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Abstract

Transformers, while powerful, suffer from quadratic computational com-
plexity and the ever-growing Key-Value (KV) cache of the attention mech-
anism. This paper introduces Trellis, a novel Transformer architecture
with bounded memory that learns how to compress its key-value memory
dynamically at test time. Trellis replaces the standard KV cache with a fixed-
size memory and train a two-pass recurrent compression mechanism to
store new keys and values into memory. To achieve this, it leverages an on-
line gradient descent procedure with a forget gate, enabling the compressed
memory to be updated recursively while learning to retain important con-
textual information from incoming tokens at test time. Extensive experi-
ments on language modeling, common-sense reasoning, recall-intensive
tasks, and time series show that the proposed architecture outperforms
strong baselines. Notably, its performance gains increase as the sequence
length grows, highlighting its potential for long-context applications.

1 Introduction

Transformers (Vaswani et al., 2017) has established itself as the de facto architecture for
sequence modeling in modern deep learning, achieving significant advances across di-
verse areas, including language modeling (Devlin et al., 2018; Radford et al., 2018), com-
puter vision (Arnab et al., 2021; Dosovitskiy et al., 2020), and graph learning and genera-
tion (Dwivedi & Bresson, 2020; Karami, 2024; Yun et al., 2019). Their success stems from the
attention mechanism, which allows models to dynamically attend to relevant parts of an
input sequence while enabling parallel computation. This enables the capture of long-range
dependencies and in-context learning. However, the quadratic time and space complexity
of attention with respect to sequence length restricts its scalability in long sequence mod-
eling. Furthermore, the requirement for an unbounded cache leads to inefficient memory
management, particularly in resource-constrained environments.

These limitations have driven the exploration of alternative architectures that aim to retain
the representational power of Transformers while addressing their computational and
memory complexity. One key strategy involves sparsifying the dense attention matrix
through various techniques, including: blockwise attention (Parmar et al., 2018; Qiu et al.,
2019); using strided or sliding window attention patterns (Beltagy et al., 2020; Child et al.,
2019; Zaheer et al., 2020); or clustering/sorting tokens (Kitaev et al., 2020; Roy et al., 2020;
Tay et al., 2020). Another approach involves low-rank approximations of the self-attention
matrix, leveraging the insight that it often exhibits low-rank properties (Wang et al., 2020).
A different paradigm employs the kernel trick, replacing the Softmax operation with a dot
product of feature maps, resulting in a family of linear attentions (Choromanski et al., 2020;
Katharopoulos et al., 2020; Peng et al., 2021b). While these methods substantially reduce
computational costs, they may sacrifice expressiveness and performance, often requiring
hybrid approaches that combine them with dense attention layers (Fu et al., 2023; Mehta
et al., 2022). Additionally, global convolutions (Li et al., 2022; Poli et al., 2023; Romero et al.,
2021) and their input-dependent variants (Karami & Ghodsi, 2024) have been explored as
alternative sequence modeling techniques.
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Recently, Recurrent Neural Network (RNN) architectures have re-emerged as promising
attention-free solutions for sequence modeling. These models leverage the parallelization
capabilities of their linear recurrence, building upon earlier linear time-invariant models (Fu
et al., 2023; Mehta et al., 2022; Wang et al., 2022) and extending them to more expressive
input-dependent gated RNN designs with linear memory (De et al., 2024; Gu & Dao, 2023;
Orvieto et al., 2023; Yang et al., 2024b) that demonstrate improved in-context learning while
retaining computational advantages. However, their effective memory is limited, affecting
their ability to efficiently compress and summarize information over very long contexts
within their fixed-size hidden states.

Our approach and main contributions In this paper, we present Trellis, a new Trans-
former architecture with bounded memory that learns how to compress its key-value
memory at test time. To address the linearly-growing memory of global attention, Trellis
replaces the KV-cache (i.e., the pair of K and V matrices) with a bounded memory with
m slots and train a meta in-context model to learn how to store new keys and values into
memory. For better management of memory, Trellis uses a forgetting mechanism that learns
how to selectively forget unnecessary past information in its compressed KV-cache.

