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GRIFFIN: GENERATIVE REFERENCE AND LAYOUT

GUIDED IMAGE COMPOSITION

Anonymous authors
Paper under double-blind review

griffin-anonymous.github.io

Figure 1: With Griffin, we can generate an image by defining both the content to be incorporated and its
placement within the final composition. By conditioning on different images and specifying layouts using
either bounding boxes or pixel masks, our method enables a wide range of compositional variations. The base
prompt is “A portrait of a woman ...”.

ABSTRACT

Text-to-image models have reached a level of realism that enables highly convincing image
generation. However, text-based control can be a limiting factor when more explicit guidance
is needed. Defining both the content and its precise placement within an image is crucial for
achieving finer control. In this work, we address the challenge of multi-image layout control,
where the desired content is specified through images rather than text, and the model is guided
on where to place each element. Our approach is training-free, requires a single image per
reference, and provides explicit and simple control for object and part-level composition. We
demonstrate its effectiveness across various image composition tasks.

1 INTRODUCTION

Diffusion-based text-to-image models excel at generating diverse and intricate visuals, ranging from
realistic scenes to abstract compositions. While they offer impressive versatility, achieving precise
control over the final output (both in terms of which visual content to include, and where it will be
placed) is essential for aligning the generated image with the user’s intent. To enhance this control, a
composition technique that seamlessly integrates elements from different images and arranges them
cohesively, guided by specific hints or instructions, is highly valuable.

“Griffin: a mythical creature with the head and wings of an eagle and the body of a lion, and
with the eagle’s legs taking the place of the forelegs.” – New Oxford American Dictionary
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Inspired by the legendary creature, we introduce Griffin: a method that enables the precise combi-
nation of parts or subjects from different images, placing them in locations specified by the user.
This task is challenging as it requires seamless blending of elements to form a realistic composition,
while ensuring that the subjects are reproduced faithfully; see Figure 1. There are two key aspects
of image generation over which we want to exert explicit control:

• Identity preservation: text can only provide a loose description of the image content, we
would like to be able to cue the generator using example images, rather than text, and we
would like the identity/style of the content within these images to be preserved as much as
possible in the generated images.

• Layout specification: precisely defining the placement of content within an image with text
is challenging, and artists typically use visual mock-ups rather than textual descriptions to
communicate a scene’s layout effectively.

The importance of personalized images and layout control has been recognized in previous
work (Gal et al., 2022; Ruiz et al., 2023; Kumari et al., 2023; Dahary et al., 2024; Li et al., 2023b;
Jang et al., 2024; Liu et al., 2023; Tarrés et al., 2025). However, these methods are unable to per-
form training-free part-level composition effectively, as the identities of multiple parts tend to leak
together. To capture the identity of a concept, they require multiple images per subject and lengthy
training to optimize and learn a token for each concept.

Our approach transfers appearance from relevant pixels in the source images using an attention-
sharing mechanism, previously applied in image editing (Cao et al., 2023). Attention sharing alone
does not natively support layout control. Relying on text prompts also does not guarantee accurate
placement or adherence to the specified layout (Figure 2-a). Since the initial Gaussian noise in text-
to-image models contains spatial information, using inversion to start generation from the inverted
noise can produce realistic results. However, it heavily constrains the structure to the input image
rather than allowing flexibility based on the specified layout or text (Figure 2-b).

Figure 2: Control in image generation – Naı̈ve
attention-sharing lacks explicit layout control.
(a) and (b) are generated using the text: “A dog
sitting in the yard. The dog is on the left side of
the image.” but fail to reliably position the sub-
ject. In (c), masked IP-Adapter is used, but it
struggles with identity preservation. (d) shows
our method, which successfully maintains the
subject’s identity and adheres to the layout and
text prompt.

