed opinions are weighted averages over a node’s

innate opinion and the expressed opinions of the node’s neighbors.

It is known that in the limit, for 𝑡 →∞, the equilibrium expressed

opinions converge to 𝑧∗ = (𝐼 + 𝐿)−1𝑠 . Here, 𝐼 is the identity matrix

and 𝐿 = 𝐷 −𝐴 denotes the Laplacian of𝐺 , where 𝐷 is the weighted

degree matrix and 𝐴 is the weighted adjacency matrix.

It is known that after convergence, the expressed opinions 𝑧∗ do
not reach a consensus in general. This allows to study the distri-

butions of opinions and to define measures, such as polarization
and disagreement. More concretely, the polarization P is given by

the variance of the expressed opinions, i.e., P =
∑
𝑢∈𝑉 (𝑧∗𝑢 − 𝑧)2,

where 𝑧 = 1

𝑛

∑
𝑢 𝑧
∗
𝑢 is the average expressed opinion. The disagree-

ment D measures the stress among neighboring nodes in network,

i.e., D =
∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣 (𝑧∗𝑢 − 𝑧∗𝑣)2. Similarly, we list and formally

define several other measures that are frequently used in the litera-

ture in Table 1; these are also the quantities for which we provide

efficient estimators in this paper.

In recent years a lot of attention has been devoted to study-

ing how these measures behave when the FJ model is undergoing

interventions, such as changes to the graph structure based on ab-

stractions of timeline algorithms [6, 13] or adversarial interference

with node opinions [11, 17]. The goal of these studies is to under-

stand how much the disagreement and the polarization increase or

decrease after changes to the model parameters.

To conduct these studies, it is necessary to simulate the FJ model

highly efficiently. However, when done naïvely, this takes cubic

time and is infeasible for large networks. Therefore, Xu, Bao and

Zhang [31] provided a near-linear time algorithm which approxi-

mates all relevant quantities up to a small additive error and showed

1
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Table 1: Definition of all measures and the running times of our algorithms for an 𝑛-node weighted graph𝐺 = (𝑉 , 𝐸,𝑤) and error
parameters 𝜖, 𝛿 > 0. Let 𝜅 be an upper bound on 𝜅 (𝐼 + 𝐿) and 𝑟 = 𝑂 (𝜅 log(𝜖−1𝑛𝜅 (max𝑢 𝑤𝑢 ))). Let ¯𝑑 denote the average (unweighted)
degree in 𝐺 . Our algorithms succeed with probability 1 − 𝛿 .

Measures Running Times
Name Definition Error Given Oracle for 𝑠𝑢 Given Oracle for 𝑧∗𝑢

Innate opinion 𝑠𝑢 ±𝜖 𝑂 (1) 𝑂 (min{𝑑𝑢 ,𝑤2

𝑢𝜖
−2

log𝛿−1})
Expressed opinion 𝑧∗𝑢 ±𝜖 𝑂 (𝜖−2𝑟3

log 𝑟 ) 𝑂 (1)
Average expressed opinion 𝑧 = 1

𝑛

∑
𝑢∈𝑉 𝑧∗𝑢 ±𝜖 𝑂 (𝜖−2

log𝛿−1) 𝑂 (𝜖−2
log𝛿−1)

Sum of user opinions S =
∑
𝑢∈𝑉 𝑧∗𝑢 ±𝜖𝑛 𝑂 (𝜖−2

log𝛿−1) 𝑂 (𝜖−2
log𝛿−1)

Polarization [24] P =
∑
𝑢∈𝑉 (𝑧∗𝑢 − 𝑧)2 ±𝜖𝑛 𝑂 (𝜖−4𝑟3

log𝛿−1
log 𝑟 ) 𝑂 (𝜖−2

log𝛿−1)
Disagreement [24] D =

∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣 (𝑧∗𝑢 − 𝑧∗𝑣)2 ±𝜖𝑛 𝑂 (𝜖−4𝑟3

log𝛿−1
log 𝑟 ) 𝑂 (𝜖−2 ¯𝑑 log

2 𝛿−1)
Internal conflict [12] I =

∑
𝑢∈𝑉 (𝑠𝑢 − 𝑧∗𝑢 )2 ±𝜖𝑛 𝑂 (𝜖−4𝑟3

log𝛿−1
log 𝑟 ) 𝑂 (𝜖−2 ¯𝑑 log

2 𝛿−1)
Controversy [12, 23] C =

∑
𝑢∈𝑉 (𝑧∗𝑢 )2 ±𝜖𝑛 𝑂 (𝜖−4𝑟3

log𝛿−1
log 𝑟 ) 𝑂 (𝜖−2

log𝛿−1)
Disagreement-controversy [24, 31] DC = D + C ±𝜖𝑛 𝑂 (𝜖−4𝑟3

log𝛿−1
log 𝑟 ) 𝑂 (𝜖−2 ¯𝑑 log

2 𝛿−1)
Squared Norm 𝑠 ∥𝑠 ∥2

2
±𝜖𝑛 𝑂 (𝜖−2

log𝛿−1) 𝑂 (𝜖−2 ¯𝑑 log
2 𝛿−1)

that their algorithm works very well in practice. However, their

algorithm requires the entire network and the opinions of all nodes
as input. However, given the sheer size of online social networks

and increasing data-access limitations, obtaining all of this data

might be unrealistic in practice.

Our contributions. In this paper, we raise the question whether

relevant quantities of the FJ model, such as node opinions, polariza-

tion and disagreement can be approximated, even if we do not know

the entire network and even if we only know a small number of

node opinions. We answer this question affirmatively by providing

sublinear-time algorithms, which only require query access to the

graph and the node opinions.

Specifically, we assume that we have query access to the graph,
which allows us to perform the following operations in time 𝑂 (1):
• sample a node from the graph uniformly at random,

• given a node 𝑢, return its weighted degree𝑤𝑢 and unweighted

degree 𝑑𝑢 ,

• given a node 𝑢, randomly sample a neighbor 𝑣 of 𝑢 with proba-

bility𝑤𝑢𝑣/𝑤𝑢 or 1/𝑑𝑢 .
Furthermore, we assume that we have access to an opinion oracle.
We consider two types of these oracles. Given a node 𝑢, the first

type returns its innate opinion 𝑠𝑢 in time𝑂 (1), and the second type
returns 𝑢’s equilibrium expressed opinion 𝑧∗𝑢 in time 𝑂 (1).

Under these assumptions, we summarize our results in Table 1.

In the table, we use 𝜖 > 0 and 𝛿 > 0 as error parameters, where

the approximation error of our algorithm depends on 𝜖 and our

algorithms succeed with probability 1 − 𝛿 . Note for both oracle

types, we can approximate the average opinion in the network in

time 𝑂 (𝜖−2
log𝛿−1).

Given oracle access to the expressed equilibrium opinions 𝑧∗𝑢 , we
can estimate the polarization within the same time. We can also

estimate the disagreement in time 𝑂 (𝜖−2 ¯𝑑 log
2 𝛿−1), where ¯𝑑 =

2 |𝐸 | /|𝑉 | is the average (unweighted) degree in 𝐺 . Observe that

since most real-world networks are very sparse,
¯𝑑 is small in prac-

tice and thus these quantities can be computed highly efficiently.

Note that these results also imply upper bounds on how many

node opinions one needs to know, in order to approximate these

quantities.

Given oracle access to the innate opinions, we can estimate the

polarization and disagreement in time poly(𝜖−1, 𝛿−1, log(𝑛), 𝜅 (𝐼 +
𝐿)), where 𝜅 (𝐼 + 𝐿) is the condition number of 𝐼 + 𝐿. If 𝜅 (𝐼 + 𝐿) is
small, this is sublinear in the graph size. In our experiments, we

also show that this algorithm is efficient in practice.

In conclusion, our results show that even when knowing only a
sublinear number of opinions in the network, we can approximate all
measures from Table 1.

Our two main technical contributions are as follows. (1) We

present the first formal connection between FJ opinion dynamics

and personalized PageRank. In a nutshell (see Section 2.1 for details),

we show that the FJ opinion dynamics for the expressed opinions 𝑧∗

can be equivalently described as a generalization of personalized

PageRank by replacing the standard teleport probability, which is

the same for all vertices, with some diagonal matrix that depends

on the weighted degree of each vertex. This connection allows

us to give new algorithms for approximating the node opinions

efficiently and, additionally, it allows us to show that in 𝑑-regular

graphs, every node’s expressed opinion 𝑧∗𝑢 is determined (up to

small error) by a small neighborhood whose size is independent of
the graph size. (2) We show that given oracle access to 𝑧∗𝑢 , we can
approximate 𝑠𝑢 up to error ±𝜖 or within a factor of 1±𝜖 under mild

conditions. To obtain this result, we generalize a recent technique

by Beretta and Tetek [5] for estimating weighted sums. That is, we

first sample a set of neighbors of 𝑢 such that each neighbor 𝑣 is

sampled independently with probability𝑤𝑢𝑣/𝑤𝑢 , and then we use

the number of collisions for each neighbor to define an estimator

that takes into account the expressed opinions.

We experimentally evaluate our algorithms on real-world datasets.

We show that expressed and innate opinions can be approximated

up to small additive error ±0.01. Additionally, we show that all

measures except disagreement can be efficiently estimated up to

a relative error of at most 4%. We also compare the running times

of our algorithms against the near-linear time algorithm by Xu

et al. [31]. We show that using our algorithms based on the con-

nection to personalize PageRank are at least a factor of 3.7 faster

than the baseline [31], while obtaining low approximation error.

Furthermore, our oracle-based algorithms which have oracle access

2
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to innate opinions 𝑠𝑢 need less than 0.01 seconds to output a given

node’s opinion they are typically at least a factor of 2 faster than the

baseline [31]. Even more interestingly, our algorithms which have

oracle access to the expressed opinions 𝑧∗𝑢 achieve error ±0.001 for
estimating node opinions and can approximate 10 000 node opin-

ions in less than one second, even on our largest graph with more

than 4 million nodes and more than 40 million edges. We make our

source code available in anonymized supplementary material [3].

1.1 Related Work
In recent years, online social networks and their timeline algorithms

have been blamed for increasing polarization and disagreement in

societies. To obtain a formal understanding of the phenomena, it

has become an active research area to combine opinion formation

models with abstractions of algorithmic interventions [6, 13, 32].

Themost popular model in this context is the the FJ model [16] since

it is highly amenable to analysis. Researchers studied interventions,

such as edge insertions or changes to node opinions, with the goal of

decreasing the polarization and disagreement in the networks [14,

23, 24, 32]. Other works also studied adversarial interventions [11,

17, 29] and viral content [28], as well as fundamental properties of

the FJ model [8, 27].

The studies above have in common that their experiments rely

on simulations of the FJ model. To do this efficiently, Xu, Bao and

Zhang [31] used Laplacian solvers to obtain a near-linear time

algorithm for simulating the FJ model. However, this algorithm

requires access to the entire graph and all innate node opinions.

Here, we show that even when we only have query access to the

graph and oracle access to the opinions, we can obtain efficient

simulations of the FJ model in theory and in practice.

To obtain our results, we use several subroutines from previous

works. Andoni, Krauthgamer and Pogrow gave sublinear-time algo-

rithm for solving linear systems [1]. Andersen, Chung and Lang [1]

proposed an algorithm that approximates a personalized PageRank

vector with a small residual vector, with running time independent

of the size of the graph. There also exist local algorithms for ap-

proximating the entries of the personalized PageRank vectors with

small error [21, 22].

Our algorithms for estimating the expressed opinions make

heavy use of random walks. Random walks have also been ex-

ploited in sublinear-time algorithms for approximating other local

graph centrality measures [9], stationary distributions [4, 10], esti-

mating effective resistances [2, 26] and for sampling vertices with

probability proportional to their degrees [15].

1.2 Notation
Throughout the paperwe let𝐺 = (𝑉 , 𝐸,𝑤) be a connected, weighted
and undirected graph with 𝑛 nodes and 𝑚 edges. The weighted

degree of a vertex𝑢 is given by𝑤𝑢 =
∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣 ; the unweighted

degree of 𝑢 is given by 𝑑𝑢 = |{𝑣 : (𝑢, 𝑣) ∈ 𝐸}|. For a graph 𝐺 , 𝐿 =

𝐷 − 𝐴 denotes the Laplacian of 𝐺 , where 𝐷 = diag(𝑤1, . . . ,𝑤𝑛)
is the weighted degree matrix and 𝐴 is the (weighted) adjacency

matrix such that 𝐴𝑢𝑣 = 𝑤𝑢𝑣 if (𝑢, 𝑣) ∈ 𝐸 and 0 otherwise. We write

𝐼 to denote the identity matrix. For a positive semidefinite matrix 𝑆 ,

its condition number 𝜅 (𝑆) is the ratio between the largest and the

Algorithm 1 Random walk-based algorithm for estimating 𝑧∗𝑢
Input: A graph 𝐺 = (𝑉 , 𝐸,𝑤), a vector 𝑠 ∈ [0, 1]𝑛 consisting of

the innate opinions of all vertices, an error parameter 𝜖 > 0

and an upper bound 𝜅 on 𝜅 (𝐼 + 𝐿)
1: 𝑟 ← log

1/𝜅 (2𝜖−1 (1 − 𝜅)−1𝑛1/2 (max𝑢 𝑤𝑢 )1/2)
2: ℓ ← 𝑂 (( 𝜖

2𝑟 )
−2

log 𝑟 )
3: Perform ℓ lazy random walks with timeout of length 𝑟 from 𝑢

4: for 𝑡 = 1, . . . , 𝑟 do
5: Let 𝑢

(𝑡 )
𝑖

denote the vertex of the 𝑖-th walk after 𝑡 steps

6: 𝑥
(𝑡 )
𝑢 ← 1

ℓ

∑ℓ
𝑖=1

𝑠
𝑢
(𝑡 )
𝑖

𝑤
𝑢
(𝑡 )
𝑖

, where 𝑠
𝑢
(𝑡 )
𝑖

is the innate opinion of

vertex 𝑢
(𝑡 )
𝑖

7: return 𝑧∗𝑢 ← 1

2

∑𝑟
𝑡=1

𝑥
(𝑡 )
𝑢

smallest non-zero eigenvalues of 𝑆 , which in turn are denoted by

𝜆max (𝑆) and 𝜆min (𝑆), respectively.
Due to space limitations, we present all missing proofs from the

main text in the appendix.

2 ACCESS TO ORACLE FOR INNATE OPINIONS
In this section, we assume that we have access to an oracle which,

given a node 𝑢, returns its innate opinion 𝑠𝑢 in time 𝑂 (1).

2.1 Estimating Expressed Opinions 𝑧∗𝑢
We start by showing that for each node 𝑢 we can estimate 𝑧∗𝑢 effi-

ciently.

Linear system solver. First, recall that 𝑧∗ = (𝐼 +𝐿)−1𝑠 . Now we

observe that 𝑧∗𝑢 can be estimated using a sublinear-time solver for

linear systems [2], which performs a given number of short random

walks. We present the pseudocode in Algorithm 1 and details of the

random walks in Appendix A.2.

Proposition 1. Let 𝑢 ∈ 𝑉 and 𝜖 > 0. Let 𝜅 be an upper bound on
𝜅 (𝐼 + 𝐿). Algorithm 1 returns a value 𝑧∗𝑢 such that

��𝑧∗𝑢 − 𝑧∗𝑢 �� ≤ 𝜖 with
probability 1 − 1

𝑟 for 𝑟 = 𝑂 (𝜅 log(𝜖−1𝑛𝜅 (max𝑢 𝑤𝑢 ))). Furthermore,
𝑧∗𝑢 is computed in time 𝑂 (𝜖−2𝑟3

log 𝑟 ) and using the same number
of queries to 𝑠 .

Note that the running time of the algorithm depends on an upper

bound of the condition number𝜅 (𝐼 +𝐿), which can be small in many

real networks. For example, any graph with maximum degree Δ
satisfies 𝜆max (𝐿) ≤ 2Δ, which gives that 𝜅 (𝐼 +𝐿) ≤ 2Δ+1 byWeyl’s

inequality. Furthermore, it is known that 𝜆min (𝐼 +𝐿) ≥ 𝜆min (𝐼 ) = 1.