We perform an extensive set of experimental evaluations on various tasks including lan-
guage modeling, commonsense reasoning, recall-intensive, needle-in-haystack, and time
series data. We observe that Trellis outperforms state-of-the-art baselines, including Trans-
former++, and modern linear recurrent neural networks in downstream tasks. Furthermore,
Trellis scales better than baselines when increasing the context length, showing promising
results for long-context tasks.

2 Related Work and Background

For an input sequence X’ = [x1,...,x7], where x; € RY, the causal Softmax attention mecha-
nism generates output tokens y; € IR?, by attending to past tokens (historic context):

y; = Vi Softmax(K, g;) . 1)

Here, the query, key, and value vectors are computed by linear projections of the input:
gt = Wy xt, kt = Wi x¢, vy = Wy x4, where Wy, Wi, Wy, € R%*4 are learnable weight
matrices. The key-value memory, represented by the caches K; € R**f and V; € R¥*,
stacks the key and value vectors of each new token, leading to unbounded caches with
linearly-growing size. The retrieval of relevant information from this key-value cache can
be rewritten as a weighted sum:

Yyt = Vi a;, where a; = Softmax(lCt—r qt) € RE.

Here, the vector a; € R! is the collection of the attention scores between -th token and its
historic context. Hence, the attention in equation (1) can be seen as a non-linear query from
an unbounded memory.

The key-value cache size growth poses a significant memory bottleneck during inference,
especially for long sequences. Additionally, each retrieval operation scales linearly with
sequence length, resulting in an overall quadratic computational complexity O(T?) for
generating a full sequence of length T.

To address the computational and memory bottleneck of Softmax attention, various alterna-
tives have been proposed (Tay et al., 2022). A well-established approach involves employing
the kernel trick to replace the Softmax with a dot product of feature maps, ¢(q:), ¢(k:)
commonly known as Linear Attention LA (Katharopoulos et al., 2020).

To maintain bounded computational and memory requirements in attention mechanisms,
an alternative strategy is to explicitly use a fixed-size key-value cache. In this approach, the
memory matrices K and V are constrained to a length m where m < T. A straightforward
implementation of this strategy involves limiting the attention window to the most recent m
tokens by maintaining a first-in-first-out (FIFO) queue, often referred to as Sliding Window
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Attention (SWA). While SWA achieves linear computational complexity, it suffers from a
limited receptive field, restricting the model’s ability to capture long-range dependencies
and leading to a poor recall-memory trade-off (Arora et al., 2024). Moreover, the observation,
supported by many research works that key-value matrices in attention mechanisms often
exhibit low-rank and sparse structures (Chen et al., 2021; Singhania et al., 2024; Wang et al.,
2020) motivates the design of efficient sequence mixing layers that induce these properties.
Therefore, these layers aim to compress the context, storing the important information while
discarding or forgetting redundancies, rather than naively truncating memory.

In light of this insight, the Attention-with-Bounded-Memory Control (ABC) mecha-
nism (Peng et al., 2021a) introduces a method to compress and dynamically update a
fixed-size memory. This is achieved using a pair of linear recurrences to update the key and
value matrices:

K = Ki_1 4 a; k] € R™,
V=V, 1 +w vtT e R"™*4,
y; = V{ Softmax(K:q;) € R? )

Here, a; := Softmax(Wyx;) € (0,1)™ controls the update distribution across the memory
slots. Each component, ayj, can be interpreted as the writing intensity determining the ¢-th
token contribution to the j-th memory slot.

The ABC update rule can be decomposed into a cascade of two LAs and presented in the
following two-pass process:

{9} = LA({qe ki, e }y), 9r € R™,
vy} =LA (1) a0} ),y € R, €)
where the intermediate activation function: f(-) = Softmax(-). Building upon this founda-

tion, Gated Slot Attention (GSA) (Zhang et al., 2024) introduced a gated version of ABC,
enhancing the two-pass process with a forget-gate mechanism introduced in GLA (Yang
et al., 2024b). This mechanism allows the model to forget irrelevant information, resulting
in better memory management and improved performance. Importantly, unlike many
linear attention variants, both ABC and GSA do not rely on kernel approximations and
retain the Softmax non-linearity. Moreover, they can take advantage of the chunkwise
matrix form (Hua et al., 2022; Kacham et al., 2024; Yang et al., 2024b), enabling parallel
hardware-efficient implementations on tensor cores.