To align with the provided layout, we use an encoder-
based personalization method such as IP-Adapter (Ye
et al., 2023) to anchor each layout component to its
corresponding source image. However, IP-Adapter
independently does not fully preserve the identity
and fine details of the subjects (Figure 2-c). To
address this, we first use IP-Adapter to establish a
correct structure in the early denoising steps, ensur-
ing a strong foundation for further refinement. Af-
terward, we introduce a layout-controlled attention-
sharing mechanism, where each image patch derives
its appearance either from its corresponding refer-
ence image or the text prompt, depending on whether
it belongs to a layout component or the background.
This way, the appearance of the source images is
preserved. In addition, part-level composition is en-
abled without appearance leakage by ensuring that
each patch attends only to its corresponding source
image and relevant regions within the target image
(Figure 2-d and Figure 3-c).

Our method allows for precise control over the ap-
pearance and layout of the image. Griffin needs only
one reference image per subject and supports both
object-level and part-level composition. We demonstrate the effectiveness of our method across a
range of image composition tasks, showing both quantitatively and qualitatively that it outperforms
the state-of-the-art.
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2 RELATED WORKS

Recent advances in large-scale diffusion models (Dhariwal & Nichol, 2021; Ho et al., 2020) have
greatly enhanced the variety and quality of visual content. Leveraging free-form text (Balaji et al.,
2023; Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022), these models can generate
multiple concepts within a single image. Despite their high expressiveness, they do not inherently
support user-defined concepts or spatial guidance, motivating further research on spatially guided
image generation and personalization for diffusion models.

Spatial guided image generation. While text prompts can effectively describe high-level seman-
tics, they often lack sufficient control over spatial arrangements in image generation. To address this
limitation, additional guidance such as segmentation maps (Zeng et al., 2022), depth maps (Eldes-
okey & Wonka, 2024; Jo & Choo, 2024), sketches (Zhang et al., 2024; Mikaeili et al., 2023), and
bounding boxes (Zheng et al., 2024; Yang et al., 2022; Zhou et al., 2024; Tarrés et al., 2025) has
emerged. These spatial cues help ensure objects appear with the correct placement and size. Con-
trolNet (Zhang et al., 2023b) incorporate structural signals (e.g. edges, poses) for even finer spatial
fidelity. Since compositional image generation can be subjective, we incorporate layout compo-
nents (e.g., masks, bounding boxes) to ensure greater control over the placement and structure of the
generated content.

Personalization in text-to-image models. Personalized text-to-image generation focuses on adapt-
ing a pre-trained generative model so that it can create novel images of a specific concept, subject, or
style, supplied by a small number of reference images. Finetuning-based methods (Gal et al., 2022;
Ruiz et al., 2023; Kumari et al., 2023; Alaluf et al., 2023b; Safaee et al., 2023) update the network
parameters and texual embeddings to capture a personalized concept while balancing subject fidelity
and prompt-driven variability. Alternatively, training-free personalization methods inject references
directly into the generation process. IP-Adapter (Ye et al., 2023), for example, extracts image fea-
tures using a projection layer and applies them through cross-attention to guide generation accord-
ing to the reference image. However, our observations indicate that while IP-Adapter is effective
at capturing global structural and appearance attributes, it struggles with fine-grained details. Most
recently, Multiwine (Tarrés et al., 2025) introduced a multi-concept localized generation, injecting
reference image features through cross-attention and encoding layout by concatenating masks with
the noisy latent. For this, they carefully curate a dataset and finetune the stable diffusion inpainting
model Rombach et al. (2022) to accept image and conditions. However, as we show in our supple-
mentary, their method does not preserve the identity of reference objects, similar to encoder-based
approaches such as IP-Adapter.

Multi-concept personalization. An additional line of research explores decomposing and recom-
posing multiple personalized concepts within a single generated image. Several approaches adapt
embeddings or model weights to incorporate new concepts (Kong et al., 2024; Patashnik et al.,
2025a; Shi et al., 2023; Po et al., 2024; Yang et al., 2024; Kumari et al., 2023; Jang et al., 2024).
(Avrahami et al., 2023; Garibi et al., 2025) introduce a notion of extracting separate tokens for each
object in a scene, enabling new re-compositions, whereas methods such as (Gu et al., 2023; Liu et al.,
2023) adopt more spatially guided generation strategies for combining multiple concepts. (Parmar
et al., 2025) trains a two-level coarse and fine encoder for object-level scene composition. However,
these approaches generally require additional training or fine-tuning steps and cannot achieve the
fine-grained, part-level composition. In contrast, our method requires no additional training.

