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Abstract001

Multimodal large language models (MLLMs)002
that integrate visual and textual reasoning lever-003
age chain-of-thought (CoT) prompting to tackle004
complex visual tasks, yet continue to exhibit005
visual hallucinations and an over-reliance on006
textual priors. We present a systematic diagno-007
sis of state-of-the-art vision-language models008
using a three-stage evaluation framework, un-009
covering key failure modes. To address these,010
we propose an agent-based architecture that011
combines LLM reasoning with lightweight vi-012
sual modules, enabling fine-grained analysis013
and iterative refinement of reasoning chains.014
Our results highlight future visual reasoning015
models should focus on integrating a broader016
set of specialized tools for analyzing visual con-017
tent. Our system achieves significant gains018
(+10.3 on MMMU, +6.0 on MathVista over019
a 7B baseline), matching or surpassing much020
larger models. We will release our framework021
and evaluation suite to facilitate future research.022

1 Introduction023

The ability to perform coherent, structured reason-024

ing is essential for solving complex visual under-025

standing tasks. Unlike recognition, visual reason-026

ing requires models to integrate perceptual cues027

with contextual knowledge, infer relationships be-028

tween entities, track logical dependencies, and ar-029

rive at conclusions that are not immediately evident030

from raw pixel data. This cognitive process mirrors031

human problem-solving, where one sequentially032

interprets visual inputs and iteratively verifies con-033

clusions (Liu et al., 2025b; Zhang et al., 2025;034

Yang et al., 2025; Fu et al., 2025).035

Recent advancements in LLMs have accelerated036

progress in this direction with strong linguistic rea-037

soning abilities. When extended into the multi-038

modal domain, these capabilities enable models to039

interpret images, diagrams, and documents extend-040

ing beyond recognition to include inference and ab-041

straction. The emergence of Reasoning Multimodal042

Query: The data shown below were obtained by time-lapse photography on a highway. Use
regression analysis to fit these data to the Greenshields model and determine the capacity.

Agent

OCRCaption Python Interpreter B

This is a chart about
speed and density [numbers] [numbers]

Figure 1: This image showcases our agent system that
leverages a pure LLM to solve a visual reasoning prob-
lem using external tools. It illustrates how complex
tasks, such as fitting traffic speed-density data to the
Greenshields model, can offload substantial token usage
to a code interpreter, highlighting an efficient division of
labor between perception, reasoning and computation.
Table 1: Comparison of our diagnostic agent with prior
modular systems: MM-ReAct (Yang et al., 2023), MC-
tree (Yao et al., 2024).

System Math
OCR

Iterative
Diagnosis

Lightweight
Backbone

Python
Interpreter

Backtracing
Thought

MM-ReAct ✓ ✗ ✓ ✗ ✗
MC-tree ✗ ✓ ✓ ✗ ✓
Ours ✓ ✓ ✓ ✓ ✓

LLMs (MLLMs), such as LLaVA-CoT (Xu et al., 043

2024), LlamaV-o1 (Thawakar et al., 2025), and 044

Heima (hei, 2025), reflects this trend and demon- 045

strates how the fusion of vision and language mod- 046

els can unlock new frontiers in visual intelligence. 047

Central to these efforts is to encourage models to 048

produce explicit intermediate steps. This structured 049

reasoning is particularly impactful for visual tasks, 050

where raw perceptual data must be transformed into 051

high-level concepts through a series of inferential 052

stages. For example, LlamaV-o1 combines Chain- 053

of-thought (CoT) reasoning with curriculum learn- 054

ing and beam search to effectively solve multi-step 055

visual tasks, while Heima accelerates inference by 056
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Mulberry-8B
LLaVA-CoT-11B

Figure 2: Comparison of token utilization and accuracy between Mulberry-7B and LLaVA-CoT-11B. Both models
exhibit less adaptive reasoning, with token usage. We observe that LLaVA-CoT-11B frequently generates more
tokens than Mulberry-7B, while Mulberry-7B tends to centralize its token usage around 300–350 tokens.