The simple linear additive (Hebbian-like) nature of the recurrence in ABC and GSA, however,
limits the memory capacity and effective memory management in long-context retrieval
tasks (Behrouz et al., 2025b; Schlag et al., 2021). Specifically, the additive Hebbian update rule
in ABC and GSA endlessly accumulates new tokens into the fixed memory space without
an explicit mechanism to replace past value with new information in the memory, leading
to an overcapacity regime (Schlag et al., 2021). Moreover, their state-independent linear outer
product modification of memory lacks dynamic interaction between the memory content
and incoming keys, disabling it to selectively discard irrelevant or redundant information.

To address these limitations, this paper introduces a new two-pass non-linear recurrence.
Leveraging techniques from meta-learning and test-time memorization (Behrouz et al., 2024;
Sun et al., 2024a), our approach is designed to dynamically compress new keys and values
into the memory while minimizing information loss. For clarity, the subsequent explanation
and its notations focus on key (k¢) cache compression in the first pass, noting that the same
principles apply to the value cache in the second pass.
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3 Method

We define the compression model as a regression layer that projects a key token into a latent
space. Specifically, for each token embedding k; and its corresponding latent representation
«t, the compression layer aims to reconstruct a target vector such that a; ~ &; = ¢(M;k;).

To minimize the reconstruction error and the compression loss, we formulate the learning
objective as an ¢, optimization problem:

,Ct = ||(P(Mtkt) —lxtHZ, M; € IRde, k: € IRd, oy € R™ (4)

We model the latent representation a; using an encoder network, which is implemented
as a linear projection of the input: a; = W,x; with projection weight matrix W, € R"*%x.
Our approach follows the framework of Fast Weight Programmers (FWPs) (Schlag et al., 2021;
Schmidhuber, 1992), where the internal memory of the compression layer (a.k.a. state in the
context of RNNs), M, serves as “fast weights”, which are dynamically updated based on
streaming input data. Hence, each sequence serves as a training dataset for the learning in
this inner loop. To efficiently adapt to new tokens, we design an internal learning procedure
that continuously updates M;, allowing it to store in-context information.

In this framework, the outer network, also referred to as the “slow” network, consists of
the projection layer weights and the rest of the model parameters, jointly denoted as W.
These parameters are trained in the outer loop, which follows standard deep neural network
optimization process, minimizing the end-to-end loss averaged over the training dataset
to learn generalizable patterns from the training set. This learning process subsequently
enables fast adaptation within the inner loop (Schlag et al., 2021). Importantly, the weights
of the “slow” network remain frozen during the internal state updates of the inner loop
(involving the “fast” weights). This overall procedure constitutes a bi-level optimization
strategy (Chen et al., 2022; Liu et al., 2022) commonly used in meta-learning (also referred
to as learning to learn) (Andrychowicz et al., 2016; Bengio et al., 1990; Schmidhuber, 1992;
Thrun & Pratt, 1998).

Given the sequential nature of the data, we approach this problem as an online optimization
problem and update the internal memory using one gradient descent step per token:

M1 =My — 1 VML(My, v1, ) ®)

This update rule generates the sequence of states {M; thl, where each state M; is a nonlinear
recurrent function of the previous state and the input token. Consequently, the memory
update follows a causal nonlinear recurrence, ensuring that information is continually
integrated into the memory.

By the chain rule, the gradient of the loss with respect to M can be computed:
VMLt = Gi(Mi_1, a1, 01) =2 (Jp (p(Mi_1 ki) — ar)) k' (6)

where J is the Jacobian of ¢(-). In practice, terms involving Jacobian products (such as
u = Jp (¢(M_1 ki) — at) in the expression above) are computed efficiently using the
vector-Jacobian product (vjp) method available in modern machine learning frameworks.
This avoids explicitly forming the full Jacobian matrix and leverages efficient automatic
differentiation.