Attention-based identity preservation. Maintaining the identity of a subject while altering layouts
or scenes can be addressed with attention-sharing. (Cao et al., 2023; Mou et al., 2023) propose
querying correlated local contents and textures from source images for editing, ensuring consistency
in appearance. Moreover, (Alaluf et al., 2023a) uses this attention-sharing mechanism for appear-
ance transfer, and (Hertz et al., 2024) applies it for style-transfer. Similarly, sharing self-attention
keys and values of the first frame across subsequent frames has been used to improve temporal
consistency in video generation (Wu et al., 2023; Ceylan et al., 2023; Khachatryan et al., 2023),
while also facilitating consistent video editing (Geyer et al., 2023; Qi et al., 2023). While these
methods simply concatenate the keys and values across different images or frames, (Deng et al.,
2023) propose a weighted attention mixing method that can focus more on the source image while
generating newly added regions using the target image. Generative photomontage (Liu et al., 2025)
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Figure 3: Without proper initialization, at-
tention sharing generates an image as if at-
tention sharing were absent, leading to ar-
tifacts (a), (b). Using masked IP-Adapter
for initialization allows attention sharing
to effectively transfer appearance from the
sources to each subject in the target (c).

proposes mixing queries, keys, and values of images which are structurally aligned for appearance
composition. Most recently, NestedAttention (Patashnik et al., 2025b) trains an encoder to learn a
per-patch value token in the cross-attention modules for fine-grained identity preservation. Alter-
natively, our method uses IP-Adapter Ye et al. (2023) to set the global composition and appearance
of the scene, and performs attention-sharing in the later steps of the diffusion process to improve
identity preservation.

3 PRELIMINARIES

We first provide an overview of text-to-image model architectures (Rombach et al., 2022). At
timestep t, a noisy image xt is passed through the diffusion model to denoise it, producing xt−1. The
denoising architecture consists of multiple layers. At each network layer l, a self-attention module,
followed by a cross-attention module, conditions the generation on the input text-prompt. The input
to the attention layer is the intermediate feature map hl. This feature map is linearly projected into
queries (Q). The keys (K) and values (V ) are obtained by projecting a feature sequence fl, which
in self-attention is equal to hl, and in cross-attention, it is the text token embeddings.

Q = WQ
l hl, K = WK

l fl, V = WV
l fl. (1)

The attention module output would be:

fA = Attention(Q,K, V ) = A · V, (2)

where A is the attention matrix computed as:

A = Softmax
(

QTK/
√
d
)

, (3)

and d is the feature dimension of Q and K. To establish notation, we now quickly review the identity
preservation and image-conditioned generation methods.

Attention sharing.

Recent works (Cao et al., 2023; Hertz et al., 2024; Alaluf et al., 2023a) show that allowing im-
age features to attend to source image keys and values during denoising aids identity preservation.
MasaCtrl (Cao et al., 2023), in particular, proves this method effective for maintaining image ap-
pearance in text-guided editing. Their approach first inverts the denoising process to obtain a noise
image (Song et al., 2022), caching the self-attention keys (KS) and values (VS) from this step.
Then, using the inverted noise and an editing prompt, they generate the target image by replacing
self-attention keys and values with KS and VS . The self-attention output becomes:

AS · VS , AS = Softmax
(

QTKS/
√
d
)

(4)

IP-Adapter. To enhance control beyond text prompts, several works have extended text-to-image
models to be conditioned on input images (Ye et al., 2023; Li et al., 2023a; Gal et al., 2024). In
particular, IP-Adapter (Ye et al., 2023) introduces additional cross-attention modules that condition
generation on image tokens. These tokens are obtained by encoding the image with a pre-trained
image encoder (Radford et al., 2021) to extract a global image feature, which is then processed by
a small adapter network. The resulting image tokens are incorporated into the generation process
by modifying the cross-attention mechanism. Specifically, the outputs of the text and image cross-
attention modules are combined in the attention matrix: fCA = Atext · Vtext + sAimage · Vimage, where
Aimage and Vimage are attention maps and values of the added image cross attention obtained from the
image embeddings and s is a scalar controlling the influence of the input image on the generation.