encoding CoT into compact representations (Shen057

et al., 2025)058

Despite these advances, models still hallucinate,059

producing responses not grounded in the image,060

and often rely too heavily on textual priors. Most061

models reason in a single, unidirectional pass,062

lacking correction or self-reflection. To address063

these issues, we introduce a three-stage diagnos-064

tic framework and an agent-based architecture that065

tightly integrates stepwise textual reasoning with066

lightweight visual modules, enabling fine-grained067

analysis of reasoning failures (Author, s; Song068

et al., 2025; Kumar et al., 2025; Lu et al., 2025;069

Liu et al., 2025a). Unlike prior work (e.g., MC-070

tree (Yao et al., 2024), MM-ReAct (Yang et al.,071

2023)), our agent-based framework routes tool calls072

at each step for explicit intervention and diagnosis,073

similar in spirit to recent approaches like MMCTA-074

gent (Kumar et al., 2024) and AgentRE (Shi et al.,075

2024). Our main contributions are:076

Diagnosis: We present a diagnostic framework for077

math-centric visual reasoning, enabling granular078

identification and analysis of failures.079

080

Agent-based Architecture: We propose an081

agent-based approach that decouples perception082

and reasoning, integrating LLMs with visual mod-083

ules for iterative reasoning, yielding substantial084

empirical gains over strong 7B baselines.085

086

Evaluation: We provide a comprehensive analy-087

sis of reasoning chains and release our diagnostic088

framework and evaluation suite to support future089

research in visual reasoning, enabling deeper un-090

derstanding of model behaviors.091

2 Diagnostic Methodology 092

Our analysis focuses on three representative vi- 093

sual reasoning models: QVQ (72B) (Team, 2024), 094

Mulberry-7B (Yao et al., 2024)(Mulberry), and 095

LLaVA-CoT-11B (Xu et al., 2024)(LLaVA-CoT). 096

These models span a range of parameter sizes and 097

are selected for their popularity and relevance. We 098

exclude OpenAI’s O-series reasoning models due 099

to the unavailability of their reasoning paths, which 100

prevents in-depth diagnostic analysis. This selec- 101

tion enables a comprehensive comparison across 102

different model scales and reasoning strategies. 103

Dataset Mulberry LLaVA-CoT QVQ

MMMU 52.8% 55.2% 60.9%
MathVista 63.1% 57.8% 65.4%

Base Model QwenVL2-7B Llama-3.2-7B QwenVL2-72B

Table 2: Comparison of model accuracies (%) on
MMMU and MathVista, and their base models.

2.1 Comparative Model Analysis 104

We begin our evaluation with the MMMU 105

dataset (Yue et al., 2023) and MathVista (Lu et al., 106

2024), both selected for their comprehensive prob- 107

lem difficulty annotations and widespread use as 108

benchmarks for MLLMs. For the MMMU dataset, 109

we analyze token usage across varying difficulty 110

levels to uncover patterns in reasoning efficiency 111

and inefficiency, as shown in Figures 2,3. 112

As shown in Table 2, Mulberry is highly succinct, 113

with token counts clustered between 200–400, but 114

this brevity limits its accuracy (52.8%/63.1%). In- 115

correct Mulberry responses often occur at the up- 116

per end of its token range, suggesting that rigid, 117

template-driven reasoning can be counterproduc- 118

tive when the model stretches beyond its typical 119
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QVQ

Figure 3: Token usage and accuracy trends for QVQ on MMMU. Left: Accuracy as a function of token count,
showing diminishing returns and a decline beyond 2,000 tokens. Right: Distribution of token counts for correct and
incorrect answers, including unfinished answers

patterns. LLaVA-CoT, with token counts typically120

between 800–1,200 for correct Easy/Medium an-121

swers, achieves intermediate accuracy. On harder122

tasks, longer responses often correspond to in-123

correct answers, suggesting that concise yet suffi-124

ciently detailed reasoning chains tend to be optimal,125

whereas excessive verbosity may signal confusion.126

Our analysis shows that while more verbose reason-127

ing can indicate higher capability, excessive token128

usage (beyond 2,000 for QVQ) yields diminish-129

ing returns. The best models balance detail and130

brevity, providing enough reasoning steps without131

unnecessary verbosity. QVQ’s larger size and flex-132

ible reasoning achieve the highest accuracy, but133

future work should aim to reduce verbosity while134

preserving reasoning quality.135

2.2 In-depth Examination of QVQ136

As shown in Table 2, QVQ achieves the highest137

accuracy—60.9% on MMMU and 65.4% on Math-138

Vista—outperforming both LLaVA-CoT and Mul-139

berry. To better understand QVQ’s strengths, we140

analyze its reasoning behavior in detail. Figure 4141

illustrates the relationship between token count and142

accuracy, revealing that accuracy declines as token143

usage increases. This trend is partly due to our144

imposed hard threshold of 4,000 tokens, responses145

exceeding this limit are typically incomplete and146

considered incorrect. In Figure 3, the right panel147

displays the distribution of token counts for an-148

swers, while the left panel excludes unfinished re-149

sponses. QVQ’s superior performance comes with150

more tokens: it often generates 1,000–2,000 to-151

kens for Easy/Medium tasks and over 3,000 tokens152

Figure 4: This chart illustrates the number of correct
and incorrect cases across different token count ranges,
with a green line as accuracy ratio. As token count
increases, the number of cases generally decreases, and
the accuracy ratio tends to decline.

for Hard cases (see Figure 3). Incorrect answers 153

are typically even longer, suggesting that excessive 154

reasoning does not guarantee correctness. No- 155

tably, QVQ exhibits adaptive reasoning: for more 156

difficult questions, it generates longer and more 157

detailed reasoning chains, reflecting increased ef- 158

fort to address complexity. However, our analysis 159

indicates that once token usage exceeds approxi- 160

mately 2,000 tokens, further reasoning does not 161

improve accuracy and may even reduce it. We set a 162

4,000-token cutoff to avoid excessive computation 163

and latency, as well as to align with practical de- 164

ployment constraints. Upon manually examining 165

QVQ’s incorrect cases, we find that the reasoning 166

steps themselves are often logically sound. How- 167

ever, errors frequently arise during visual readout 168

operations—when revisiting the image, they some- 169

times produces statements that do not align with 170

the visual content. These failures are commonly 171

due to mistakes in reading numbers, misidentifying 172
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Table 3: Quantitative results on the MMMU and MathVista datasets. All results are averaged over 3 random seeds;
95% confidence intervals are computed via bootstrap resampling.