3.1 State Decay

While the proposed compression layer can address the quadratic time and space complex-
ity of Transformers by learning how to effectively compress key-value pairs (k;, v;) into
fixed-size memory states, these memories can still overfit to early tokens of the sequence
or overflow as information accumulates. To mitigate these issues, we introduce ¢, regu-
larization on the memory states—analogous to weight decay in standard neural network
training—applied within the inner loop:

A
Lt = |lp(M;vy) *“t||2+§t|\Mt||2f 7)
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This regularized objective results in a gradient descent recurrent update with state decay:
M; = (1-A)Mi_1 — 7 VML(Mi_1, v, 1) = BiMy_q — yewr k| € [0, 1] 8

where, u} :=Jg (¢(M;_1 k¢) — a;). This has been recently explored in the context of test-
time memorization (Behrouz et al., 2025b; Karami & Mirrokni, 2025; Wang et al., 2025). In
this setting, the scalar f; = 1 — A; € [0, 1] acts as a forget gate, controlling the retention of
prior memory. When B; — 1, it selectively updates the memory based on the interaction
of state and input token without fading its magnitude, while ; — 0 erases the memory
(possibly due to the change of context). Such scalar gating mechanisms have gained renewed
attention in recent RNN architectures as they provide a lightweight yet effective memory
update (Beck et al., 2024; Behrouz et al., 2024; Peng et al., 2021b; Sun et al., 2024b; Yang et al.,
2024a).

3.2 Parallel and Hardware Efficient Implementation

The non-linear nature of the update rule (8) typically hinders straightforward parallelization.
Several techniques have been proposed to address this limitation (Gonzalez et al., 2024; Lim
etal., 2023). Sun et al. (2024a) introduces mini-batch gradient descent, where the sequence
is divided into chunks, and the state at the beginning of each chunk is used to compute the
gradients for all time steps within that chunk. In this approach, the gradients within each
chunk are approximated as: VpL; ~ G¢(My, a;, v), where My represents the state at the
beginning of the chunk (i.e., the final state from the preceding chunk and #' = t — mod(t, C)
with C denoting the chunk size.

This strategy enables the parallel computation of a mini-batch of stale gradients at the start of
each chunk, thereby significantly enhancing scalability. Using this approximation effectively
linearizes the general non-linear recurrence (equation 8) within each chunk, leading to
the following recurrent update rule for the internal state and the memory readout of the
compression layer:

M; =M1 =27 (Jg (9(My kt) — ar)) k-

9
Yyt = Mg ©)

{9}1 = compress({qs, ke, ar} ) = {

This locally linear recurrence satisfies the associative property and can therefore be paral-
lelized by parallel scan (a.k.a. prefix sum) (Blelloch, 1990), or formulated into a parallel
chunkwise form which has been shown to efficiently utilize the matmul units of the modern
GPUs and can be more 1/0 efficient (Hua et al., 2022; Kacham et al., 2024; Yang et al.,,
2024b). We adopt this approach and derive a hardware-optimized chuck-wise form for the
recurrence update with state decay in equation 7. For b-th block, covering time steps t where
bC+1<t< (b+ 1)C for r-th step in the block, let’s define the local cumulative product of

decay factors as ul = I—[f’ Cbc 41 Bi- We also denote the segmented cumulative product over
b
the sub-block stepsitoj (1 <i <j<C)as w]l.’ = Z—{; and the lower triangular matrix with

entries [Q)] ji= w]b ; Vi < j(and 0 otherwise). By unrolling the recurrence relation locally
within the b-th block we obtain:

—ptME b ubkb’ M Z’ybﬂ b kb’ (10)
Where M?~1 is the state at the end of the (b — 1)-th-block. Then M? can be expressed in
matrix form as:
T
= M1 — U" Diag(y © Qp.) K’ (11)

where, © is the element-wise product. Also, unrolling the readout step and formulating it
in matrix form for the entire block yields:

Y’ = Diag(u)M?QY — U (KbTQb © Diag(7) © 0) (12)
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Figure 1: (Left) Block diagram of the language model. (Right) The Trellis block. Each
sequence mixing block is composed of a short Conv1D for {g,k} and the Trellis is followed
by a post normalization and the GeLU post-gate.

where ],tb = [‘u[l’,. .y yé’j}, and K?, Qh € RY*C and U?, Y' € R"*C are matrices collecting
the corresponding vectors within the block. This matrix form, which computes the states
only at the end of each block, extends the State Space Duality formulation introduced in
Mamba?2 (Dao & Gu, 2024) and enables efficient use of the matmul operations on GPUs.