Thus, for such graphs, 𝜅 (𝐼 + 𝐿) ≤ 𝑂 (Δ), which is sublinear in 𝑛 as

long as Δ = 𝑜 (𝑛). We will also practically evaluate this algorithm

in our experiments and show that it efficiently computes accurate

estimates of 𝑧∗𝑢 .
Relationship to personalized PageRank. Next, we provide a

formal connection between personalized PageRank and FJ opinion

dynamics.

First, in personalized PageRank, we are given a teleport proba-

bility parameter 𝛼 ∈ (0, 1] and a vector 𝑠 ∈ [0, 1]𝑛 corresponding

to a probability distribution (i.e.,

∑
𝑢 𝑠𝑢 = 1). Now, the personal-

ized PageRank is the column-vector pr(𝛼, 𝑠) which is the unique

3
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solution to the equation

pr(𝛼, 𝑠) = 𝛼𝑠 + (1 − 𝛼) pr(𝛼, 𝑠)𝑊,

where𝑊 = 𝐼+𝐷−1𝐴
2

is the lazy random walk matrix. We can prove

the following proposition.

Proposition 2. The FJ expressed equilibrium opinions 𝑧∗ are the
unique solution to the equation 𝑧∗ = 𝑀𝑠 + (𝐼 −𝑀)𝐷−1𝐴𝑧∗, where
𝑀 = (𝐼 + 𝐷)−1.

Proof. First, observe that the expressed equilibrium opinions 𝑧∗

must satisfy the update rule in Equation (1) with equality. Thus, by

expressing the update rule in matrix notation, we obtain that 𝑧∗ is
the unique solution to the equation 𝑧∗ = (𝐼 + 𝐷)−1 (𝑠 +𝐴𝑧∗).

Next, set𝑀 = (𝐼 + 𝐷)−1
. Then a calculation reveals that:

𝑀 = (𝐼 + 𝐷)−1 = ((𝐼 + 𝐷−1)𝐷)−1 = (𝐼 + 𝐷−1)−1𝐷−1 = (𝐼 −𝑀)𝐷−1,

where the last equality follows from observing that 𝐼 + 𝐷−1
and

𝐼 −𝑀 are both diagonal matrices and then verifying that for each

entry it holds that

[
(𝐼 + 𝐷−1)−1

]
𝑖𝑖
= [𝐼 −𝑀]𝑖𝑖 .

By combining the last two equations we get the statement from

the lemma. □

Comparing the two equations for pr(𝛼, 𝑠) and 𝑧∗, we observe that
there is close relationship if we identify𝑀 with 𝛼 and𝐷−1𝐴with𝑊 .

Thus, while personalized PageRank uses lazy random walks (based

on𝑊 ), the FJ opinion dynamics use vanilla random walks (based on

𝐷−1𝐴). Additionally, while personalized PageRank weights every

entry 𝑢 in 𝑠 with a factor of 𝛼 , the FJ opinion dynamics essentially

reweight each entry𝑢 with a factor of
1

1+𝑤𝑢
. Note that if all vertices

𝑢 satisfy that 𝑤𝑢 = 𝑑 , then 𝛼 = 1

1+𝑑 and the FJ opinion dynamics

are essentially a generalization of personalized PageRank.

We use this connection between the FJ opinion dynamics and

personalized PageRank to obtain a novel sublinear-time algorithm

to estimate entries 𝑧∗𝑢 . More concretely, we consider weighted 𝑑-

regular graphs and show that Algorithm 2 can estimate entries 𝑧∗𝑢 .
We show that the FJ equilibrium opinions can be approximated by
repeatedly approximating personalized PageRank vectors. In the algo-

rithm, we write ®0 to denote the 0s-vector, 1𝑖 to denote the length-𝑛

indicator vector which in position 𝑖 is 1 and all other entries are 0

and ∥𝑟 ∥1 =
∑
𝑢 |𝑟 (𝑢) | to denote the 1-norm of a vector. The algo-

rithm invokes the well-known Push operation for approximating

the personalized PageRank in [1] as a subroutine, and interactively

updates the maintained vector 𝑝 until a very small probability mass

is left in the corresponding residual vector 𝑟 . We present the details

of the algorithm from [1] in Appendix A.3. For Algorithm 2 we

obtain the following guarantees.

Theorem 3. Let 𝑑 ∈ N be an integer. Suppose𝐺 is a 𝑑-regular graph
and 𝜖 ∈ (0, 1). Algorithm 2 returns an estimate 𝑧′𝑢 of 𝑧∗𝑢 such that��𝑧′𝑢 − 𝑧∗𝑢 �� ≤ 𝜖 in time (𝑑/𝜖)𝑂 (𝑑 log(1/𝜖 ) ) .

Observe that the running time is independent of the graph size 𝑛
for any constant 𝜖 > 0 and 𝑑 = 𝑂 (1). This is in sharp contrast to Al-

gorithm 1 from Proposition 1, whose running time is Ω(log𝑛) even
for 𝑑-regular graphs (for which 𝜅 = 𝑂 (1)). Additionally, observe
that Algorithm 2 is completely deterministic, even though it is a

sublinear-time algorithm. Together, the above algorithm implies

that in𝑑-bounded graphs, every node’s opinion is determined (up to

Algorithm 2 Personalized PageRank-based algorithm for estimat-

ing 𝑧∗𝑢 in 𝑑-regular graphs

Input: A graph 𝐺 = (𝑉 , 𝐸,𝑤), a vector 𝑠 ∈ [0, 1]𝑛 consisting of

the innate opinions of all vertices and an error parameter 𝜖 > 0

1: 𝑝 ← ®0 and 𝑟 ← 1𝑢

2: while ∥𝑟 ∥1 > 𝜖 do
3: for all 𝑖 with 𝑟 (𝑖) ≠ 0 do
4: Run the local personalized PageRank algorithm from [1]

(see Algorithm 3 in Appendix A.3) for 1𝑖 to get 𝑝 (𝑖 ) and
𝑟 (𝑖 )

5: 𝑝 ← 𝑝 +∑
𝑖 𝑟 (𝑖)𝑝 (𝑖 )

6: 𝑟 ← ∑
𝑖 𝑟 (𝑖)𝑟 (𝑖 )

7: return 𝑧′𝑢 ← 𝑝⊺𝑠

a small error) by the opinions of a constant-size neighborhood. We

believe that this an interesting insight into the FJ opinion dynamics.

2.1.1 Proof Sketch of Theorem 3. Now we give the proof of The-

orem 3. Let𝑊𝑠 = 𝐷−1𝐴. Then we define pr
′ (𝛼, 𝑠) as the unique

solution of the equation pr
′ (𝛼, 𝑠) = 𝛼𝑠 + (1 − 𝛼)𝑊𝑠 pr

′ (𝛼, 𝑠). Note
that this differs from the classic personalized PageRank only by

the fact that we use (non-lazy) random walks (based on𝑊𝑠 ) rather

than lazy random walks (based on𝑊 = 1

2
(𝐼 +𝐷−1𝐴)). Note that by

letting 𝑅′ = 𝛼
∑∞
𝑖=0
(1 − 𝛼)𝑖𝑊 𝑖

𝑠 , we have that pr
′ (𝛼, 𝑠) = 𝑅′𝑠 . That

is,

pr
′ (𝛼, 𝑠) = 𝛼

∞∑︁
𝑖=0

(1 − 𝛼)𝑖 (𝑊 𝑖
𝑠 𝑠) . (2)

Furthermore, we get that

pr
′ (𝛼, 𝑠) = 𝑅′𝑠 = 𝛼𝑠 + (1 − 𝛼)𝑅′𝑊𝑠𝑠

= 𝛼𝑠 + (1 − 𝛼)𝑅′ pr
′ (𝛼,𝑊𝑠𝑠).

Theorem 3 follows the lemmas below, whose proofs are deferred

to Appendix A.3.

Lemma 4. It holds that 𝑧∗𝑢 = pr
′ (𝛼,1𝑢 )⊺𝑠 , where 𝛼 = 1

𝑑+1 , and
𝑠 ∈ [0, 1]𝑛 is the vector consisting of the innate opinions of all vertices.
When Algorithm 2 finishes, it holds that 𝑝 + pr

′ (𝛼, 𝑟 ) = pr
′ (𝛼,1𝑢 ).

Thus, it holds that

𝑧∗𝑢 = pr
′ (𝛼,1𝑢 )⊺𝑠 = 𝑝⊺𝑠 + pr

′ (𝛼, 𝑟 )⊺𝑠 .

The following gives guarantees on the approximation error.

Lemma 5. Let 𝑝 be the vector in Step (7) in Algorithm 2 and 𝑠 be the
vector consisting of the innate opinions of all vertices. It holds that��𝑧∗𝑢 − 𝑝⊺𝑠 �� ≤ 𝜖 .

The running time of the algorithm is given in the following

lemma and corollary.

Lemma 6. After each iteration of the while-loop in Algorithm 2,
∥𝑟 ∥1 decreases by a factor of at least 1

𝑑+1 and the number of non-zero
entries in 𝑟 increases by a factor of 𝑂 (𝑑/𝜖).

Corollary 7. We get that ∥𝑟 ∥1 ≤ 𝜖 in time (𝑑/𝜖)𝑂 (𝑑 log(1/𝜖 ) ) , which
is independent of 𝑛.

4
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2.2 Estimating Measures
Now we give a short sketch of how to estimate the measures from

Table 1, assuming oracle-access to the innate opinions 𝑠 . We present

all the details in Appendix A.7.

First, for computing the sum of expressed opinions we use the

well-known fact that S =
∑
𝑢∈𝑉 𝑧∗𝑢 =

∑
𝑢∈𝑉 𝑠𝑢 . Since we have

oracle-access to 𝑠 , we can thus focus on estimating

∑
𝑢∈𝑉 𝑠𝑢 which

can be done by randomly sampling 𝑂 (𝜖−2
log𝛿−1) vertices𝑈 ′ and

then returning the estimate
𝑛
|𝑈 ′ |

∑
𝑢∈𝑈 ′ 𝑠𝑢 . Then a standard argu-

ment for estimating sums with bounded entries gives that our ap-

proximation error is ±𝜖 . The quantities 𝑧 and ∥𝑠 ∥2
2
can be estimated

similarly.

For all other quantities, we require access to some expressed

equilibrium opinions 𝑧∗𝑢 . We obtain these opinions using Propo-

sition 1 and then our error bounds follow a similar argument as

above. However, in our analysis, we have to ensure that the er-

ror in our estimates for 𝑧∗𝑢 does not compound and we have to

take a union bound to ensure that all estimates 𝑧∗𝑢 satisfy the er-

ror guarantees from the proposition. Let us take the algorithm

for estimating C =
∑
𝑢∈𝑉 (𝑧∗𝑢 )2 as an example. We set 𝜖1 = 𝜖

6
,

𝑟1 = 𝑂 (𝜅 log(𝜖−1

1
𝑛𝜅 (max𝑢 𝑤𝑢 ))), 𝛿1 = 1

𝑟1

= 𝛿
2𝐶

, 𝜖2 = 𝜖
2
, 𝛿2 = 𝛿

2

and 𝐶 = 𝜖−2

2
log𝛿−1

2
. Our algorithm first samples 𝐶 vertices (i.e.,

𝑖1, . . . , 𝑖𝐶 ) from 𝑉 uniformly at random, and obtains 𝑧∗
𝑖1
, . . . , 𝑧∗

𝑖𝐶
(using Proposition 1 with error parameter 𝜖1 and success probabil-

ity 1 − 𝛿1). Then it returns
𝑛
𝐶

∑𝐶
𝑗=1
(𝑧∗
𝑖 𝑗
)2. We can then show that

the estimate approximates C with additive error ±𝜖𝑛 with success

probability 1 − 𝛿 .

3 ACCESS TO ORACLE FOR EXPRESSED
OPINIONS

In this section, we assume that we have access to an oracle which,

given a vertex 𝑢, returns its expressed opinion 𝑧∗𝑢 in time 𝑂 (1).

3.1 Estimating Innate Opinions 𝑠𝑢
Next, our goal is to estimate entries 𝑠𝑢 . To this end, note that 𝑠 =

(𝐼 +𝐿)𝑧∗ and, hence, we have that 𝑠𝑢 = (1+𝑤𝑢 )𝑧∗𝑢−
∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣𝑧

∗
𝑣 .

Observe that by our assumptions, we can compute the quantity

(1 + 𝑤𝑢 )𝑧∗𝑢 exactly using our oracle access. Therefore, our main

challenge in this subsection is to efficiently approximate 𝑆𝑢 :=∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣𝑧

∗
𝑣 .

In the following lemma, we give the guarantees for an algorithm

which, if the unweighted degree 𝑑𝑢 of 𝑢 is small, computes 𝑆𝑢
exactly in time 𝑂 (𝑑𝑢 ). Otherwise, we sample a set 𝑈 ′ consisting of

𝑂 (𝑤2

𝑢𝜖
−2) neighbors of 𝑢 which were sampled with probabilities

𝑤𝑢𝑣

𝑤𝑢
and show that the sum

𝑤𝑢

|𝑈 ′ |
∑

𝑣∈𝑈 ′ 𝑧
∗
𝑣 is an estimator for 𝑆𝑢

and has error ±𝜖 with probability 1 − 𝛿 .

Lemma 8. Let 𝜖, 𝛿 ∈ (0, 1). Then with probability at least 1 −
𝛿 we can return an estimate of 𝑠𝑢 with additive error ±𝜖 in time
𝑂 (min{𝑑𝑢 ,𝑤2

𝑢𝜖
−2

log𝛿−1}).

We note that the running time of this lemma is highly efficient in

practice, since in real-world graphs most vertices have very small

degrees.

Next, we show that if we make some mild assumptions on the

expressed opinions 𝑧∗𝑢 , then we can significantly reduce the time

required to estimate 𝑆𝑢 . In particular, for unweighted graphs we

obtain almost a quadratic improvement for the second term of the

running time. Furthermore, we even obtain a multiplicative error
for estimating 𝑆𝑢 .

Proposition 9. Let 𝜖, 𝛿 ∈ (0, 1) and set 𝑆𝑢 =
∑
(𝑢,𝑣) ∈𝐸 𝑧

∗
𝑣𝑤𝑢𝑣 . Sup-

pose 𝑧∗𝑢 ∈ [𝑐, 1) where 𝑐 ∈ (0, 1) is a constant. Then with probability
at least 1−𝛿 we can return an estimate of 𝑆𝑢 with (1±𝜖)-multiplicative
error in time 𝑂 (min{𝑑𝑢 , 𝑑1/2

𝑢 𝜖−1
log𝛿−1}).

This result is obtained by generalizing a result from Beretta and

Tetek [5] and considering a slightly more complicated estimator

than above. The new estimator also samples a (multi-)set of neigh-

bors 𝑈 ′ of 𝑢, but it additionally takes into account collisions. Let
𝑘 = 𝑂 (𝑑1/2

𝑢 𝜖−1
log𝛿−1) and let 𝑣1, . . . , 𝑣𝑘 be 𝑘 vertices picked inde-

pendently at random and with replacement from all neighbors 𝑣

of 𝑢 with probabilities proportional to their weights, i.e.,𝑤𝑢𝑣/𝑤𝑢 .

Let 𝑇 be the set of sampled vertices (i.e., while 𝑈 ′ may contain

some vertices multiple times, 𝑇 does not). For each 𝑡 ∈ 𝑇 define

𝑐𝑡 to be the number of times vertex 𝑡 is sampled. Our estimator in

Proposition 9 is defined as follows:

𝑆𝑢 = 𝑤2

𝑢 ·
(
𝑘

2

)−1

·
∑︁
𝑡 ∈𝑇

(𝑐𝑡
2

)
· 𝑧∗𝑡

𝑤𝑢𝑡
.

Using the proposition above, we obtain the following corollary

for estimating 𝑠𝑢 highly efficiently, even with multiplicative error.