4
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Figure 4: Pipeline – (a) We use
IP-Adapter to initialize the struc-
ture of the target image based on
the layouts. We then apply our
layout-controlled attention sharing.
(b) Our attention-sharing mecha-
nism allows our generator to only
attend to sub-portions of the in-
put images, avoiding identity leak-
age. (c) We apply masked IP-
Adapter with a high scale at the ini-
tialization stage to rapidly align the
image with the input layout. At
timestep TLBA, attention-sharing
begins, and the IP-Adapter scale
is reduced. The displayed im-
ages are the denoised predictions at
timesteps 1,000, TLBA and 0.

4 METHOD

Given a set of layouts M={M1,M2, . . . ,MN} and corresponding source images
IS={I1S , I2S , . . . , INS }, our goal is to generate a target image IT that respects the spatial ar-
rangement of M , while, at the same time, preserving the appearance of the source images. Our
layout can be specified via image masks or via bounding boxes. As layouts specified via bounding
boxes are just converted to masks, in what follows with M we always refer to image masks.

Outline. Naı̈vely applying the attention-sharing mechanism leads to unintended appearance copying
and artifacts, as it can be observed in Figure 3-b. As we aim to generate an entirely new layout,
proper initialization is crucial to ensure that features in the target image attend to the “correct”
regions of the source images. We address this shortcoming by dividing the generation process into
two stages. In the first stage (Section 4.1), we use an encoder-based personalization method to
initialize the overall structure of the generated image. In the second stage (Section 4.2), we apply a
layout-controlled attention-sharing, allowing pixels within each layout component to attend to their
corresponding source image. Further, as the user-specified target layouts only coarsely represent the
structure of the target image, we update the layout masks as the layout initialization is generated,
leading to a significant boost in generated image quality (Section 4.3). An overview of our model
architecture can be found in Figure 4.

4.1 STRUCTURE INITIALIZATION

To generate image IT , we align the features of each layout component Mn with its correspond-
ing source image IiS , ensuring effective appearance transfer through attention-sharing. To achieve
this, we use a masked IP-Adapter cross-attention mechanism, hence conditioning each region Mn

separately. Specifically, for each layout component Mn, the cross-attention output is given by:

fCA = AtextVtext + s

N
∑

n=1

Mn ⊙AIn

S
VIn

S
, where AIn

S
= Softmax

(

QTKIn

S
/
√
d
)

,

and ⊙ is an element-wise product, KIn

S
and VIn

S
are the keys and values derived from the image

tokens of InS via the IP-Adapter image encoder and adapter network. During denoising, we initially
set a high scale s to rapidly align the features of IT with the source images. As the process transitions
to the attention-sharing stage at timestep TLBA, s is gradually reduced stepwise (Figure 4-c).

4.2 LAYOUT-CONTROLLED ATTENTION-SHARING

To obtain the noise representation of each source image, we first apply DDIM inversion (Song et al.,
2022) to the source images. During this process, we cache the keys and values from the self-attention
modules, which will be used for attention-sharing.

5
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Figure 5: Dynamic layout update – We extract DIFT (Tang et al., 2023) and DINO (Caron et al., 2021)
features from the source and target images, then compute pixel correspondences following (Zhang et al., 2023a).
We discard pixels without correspondence and group the remaining pixels by their corresponding source image.
Farthest sampling is used to obtain subject-specific group points, which are then fed into SAM (Kirillov et al.,
2023) to generate updated masks.