Consequently, applying the proposed recurrent compression model to key and value caches
in a two-pass process yields the following operations:

{9:}{_, = compress({q, ki, a:}{_1), {91, a1, } €R" (13)
{y:}{_, = compress({f (), v, s }{—1), y: €R?, (14)

We explored alternative choices for the intermediate activation function in our architecture

and found that normalized SiLU defined as f(x) = HSSIHI:% outperforms the commonly used

Softmax, also known as the normalized exponential function. This improvement can be
explained by the fact that, in our architecture—where the cache is densely compressed into a
limited number of memory slots (m < T)—a normalization function with less spikiness than
Softmax is more effective for retrieval. It is also worth noting the difference in input ordering
between the second pass of our architecture and that of ABC and GSA. In Trellis, a; acts as a
shared target vector for both compression layers. Consequently, we use y; = ¢(M,' g;) as
the readout operation of the value compression layer to ensure correct output dimensions.
As aresult, in the first pass (equation 13), Trellis compresses the new key embedding, k;, into
its memory, generating an intermediate representation and in the second pass (equation 14),
it compress the new value embedding and finally outputs y;.

The overall Trellis architecture used for language models is illustrated in Figure 1.

3.3 Related Works and Discussion

Linear State Space Models (SSMs) and Recurrent Neural Networks (RNNs) have recently
received renewed interest as an efficient paradigm for sequence modeling. Offering sub-
quadratic scaling during training and constant-time recurrence at inference, they have
proven particularly effective for modeling long-range dependencies (Gu et al., 2020). The
recurrence in the linear time invariant SSMs can be reformulated as a global convolution,
enabling efficient computational implementations (Gu et al., 2021; Mehta et al., 2022).
Furthermore, the linearity in input-dependent SSMs (Dao & Gu, 2024; Gu & Dao, 2023) and
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modern gated RNNs (Beck et al., 2024; De et al., 2024; Orvieto et al., 2023) take advantage
of parallelization through techniques like associative scan (Blelloch, 1990; De et al., 2024;
Smith et al., 2023), or chunkwise parallel forms (Behrouz et al., 2024; 2025a; Hua et al., 2022;
Yang et al., 2024b;c). However, a potential limitation arises from state-independent updates.
The additive (gated) linear modification of the memory, doesn’t consider the interaction
between the memory content and incoming keys, potentially limiting the model’s ability to
efficiently compress and summarize information within its finite memory state.

Fast Weight Programmers (FWPs) represent a class of architectures where the parameters
of one network, often termed the “fast” network, are dynamically generated or modified by
another “slow” network (Schlag et al., 2021; Schmidhuber, 1992). This concept, also referred
to as input-dependent parameterization (Gu & Dao, 2023; Karami & Ghodsi, 2024; Karami
et al., 2019), enables the model to adapt to the specific characteristics of its input, potentially
capturing more complex contextual patterns. In our framework, the compression layer’s
memory state acts as “fast weights” that quickly learn in-context information, while the
“slow” network parameters learns generalizable patterns across the training set. Therefore,
we effectively adopt a meta-learning (Andrychowicz et al., 2016; Bengio et al., 1990; Schmid-
huber, 1992; Thrun & Pratt, 1998) style approach by deriving an internal online learning
procedure that continuously minimizes a reconstruction loss.

Online Gradient Descent is widely adopted for non-stationary sequential data in classical
adaptive filtering such as the Least Mean Squares (LMS) algorithm (Haykin, 2002). LMS-also
known as the Delta Rule (Schlag et al., 2021; Widrow & Hoff, 1988)-typically minimizes the
instantaneous squared error through a simple a linear update rule. Convex optimization-
based methods have also been explored for identifying SSMs (a.k.a. linear dynamical
systems); for example, Karami et al. (2017) formulates the problem as a multi-view matrix
factorization and proposes a global optimizer.