Corollary 10. Let 𝜖, 𝛿 ∈ (0, 1) and set 𝑆𝑢 =
∑
(𝑢,𝑣) ∈𝐸 𝑧

∗
𝑣𝑤𝑢𝑣 . Sup-

pose 𝑧∗𝑢 ∈ [𝑐, 1) where 𝑐 ∈ (0, 1) is a constant. If 𝑆𝑢 ≤ 1, then with
probability at least 1 − 𝛿 we can return an estimate of 𝑠𝑢 with addi-
tive error ±𝜖 in time𝑂 (min{𝑑𝑢 , 𝑑1/2

𝑢 𝜖−1
log𝛿−1}). If 𝑆𝑢 ≤ (1+𝑤𝑢 )𝑧∗𝑢

2
,

then with probability at least 1−𝛿 we can return an estimate of 𝑠𝑢 with
(1 ± 𝜖)-multiplicative error in time 𝑂 (min{𝑑𝑢 , 𝑑1/2

𝑢 𝜖−1
log𝛿−1}).

3.2 Estimating Measures
Now we give a short sketch of how to estimate the measures from

Table 1, assuming oracle-access to the expressed opinions 𝑧∗. See
Appendix A.11 for details.

First, we note that we can calculate the sum of expressed opin-

ions S, the polarization P and the controversy C in the same way

as approximating S in Section 2.2.

For all other quantities, we require access to some innate opin-

ions 𝑠𝑢 , which we obtain via Lemma 11. This allows us to estimate

all other quantities.

Lemma 11. Let 𝜖, 𝛿 ∈ (0, 1) and 𝐶 ∈ N. Then there exists an algo-
rithm which in time𝑂 (𝐶 ¯𝑑 log𝛿−1) samples a (multi-)set of vertices 𝑆
uniformly at random from 𝑉 with |𝑆 | = 𝐶 and it returns estimated
innate opinions 𝑠𝑢 for all 𝑢 ∈ 𝑆 such that with probability 1 − 𝛿 it
holds that |𝑠𝑢 − 𝑠𝑢 | ≤ 𝜖 for all 𝑢 ∈ 𝑆 .

Proof. Step 1: We introduce an opinion sampler which samples

a (multi-)set of vertices 𝑆 uniformly at random from𝑉 with |𝑆 | = 𝐶 .

With probability at least 9/10 it returns estimated innate opinions 𝑠𝑢
such that |𝑠𝑢 − 𝑠𝑢 | ≤ 𝜖 for all 𝑢 ∈ 𝑆 and its running time is at

most 10𝑇 , where 𝑇 = 𝑂 (𝐶 ¯𝑑) as defined below.

The opinion sampler samples 𝐶 vertices 𝑖1, . . . , 𝑖𝐶 from 𝑉 uni-

formly at random, and obtains 𝑠𝑖1 , . . . , 𝑠𝑖𝐶 using Lemma 8 with

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

error parameter 𝜖 and success probability 1− 𝛿
2𝐶

. Observe that by a

union bound it holds that |𝑠𝑢 − 𝑠𝑢 | ≤ 𝜖 for all𝑢 ∈ 𝑆 with probability

1 −𝐶 · 𝛿
2𝐶

= 1 − 𝛿
2
.

Next, consider the running time of the opinion sampler. Accord-

ing to Lemma 8, for each 𝑖 𝑗 ∈ 𝑆 , estimating 𝑠𝑖 𝑗 takes time 𝑂 (𝑑𝑖 𝑗 ).
Note that for all 𝑗 ∈ [𝐶], Pr

(
𝑖 𝑗 = 𝑠

)
= 1

𝑛 where 𝑠 ∈ 𝑉 , and thus the

expected time to compute 𝑠𝑖 𝑗 is E
[
𝑑𝑖 𝑗

]
= 1

𝑛

∑
𝑠∈𝑉 𝑑𝑠 = ¯𝑑 . Hence the

expected running time of the opinion sampler is 𝑇 := 𝑂 (𝐶 ¯𝑑). Now
Markov’s inequality implies that the probability that the opinion

sampler has running time at most 10𝑇 is at least 9/10.

Step 2:We repeatedly use the opinion sampler to prove the lemma.

We do this as follows. We run the opinion sampler from above and

if it finishes within time 10𝑇 , we return the estimated opinions

it computed. Otherwise, we restart this procedure and re-run the

opinion sampler from scratch. We perform the restarting procedure

at most 𝜏 times. Note that this procedure never runs for more than

𝑂 (𝜏𝑇 ) time.

Observe that all 𝜏 runs of the opinion sampler require more than

10𝑇 time with probability at most 0.1𝜏 ≤ 𝛿
2
for 𝜏 = 𝑂 (log𝛿−1).

Furthermore, if the opinion sampler finishes then with probability

at least 1 − 𝛿
2
all estimated innate opinions satisfy the guarantees

from the lemma. Plugging in the parameters from above, we get

that the algorithm deterministically runs in time𝑂 (𝐶 ¯𝑑 log𝛿−1) and
by a union bound it satisfies the guarantees for the innate opinions

with probability at least 1 − 𝛿 . □

Let us take the algorithm for estimating ∥𝑠 ∥2
2
=

∑
𝑢∈𝑉 𝑠2

𝑢 as an ex-

ample. We set 𝜖1 = 𝜖
6
, 𝛿1 = 𝛿

2
, 𝜖2 = 𝜖

2
, 𝛿2 = 𝛿

2
and𝐶 = 𝜖−2

2
log𝛿−1

2
=

𝑂 (𝜖−2
log𝛿−1). According to Lemma 11, in time𝑂 (𝐶 ¯𝑑 log𝛿−1), we

can sample a (multi-)set of vertices 𝑆 = {𝑖1, 𝑖2, . . . , 𝑖𝐶 } uniformly

at random from 𝑉 and obtain estimated innate opinions 𝑠𝑢 for all

𝑢 ∈ 𝑆 such that with probability 1 − 𝛿1 it holds that |𝑠𝑢 − 𝑠𝑢 | ≤ 𝜖1

for all 𝑢 ∈ 𝑆 . We return
𝑛
𝐶

∑
𝑢∈𝑆 𝑠

2

𝑢 . Obviously, the running time

is 𝑂 (𝐶 ¯𝑑 log𝛿−1) = 𝑂 (𝜖−2 ¯𝑑 log
2 𝛿−1). The error guarantees are

shown in Appendix A.11.

4 EXPERIMENTS
We experimentally evaluate our algorithms. We run our experi-

ments on a MacBook Pro with a 2 GHz Quad-Core Intel Core i5

and 16 GB RAM. We implement Algorithm 1 in C++11 and perform

the random walks in parallel; all other algorithms are implemented

in Python. Our source code is available online [3].

The focus of our experiments is to assess the approximation

quality and the running times of our algorithms. As a baseline, we

compare against the near-linear time algorithm by Xu et al. [31]

which is available on GitHub [30]. We run their algorithm with

𝜖 = 10
−6

and 100 iterations. We do not compare against an exact

baseline, since the experiments in [31] show that their algorithm

has a negligible error in practice and since the exact computation

is infeasible for our large datasets (in the experiments of [31], their

algorithm’s relative error is less than 10
−6

and matrix inversion

does not scale to graphs with more than 56 000 nodes).

We use real-world datasets from KONECT [20] and report their

basic statistics in Table 2. Since the datasets only consist of un-

weighted graphs and do not contain node opinions, we generate

the innate opinions synthetically using (1) a uniform distribution,

Table 2: Statistics of our datasets. Here, 𝑛 and𝑚 denote the
number of nodes and edges in the largest connected compo-
nents of the graph.

Dataset Statistics

𝑛 𝑚 ¯𝑑 �̃� (𝐼 + 𝐿)
GooglePlus 201 949 1 133 956 5.6 1 792.0

TwitterFollows 404 719 713 319 1.8 628.3

YouTube 1 134 890 2 987 624 2.6 28 756.0

Pokec 1 632 803 22 301 964 13.7 14 856.0

Flixster 2 523 386 7 918 801 3.1 1 476.1

Flickr 2 173 370 22 729 227 10.5 27 939.0

LiveJournal 4 843 953 42 845 684 8.8 20 335.0

(2) a scaled version of the exponential distribution and (3) opinions

based on the second eigenvector of 𝐿. In the main text, we present

our results for opinions from the uniform distribution, where we

assigned the innate opinions 𝑠 uniformly at random in [0, 1]. We

present our results for other opinion distributions in Appendix B.

Evaluation of PageRank-style update rule.We start by evalu-

ating the usefulness of our PageRank-style update rule from Propo-

sition 2. To this end, we implement an algorithm which initializes

a vector in which all entries are set to the average of the node opin-

ions
1

𝑛

∑
𝑢 𝑠𝑢 and then we apply the update rule from the proposi-

tion for 50 iterations.

In Table 3 we report the running times of the baseline [31] which

uses a Laplacian solver. We also report the running time and the av-

erage error ∥𝑧∗−𝑧∗∥2/𝑛, where 𝑧 is the output of our PageRank-style
algorithm and 𝑧 is the output of [31]. We find that the PageRank-

style algorithm is at least 3.7 times faster than the baseline and its

errors are very small. Furthermore, in additional experiments (not

reported here) we find that the error decays exponentially in the

number of iterations of applying the update rule.

Experimental setup for oracle-based algorithms. Next, we
evaluate our oracle-based algorithms which will be the main focus

of this section. In our experiments, we sample 10 000 vertices uni-

formly at random. For each vertex, we estimate either the expressed

opinion 𝑧∗𝑢 or the innate opinion 𝑠𝑢 . Based on these estimates, we

approximate the measures from Table 1; we do not report 𝑧 since

(up to rescaling) it is the same as S. Given an opinion estimate 𝑠𝑢
we report the absolute error |𝑠𝑢 − 𝑠𝑢 |. For the measures, such as

polarization P, we report relative errors
���P − ˜P

��� /P, where ˜P is an

estimate of P. As our algorithms are randomized, we perform each

experiment 10 times and report means and standard deviations.

Results given oracles access to innate opinions 𝑠. First, we
report our results using an oracle for the innate opinions 𝑠 . We use

Algorithm 1 to obtain estimates of 𝑧∗𝑢 for 10 000 randomly chosen

vertices 𝑢. Then we estimate the measures from Table 1 using the

algorithms from Section 2.2. When not stated otherwise, we use

Algorithm 1 with 4 000 random walks of length 600.

Dependency on algorithm parameters. In Figure 1 we present our

results on Pokec and on LiveJournal for estimating 𝑧∗𝑢 with varying

number of steps and random walks. We observe that increasing the

parameters decreases the absolute error. For both parameters and
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Table 3: Running times for estimating 𝑧∗ on different datasets with uniform opinions. We report the running time for the
Laplacian solver from [31]. For the PageRank-style updates from Proposition 2 we present running time and average error
∥𝑧∗ − 𝑧∗∥2/𝑛 after 50 iterations. For Algorithm 1 we present the running time for estimating 10 000 opinions 𝑧∗𝑢 using 600 steps
and 4 000 random walks; we also present the average query time for estimating a single opinion 𝑧∗𝑢 .

Dataset Laplacian solver [31] PageRank-Style Updates Algorithm 1

time (sec) time (sec) avg. error time (sec) time per vertex (sec)

GooglePlus 6.2 0.6 3.2 · 10
−7

9.1 2.2 · 10
−3

TwitterFollows 5.1 0.6 2.6 · 10
−10

2.4 6.1 · 10
−4

YouTube 9.7 2.7 1.7 · 10
−9

4.5 1.1 · 10
−3

Pokec 82.1 16.8 2.9 · 10
−8

36.2 9.0 · 10
−3

Flixster 20.0 5.7 3.4 · 10
−10

6.9 1.7 · 10
−3

Flickr 61.9 13.7 3.6 · 10
−8

34.0 8.5 · 10
−3

LiveJournal 153.6 40.8 2.7 · 10
−7

22.5 5.6 · 10
−3
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Figure 1: Absolute error when estimating expressed opinions 𝑧∗𝑢 using an oracle for innate opinions 𝑠𝑢 via Algorithm 1. We
report means and standard deviations across 10 experiments. Figure 1(a) and Figure 1(c) use 4000 walks and vary the number
of steps; Figure 1(b) and Figure 1(d) use 600 steps and vary the number of walks. Innate opinions were generated using the
uniform distribution.

datasets, the error-curve gets flatter once the error reaches ±0.01,

even though the standard deviations keep on decreasing.

We looked into this phenomenon in more detail and found the

following reasons: (1) Since in Algorithm 1 at each step the random

walks terminate with a certain probability, it is very unlikely that

we observe “very long” random walks (this is also corroborated by

our running time analysis in Figure 2). Hence, at some point we

cannot increase the accuracy of our estimation by increasing the

number of random walk steps. This implies that our only effective

parameter to improve the accuracy of Algorithm 1 is the number

of random walks. (2) Next, observe that Proposition 1 suggests

that to get error ±𝜖 we need a running time depending on 𝜖−2
. To

verify this in practice, we estimated the parameters of how the error

decreases as a function of the number of random walks. We found

that (averaged across all datasets) the error decays as a function of

𝑂 (𝜖−3) random walks. This is slightly more pessimistic than the

theoretical guarantees and explains why the error curves get flatter.

Comparison across different datasets. In Table 4 we report the

results across all datasets. We observe that on all datasets, 𝑧∗𝑢 can be

approximated with an average error of ±0.01. We observe that all

measures except disagreement can be approximated with an error

of at most 4%.

For the disagreement D =
∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣 (𝑧∗𝑢 − 𝑧∗𝑣)2, we obtain

much higher errors for the following reason. We compute D =

1

2
(∥𝑠 ∥2

2
−I−C) using the conservation law from [12] and using esti-

mates for ∥𝑠 ∥2
2
, I and C. Therefore, the estimates’ errors compound.

Additionally, in practice we have thatD ≪ ∥𝑠 ∥2
2
andD ≪ C since

typically the quantities (𝑧∗𝑢 − 𝑧∗𝑣)2 that we are summing over in the

definition of D are very close to zero. This “amplifies” the effect

of the approximation errors from estimating ∥𝑠 ∥2
2
and C. It may be

possible to obtain more accurate estimates of D if we were able

to sample edges from the graph uniformly at random, but in this

paper we assume that this is not possible.

Running time analysis. In the last two columns of Table 3, we

present Algorithm 1’s total running times and the running times

per vertex to obtain the results from Table 4. We observe that on

all datasets, the algorithms need less than 10
−2

seconds to estimate

the opinion of a given vertex. Furthermore, on 5 out of 7 datasets

the algorithms are more than a factor of 2 faster than the Lapla-

cian solver, but they are slower than the PageRank-style updates.

In Appendix B, we present additional experiments showing that

Algorithm 1 scales linearly in the number of random walks and

we show that after a certain threshold, increasing the number of

random walk steps does not increase the running time anymore

(for the reason discussed above).

Results given oracles access to expressed opinions 𝑧∗. Next,
we report our results given oracle access to expressed opinions 𝑧∗.
We implement the algorithm from Lemma 8 for estimating innate
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Table 4: Errors for different datasets given an oracle for innate opinions; we report means and standard deviations (in paren-
theses) across 10 experiments. We ran Algorithm 1 with 600 steps and 4 000 random walks; we estimated the opinions of
10 000 random vertices. Innate opinions were generated using the uniform distribution.

Dataset Absolute Error Relative Error in %

𝑧∗𝑢 S P D I C DC ∥𝑠 ∥2
2

GooglePlus 0.011 (±0.008) 0.6 (±0.4) 2.5 (±0.9) 36.2 (±9.9) 1.2 (±0.4) 3.4 (±0.4) 1.5 (±0.7) 0.9 (±0.4)
TwitterFollows 0.011 (±0.007) 0.8 (±0.7) 1.9 (±0.5) 31.1 (±6.5) 0.8 (±0.5) 3.6 (±0.7) 1.5 (±0.7) 1.1 (±0.9)

Flixster 0.013 (±0.007) 0.4 (±0.2) 2.5 (±1.5) 34.2 (±3.5) 1.6 (±1.0) 4.2 (±0.3) 1.8 (±0.4) 0.4 (±0.3)
Pokec 0.010 (±0.007) 0.7 (±0.5) 3.3 (±1.8) 52.1 (±20.0) 0.1 (±0.1) 3.4 (±0.4) 1.7 (±0.9) 1.0 (±0.7)
Flickr 0.012 (±0.007) 0.6 (±0.2) 1.7 (±0.6) 36.3 (±6.4) 1.0 (±0.7) 4.0 (±0.5) 1.8 (±0.8) 1.0 (±0.3)

YouTube 0.012 (±0.007) 0.4 (±0.2) 1.6 (±1.3) 31.4 (±5.2) 1.8 (±1.2) 4.0 (±0.4) 1.9 (±0.6) 0.7 (±0.4)
LiveJournal 0.011 (±0.008) 0.4 (±0.3) 3.6 (±2.0) 41.4 (±8.9) 1.4 (±0.8) 3.9 (±0.4) 1.9 (±0.5) 0.7 (±0.2)

Table 5: Errors for different datasets given an oracle for expressed opinions; we report means and standard deviations (in
parentheses) across 10 experiments. We ran our algorithm with threshold 400 and 5 repetitions; we estimated the opinions of
10 000 random vertices. Innate opinions were generated using the uniform distribution.