Dataset Qwen2.5-
VL-3B

Qwen2.5-
VL-7B

Qwen2.5-
VL-32B

Qwen2.5-
VL-72B

Gemini-2
Flash GPT-4o Claude3.5

Sonnet
Qwen2-
VL-72B QVQ Ours

3B
Ours
11B

Ours
7B

MMMU 53.1 58.6 70.0 70.2 70.7 70.3 70.4 64.5 60.9 60.2 66.7 68.9
MathVista 62.3 68.2 74.7 74.8 73.1 63.8 65.4 70.5 65.4 67.1 72.0 74.2

details, or other perceptual inaccuracies. Moreover,173

some hard problems require intensive computation,174

which consumes a large number of tokens and in-175

creases the likelihood of errors.176

2.3 Agent-based Diagnostic and Intervention177

To overcome the limitations of purely LLM-driven178

visual reasoning, we propose an agent-based archi-179

tecture that seamlessly combines LLM reasoning180

with lightweight visual modules. This modular181

design enables precise analysis and iterative refine-182

ment of reasoning chains, allowing us to pinpoint183

whether failures stem from perceptual errors or184

reasoning weaknesses. We evaluate our approach185

across a suite of multimodal tasks, leveraging spe-186

cialized tools such as OCR, Image Captioning, Im-187

age Question and answering and a Python inter-188

preter, with Qwen2.5-VL-3b,7B (Bai et al., 2025)189

serving as the backbone. Our agent’s reasoning190

mode is denoted as qwq (Yang et al., 2024). Based191

on the hypothesis that visual grounding errors are a192

major source of failure, we experiment with agent-193

based systems using three backbone sizes—3B, 7B,194

and 11B, with the latter matching LLaVA-CoT.195

Our results yield several key insights: 1. Strong196

Performance Without Large-Scale Models: Our197

agent-based system (“Ours 7B”) achieves 68.9% on198

MMMU and 74.2% on MathVista, rivaling top-tier199

models such as Qwen2.5-VL-72B, Gemini-2 Flash,200

and GPT-4o, despite using a much smaller back-201

bone. This demonstrates that modularizing per-202

ception and reasoning can yield substantial gains203

without increasing model size. Notably, the 7B204

backbone consistently outperforms the larger 11B205

variant, highlighting the effectiveness of our modu-206

lar approach. 2. Dedicated Visual Tools Enhance207

Reasoning: On MathVista, our system matches208

the performance of much larger models, underscor-209

ing that perceptual grounding (e.g., accurate text210

and layout extraction) is a key bottleneck. Spe-211

cialized tools such as OCR are essential for these212

tasks. 3. Task-Specific Gains: On MMMU, our213

system outperforms the base Qwen2.5-VL-7B by214

10.3 points; on MathVista, where perceptual accu-215

racy is critical, the improvement is even greater216

(+6.0 points). This supports the view that many vi- 217

sual reasoning failures stem from perceptual errors, 218

which modular pipelines can address. Unlike mono- 219

lithic VL models, our agent architecture enables 220

multi-step reasoning, such as re-querying OCR 221

or cross-checking visual entities with logical con- 222

straints, providing greater flexibility and effective- 223

ness without increasing model size. We performed 224

analysis on 100 incorrect responses from both base- 225

line and our models, categorizing errors as OCR, 226

spatial, math. Baseline errors: OCR (38%), spatial 227

(22%), math (19%). With our agent, these dropped 228

to OCR (19%), spatial (15%), math (13%). 229

2.4 Ablation Study 230

Table 4: Ablation study of our agent-based system (7B
backbone) on MMMU and MathVista. Each column
disables a specific module.

Dataset Full - OCR - Python - Caption - QA - Backtrace

MMMU 68.9 62.1 65.4 66.2 67.0 60.8
MathVista 74.2 66.7 70.3 71.1 72.0 69.5

Table 4 summarizes the effect of removing each 231

module. Disabling OCR causes the largest drop, 232

especially on MathVista, confirming its critical role. 233

The Python interpreter and captioning modules also 234

yield notable gains, while the QA tool has a smaller 235

effect. Removing backtracing significantly reduces 236

performance, underscoring its importance for error 237

correction for iterative reasoning. 238

3 Conclusion and Limitations 239

Our diagnostic framework demonstrates that tar- 240

geting common failure modes enables strong per- 241

formance even with smaller backbones. Looking 242

forward, future visual reasoning models should 243

focus on integrating a broader set of specialized 244

tools for analyzing visual content. Beyond sim- 245

ply calling external tools, models should natively 246

incorporate these capabilities. This direction will 247

help models better adapt to diverse and complex 248

real-world scenarios. Our analysis is limited to 249

math-centric visual reasoning, and findings may 250

not generalize to other domains such as document 251

understanding or natural scene understanding. 252
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