In contrast, our work offers a more general non-linear update rule incorporating a forgetting
gate. This update rule is applied to both key and value compression within a cascading,
two-pass structure. This design is particularly suitable for long-context modeling, where
efficient and expressive memory compression is critical.

4 Experiments

Overview: In this section, following recent studies (Lim et al., 2023; Zhang et al., 2024),
we evaluate the performance of Trellis in various downstream tasks, including language
modeling, common-sense reasoning, needle in haystack, and time series forecasting. We use
four scales of the proposed Trellis with (1) 125M, (2) 350M, (3) 780M, and (4) 1B parameters.
For each scale, we train three different versions, each of which is solely trained on either
Pile (Gao et al., 2020), C4 (Raffel et al., 2020), or Books datasets (a subset of the Pile). The main
reason for our choice of datasets and training different version of Trellis are two folds: First,
the dataset used for training and its characteristics can significantly affect the performance
of the model. Therefore, while a dataset can be more useful for a model, it might not be the
best choice for others. Accordingly, to avoid cherry-picking of the dataset, and to emphasize
the generalizebility and the power of Trellis, we use three different versions, each of which
is trained on a commonly-used dataset in the literature. Second, we use each dataset to
highlight the strength of Trellis in one aspects. That is, we use Pile (resp. Books) dataset to
highlight the strength of Trellis in short context (resp. long context).

Baseline Models: We compare our method against the Transformer++ architec-
ture proposed in Touvron et al. (2023) and the following sub-quadratic models:
Linear-Attention (LA) (Katharopoulos et al., 2020), TTT (Sun et al., 2024a), GSA (Zhang
et al., 2024), DeltaNet (Yang et al., 2024c), Gated-DeltaNet (Yang et al., 2024a), Mamba2 Dao
& Gu (2024). All RNN models follow the Mamba architecture where the sequence models
follows by a normalization and gating before output linear projection.

To investigate the effect of context length on model performance, in this part, we evaluated
models trained with various context lengths, comparing Trellis (both with and without
its forget gate) against the baseline models. For the Books dataset, models were trained
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Figure 2: The effect of context length on model’s perplexity. Subplots show: (Top Left) C4
dataset with 350M parameters; (Top Right) C4 dataset with 780M parameters; (Bottom
Left) Books dataset with 125M parameters; (Bottom Right) The Pile dataset with 125M
parameters. Training Transformers from scratch on very long sequence contexts (e.g.,
T € {16k,32k}) can yield poor perplexity, hence the standard practice for such contexts is
typically to finetune a Transformer pre-trained on shorter sequences (Touvron et al., 2023).
Here, for the Transformer baseline trained from scratch in these results, performance is only
reported up to a context length of T = 8k.

Table 1: Performance of Trellis and baselines on language modeling and common-sense
reasoning tasks.

Model LMB.
ppl{

LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA Avg.
accT acct acctT acc? acc T acc T acc T T

790M params / 30B tokens
Transformer++ | 25.89 | 33.41 6475 4198 51.33 59.06 31.85  40.26 46.09

Mamba2 2891 | 3272 6498 4260  50.01 61.99 30.24  41.07 46.23
TIT 27.05 | 33.18 65.03 4317 4993 6216 3213 4135 4671
Gated-DeltaNet | 21.40 | 34.83 6579 43.66 5045  64.02 3224  41.68 47.52
Trellis | 2028 | 3544 6751 4429 51.08 65.12 3317  42.04 48.38

using sequence lengths of {512,1024,2048,4096, 8192,16384, 32748}. We also trained the
models on the C4 dataset with context lengths in {2048,4096,8192,16384}, and on the Pile
dataset using a subset of context lengths T € {2048,8192}. The results presented in Figure 2
show that Trellis achieves the lowest perplexity compared to all baselines across all tested
context lengths. Interestingly, Trellis shows greater performance gains compared to other
linear RNNs as the sequence length increases, demonstrating the potential of our approach
for tasks requiring long-context reasoning. Furthermore, comparing against Trellis w/o
forgetting highlights the importance of this component in the overall performance of Trellis.