Dataset Absolute Error Relative Error in %

𝑠𝑢 S P D I C DC ∥𝑠 ∥2
2

GooglePlus 0.000 (±0.006) 0.2 (±0.3) 1.6 (±1.5) 8.3 (±8.5) 1.3 (±0.9) 0.4 (±0.5) 0.6 (±0.9) 0.8 (±0.9)
TwitterFollows 0.001 (±0.026) 0.3 (±0.2) 1.2 (±1.2) 5.2 (±2.9) 2.4 (±1.0) 0.6 (±0.4) 0.9 (±0.6) 1.2 (±0.7)

Flixster 0.001 (±0.019) 0.3 (±0.1) 0.5 (±0.4) 6.8 (±3.4) 1.7 (±1.2) 0.6 (±0.2) 0.8 (±0.5) 1.0 (±0.6)
Pokec 0.000 (±0.003) 0.1 (±0.1) 2.7 (±1.1) 8.4 (±5.8) 1.2 (±0.4) 0.2 (±0.2) 0.4 (±0.3) 0.5 (±0.3)
Flickr 0.001 (±0.022) 0.3 (±0.2) 1.2 (±1.3) 8.4 (±5.8) 2.4 (±1.1) 0.5 (±0.3) 0.9 (±0.5) 1.3 (±0.5)

YouTube 0.000 (±0.012) 0.3 (±0.2) 1.7 (±1.2) 6.5 (±2.3) 1.4 (±0.6) 0.6 (±0.5) 0.9 (±0.5) 1.2 (±0.6)
LiveJournal 0.000 (±0.009) 0.2 (±0.1) 2.5 (±1.1) 16.4 (±6.8) 0.7 (±0.5) 0.4 (±0.3) 1.0 (±0.6) 1.4 (±0.7)

opinions 𝑠𝑢 , where we introduce a threshold 𝑡 . If𝑑𝑢 < 𝑡 , we compute

𝑠𝑢 = (1+𝑤𝑢 )𝑧∗𝑢 −
∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣𝑧

∗
𝑣 exactly in time𝑂 (𝑑𝑢 ); otherwise,

we use the random sampling strategy from the lemma and pick

𝑡 neighbors of𝑢 uniformly at random to estimate 𝑠𝑢 as in the lemma.

We then repeat this procedure 5 times and pick the median answer.

Here, we set 𝑡 = 400.

Table 5 presents our results. We observe that the absolute errors

when estimating 𝑠𝑢 are extremely small (±0.001). This is because

all of our datasets have very small average degrees (see Table 2)

and, thus, for most randomly picked vertices 𝑠𝑢 we are computing

the answer exactly since 𝑑𝑢 ≤ 𝑡 .

However, we note that when resorting to random sampling for

high-degree nodes, we typically have a relatively large error: to

obtain error ±𝜖 for 𝑠𝑢 , we have to estimate

∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣𝑧

∗
𝑣 with

absolute error ±𝜖 , which is impractical since this sum is typically

very large. The same is the case for the random sampling scheme

from Proposition 9.

For the measures from Table 1, we observe that again all errors

are than 3%, except for disagreement where we have the same issue

as described above.

Regarding the running time of the algorithms, we make the

following observations. First, computing 𝑠 = (𝐼 + 𝐿)𝑧∗ exactly is

highly efficient since it only involves a matrix–vector multiplication

and can be done on all datasets in less than one second. The same

is the case for our oracle algorithm, which estimates the opinions

of 10 000 nodes in less than 1 second for each datasets, including

LiveJournal which contains more than 4 million nodes and more

than 40 million edges. Hence, we spend less than 10
−10

seconds

for each node. Here, the algorithm benefits from the fact that the

vertices in our datastes have very low degrees and thus 𝑠𝑢 can be

estimated highly efficiently.

5 CONCLUSION
In this paper, we studied the popular Friedkin–Johnsen model for

opinion dynamics. We showed that all relevant quantities, such

as single node opinions and measures like polarization and dis-

agreement, can be provably approximated in sublinear time. We

also provided a novel connection between the expressed equilib-

rium opinions in the FJ model and personalized PageRank. We

used this to show that for 𝑑-regular graphs, each node’s expressed

opinion can be approximated by only looking at a constant-size

neighborhood. Furthermore, to obtain our sublinear-time estima-

tor for innate opinions we presented new results for estimating

weighted sums and we showed that we can achieve small additive

and multiplicative errors under mild conditions. We also evaluated

our algorithms experimentally and showed that for all measures

except disagreement, they achieve a small error of less than 4% in

practice. They are also significantly faster than a state-of-the-art

near-linear time algorithm.
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A OMITTED PROOFS
A.1 Useful Tools
The following lemma is well-known (see, e.g., [7, Lemma 2.2]).

Lemma 12. Let 𝑎, 𝑏 ∈ R with 𝑎 < 𝑏, 𝑛 ∈ N and 𝑥 ∈ [𝑎, 𝑏]𝑛 . Let
Σ =

∑𝑛
𝑖=1

𝑥𝑖 . For any 𝜖, 𝛿 ∈ (0, 1), there exists an algorithm which
samples a set 𝑆 of 𝑠 = 𝑂 (𝜖−2

log𝛿−1) indices from [𝑛] and returns an
estimate Σ̃ = 𝑛

𝑠

∑
𝑖∈𝑆 𝑥𝑖 such that

��Σ − Σ̃�� ≤ 𝜖 (𝑏−𝑎)𝑛 with probability
at least 1 − 𝛿 . The algorithm takes time 𝑂 (𝜖−2

log𝛿−1).

We will also use the following solver for Laplacian systems.

Theorem 13 (Andoni et al. [2]). There exists a randomized algo-
rithm, that given as input a symmetric diagonally dominant (SDD)
matrix 𝑆 ∈ R𝑛×𝑛 , a vector 𝑏 ∈ R𝑛 , 𝑢 ∈ [𝑛], 𝜖 > 0, and 𝜅 ≥ 1, where
• 𝑏 ∈ R𝑛 is in the range of 𝑆 (equivalently, orthogonal to the kernel

of 𝑆),
• 𝜅 is an upper bound on the condition number 𝜅 (𝑆), where 𝑆 ≜

𝐷−1/2𝑆𝐷−1/2 and 𝐷 ≜ diag (𝑆11, . . . , 𝑆𝑛𝑛),
this algorithm outputs 𝑥𝑢 ∈ R with the following guarantee. Suppose
𝑥∗ is the solution for 𝑆𝑥 = 𝑏, then

∀𝑢 ∈ [𝑛], Pr
(��𝑥𝑢 − 𝑥∗𝑢 �� ≤ 𝜖



𝑥∗

∞)
≥ 1 − 1

𝑟

for suitable 𝑟 = 𝑂

(
𝜅 log

(
𝜖−1𝜅∥𝑏∥0 ·

max𝑖∈ [𝑛] 𝐷𝑖𝑖

min𝑖∈ [𝑛] 𝐷𝑖𝑖

))
. The algorithm

runs in time 𝑂
(
𝑓 𝜖−2𝑟3

log 𝑟
)
, where 𝑓 is the time to make a step in

a random walk in the weighted graph formed by the non-zeros of 𝑆 .

Next, we state a conservation law between different measures.

We note that the version of this law in [12] is stated for mean-

centered opinions but it also holds when the opinions are not cen-

tered. We use the law in the discussion in Section 4.

Lemma 14 (Chen et al. [12]). We have the following conservation
law: I + 2D + C = ∥𝑠 ∥2

2
.

Proof. First, note that

I =
∑︁
𝑢∈𝑉
(𝑠𝑢 − 𝑧∗𝑢 )2

=
∑︁
𝑢∈𝑉

𝑠2

𝑢 − 2

∑︁
𝑢∈𝑉

𝑠𝑢𝑧
∗
𝑢 +

∑︁
𝑢∈𝑉
(𝑧∗𝑢 )2

= ∥𝑠 ∥2
2
− 2𝑠⊺ (𝐼 + 𝐿)−1𝑠 + 𝑠⊺ (𝐼 + 𝐿)−2𝑠

= 𝑠⊺ (𝐼 + 𝐿)−1 ((𝐼 + 𝐿)2 − 2(𝐼 + 𝐿) + 𝐼 ) (𝐼 + 𝐿)−1𝑠

= 𝑠⊺ (𝐼 + 𝐿)−1 (𝐼 + 2𝐿 + 𝐿2 − 2(𝐼 + 𝐿) + 𝐼 ) (𝐼 + 𝐿)−1𝑠

= 𝑠⊺ (𝐼 + 𝐿)−1𝐿2 (𝐼 + 𝐿)−1𝑠 .

Now since C =
∑
𝑢 (𝑧∗𝑢 )2 = ∥𝑧∥2

2
= 𝑠⊺ (𝐼 + 𝐿)−2𝑠 and D = 𝑠⊺ (𝐼 +

𝐿)−1𝐿(𝐼 + 𝐿)−1𝑠 , we get the desired equality since

I + 2D + C = 𝑠⊺ (𝐼 + 𝐿)−1 (𝐿2 + 2𝐿 + 𝐼 ) (𝐼 + 𝐿)−1𝑠

= 𝑠⊺ (𝐼 + 𝐿)−1 (𝐼 + 𝐿)2 (𝐼 + 𝐿)−1𝑠

= ∥𝑠 ∥2
2
.

□

A.2 Proof of Proposition 1
First, we briefly present the details of the lazy random walks with

timeout that are used in Algorithm 1. One random-walk step from

vertex 𝑣 is performed as follows. With probability 1/2, the walk
stays at 𝑣 . With probability𝑤𝑣𝑤/(2(1+𝑤𝑣)), it moves to neighbor𝑤

of 𝑣 . With the remaining probability of 1/2 −𝑤𝑣/(2(1 +𝑤𝑣)), the
random walk terminates. Note that this corresponds to a random

walk with timeouts on the matrix 𝐼 + 𝐿.
To obtain the result of the proposition, we use Theorem 13. The

theorem considers a term
max𝑖 𝐷𝑖𝑖

min𝑖 𝐷𝑖𝑖
which for us becomes considers

a term
max𝑖 (𝐼+𝐿)𝑖𝑖
min𝑖 (𝐼+𝐿)𝑖𝑖 = max𝑢 𝑤𝑢 + 1. Here, we used that (𝐼 + 𝐿)𝑖𝑖 ≥ 1

for all 𝑖 , ∥𝑠 ∥0 ≤ 𝑛 and ∥𝑧∗∥∞ = max𝑢 𝑧
∗
𝑢 ≤ 1.

A.3 Proof of Lemma 4
A.3.1 Local Personalized PageRank with (Non-Lazy) RandomWalks.
We start by discussing how the algorithm by Andersen et al. [1]

can be adapted to work with (non-lazy) random walks.

We let 𝛼 ∈ (0, 1) be the teleportation constant, 𝑠 ∈ [0, 1]𝑛
be a vector consisting of a distribution and we set𝑊𝑠 = 𝐷−1𝐴.

Then we define pr
′ (𝛼, 𝑠) as the unique solution of the equation

pr
′ (𝛼, 𝑠) = 𝛼𝑠 + (1 − 𝛼)𝑊𝑠 pr

′ (𝛼, 𝑠). Note that this differs from the

classic personalized PageRank only by fact that we use (non-lazy)

random walks (based on𝑊𝑠 ) rather than lazy random walks (based

on𝑊 = 1

2
(𝐼 + 𝐷−1𝐴)).

Recall that

pr
′ (𝛼, 𝑠) = 𝛼

∞∑︁
𝑖=0

(1 − 𝛼)𝑖 (𝑊 𝑖
𝑠 𝑠) . (3)

Thus, we get that

pr
′ (𝛼, 𝑠) = 𝑅′𝑠

= 𝛼𝑠 + (1 − 𝛼)𝑅′𝑊𝑠𝑠

= 𝛼𝑠 + (1 − 𝛼)𝑅′ pr
′ (𝛼,𝑊𝑠𝑠).

Similar to [1] this means that we can maintain a vector 𝑝 that

approximates pr
′ (𝛼, 𝑠) and a residual vector 𝑟 . Then we can perform

push-operations in which move an 𝛼-fraction of weight from 𝑟 to 𝑝

and then we distribute the weight in 𝑟 based on𝑊𝑠 . Algorithmically,

this is formally stated in Algorithm 4 and we use it as a subroutine

in Algorithm 3.

Lemma 15 (Andersen et al. [1]). Algorithm 3 runs in time 𝑂 ( 1

𝜖𝛼 ),
and computes a vector 𝑝 which approximates pr

′ (𝛼, 𝑠) with a residual
vector 𝑟 such that max𝑢∈𝑉

𝑟 (𝑢 )
𝑑𝑢

< 𝜖 and vol(Supp(𝑝)) ≤ 1

𝜖𝛼 . Here,
vol(𝑆) = ∑

𝑥∈𝑆 𝑑𝑥 is the volume of a subset 𝑆 ⊆ 𝑉 , and Supp(𝑝) =
{𝑣 | 𝑝 (𝑣) ≠ 0} is the support of a distribution 𝑝 .

A.3.2 Proof of Lemma 4. Next, we prove Lemma 4. First, observe

that 𝑧∗𝑢 = 1
⊺
𝑢 𝑧
∗
. Hence, we have that 𝑧∗𝑢 = 1

⊺
𝑢 𝑧
∗ = 1

⊺
𝑢 (𝐼 + 𝐿)−1𝑠 ,

where 𝑠 is the vector consisting of the innate opinions of all vertices.

Now our strategy is to show that pr
′ (𝛼, 𝑠) = (𝐼 + 𝐿)−1

1
⊺
𝑢 and then

we will argue that Algorithm 2 returns a good enough approxima-

tion 𝑝 of pr
′ (𝛼, 𝑠) such that 𝑝⊺𝑠 ≈ pr

′ (𝛼, 𝑠)𝑠 = 1⊺𝑢 (𝐼 + 𝐿)−1𝑠 = 𝑧∗𝑢 .
When in Algorithm 2 we use the algorithm from [1] as a subroutine,

we actually use Algorithm 3.

We first give a closed form of (𝐼 +𝐿)−1
for any 𝑑-degree bounded

graphs, i.e., graphs with maximum degree at most 𝑑 .
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Algorithm 3 Local personalized PageRank algorithm

Input: A graph 𝐺 = (𝑉 , 𝐸,𝑤), a parameter 𝛼 ∈ (0, 1) and an error

parameter 𝜖

1: 𝑝 ← ®0 and 𝑟 ← 1𝑣

2: repeat
3: Choose any vertex 𝑢 where

𝑟 (𝑢 )
𝑑𝑢
≥ 𝜖 or where 𝑟 (𝑢) = 1

4: Apply Algorithm 4 at vertex 𝑢, updating 𝑝 and 𝑟

5: until max𝑢∈𝑉
𝑟 (𝑢 )
𝑑𝑢

< 𝜖

6: return (𝑝, 𝑟 )

Algorithm 4 Push𝑢

Input: A graph 𝐺 = (𝑉 , 𝐸,𝑤), a vector 𝑝 and a residual vector 𝑟

1: 𝑝′ ← 𝑝 and 𝑟 ′ ← 𝑟

2: 𝑝′ (𝑢) = 𝑝 (𝑢) + 𝛼𝑟 (𝑢)
3: 𝑟 ′ (𝑢) = (1 − 𝛼)𝑟 (𝑢)
4: for each 𝑣 such that (𝑢, 𝑣) ∈ 𝐸 do
5: 𝑟 ′ (𝑣) = 𝑟 (𝑣) + (1 − 𝛼)𝑟 (𝑢)/𝑑𝑢
6: return (𝑝′, 𝑟 ′)

Lemma 16. For 𝑑-degree bounded graphs, we have that (𝐼 + 𝐿)−1 =(∑∞
𝑖=0
((𝐼 − (𝐷 + 𝐼 )−1)𝐷−1𝐴)𝑖

)
(𝐷 + 𝐼 )−1.