Source masks. To extract source masks that isolate the desired subject in each source image, we
leverage the cross-attention maps obtained in the inversion of the source images. Specifically, we use
the cross-attention of the text token corresponding to the desired region, as proposed in prompt-to-
prompt (Hertz et al., 2022). This results in a set of source masks, denoted as {M1

S ,M
2

S , . . . ,M
N
S },

where each Mn
S selects the relevant region in the source image InS .

Attention sharing – Figure 4-b. Each self-attention module first partitions the target query map QT

into {Q1

T , . . . , Q
N
T , Qbkd

T }, where Qbkd
T corresponds to the background queries. For the n-th layout

component, self-attention is then computed as:

fn
SA = Attention(Qn

T , K̂n, V̂n), (5)

K̂n = α · (Mn
S ⊗Kn

S )⊕Kn
T , (6)

V̂n = (Mn
S ⊗ V n

S )⊕ V n
T , (7)

Figure 6: Dynamic layout update – While
coarse boxes allow specific placements of content
within the image, constraining attention-sharing
to only retrieving content from the correspond-
ing input image can lead to artifacts (e.g., brown
patches outside the mask for dog and background
artifacts around eagle). We resolve this by allow-
ing the masks to be automatically adjusted.

where ⊗ extracts only the masked features, and ⊕
represents concatenation. The terms Kn

T and V n
T are

the keys and values of the target image, restricted
to the pixels of layout component n and the back-
ground pixels. The parameter α controls the ex-
tent of appearance transfer from the source images
to the target image. Similarly, for the background
self-attention, we have:

f bkd
SA = Attention(Qbkd

T ,KT , VT ). (8)

Intuitively, in our layout self-attention mechanism,
each target pixel attends to other pixels within the
same layout component, the corresponding regions
in the source image, as well as the background pix-
els. Meanwhile, background pixels attend to all pix-
els in the target image, as the background generation
is mostly driven by text conditioning.

4.3 DYNAMIC LAYOUT UPDATE

Since we do not require the user to provide precise
masks, the generated content can span beyond these
coarse layouts. To avoid the foreground from leak-
ing into background areas (Figure 6) and to enforce
identity preservation outside the coarse layouts, we
dynamically update them during the generation process by a segmentation that finds the boundary
of the generated subject.
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Figure 7: Visual gallery – We demonstrate our method’s ability to perform various compositions.

For denoising at time step t, the noisy image ItT is first denoised to produce the predicted clean image

Î0T , which is then re-noised to obtain It−1

T . We realized that Î0T is already a good approximation of
the image and can be used by SAM (Kirillov et al., 2023) for object or part segmentation.

Since SAM requires prompt points for each region, we need a method to extract keypoints. We
leverage features from the Diffusion’s U-Net (DIFT) as they encode rich semantic information,
useful for establishing point correspondences between images (Tang et al., 2023; Luo et al., 2023).
Combining them with DINO (Caron et al., 2021) features further enhances correspondence (Zhang
et al., 2023a). Therefore, we use this approach for layout-based keypoint detection, extracting DIFT
features (Tang et al., 2023) from the U-Net during both source inversion and target image generation,

and computing DINO features for the source and predicted clean target image Î0T . The final feature
map used for keypoint detection is defined as:

F = β · norm(FDIFT)⊕ (1− β) · norm(FDINO) (9)

where F denotes feature maps, norm(·) a normalization operation, and β=0.5 is a scaling parameter.
To find the correspondence of a pixel p in the target image IT with the source images IS , we group
pixels based on a similarity metric and select a representative set of pixels from each group as
keypoints. Formally, we compute:

CT→S(p) = argmax
q∈IS

cos sim(FT (p), FS(q)), (10)

where cos sim(·) represents cosine similarity, FT is the feature map of IT , and FS denotes the feature
maps of IS . We then discard pixels in IT with low similarity scores using OTSU thresholding (Otsu,
1979) and group the remaining pixels into sets G = {G1, G2, . . . , GN} based on their highest-
scoring correspondence in the source images. For each group Gi, we retain the top R% of pixels
with the highest similarity scores and apply farthest-point sampling to extract k keypoints, forming
the set Ki. Finally, the set of per subject keypoints K = {K1,K2, . . . ,KN} are fed into SAM to
generate the updated layout masks. An overview of this process is depicted in Figure 5. details of
our implementation can be found in the supplementary material.