Proof. First, we have that

(𝐼 + 𝐿)−1

=(𝐼 + 𝐷 −𝐴)−1

=[𝐷1/2 (𝐷−1 + 𝐼 − 𝐷−1/2𝐴𝐷−1/2)𝐷1/2]−1

=𝐷−1/2 [𝐷−1 + 𝐼 − 𝐷−1/2𝐴𝐷−1/2]−1𝐷−1/2

=𝐷−1/2 [(𝐷−1 + 𝐼 ) (𝐼 − (𝐷−1 + 𝐼 )−1 (𝐷−1/2𝐴𝐷−1/2))]−1𝐷−1/2

=𝐷−1/2 [𝐼 − (𝐷−1 + 𝐼 )−1 (𝐷−1/2𝐴𝐷−1/2)]−1 (𝐷−1 + 𝐼 )−1𝐷−1/2

=𝐷−1/2
( ∞∑︁
𝑖=0

((𝐷−1 + 𝐼 )−1 (𝐷−1/2𝐴𝐷−1/2))𝑖
)
(𝐷−1 + 𝐼 )−1𝐷−1/2 .

Next, observe the identities (𝐷−1 + 𝐼 )−1 = 𝐷 (𝐷 + 𝐼 )−1
and (𝐷 +

𝐼 )−1𝐷 = 𝐼 − (𝐷 + 𝐼 )−1
which can be checked for each diagonal

element. Now using that the matrix multiplication of diagonal

matrices is commutative, we obtain that

((𝐷−1 + 𝐼 )−1 (𝐷−1/2𝐴𝐷−1/2))𝑖

=(𝐷−1 + 𝐼 )−1𝐷−1/2𝐴𝐷−1/2 · (𝐷−1 + 𝐼 )−1𝐷−1/2𝐴𝐷−1/2 · · ·

(𝐷−1 + 𝐼 )−1𝐷−1/2𝐴𝐷−1/2

=𝐷 (𝐷 + 𝐼 )−1𝐷−1/2𝐴𝐷−1/2 · 𝐷 (𝐷 + 𝐼 )−1𝐷−1/2𝐴𝐷−1/2 · · ·

𝐷 (𝐷 + 𝐼 )−1𝐷−1/2𝐴𝐷−1/2

=𝐷1/2 ((𝐷 + 𝐼 )−1𝐴)𝑖𝐷−1/2

=𝐷1/2 ((𝐷 + 𝐼 )−1𝐷 · 𝐷−1𝐴)𝑖𝐷−1/2

=𝐷1/2 ((𝐼 − (𝐷 + 𝐼 )−1)𝐷−1𝐴)𝑖𝐷−1/2 .

Thus, we can continue our calculation from above to get that

(𝐼 + 𝐿)−1

=𝐷−1/2
( ∞∑︁
𝑖=0

((𝐷−1 + 𝐼 )−1 (𝐷−1/2𝐴𝐷−1/2))𝑖
)
(𝐷−1 + 𝐼 )−1𝐷−1/2

=𝐷−1/2
( ∞∑︁
𝑖=0

𝐷1/2 ((𝐼 − (𝐷 + 𝐼 )−1)𝐷−1𝐴)𝑖𝐷−1/2
)
(𝐷−1 + 𝐼 )−1𝐷−1/2

=

( ∞∑︁
𝑖=0

((𝐼 − (𝐷 + 𝐼 )−1)𝐷−1𝐴)𝑖
)
(𝐷−1 + 𝐼 )−1𝐷−1

=

( ∞∑︁
𝑖=0

((𝐼 − (𝐷 + 𝐼 )−1)𝐷−1𝐴)𝑖
)
(𝐷 + 𝐼 )−1,

where in the final step we again used the identity from above. □

Next, set𝑀 = (𝐷+𝐼 )−1
. Note that then the equality in Lemma 16

becomes (𝐼 + 𝐿)−1 =
(∑∞

𝑖=0
((𝐼 −𝑀)𝐷−1𝐴)𝑖

)
𝑀 .

In the following, we assume the input graph is 𝑑-regular, i.e.,

𝐷𝑖𝑖 = 𝑑 for all 𝑖 ∈ 𝑉 . Note that this implies that 𝑀 = 1

𝑑+1 𝐼 . By
setting 𝛼 = 1

𝑑+1 , Lemma 16 implies that

(𝐼 + 𝐿)−1 =

( ∞∑︁
𝑖=0

((𝐼 −𝑀)𝐷−1𝐴)𝑖
)
𝑀

= 𝛼

∞∑︁
𝑖=0

(
(1 − 𝛼)𝐷−1𝐴

)𝑖
= 𝛼

∞∑︁
𝑖=0

((1 − 𝛼)𝑊𝑠 )𝑖 .

We therefore get the following corollary.

Corollary 17. Let 𝛼 = 1

𝑑+1 and 𝑠 be the vector of innate opinions.
Then for 𝑑-regular graphs it holds that pr

′ (𝛼, 𝑠) = (𝐼 + 𝐿)−1𝑠 .

Proof. This follows from combining the identity pr
′ (𝛼, 𝑠) =

𝛼
∑∞
𝑖=0
(1 − 𝛼)𝑖 (𝑊 𝑖

𝑠 𝑠) from Section A.3.1 with the discussion of

Lemma 16 for 𝑑-regular graphs. □

Proof of Lemma 4. Observe that this property holds when we

initialize 𝑝 ← 0 and 𝑟 ← 1𝑢 at the beginning of Algorithm 2.

Now suppose one iteration of the while-loop ended. Then by

induction it is enough if we show that

pr
′ (𝛼, 𝑟 ) =

∑︁
𝑖

𝑟 (𝑖)𝑝 (𝑖 ) + pr
′
(
𝛼,

∑︁
𝑖

𝑟 (𝑖 )
)
.

First, observe that 𝑟 =
∑
𝑖 𝑟 (𝑖)1𝑖 . Next, note that for each 𝑖 , it

holds that 𝑝 (𝑖 ) + pr
′ (𝛼, 𝑟 (𝑖 ) ) = pr

′ (𝛼,1𝑖 ). Using Equation (2) we

now obtain that

pr
′ (𝛼, 𝑟 ) = pr

′
(
𝛼,

∑︁
𝑖

𝑟 (𝑖)1𝑖

)
= 𝛼

∞∑︁
𝑗=0

(1 − 𝛼) 𝑗
(
𝑊

𝑗
𝑠

(∑︁
𝑖

𝑟 (𝑖)1𝑖

))
=

∑︁
𝑖

𝑟 (𝑖)𝛼
∞∑︁
𝑗=0

(1 − 𝛼) 𝑗 (𝑊 𝑗
𝑠 1𝑖 )

=
∑︁
𝑖

𝑟 (𝑖) pr
′ (𝛼,1𝑖 )

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371
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=
∑︁
𝑖

𝑟 (𝑖) (𝑝 (𝑖 ) + pr
′ (𝛼, 𝑟 (𝑖 ) )) .

This proves the statement of the lemma. □

For intuition on the correctness of our algorithm, observe that

the first part of the sum

∑
𝑖 𝑟 (𝑖)𝑝 (𝑖 ) are exactly the changes that

our algorithm makes to the vector 𝑝 . Furthermore, observe that

again applying Equation (2), we get that∑︁
𝑖

𝑟 (𝑖) pr
′ (𝛼, 𝑟 (𝑖 ) ) =

∑︁
𝑖

𝑟 (𝑖)𝛼
∞∑︁
𝑗=0

(1 − 𝛼) 𝑗
(
𝑊

𝑗
𝑠 𝑟
(𝑖 )

)
= 𝛼

∞∑︁
𝑗=0

(1 − 𝛼) 𝑗
(
𝑊

𝑗
𝑠

(∑︁
𝑖

𝑟 (𝑖)𝑟 (𝑖 )
))

= pr
′
(
𝛼,

∑︁
𝑖

𝑟 (𝑖)𝑟 (𝑖 )
)

which is exactly why we set 𝑟 ← ∑
𝑖 𝑟 (𝑖)𝑟 (𝑖 ) in the algorithm.

A.4 Proof of Lemma 5
Wwe get that��𝑧∗𝑢 − 𝑝⊺𝑠 �� = ��

pr
′ (𝛼,1𝑢 )⊺𝑠 − 𝑝⊺𝑠

�� = ��
pr
′ (𝛼, 𝑟 )⊺𝑠

�� ≤ ∥pr
′ (𝛼, 𝑟 )∥1,

where in the last step we used that 𝑠𝑢 ∈ [0, 1] for all 𝑢 ∈ 𝑉 .

Now observe that since𝑊𝑠 = 𝐷−1𝐴 is a row-stochastic matrix,

we have that ∥𝑟⊺𝑊 𝑖
𝑠 ∥1 ≤ ∥𝑟 ∥1. Hence, by Equation (2), we get that

∥pr
′ (𝛼, 𝑟 )∥1 ≤ 𝛼 ∥𝑟 ∥1

∞∑︁
𝑖

(1 − 𝛼)𝑖 ≤ ∥𝑟 ∥1 ≤ 𝜖,

where in the last step we used that our algorithm only terminates

when ∥𝑟 ∥1 ≤ 𝜖 .

A.5 Proof of Lemma 6
First, recall that Line 4 (i.e., the local personalized PageRank) in

Algorithm 2 consists of the two subroutines in Algorithms 3 and 4

in Section A.3.

To prove the first claim, consider any iteration of the for-loop.

Observe that we start the PageRank algorithm (see Algorithm 3)

with residual vector 1𝑖 . Note that when the PageRank algorithm

performs the first push-operation (see Algorithm 4), this ℓ1-norm

of the residual vector drops by a factor of 𝛼 = 1

𝑑+1 . Hence, for every
entry 𝑟 (𝑖) we get that

∥𝑟 (𝑖)1𝑖 ∥1 ≤ 𝑟 (𝑖)
(
1 − 1

𝑑 + 1

)
∥1𝑖 ∥1 = 𝑟 (𝑖)

(
1 − 1

𝑑 + 1

)
.

Since this holds for all 𝑖 and we assume that 𝑑 = 𝑂 (1), we obtain
that ∥𝑟 ′∥1 ≤

(
1 − 1

𝑑+1

)
∥𝑟 ∥1 at the end of each while-loop, where

𝑟 ′ is the resulting vector after applying the PageRank algorithm

over 𝑟 after one iteration.

The second claim follows from the fact (see [1]) that the PageR-

ank algorithm creates at most 𝑂 (𝑑/𝜖) new non-zero entries when

called upon any vector 1𝑖 . As we call the PageRank algorithm for

every 𝑖 with 𝑟 (𝑖) ≠ 0, this increases the number of non-zero entries

𝑝 and 𝑟 by a factor of at most 𝑂 (𝑑/𝜖).

A.6 Proof of Corollary 7
By Lemma 6, we get that ∥𝑟 ∥1 drops by a constant factor after

each iteration of the while-loop. Hence, if we perform 𝑘 = (𝑑 +
1) log(1/𝜖) iterations of the while-loop we have that(

1 − 1

𝑑 + 1

)𝑘
≤ exp

(
− 𝑘

𝑑 + 1

)
≤ 𝜖.

Hence, we only have to perform 𝑂 (𝑑 log(1/𝜖)) iterations of the
while loop.

Note that each iteration of the while loop increases the number

of non-zero entries in 𝑟 by at most 𝑂 (𝑑/𝜖). Hence, the number of

non-zeros in 𝑟 is bounded by (𝑑/𝜖)𝑂 (𝑘 ) = (𝑑/𝜖)𝑂 (𝑑 log(1/𝜖 ) )
at all

times.

By Lemma 15 in Section A.3, since each iteration of the while-

loop takes time𝑂 (𝑑/𝜖) · ∥𝑟 ∥0, where ∥𝑟 ∥0 is the number of non-zero

entries in 𝑟 , we obtain a running time of (𝑑/𝜖)𝑂 (𝑑 log(1/𝜖 ) )
.

A.7 Estimating the Measures Given Oracle
Access to Innate Opinions 𝑠𝑢

Lemma 18. Let 𝜖, 𝛿 ∈ (0, 1), 𝜅 be an upper bound on 𝜅 (𝐼 + 𝐿) and
𝑟 = 𝑂 (𝜅 log(𝜖−1𝑛𝜅 (max𝑢 𝑤𝑢 ))). Then with probability at least 1−𝛿 :
• We can return an estimate of 𝑧 with additive error ±𝜖 in time

𝑂 (𝜖−2
log𝛿−1).

• We can return an estimate of S and ∥𝑠 ∥2
2
with additive error ±𝜖𝑛

in time 𝑂 (𝜖−2
log𝛿−1).

• We can return an estimate of C,P,I,D and DC with additive
error ±𝜖𝑛 in time 𝑂 (𝜖−4𝑟3

log𝛿−1
log 𝑟 ).

Proof. Estimating 𝑧, S and ∥𝑠 ∥2
2
: First, we note that

∑
𝑢∈𝑉 𝑠𝑢 =∑

𝑢∈𝑉 𝑧∗𝑢 since 𝑠 = (𝐼 + 𝐿)𝑧∗ and hence we have that∑︁
𝑢∈𝑉

𝑠𝑢 = 1⊺𝑠 = 1⊺ (𝐼 + 𝐿)𝑧∗ = 1⊺𝑧∗ =
∑︁
𝑢∈𝑉

𝑧∗𝑢 .

Hence, to estimate 𝑧 and S it suffices to estimate

∑
𝑢∈𝑉 𝑠𝑢 . In ad-

dition, ∥𝑠 ∥2
2
=

∑
𝑢∈𝑉 𝑠2

𝑢 . Given that we have query access to 𝑠 , we

can apply Lemma 12 to obtain our result.

Estimating C: Recall that C =
∑
𝑢∈𝑉 (𝑧∗𝑢 )2. We set 𝜖1 = 𝜖

6
, 𝑟1 =

𝑂 (𝜅 log(𝜖−1

1
𝑛𝜅 (max𝑢 𝑤𝑢 ))), 𝛿1 = 1

𝑟1

= 𝛿
2𝐶

, 𝜖2 = 𝜖
2
, 𝛿2 = 𝛿

2
and

𝐶 = 𝜖−2

2
log𝛿−1

2
. To return an estimate of C with additive error ±𝜖𝑛

and success probability 1 − 𝛿 , we perform the following procedure.

We sample 𝐶 vertices (i.e., 𝑖1, . . . , 𝑖𝐶 ) from 𝑉 using Lemma 12 and

obtain 𝑧∗
𝑖1
, . . . , 𝑧∗

𝑖𝐶
using Proposition 1 with error parameter 𝜖1 and

success probability 1 − 𝛿1. We return
𝑛
𝐶

∑𝐶
𝑗=1
(𝑧∗
𝑖 𝑗
)2.

Next, we analyze the running time of this procedure and we also

prove the error guarantee.

We start with the running time analysis. According to Proposi-

tion 1, estimating each 𝑧∗𝑢 of 𝑧∗ takes time 𝑇1 = 𝑂 (𝜖−2

1
𝑟3

1
log 𝑟1) =

𝑂 (𝜖−2𝑟3
log 𝑟 ). According to Lemma 12, sampling 𝐶 vertices from

𝑉 takes time 𝑇2 = 𝑂 (𝜖−2

2
log𝛿−1

2
) = 𝑂 (𝜖−2

log𝛿−1). Therefore, the
running time of this procedure is𝐶𝑇1 +𝑇2 = 𝑂 (𝜖−4𝑟3

log𝛿−1
log 𝑟 ).

Next, we analyze the error guarantee. According to Proposition 1,

for each 𝑗 ∈ [𝐶], with probability at least 1−𝛿1, we have

���𝑧∗𝑖 𝑗 − 𝑧∗𝑖 𝑗 ��� ≤
𝜖1 = 𝜖

6
. Therefore,

���(𝑧∗𝑖 𝑗 )2 − (𝑧∗𝑖 𝑗 )2��� ≤ ���𝑧∗𝑖 𝑗 + 𝑧∗𝑖 𝑗 ��� · ���𝑧∗𝑖 𝑗 − 𝑧∗𝑖 𝑗 ��� ≤ 3𝜖1 =

𝜖
2
. Then by union bound, with probability at least 1 − 𝐶 · 𝛿1 =

12
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1 − 𝛿
2
, we have

���∑𝐶
𝑗=1
(𝑧∗
𝑖 𝑗
)2 −∑𝐶

𝑗=1
(𝑧∗
𝑖 𝑗
)2

��� ≤ 𝐶 · 𝜖
2
= 𝜖𝐶

2
. According

to Lemma 12, with probability at least 1 − 𝛿2 = 1 − 𝛿
2
, we have��� 𝑛𝐶 ∑𝐶

𝑗=1
(𝑧∗
𝑖 𝑗
)2 − C

��� ≤ 𝜖2𝑛 = 𝜖𝑛
2
. By union bound, with probability

at least 1 − 𝛿
2
− 𝛿

2
= 1 − 𝛿 , we have������𝑛𝐶 𝐶∑︁

𝑗=1

(𝑧∗𝑖 𝑗 )
2 − C

������
≤

������𝑛𝐶 𝐶∑︁
𝑗=1

(𝑧∗𝑖 𝑗 )
2 − 𝑛

𝐶

𝐶∑︁
𝑗=1

(𝑧∗𝑖 𝑗 )
2

������ +
������𝑛𝐶 𝐶∑︁

𝑗=1

(𝑧∗𝑖 𝑗 )
2 − C

������
≤ 𝑛
𝐶
· 𝜖𝐶

2

+ 𝜖𝑛

2

=𝜖𝑛.

Estimating I: Recall that I =
∑
𝑢∈𝑉 (𝑠𝑢 − 𝑧∗𝑢 )2. We set 𝜖1 = 𝜖

6
,

𝑟1 = 𝑂 (𝜅 log(𝜖−1

1
𝑛𝜅 (max𝑢 𝑤𝑢 ))), 𝛿1 = 1

𝑟1

= 𝛿
2𝐶

, 𝜖2 = 𝜖
2
, 𝛿2 = 𝛿

2

and 𝐶 = 𝜖−2

2
log𝛿−1

2
. To return an estimate of I with additive er-

ror ±𝜖𝑛 and success probability 1 − 𝛿 , we perform the following

procedure. We sample 𝐶 vertices (i.e., 𝑖1, . . . , 𝑖𝐶 ) from 𝑉 and query

𝑠𝑖1 , . . . , 𝑠𝑖𝐶 using Lemma 12, then obtain 𝑧∗
𝑖1
, . . . , 𝑧∗

𝑖𝐶
using Proposi-

tion 1 with error parameter 𝜖1 and success probability 1 − 𝛿1. We

return
𝑛
𝐶

∑𝐶
𝑗=1
(𝑠𝑖 𝑗 − 𝑧∗𝑖 𝑗 )

2
.

Next, we analyze the running time of this procedure and we also

prove the error guarantee.

We start with the running time analysis. According to Proposi-

tion 1, estimating each 𝑧∗𝑢 of 𝑧∗ takes time 𝑇1 = 𝑂 (𝜖−2

1
𝑟3

1
log 𝑟1) =

𝑂 (𝜖−2𝑟3
log 𝑟 ). According to Lemma 12, sampling 𝐶 vertices from

𝑉 takes time 𝑇2 = 𝑂 (𝜖−2

2
log𝛿−1

2
) = 𝑂 (𝜖−2

log𝛿−1). Therefore, the
running time of this procedure is𝐶𝑇1 +𝑇2 = 𝑂 (𝜖−4𝑟3

log𝛿−1
log 𝑟 ).

Next, we analyze the error guarantee. According to Proposition 1,

for each 𝑗 ∈ [𝐶], with probability at least 1−𝛿1, we have

���𝑧∗𝑖 𝑗 − 𝑧∗𝑖 𝑗 ��� ≤
𝜖1 = 𝜖

6
. Therefore,

���(𝑠𝑖 𝑗 − 𝑧∗𝑖 𝑗 )2 − (𝑠𝑖 𝑗 − 𝑧∗𝑖 𝑗 )2��� ≤ ���𝑧∗𝑖 𝑗 + 𝑧∗𝑖 𝑗 − 2𝑠𝑖 𝑗

��� ·���𝑧∗𝑖 𝑗 − 𝑧∗𝑖 𝑗 ��� ≤ 3𝜖1 = 𝜖
2
. Then by union bound, with probability at least

1 −𝐶 · 𝛿1 = 1 − 𝛿
2
, we have

���∑𝐶
𝑗=1
(𝑠𝑖 𝑗 − 𝑧∗𝑖 𝑗 )

2 −∑𝐶
𝑗=1
(𝑠𝑖 𝑗 − 𝑧∗𝑖 𝑗 )

2

��� ≤
𝐶 · 𝜖

2
= 𝜖𝐶

2
. According to Lemma 12, with probability at least

1 − 𝛿2 = 1 − 𝛿
2
, we have

��� 𝑛𝐶 ∑𝐶
𝑗=1
(𝑠𝑖 𝑗 − 𝑧∗𝑖 𝑗 )

2 − I
��� ≤ 𝜖2𝑛 = 𝜖𝑛

2
. By

union bound, with probability at least 1 − 𝛿
2
− 𝛿

2
= 1 − 𝛿 , we have������𝑛𝐶 𝐶∑︁

𝑗=1

(𝑠𝑖 𝑗 − 𝑧∗𝑖 𝑗 )
2 − I

������
≤

������𝑛𝐶 𝐶∑︁
𝑗=1

(𝑠𝑖 𝑗 − 𝑧∗𝑖 𝑗 )
2 − 𝑛

𝐶

𝐶∑︁
𝑗=1

(𝑠𝑖 𝑗 − 𝑧∗𝑖 𝑗 )
2

������ +
������𝑛𝐶 𝐶∑︁

𝑗=1

(𝑠𝑖 𝑗 − 𝑧∗𝑖 𝑗 )
2 − I

������
≤ 𝑛
𝐶
· 𝜖𝐶

2

+ 𝜖𝑛

2

=𝜖𝑛.

Estimating DC: Note that DC = 𝑠⊺𝑧∗ =
∑
𝑢∈𝑉 𝑠𝑢𝑧

∗
𝑢 . We set

𝜖3 = 𝜖
2
, 𝑟3 = 𝑂 (𝜅 log(𝜖−1

3
𝑛𝜅 (max𝑢 𝑤𝑢 ))), 𝛿3 = 1

𝑟3

= 𝛿
2𝐶

, 𝜖2 = 𝜖
2
,

𝛿2 = 𝛿
2
and 𝐶 = 𝜖−2

2
log𝛿−1

2
. To return an estimate of DC with

additive error ±𝜖𝑛 and success probability 1 − 𝛿 , we perform the

following procedure. We sample 𝐶 vertices (i.e., 𝑖1, . . . , 𝑖𝐶 ) from

𝑉 and query 𝑠𝑖1 , . . . , 𝑠𝑖𝐶 using Lemma 12, then obtain 𝑧∗
𝑖1
, . . . , 𝑧∗

𝑖𝐶
using Proposition 1 with error parameter 𝜖1 and success probability

1 − 𝛿1. We return
𝑛
𝐶

∑𝐶
𝑗=1

𝑠𝑖 𝑗 𝑧
∗
𝑖 𝑗
.

Next, we analyze the running time of this procedure and we also

prove the error guarantee.

We start with the running time analysis. According to Proposi-

tion 1, estimating each 𝑧∗𝑢 of 𝑧∗ takes time 𝑇3 = 𝑂 (𝜖−2

3
𝑟3

3
log 𝑟3) =

𝑂 (𝜖−2𝑟3
log 𝑟 ). According to Lemma 12, sampling 𝐶 vertices from

𝑉 takes time 𝑇2 = 𝑂 (𝜖−2

2
log𝛿−1

2
) = 𝑂 (𝜖−2

log𝛿−1). Therefore, the
running time of this procedure is𝐶𝑇3 +𝑇2 = 𝑂 (𝜖−4𝑟3

log𝛿−1
log 𝑟 ).

Next, we analyze the error guarantee. According to Proposition 1,

for each 𝑗 ∈ [𝐶], with probability at least 1−𝛿3, we have

���𝑧∗𝑖 𝑗 − 𝑧∗𝑖 𝑗 ��� ≤
𝜖3 = 𝜖

2
. Therefore,

���𝑠𝑖 𝑗 𝑧∗𝑖 𝑗 − 𝑠𝑖 𝑗 𝑧∗𝑖 𝑗 ��� ≤ 𝑠𝑖 𝑗 ·
���𝑧∗𝑖 𝑗 − 𝑧∗𝑖 𝑗 ��� ≤ 𝜖3 = 𝜖

2
.

Then by union bound, with probability at least 1 −𝐶 · 𝛿3 = 1 − 𝛿
2
,

we have

���∑𝐶
𝑗=1

𝑠𝑖 𝑗 𝑧
∗
𝑖 𝑗
−∑𝐶

𝑗=1
𝑠𝑖 𝑗 𝑧
∗
𝑖 𝑗

��� ≤ 𝐶 · 𝜖
2
= 𝜖𝐶

2
. According to

Lemma 12, with probability at least 1 − 𝛿2 = 1 − 𝛿
2
, we have��� 𝑛𝐶 ∑𝐶

𝑗=1
𝑠𝑖 𝑗 𝑧
∗
𝑖 𝑗
− DC

��� ≤ 𝜖2𝑛 = 𝜖𝑛
2
. By union bound, with proba-

bility at least 1 − 𝛿
2
− 𝛿

2
= 1 − 𝛿 , we have������𝑛𝐶 𝐶∑︁

𝑗=1

𝑠𝑖 𝑗 𝑧
∗
𝑖 𝑗
− DC

������
≤

������𝑛𝐶 𝐶∑︁
𝑗=1

𝑠𝑖 𝑗 𝑧
∗
𝑖 𝑗
− 𝑛

𝐶

𝐶∑︁
𝑗=1

𝑠𝑖 𝑗 𝑧
∗
𝑖 𝑗

������ +
������𝑛𝐶 𝐶∑︁

𝑗=1

𝑠𝑖 𝑗 𝑧
∗
𝑖 𝑗
− DC

������
≤ 𝑛
𝐶
· 𝜖𝐶

2

+ 𝜖𝑛

2

=𝜖𝑛.

EstimatingP: Recall thatP =
∑
𝑢∈𝑉 (𝑧∗𝑢−𝑧)2, where 𝑧 = 1

𝑛

∑
𝑢∈𝑉 𝑧∗𝑢 .

Now we use the well-known equality that

∑
𝑖

∑
𝑗>𝑖 (𝑎𝑖 − 𝑎 𝑗 )2 =

𝑛
∑
𝑖 (𝑎𝑖 − 𝑐)2, where 𝑐 = 1

𝑛

∑
𝑖 𝑎𝑖 . This gives us that

P =
∑︁
𝑢∈𝑉
(𝑧∗𝑢 − 𝑧)2 =

1

2𝑛

∑︁
𝑢,𝑣∈𝑉

(𝑧∗𝑢 − 𝑧∗𝑣)2 .

We set 𝜖4 = 𝜖
18
, 𝑟4 = 𝑂 (𝜅 log(𝜖−1

4
𝑛𝜅 (max𝑢 𝑤𝑢 ))), 𝛿4 = 1

𝑟4

= 𝛿
4𝐶

,

𝜖2 = 𝜖
2
, 𝛿2 = 𝛿

2
and𝐶 = 𝜖−2

2
log𝛿−1

2
. Consider a vector𝑥 of length𝑛2

which has entries 𝑥𝑢,𝑣 = (𝑧∗𝑢 − 𝑧∗𝑣)2 ∈ [0, 1] for 𝑢, 𝑣 ∈ 𝑉 . Therefore,

P = 1

2𝑛

∑
𝑢,𝑣∈𝑉 𝑥𝑢,𝑣 . We sample 𝐶 indices (denoted as 𝑖1, . . . , 𝑖𝐶 )

from 𝑥 using Lemma 12. Then we obtain 𝑥𝑖1 , . . . , 𝑥𝑖𝐶 using Proposi-

tion 1. Note that for each 𝑗 ∈ [𝐶], 𝑥𝑖 𝑗 = (𝑧∗𝑗1 − 𝑧
∗
𝑗2
)2 supposing that

𝑗1 and 𝑗2 are vertices associated with 𝑥𝑖 𝑗 . We return
𝑛2

𝐶

∑𝐶
𝑗=1

𝑥𝑖 𝑗 .

Next, we analyze the running time of this procedure and we also

prove the error guarantee.

We start with the running time analysis. According to Proposi-

tion 1, estimating each 𝑧∗𝑢 of 𝑧∗ takes time 𝑇4 = 𝑂 (𝜖−2

4
𝑟3

4
log 𝑟4) =

𝑂 (𝜖−2𝑟3
log 𝑟 ). According to Lemma 12, sampling 𝐶 entries from

𝑥 takes time 𝑇2 = 𝑂 (𝜖−2

2
log𝛿−1

2
) = 𝑂 (𝜖−2

log𝛿−1). Therefore, the
running time of this procedure is atmost 2𝐶𝑇4+𝑇2 = 𝑂 (𝜖−4𝑟3

log𝛿−1
log 𝑟 ).

Next, we analyze the error guarantee. According to Proposi-

tion 1 and union bound, with probability at least 1 − 2𝛿4 = 1 − 𝛿
2𝐶

,
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we have

��𝑥𝑖 𝑗 − 𝑥𝑖 𝑗 �� = ���(𝑧∗𝑗1 − 𝑧∗𝑗2 )2 − (𝑧∗𝑗1 − 𝑧∗𝑗2 )2��� ≤ (���𝑧∗𝑗1 + 𝑧∗𝑗1 ��� +���𝑧∗𝑗2 + 𝑧∗𝑗2 ���) (���𝑧∗𝑗1 − 𝑧∗𝑗1 ���+ ���𝑧∗𝑗2 − 𝑧∗𝑗2 ���) ≤ 9𝜖4 = 𝜖
2
. Then by union bound,

with probability at least 1−𝐶 · 𝛿
2𝐶

= 𝛿
2
, we have

���∑𝐶
𝑗=1

𝑥𝑖 𝑗 −
∑𝐶

𝑗=1
𝑥𝑖 𝑗

��� ≤
𝐶 · 𝜖

2
= 𝜖𝐶

2
. According to Lemma 12, with probability at least

1 − 𝛿2 = 1 − 𝛿
2
, we have

���𝑛2

𝐶

∑𝐶
𝑗=1

𝑥𝑖 𝑗 − P
��� ≤ 𝜖2𝑛

2 = 𝜖𝑛2

2
. By union

bound, with probability at least 1 − 𝛿
2
− 𝛿

2
= 1 − 𝛿 , we have������𝑛2

𝐶

𝐶∑︁
𝑗=1

𝑥𝑖 𝑗 − P

������ ≤
������𝑛2

𝐶

𝐶∑︁
𝑗=1

𝑥𝑖 𝑗 −
𝑛2

𝐶

𝐶∑︁
𝑗=1

𝑥𝑖 𝑗

������ +
������𝑛2

𝐶

𝐶∑︁
𝑗=1

𝑥𝑖 𝑗 − P

������
≤ 𝑛2

𝐶
· 𝜖𝐶

2

+ 𝜖𝑛2

2

= 𝜖𝑛2 .

As P = 1

2𝑛

∑
𝑢,𝑣∈𝑉 𝑥𝑢,𝑣 we get an error for the polarization of

𝜖𝑛.