5 EXPERIMENTS AND RESULTS

In this section, we first demonstrate the versatility of our approach by showcasing object-level and
part-level composition results in various settings. Then, we conduct ablation studies to evaluate
the contribution of each component of our approach and validate our design choices. We finally
compare our method with several personalization and layout control approaches, demonstrating its
effectiveness through quantitative metrics and a user study.

Qualitative results. Figure 7 presents a visual gallery of our results across different settings. Our
method performs both object-level and part-level composition while respecting the layout arrange-
ment, reference identities, and the input text prompt. The layout arrangement is flexible, allowing

7
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Table 1: Comparison of training time and user study results. Prior methods require expensive fine-tuning,
whereas Griffin is training-free and rated highest by users.

Method Training time (min) User study (↑)

TI Gal et al. (2022) + BA Dahary et al. (2024) ∼25 1.54
DB Ruiz et al. (2023) + BA Dahary et al. (2024) ∼10 2.21
Cones2 Liu et al. (2023) ∼45 1.45
MuDI Jang et al. (2024) + BA Dahary et al. (2024) ∼100 1.99
Griffin (Ours) 0 3.22

for overlapping and non-overlapping boxes. We achieve this by assuming an order for the boxes
and, as a preprocessing step, subtracting the front boxes from the back boxes.

Figure 8: Qualitative ablation – Removing any component of our
method results in artifacts showing the importance of all parts.

Ablations. We present a visual ab-
lation study in Figure 8. Omitting
IP-Adapter initialization introduces
artifacts. Removing attention shar-
ing leads to identity and detail loss
(e.g., hat pattern, cat’s eye color),
color leakage (e.g., cat’s forehead),
and reduced capability for part-level
editing (e.g., teddy bear and Lego).
Finally, dynamic masking prevents
content and background leakage. We
also provide a user study quantita-
tively verifying the effectiveness of
our components in the supplementary.

Comparison. As explained in Section 1, very few existing methods natively support both person-
alization and layout control. Therefore, we construct our comparison baselines by combining mul-
tiple personalization approaches with the state-of-the-art layout control method, Bounded attention
(BA) (Dahary et al., 2024). We employ the following personalization methods: Textual Inversion
(TI) (Gal et al., 2022), DreamBooth (DB) (Ruiz et al., 2023), and MuDI (Jang et al., 2024). MuDI
supports multi-concept personalization by cutting and mixing subjects during training. For TI and
DB, we fine-tune the text tokens or diffusion model weights for each reference image separately.
We also include Cones2 (Liu et al., 2023), which supports both multi-concept personalization and
layout control. Visual results of our comparison are shown in Figure 9. Overall, BA can mostly lo-
calize the subjects. But for identity preservation, TI often fails to maintain subject identity because
the learned text token has limited representational power, while DB suffers from appearance leakage
across different subjects. MuDI and Cones2 cannot reliably learn multiple subjects when there is
only a single image per subject. Finally, none of the baselines can handle part-level composition
effectively. Furthermore, in Table 1, we compare the training time of the methods.

In the supplementary, we also discuss MultiWine (Tarrés et al., 2025), which is a recent training-
based approach that requires a curated dataset. Since neither data, code, nor model weights are
available, we were not able to perform a thorough comparison. Instead, we provide visual compar-
isons using available images in the paper. Compared to MultiWine, Griffin is training-free, it better
preserves identity, and additionally supports part-level composition.

User study. We conducted a user study to validate the quality of our results against competing
methods, (see Table 1). Participants were presented with reference images, a layout, a text prompt,
and outputs from Griffin and four alternatives. They ranked each output based on (1) layout accuracy,
(2) identity preservation, and (3) text-prompt alignment. Responses from 30 participants across 25
examples indicate a strong preference for our method.