Estimating D: Recall that DC = D + C, which implies that

D = DC − C. Using the results from above, we can compute

approximations of DC and C with additive error ±𝜖𝑛/2 in time

𝑂 (𝜖−4𝑟3
log𝛿−1

log 𝑟 ). Using a triangle inequality we get that the

total error is bounded by ±𝜖𝑛. □

A.8 Proof of Lemma 8
We note that 𝑠 = (𝐼 + 𝐿)𝑧∗. Hence, we have that 𝑠𝑢 = (1 +𝑤𝑢 )𝑧∗𝑢 −∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣𝑧

∗
𝑣 . We can compute the first term of this sum in time

𝑂 (1) using our query access to 𝑧∗𝑢 and𝑤𝑢 . Furthermore, by querying

the values of 𝑧∗𝑣 for all neighbors 𝑣 of 𝑢, we can compute the second

term in time 𝑂 (𝑑𝑢 ).
Additionally, we can compute the second term in time𝑂 (𝑤2

𝑢𝜖
−2

log𝛿−1)
with additive error 𝜖 as follows. For convenience, we set 𝑆𝑢 =∑
(𝑢,𝑣) ∈𝐸 𝑧

∗
𝑣𝑤𝑢𝑣 . Let 𝑋1 be a random variable that takes value 𝑧∗𝑣

with probability𝑤𝑢𝑣/𝑤𝑢 . Note that E [𝑋1] = 𝑆𝑢/𝑤𝑢 . Furthermore,

we have that

Var [𝑋1] = E
[
𝑋 2

1

]
− E [𝑋1]2 ≤

∑︁
(𝑢,𝑣) ∈𝐸

(𝑧∗𝑣)2𝑤𝑢𝑣/𝑤𝑢 ≤ 𝑆𝑢/𝑤𝑢 ,

where we used that (𝑧∗𝑣)2 ≤ 𝑧∗𝑣 since 𝑧
∗
𝑣 ∈ [0, 1]. Now consider the

random variable 𝑌𝑘 = 𝑤𝑢
1

𝑘

∑𝑘
𝑖=1

𝑋𝑖 , where the 𝑋𝑖 are i.i.d. copies

of 𝑋1. Then we have that E [𝑌𝑘 ] = 𝑆𝑢 . Furthermore,

Var [𝑌𝑘 ] = 𝑤2

𝑢

1

𝑘
Var [𝑋1] ≤

𝑤𝑢

𝑘
𝑆𝑢 .

Now applying Chebyshev’s inequality, we obtain that

Pr ( |𝑌𝑘 − 𝑆𝑢 | ≥ 𝜖) ≤ Var [𝑌𝑘 ]
𝜖2

≤ 𝑤𝑢𝑆𝑢

𝑘𝜖2
≤ 0.1,

where we set 𝑘 =
10𝑤2

𝑢

𝜖2
and used that 𝑆𝑢 ≤ 𝑤𝑢 . Applying the

median trick, we obtain that with probability 1 − 𝛿 we return an

estimate with additive error at most 1 + 𝜖 .
We conclude that the second term can be computed in time

𝑂 (min{𝑑𝑢 ,𝑤2

𝑢𝜖
−2

log𝛿−1}).

A.9 Proof of Proposition 9
Wefirst observe that, by querying the values of 𝑧∗𝑣 for all neighbors 𝑣
of 𝑢, we can compute 𝑆𝑢 in time 𝑂 (𝑑𝑢 ).

Additionally, we can compute 𝑆𝑢 in time 𝑂 (𝑑1/2
𝑢 𝜖−1

log𝛿−1)
with multiplicative error (1 ± 𝜖) as follows. Let 𝑣1, . . . , 𝑣𝑚 be 𝑚

vertices picked independently at random from all neighbors 𝑣 of 𝑢

with probabilities proportional to their weights, i.e.,𝑤𝑢𝑣/𝑤𝑢 . Let

𝑇 be the set of sampled vertices, and for each 𝑡 ∈ 𝑇 define 𝑐𝑡 to be

the number of times vertex 𝑡 is sampled. Define 𝑌𝑖 𝑗 to be 𝑧∗𝑣/𝑤𝑢𝑣 if

𝑣𝑖 = 𝑣 𝑗 and 0 otherwise. We consider the estimator

𝑆𝑢 = 𝑤2

𝑢 ·
(
𝑚

2

)−1

·
∑︁
𝑡 ∈𝑇

(𝑐𝑡
2

)
· 𝑧∗𝑡

𝑤𝑢𝑡
.

We have

E
[
𝑌𝑖 𝑗

]
=

∑︁
(𝑢,𝑣) ∈𝐸

𝑧∗𝑣
𝑤𝑢𝑣
· 𝑤𝑢𝑣

𝑤𝑢
· 𝑤𝑢𝑣

𝑤𝑢
=

∑︁
(𝑢,𝑣) ∈𝐸

𝑧∗𝑣𝑤𝑢𝑣

𝑤2

𝑢

=
𝑆𝑢

𝑤2

𝑢

,

Var
[
𝑌𝑖 𝑗

]
≤ E

[
𝑌 2

𝑖 𝑗

]
=

∑︁
(𝑢,𝑣) ∈𝐸

(𝑧∗𝑣)2

𝑤2

𝑢𝑣

· 𝑤𝑢𝑣

𝑤𝑢
· 𝑤𝑢𝑣

𝑤𝑢
=

∑︁
(𝑢,𝑣) ∈𝐸

(𝑧∗𝑣)2

𝑤2

𝑢

.

Since

𝑆𝑢 = 𝑤2

𝑢 ·
(
𝑚

2

)−1

·
∑︁
𝑡 ∈𝑇

(𝑐𝑡
2

)
· 𝑧∗𝑡

𝑤𝑢𝑡
= 𝑤2

𝑢 ·
(
𝑚

2

)−1

·
∑︁

1≤𝑖< 𝑗≤𝑚
𝑌𝑖 𝑗 ,

we have

E
[
𝑆𝑢

]
= 𝑤2

𝑢 ·
(
𝑚

2

)−1

·
∑︁

1≤𝑖< 𝑗≤𝑚
E

[
𝑌𝑖 𝑗

]
= 𝑤2

𝑢 ·
𝑆𝑢

𝑤2

𝑢

= 𝑆𝑢 .

To bound Var
[
𝑆𝑢

]
, we need to bound Var

[∑
1≤𝑖< 𝑗≤𝑚 𝑌𝑖 𝑗

]
. De-

note 𝑌𝑖 𝑗 ≜ 𝑌𝑖 𝑗 − E
[
𝑌𝑖 𝑗

]
. We need to deal with the fact that 𝑌𝑖 𝑗 ’s are

not pairwise independent. Specifically, for four distinct 𝑖, 𝑗, 𝑖′, 𝑗 ′, in-
deed 𝑌𝑖 𝑗 and 𝑌𝑖′ 𝑗 ′ are independent, and thus E

[
𝑌𝑖 𝑗𝑌𝑖′ 𝑗 ′

]
= E

[
𝑌𝑖 𝑗

]
·

E
[
𝑌𝑖′ 𝑗 ′

]
= 0; but for 𝑖 < 𝑗 ≠ 𝑘 , the random variables 𝑌𝑖 𝑗 and 𝑌𝑖𝑘

are not independent. We have E
[
𝑌𝑖 𝑗𝑌𝑖𝑘

]
=

∑
(𝑢,𝑣) ∈𝐸

(𝑧∗𝑣 )2
𝑤2

𝑢𝑣
· 𝑤

3

𝑢𝑣

𝑤3

𝑢
=

1

𝑤3

𝑢

∑
(𝑢,𝑣) ∈𝐸 (𝑧∗𝑣)2𝑤𝑢𝑣 . Therefore,

Var


∑︁
1≤𝑖< 𝑗≤𝑚

𝑌𝑖 𝑗


=E

©­«
∑︁

1≤𝑖< 𝑗≤𝑚
𝑌𝑖 𝑗

ª®¬
2

=
∑︁

1≤𝑖< 𝑗≤𝑚
E

[
𝑌 2

𝑖 𝑗

]
+ 2 ·

∑︁
1≤𝑖< 𝑗≠𝑘≤𝑚

E
[
𝑌𝑖 𝑗𝑌𝑖𝑘

]
≤

∑︁
1≤𝑖< 𝑗≤𝑚

E
[
𝑌 2

𝑖 𝑗

]
+ 2 ·

∑︁
1≤𝑖≤𝑚

∑︁
𝑖+1≤ 𝑗≠𝑘≤𝑚

E
[
𝑌𝑖 𝑗𝑌𝑖𝑘

]
≤𝑚

2

𝑤2

𝑢

·
∑︁
(𝑢,𝑣) ∈𝐸

(𝑧∗𝑣)2 +
𝑚3

𝑤3

𝑢

·
∑︁
(𝑢,𝑣) ∈𝐸

(𝑧∗𝑣)2𝑤𝑢𝑣 .

Furthermore, since𝑚2 ≤ 3

(𝑚
2

)
if𝑚 ≥ 3, we have

Var
[
𝑆𝑢

]
= 𝑤4

𝑢 ·
(
𝑚

2

)−2

· Var


∑︁
1≤𝑖< 𝑗≤𝑚

𝑌𝑖 𝑗


≤ 9𝑤2

𝑢

𝑚2
·

∑︁
(𝑢,𝑣) ∈𝐸

(𝑧∗𝑣)2 +
9𝑤𝑢

𝑚
·

∑︁
(𝑢,𝑣) ∈𝐸

(𝑧∗𝑣)2𝑤𝑢𝑣 .
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By Chebyshev’s inequality , we have

Pr
(��𝑆𝑢 − 𝑆𝑢 �� ≥ 𝜖𝑆𝑢

)
≤

Var
[
𝑆𝑢

]
𝜖2𝑆2

𝑢

≤
9(∑(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣)2 · (

∑
(𝑢,𝑣) ∈𝐸 (𝑧∗𝑣)2)

𝑚2𝜖2 (∑(𝑢,𝑣) ∈𝐸 𝑧∗𝑣𝑤𝑢𝑣)2
+

9(∑(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣) (
∑
(𝑢,𝑣) ∈𝐸 (𝑧∗𝑣)2𝑤𝑢𝑣)

𝑚𝜖2 (∑(𝑢,𝑣) ∈𝐸 𝑧∗𝑣𝑤𝑢𝑣)2

≤
9(∑(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣)2 · 𝑑𝑢
𝑚2𝜖2 (∑(𝑢,𝑣) ∈𝐸 𝑐𝑤𝑢𝑣)2

+
9(∑(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣) (

∑
(𝑢,𝑣) ∈𝐸 𝑧

∗
𝑣𝑤𝑢𝑣)

𝑚𝜖2 (∑(𝑢,𝑣) ∈𝐸 𝑧∗𝑣𝑤𝑢𝑣)2

≤
9(∑(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣)2 · 𝑑𝑢
𝑚2𝜖2𝑐2 (∑(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣)2

+
9

∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣

𝑚𝜖2𝑐
∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣

≤ 9𝑑𝑢

𝑚2𝜖2𝑐2
+ 9

𝑚𝜖2𝑐

≤0.1,

where we set 𝑚 = 𝑂 (𝑑1/2
𝑢 𝜖−1) and used that (𝑧∗𝑣)2 ≤ 𝑧∗𝑣 and∑

(𝑢,𝑣) ∈𝐸 (𝑧∗𝑣)2 ≤ 𝑑𝑢 . Applying the median trick, we obtain that

with probability 1 − 𝛿 we return an estimate with multiplicative

error 1 ± 𝜖 .
We conclude that 𝑆𝑢 can be computed in time𝑂 (min{𝑑𝑢 , 𝑑1/2

𝑢 𝜖−1
log𝛿−1}).

A.10 Proof of Corollary 10
We note that 𝑠 = (𝐼 + 𝐿)𝑧∗. Hence, we have that 𝑠𝑢 = (1 +𝑤𝑢 )𝑧∗𝑢 −∑
(𝑢,𝑣) ∈𝐸 𝑤𝑢𝑣𝑧

∗
𝑣 = (1+𝑤𝑢 )𝑧∗𝑢 −𝑆𝑢 . We can compute the first term of

this sum in time𝑂 (1) using our query access to 𝑧∗𝑢 and𝑤𝑢 . Further-

more, according to Proposition 9, with probability at least 1 − 𝛿 we

can estimate the second term in time 𝑂 (min{𝑑𝑢 , 𝑑1/2
𝑢 𝜖−1

log𝛿−1})
with multiplicative error (1 ± 𝜖), i.e.,

��𝑆𝑢 − 𝑆𝑢 �� ≤ 𝜖𝑆𝑢 . We set

𝑠𝑢 = (1 +𝑤𝑢 )𝑧∗𝑢 − 𝑆𝑢 .
If 𝑆𝑢 ≤ 1, then it follows immediately from Proposition 9 that

|𝑠𝑢 − 𝑠𝑢 | =
��𝑆𝑢 − 𝑆𝑢 �� ≤ 𝜖𝑆𝑢 ≤ 𝜖 .

If 𝑆𝑢 ≤ (1+𝑤𝑢 )𝑧∗𝑢
2

, then according to Proposition 9, we have

𝑠𝑢 − 𝑠𝑢 = 𝑆𝑢 − 𝑆𝑢
≤ (1 + 𝜖)𝑆𝑢 − 𝑆𝑢
= 𝜖𝑆𝑢

≤ 𝜖 · (1 +𝑤𝑢 )𝑧∗𝑢
2

≤ 𝜖 ((1 +𝑤𝑢 )𝑧∗𝑢 + 𝑆𝑢 )
= 𝜖𝑠𝑢 ,

and

𝑠𝑢 − 𝑠𝑢 = 𝑆𝑢 − 𝑆𝑢
≥ (1 − 𝜖)𝑆𝑢 − 𝑆𝑢
= −𝜖𝑆𝑢

≥ −𝜖 · (1 +𝑤𝑢 )𝑧∗𝑢
2

≥ −𝜖 ((1 +𝑤𝑢 )𝑧∗𝑢 + 𝑆𝑢 )
= −𝜖𝑠𝑢 .

Therefore, |𝑠𝑢 − 𝑠𝑢 | ≤ 𝜖𝑠𝑢 .

A.11 Estimating the Measures Given Oracle
Access to Expressed Opinions 𝑧∗𝑢

Lemma 19. Let 𝜖, 𝛿 ∈ (0, 1). Then with probability at least 1 − 𝛿 :
• We can return an estimate of 𝑧 with additive error ±𝜖 in time

𝑂 (𝜖−2
log𝛿−1).

• We can return an estimate of S, C and P with additive error ±𝜖𝑛
in time 𝑂 (𝜖−2

log𝛿−1).

Proof. Estimating 𝑧,S and C: These three claims follow directly

from Lemma 12.

Estimating the polarization P: Recall that P =
∑
𝑢∈𝑉 (𝑧∗𝑢 − 𝑧)2,

where 𝑧 = 1

𝑛

∑
𝑢∈𝑉 𝑧∗𝑢 . Now we use the well-known equality that∑

𝑖

∑
𝑗>𝑖 (𝑎𝑖 − 𝑎 𝑗 )2 = 𝑛

∑
𝑖 (𝑎𝑖 − 𝑐)2, where 𝑐 = 1

𝑛

∑
𝑖 𝑎𝑖 . This gives

us that

P =
∑︁
𝑢∈𝑉
(𝑧∗𝑢 − 𝑧)2 =

1

2𝑛

∑︁
𝑢,𝑣∈𝑉

(𝑧∗𝑢 − 𝑧∗𝑣)2 .

Hence, we can apply Lemma 12 with a vector 𝑥 of length 𝑛2
which

has entries 𝑥𝑢,𝑣 = (𝑧∗𝑢 − 𝑧∗𝑣)2 ∈ [0, 1] for 𝑢, 𝑣 ∈ 𝑉 . Thus the lemma

gives us an estimate Σ̃ of Σ =
∑
𝑢,𝑣∈𝑉 (𝑧∗𝑢 − 𝑧∗𝑣)2 with additive error��Σ̃ − Σ�� ≤ 𝜖𝑛2

. As P = 1

2𝑛 Σ we get an error for the polarization of

𝜖𝑛.

□

Lemma 20. Let 𝜖, 𝛿 ∈ (0, 1). Then with probability at least 1 − 𝛿 ,
we can return an estimate of ∥𝑠 ∥2

2
,I,D and DC with additive error

±𝜖𝑛 in time 𝑂 (𝜖−2 ¯𝑑 log
2 𝛿−1).