Quantitative results. We also run a quantitative comparison between our method and comparing
baselines. we crop each layout component in the target image and we compare each crop with
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their corresponding source images using DINOv2 (Oquab et al., 2024) and DreamSim (Fu et al.,
2023) similarity metrics. For object-level composition, we use OWLv2 (Minderer et al., 2024) to
extract each subject’s bounding box. However, we found that for part-level examples OWL cannot
extract correct part bounding boxes. Therefore, we use the input layout to crop the images. Since
all the methods perform reasonably well for localization, we find this approach fair. The results are
presented in Table 2.

Table 2: Quantitative comparison. Our method outperforms other baselines on similarity metrics.

Method DreamSim (↑) DINOv2 (↑)

TI Gal et al. (2022) + BA Dahary et al. (2024) 0.44 0.50
DB Ruiz et al. (2023) + BA Dahary et al. (2024) 0.52 0.59
Cones2 Liu et al. (2023) 0.44 0.50
MuDI Jang et al. (2024) + BA Dahary et al. (2024) 0.52 0.60
Griffin 0.57 0.61

Figure 9: Visual comparison –Our method better captures the subjects’ identity and composes them without
artifacts or leakage.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We introduce Griffin, which offers a method for image composition by enabling part-level con-
trol and layout specification. By combining attention-sharing with layout control, it successfully
maintains the identity of subjects while allowing for flexible placement within the generated scene.
Griffin offers an efficient way to integrate elements from different images. With only one refer-
ence image per subject, Griffin outperforms existing techniques, providing a robust tool for both
object-level and part-level composition tasks. The results demonstrate its effectiveness in produc-
ing realistic, and cohesive images. Through qualitative and quantitative experiments, user studies,
and ablation studies, we showed the effectiveness of our method and its components. While our
approach supports flexible composition with single-image references and requires no fine-tuning,
it also has limitations. Since our attention-sharing mechanism copies the exact style from source
images, it cannot perform text-based stylization or combine images with different styles. Adapting
attention-sharing to support style transfer is a promising research direction. Such compositions over
3D objects’ textures and geometry can also be an interesting avenue to explore for future work.
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A EXTRA RESULTS

We provide extra visual results in Figure 10.

Figure 10: More visual results.

B IMPLEMENTATION DETAILS

For both inversion and generation, we use the DDIM scheduler with 50 timesteps. In the generation
process, the first 10 steps are dedicated to structure initialization, while attention-sharing is applied
during t ∈ [10, 50]. The IP-Adapter scale is set to 1.8 in the initialization stage. Then it is reduced
to 0.8 and is later decreased to 0.4 in timestep 30. The value of α in Equation (6) is calculated using
a scheduler with the function:

α =
1.2

1 + 2e−10t
, (11)
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assuming that in the denoising process t ∈ [tLBA, 0]. This means that at the early timesteps of at-
tention sharing the target attends more to the source images. As the generation progresses, the target
attends more to itself. We empirically found that using this scheduler helps mitigate background
artifacts. In our keypoint detection algorithm, we typically set R to 50% and k to 5. The dynamic
mask update is performed at timesteps t ∈ {15, 20, 25, 30}.

While our method operates in a zero-shot manner without requiring fine-tuning of the diffusion
model or textual inversion, we found that a short fine-tuning of the IP-Adapter’s cross-attention key
and value projection weights improves identity preservation (see inset). When applied, fine-tuning
runs for 400-1000 steps and takes 3-6 minutes on a single RTX 3090 GPU.

C FINETUNING IP-ADAPTER

To more effectively preserve the fine-grained details of each object, we optionally fine-tune the IP-
Adapter for each subject in our experiments. We run this fine-tuning process separately for every
object, using a masked variant of IP-Adapter to focus the loss on the specific region of interest. In
particular, we obtain a binary mask for each subject and apply the loss only on its corresponding
pixels (i.e., the region we wish to personalize). We employ the AdamW Loshchilov & Hutter (2019)
algorithm for optimization, using a learning rate of 1e-4 and a weight decay of 1e-2. We also adopt
a Direct Consistency Optimization (DCO) Lee et al. (2024) loss term to help the model remain close
to its pretrained weights. In the original DCO framework, the loss terms are defined as follows:

ℓ(θ) = ∥ϵθ(zt; c, t)− ϵ∥2
2
, ℓ(ϕ) = ∥ϵϕ(zt; c, t)− ϵ∥2

2

where ϵθ is the fine-tuned model and ϵϕ is the reference model without LoRA. In our application,
we instead disable the IP-Adapter for ℓ(ϕ), ensuring that the baseline remains purely the unmodified
pretrained model.

The DCO loss is then computed as:

LDCO(θ) = − log σ (−βt(ℓ(θ)− ℓ(ϕ)))

Figure 11: Finetuning IP-Adapter helps preserve finegrained details of the references.

By minimizing the KL divergence between these two losses, we constrain the network’s drift away
from the pretrained distribution. Empirically, this leads to slightly cleaner and more robust results.

D COMPARISON WITH MULTIWINE

As noted in the main paper, MultiWine (Tarrés et al., 2025) is a recent work on multi-concept
localized generation. Their method trains an image adapter and injects image features through
cross-attention while fine-tuning a Stable Diffusion inpainting model. Since their approach relies
on a curated dataset and neither code, models, nor data are publicly available, we instead provide
visual comparisons using several examples from their paper for which the source images are pub-
licly accessible. As shown in Figure 12, Griffin achieves higher identity preservation and produces
more natural, realistic images while being completely training-free. We view MultiWine as a strong
encoder-based personalization approach, and hypothesize that incorporating our localized attention-
sharing and dynamic masking into its pipeline could further enhance identity fidelity.
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Figure 12: Comparison with MultiWine (Tarrés et al., 2025). As evident in the results, the subjects’ iden-
tities are better captured in those produced by Griffin. In Multiwine’s outputs, additional artifacts, such as
Einstein’s beard, appearance, and object details are not well preserved, for instance the gold frames of the sun-
glasses, which are altered in both the Einstein and dog examples.

E ABLATIONS USER STUDY

To better assess the contribution of each component, we conducted a user study comparing our full
method against two ablated variants: (i) using only masked IP-Adapter without attention-sharing,
and (ii) disabling dynamic masking. We omit the case without IP-Adapter initialization, as its results
were significantly worse and not informative. Following the same protocol as the user study in Sec-
tion 5, participants were shown outputs from Griffin and from the corresponding ablated variant,
and asked to select the better result based on (1) layout accuracy, (2) identity preservation, and (3)
text-prompt alignment. Responses from 19 users across 10 examples are summarized in Table 3.
The results confirm that Griffin is consistently preferred over masked IP-Adapter alone, and that
dynamic masking substantially reduces content leakage and improves object placement.
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Table 3: Ablative user study. Our full method is consistently preferred over variants without attention-sharing
and dynamic masking.

Ablation Preference percentage (↑)

Griffin vs. Masked IP Adapter 90.00%
Griffin vs. no Dynamic Masking 64.21%

F OTHER ARCHITECTURES

While our implementation is based on Stable Diffusion v1.5, the method can be extended to other ar-
chitectures that (1) include an encoder-based personalization adapter (e.g., IP Adapter) and (2) incor-
porate self-attention blocks. In Figure 13, we present qualitative results on the SDXL (Podell et al.,
2023) model, and in Figure 14, we demonstrate the extension of Griffin on FLUX-dev 1.0 (Labs,
2024), which is a DiT architecture.

Figure 13: Visual results on SDXL. Our method is applicable to the SDXL diffusion architecture. By applying
Griffin, we achieve personalized and localized image generation.
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Figure 14: Visual results on Flux. Our method is applicable to the Flux DiT architecture. By applying Griffin,
we achieve personalized and localized image generation.

G STATEMENT ON REPRODUCABILITY AND LLM USAGE

Code of our method is attached as a supplementary to the submission and will be publicly available
upon acceptance. Please note that we used ChatGPT for minor rephrasing to avoid grammar issues.
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