Proof. In the following, we use the estimation of ∥𝑠 ∥2
2
as an

example to illustrate. The estimation of I,D and DC works simi-

larly.

Recall that ∥𝑠 ∥2
2
=

∑
𝑢∈𝑉 𝑠2

𝑢 . We set 𝜖1 = 𝜖
6
, 𝛿1 = 𝛿

2
, 𝜖2 = 𝜖

2
, 𝛿2 =

𝛿
2
and 𝐶 = 𝜖−2

2
log𝛿−1

2
= 𝑂 (𝜖−2

log𝛿−1). According to Lemma 11,

in time 𝑂 (𝐶 ¯𝑑 log𝛿−1), we can sample a (multi-)set of vertices 𝑆 =

{𝑖1, 𝑖2, . . . , 𝑖𝐶 } uniformly at random from 𝑉 and obtain estimated

innate opinions 𝑠𝑢 for all 𝑢 ∈ 𝑆 such that with probability 1 − 𝛿1 it

holds that |𝑠𝑢 − 𝑠𝑢 | ≤ 𝜖1 for all 𝑢 ∈ 𝑆 . We return
𝑛
𝐶

∑
𝑢∈𝑆 𝑠

2

𝑢 .

Obviously, the running time is𝑂 (𝐶 ¯𝑑 log𝛿−1) = 𝑂 (𝜖−2 ¯𝑑 log
2 𝛿−1).

Now we analyze the error guarantee. According to Lemma 11,

for all 𝑢 ∈ 𝑆 , with probability at least 1 − 𝛿1 = 1 − 𝛿
2
, we have

|𝑠𝑢 − 𝑠𝑢 | ≤ 𝜖1 = 𝜖
6
. Therefore,

��𝑠2

𝑢 − 𝑠2

𝑢

�� ≤ |𝑠𝑢 + 𝑠𝑢 | · |𝑠𝑢 − 𝑠𝑢 | ≤
3𝜖1 = 𝜖

2
. Then we have

��∑
𝑢∈𝑆 𝑠

2

𝑢 −
∑
𝑢∈𝑆 𝑠

2

𝑢

�� ≤ 𝐶 · 𝜖
2
= 𝜖𝐶

2
. Accord-

ing to Lemma 12, with probability at least 1 − 𝛿2 = 1 − 𝛿
2
, we have�� 𝑛

𝐶

∑
𝑢∈𝑆 𝑠

2

𝑢 − ∥𝑠 ∥22
�� ≤ 𝜖2𝑛 = 𝜖𝑛

2
. By union bound, with probability

at least 1 − 𝛿
2
− 𝛿

2
= 1 − 𝛿 , we have�����𝑛𝐶 ∑︁

𝑢∈𝑆
𝑠2

𝑢 − ∥𝑠 ∥22

����� ≤
�����𝑛𝐶 ∑︁

𝑢∈𝑆
𝑠2

𝑢 −
𝑛

𝐶

∑︁
𝑢∈𝑆

𝑠2

𝑢

����� +
�����𝑛𝐶 ∑︁

𝑢∈𝑆
𝑠2

𝑢 − ∥𝑠 ∥22

�����
≤ 𝑛

𝐶
· 𝜖𝐶

2

+ 𝜖𝑛

2

= 𝜖𝑛.

□

B ADDITIONAL EXPERIMENTS
In this section, we present additional experimental results and

elaborate on the technical details of our experiment setup.
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First, let us elaborate how we obtained the bounds on the con-

dition numbers of 𝐼 + 𝐿 in Table 2. We start by observing that the

eigenvalues of 𝐼+𝐿 are given by 1+𝜆𝑖 , where 𝜆𝑖 is the 𝑖’th eigenvalue
of 𝐿. Thus, the condition number of 𝐿 corresponds to 1 + 𝜆max (𝐿).
We compute an approximation 𝜆max of the second eigenvector of 𝐿

using power iteration with 100 iterations.

Next, we provide details on the opinion distributions that we

used. We already mentioned the uniform distribution in the main

text. Additionally, we sample opinions from an exponential distri-

bution and then rescale the values we obtain so that all opinions

are in the interval [0, 1]; this is done exactly as in [31]. Since for

the first two distributions, the opinions do not depend on the graph

structure, we also compute an approximation 𝑣 of the second eigen-

vector of 𝐿 using power iteration with 100 iterations. Given this

approximation, we rescale all entries in 𝑣 such that they are in the

interval [0, 1] by setting 𝑣𝑖 = 𝑣𝑖−min(𝑣)
max(𝑣)−min(𝑣) . Intuitively, this vector

takes into account the community structure of the graph and thus

we obtain opinions that depend on the graph structure. Interest-

ingly, we find that on the datasets we consider, this distribution is

relatively close to the uniform distribution.

Running time analysis. In Figure 2, we present the running

time of Algorithm 1 on the Pokec and LiveJournal datasets with uni-

formly distributed innate opinions. We observe that the algorithm’s

running time scales linearly in the number of random walks, as

well as in the number of sampled vertices for which the opinions

shall be estimated. We also observe that after setting the number

of random walk steps to 400, the running time stops increasing

even for larger numbers of random walk steps. This behavior is

explained by the timeout of the random walks, which at vertex 𝑣

terminate with probability 1/2 −𝑤𝑣/(2(1 +𝑤𝑣)) (see Section A.2

for details). In other words, the probability that the random walks

perform more than 400 steps without terminating is very small and

therefore the running time does stops increasing.

We note that here we only report running time results for uni-

formly distributed innate opinions.We do this for conciseness, since

the results using the other two opinion distributions are almost

identical.

Additional error analysis. Next, we present additional error
analysis with different opinion distributions on the datasets that

we consider.

First, we consider estimating the expressed opinions 𝑧∗𝑢 using

Algorithm 1 and an oracle for innate opinions 𝑠𝑢 . We present the

results using innate opinions generated from the second eigenvalue

of the Laplacian in Table 6 and the results using a rescaled expo-

nential distribution in Table 7. We observe that for approximating

the measures, our results are highly similar to what we present in

the main text for uniformly distributed innate opinions. That is, for

all measures except disagreement we can compute estimates with

relative error at most 6%. Interestingly, we observe that for expo-

nentially distributed innate opinions the average absolute error for

estimating 𝑧∗𝑢 is only ±0.003 (rather than ±0.01 for the other two

distributions), but this does not lead to significantly lower relative

error when approximating the measures.

Second, we consider estimating the innate opinions 𝑠𝑢 using

the sampling scheme from Lemma 8 and an oracle for expressed

opinions 𝑧∗𝑢 . We present the results using innate opinions generated

from the second eigenvalue of the Laplacian in Table 8 and the

results using a rescaled exponential distribution in Table 9.We again

observe that overall the results are similar to what we reported in

the main text for uniformly distributed innate opinions. The main

difference is that for exponentially distributed innate opinions,

the relative error for internal conflict I and, to a lesser extent,

for polarization P is higher. We explain this by the fact that for a

highly skewed distribution like the exponential distribution, a small

number of vertices make up for a large fraction of the measures’

values. Therefore, sampling-based schemes like ours perform worse

and require estimating more vertex opinions (compared innate

opinion distributed based on less skewed distributions).

16



1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Sublinear-Time Opinion Estimation in the Friedkin–Johnsen Model Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

100 200 400 600
numSteps

75

80

85

90

95

tim
e 

in
 se

c

(a) Pokec, vary #steps

100500
1000

2000
4000

6000
numWalks

0

50

100

tim
e 

in
 se

c
(b) Pokec, vary #walks.

100 200 400 600
numSteps

50

55

tim
e 

in
 se

c

(c) LiveJournal, vary #steps

100500
1000

2000
4000

6000
numWalks

0

20

40

60

80

tim
e 

in
 se

c

(d) LiveJournal, vary #walks

Figure 2: Running time of Algorithm 1 for estimating expressed opinions 𝑧∗𝑢 using an oracle for innate opinions 𝑠𝑢 . When not
mentioned otherwise, we sampled 10 000 vertices and for each of them we performed 4 000 random walks with 600 steps. We
report means and standard deviations across 10 experiments. Innate opinions were generated using the uniform distribution.

Table 6: Errors for different datasets given an oracle for innate opinions; we report means and standard deviations (in paren-
theses) across 10 experiments. We ran Algorithm 1 with 600 steps and 4 000 random walks; we estimated the opinions of
10 000 random vertices. Innate opinions were generated using the the second eigenvalue of the Laplacian.

Dataset Absolute Error Relative Error in %

𝑧∗𝑢 S P D I C DC ∥𝑠 ∥2
2

GooglePlus 0.010 (±0.007) 0.2 (±0.2) 2.9 (±1.7) 156.5 (±8.1) 8.8 (±0.7) 3.3 (±0.2) 1.6 (±0.3) 0.3 (±0.3)
TwitterFollows 0.011 (±0.006) 0.3 (±0.2) 6.8 (±1.0) 197.0 (±17.1) 6.8 (±1.4) 4.2 (±0.3) 2.1 (±0.5) 0.5 (±0.4)

Flixster 0.013 (±0.007) 0.3 (±0.2) 4.2 (±2.0) 126.9 (±8.5) 2.5 (±1.4) 4.4 (±0.3) 2.0 (±0.5) 0.6 (±0.4)
Pokec 0.010 (±0.007) 0.4 (±0.2) 6.8 (±2.3) 83.3 (±13.4) 1.6 (±1.0) 3.4 (±0.3) 1.7 (±0.6) 0.7 (±0.3)
Flickr 0.012 (±0.007) 0.4 (±0.3) 1.7 (±1.2) 37.9 (±4.8) 1.0 (±0.7) 4.7 (±0.2) 2.6 (±0.4) 0.7 (±0.6)

YouTube 0.012 (±0.007) 0.6 (±0.5) 1.6 (±0.9) 31.9 (±8.7) 0.8 (±0.7) 4.2 (±0.5) 2.3 (±0.9) 1.0 (±0.9)
LiveJournal 0.011 (±0.008) 0.5 (±0.3) 4.9 (±3.1) 63.1 (±11.1) 1.8 (±0.3) 3.5 (±0.4) 1.4 (±0.7) 1.1 (±0.5)

Table 7: Errors for different datasets given an oracle for innate opinions; we report means and standard deviations (in paren-
theses) across 10 experiments. We ran Algorithm 1 with 600 steps and 4 000 random walks; we estimated the opinions of
10 000 random vertices. Innate opinions were generated using the exponential distribution.

Dataset Absolute Error Relative Error in %

𝑧∗𝑢 S P D I C DC ∥𝑠 ∥2
2

GooglePlus 0.003 (±0.002) 0.4 (±0.3) 3.2 (±0.9) 47.5 (±10.1) 2.1 (±2.2) 3.7 (±0.3) 1.8 (±0.5) 0.7 (±0.6)
TwitterFollows 0.003 (±0.002) 0.7 (±0.5) 6.6 (±4.0) 43.5 (±12.2) 5.3 (±1.9) 3.4 (±0.7) 1.3 (±1.0) 2.2 (±1.1)

Flixster 0.003 (±0.002) 0.4 (±0.2) 3.8 (±3.0) 44.4 (±7.8) 2.3 (±1.4) 4.3 (±0.6) 1.9 (±0.9) 1.0 (±0.5)
Pokec 0.003 (±0.002) 0.4 (±0.1) 5.0 (±2.3) 69.3 (±17.4) 2.2 (±1.2) 3.5 (±0.1) 1.7 (±0.4) 0.6 (±0.3)
Flickr 0.003 (±0.002) 0.5 (±0.2) 4.6 (±3.2) 50.8 (±9.5) 1.8 (±1.2) 4.0 (±0.6) 1.7 (±0.9) 1.2 (±0.4)

YouTube 0.003 (±0.002) 0.7 (±0.3) 1.5 (±0.7) 46.2 (±10.0) 3.7 (±3.3) 3.9 (±0.6) 1.6 (±1.0) 1.5 (±0.6)
LiveJournal 0.003 (±0.002) 0.3 (±0.2) 1.7 (±1.2) 52.4 (±5.4) 1.9 (±1.3) 3.7 (±0.3) 1.9 (±0.4) 0.6 (±0.4)
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Table 8: Errors for different datasets given an oracle for expressed opinions; we report means and standard deviations (in
parentheses) across 10 experiments. We ran our algorithm with threshold 400 and 5 repetitions; we estimated the opinions of
10 000 random vertices. Innate opinions were generated using the the second eigenvalue of the Laplacian.

Dataset Absolute Error Relative Error in %

𝑠𝑢 S P D I C DC ∥𝑠 ∥2
2

GooglePlus 0.000 (±0.004) 0.2 (±0.1) 1.8 (±0.9) 10.4 (±6.0) 1.8 (±1.1) 0.3 (±0.1) 0.3 (±0.2) 0.4 (±0.1)
TwitterFollows 0.001 (±0.017) 0.1 (±0.1) 0.9 (±0.7) 10.5 (±4.6) 13.4 (±4.6) 0.2 (±0.1) 0.3 (±0.2) 0.4 (±0.2)

Flixster 0.001 (±0.016) 0.2 (±0.1) 1.7 (±1.1) 9.2 (±7.0) 4.1 (±1.9) 0.3 (±0.2) 0.5 (±0.3) 0.6 (±0.4)
Pokec 0.000 (±0.004) 0.1 (±0.0) 2.3 (±2.0) 8.5 (±3.9) 1.4 (±1.1) 0.1 (±0.1) 0.2 (±0.1) 0.3 (±0.2)
Flickr 0.001 (±0.020) 0.1 (±0.1) 1.7 (±0.6) 4.9 (±1.3) 1.9 (±1.0) 0.4 (±0.2) 0.4 (±0.3) 0.5 (±0.4)

YouTube 0.000 (±0.011) 0.2 (±0.1) 1.6 (±1.2) 6.2 (±3.0) 0.6 (±0.3) 0.4 (±0.2) 0.7 (±0.3) 0.9 (±0.4)
LiveJournal 0.000 (±0.008) 0.2 (±0.1) 1.8 (±0.8) 4.4 (±2.5) 0.8 (±0.3) 0.4 (±0.1) 0.5 (±0.2) 0.6 (±0.2)

Table 9: Errors for different datasets given an oracle for expressed opinions; we report means and standard deviations (in
parentheses) across 10 experiments. We ran our algorithm with threshold 400 and 5 repetitions; we estimated the opinions of
10 000 random vertices. Innate opinions were generated using the exponential distribution.

Dataset Absolute Error Relative Error in %

𝑠𝑢 S P D I C DC ∥𝑠 ∥2
2

GooglePlus 0.000 (±0.002) 0.1 (±0.1) 3.1 (±2.6) 8.9 (±3.0) 3.6 (±1.8) 0.3 (±0.3) 0.6 (±0.3) 1.2 (±0.5)
TwitterFollows 0.001 (±0.014) 0.2 (±0.1) 2.5 (±2.5) 6.3 (±4.3) 11.6 (±5.6) 0.6 (±0.4) 0.9 (±0.6) 1.5 (±0.6)

Flixster 0.000 (±0.009) 0.2 (±0.1) 3.0 (±1.3) 7.4 (±5.1) 8.0 (±5.6) 0.4 (±0.2) 0.6 (±0.5) 1.0 (±1.1)
Pokec 0.000 (±0.002) 0.1 (±0.1) 8.2 (±6.0) 16.7 (±6.9) 3.6 (±2.2) 0.3 (±0.2) 0.6 (±0.4) 1.2 (±0.4)
Flickr 0.000 (±0.008) 0.3 (±0.1) 3.1 (±2.5) 7.2 (±5.7) 5.1 (±3.1) 0.6 (±0.4) 0.9 (±0.6) 1.0 (±0.2)

YouTube 0.000 (±0.005) 0.2 (±0.1) 2.9 (±1.5) 8.0 (±6.9) 4.0 (±3.2) 0.4 (±0.1) 0.7 (±0.5) 1.1 (±1.0)
LiveJournal 0.000 (±0.006) 0.2 (±0.1) 3.5 (±2.4) 6.4 (±5.3) 3.2 (±4.3) 0.5 (±0.3) 0.5 (±0.4) 0.9 (±0.7)
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