Language Modeling and Common-sense Reasoning Following recent studies on se-
quence modeling (Behrouz et al., 2024; Yang et al., 2024a), in this section, we compare
the performance of Trellis with modern linear recurrent neural networks and Transformer
on language modeling and common-sense reasoning tasks. The results are reported in
Table 1. Trellis achieves outstanding performance across all scales and outperform all linear
recurrent models and Transformer++.
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Table 2: Ablations on Table 3: Performance of Trellis and baselines with 1B param-
improving from linear eters on S-NIAH task from RULER benchmark. The best
DeltaNet (Yang et al., 2024c) results with highest accuracy are highlighted.

and also TTT (Sun et al,

2024a). All modells have Model S-NIAH-PK S-NIAH-N S-NIAH-W Average
125M parameters trained on 2k 4K 8K 2K 4K 8K 1K 2K 4K
The Pile dataset. TTT 984 988 980 602 366 102 858 788 280  66.1
Mamba2 986 614 310 984 558 142 622 422 42 520
DeltaNet 9.8 988 986 472 154 128 852 462 200 579
Confi i ) Gated DeltaNet 89.8 914 90.0 992 918 264 864 826 244 758
onhiguration ppl{ Trellis 992 952 97.8 994 942 346 864 828 284  79.8
DeltaNet 11.58
TTT 11.44 2
24
Trellis 10.87 23
w/o forget gate 11.28 222
x
with f = L2-SiLU  10.98 221
with f = Softmax 11.29 &20
Linear f = Softmax 12.71 191 s Transformer ™
Linear f = LN-SiLU 11.65 18 Mamba2 x=_Trellls
—+— GSA
m =32 11.14 17
1019 1020
m = 128 10.87 FLOPs

b=1 10.75 Figure 3: Scaling pattern of models w.r.t. Perplexity vs.

FLOPs.

To see the scaling law in Trellis and compare it with baselines, we report the perplexity
for different model sizes in Figure 3. Trellis shows a consistent trend and achieves better
perplexity compared to baselines with a fixed budget of FLOPs. This pattern shows that in
the trade-off of efficiency and effectiveness, Trellis achieves Pareto frontier results.

Needle in Haystack Tasks In this section, we follow recent studies on sequence modeling
and evaluate the performance of Trellis in the RULER benchmark and needle in haystack
tasks (Hsieh et al., 2024). The results are reported in Figure 3. Trellis outperforms all the
baselines with +4% performance gain on average over the second best model, showing
higher performance gain of about +6% in longer sequences. We attribute the superior
performance of Trellis to its: (1) more powerful memory management using the hybrid of
linear and non-linear recurrence with forget gate, (2) architectural design, in which, we use
a two-pass recurrence with the same memory to store keys and values. In the results we find
two exceptions that Trellis achieves the second best result (i.e., S-NIAH-PK task with 4K
and 8K sequence length). These results matches the observation of Yang et al. (2024a) that
simple NIAH task with repeated synthetic context require long-term retention, which a
forget gate can damage.

Ablations In this section, we perform ablation studies on key components and design
choices within the proposed architecture to evaluate the contribution of each to the overall
performance. The baseline Trellis is a 2-pass K-V cache compression layer (presented in
equations (13) and (14)) with 125M parameter (d = 768 and m = 64). Its intermediate acti-
vation function: f(x) = LN-SiLU(x) := LayerNorm (SiLU(x)). Starting from this baseline
configuration, we evaluate the impact of the following modifications (one component at
a time): (1) Removing forget gate, (2, 3) Changing the intermediate activation function:

normalized SiLU: f(x) = ”zlii%((?)” and standard softmax, (4, 5) Removing the compression

layer non-linearity, i.e. ¢(x) = x in equation 4, which reduces the recurrence in both passes
to the Delta Rule. This linear recurrence is then tested with f = Softmax and f = LN-SiLU.
(6, 7) Varying the memory size, and (8) Using fully non-linear recurrence with mini-batch
(chunk) size: B = 1. The results, summarized in Table 2, highlight the significance of all



Published as a conference paper at COLM 2025

these design choices on overall performance, notably, the 2-pass compression, forget gate
and the choice of intermediate gate.

Table 4: Performance comparison of 125M-parameter language models on The Pile
(2k context length) and Books (various context lengths) datasets. Baselines include
Transformer++ (Touvron et al., 2023), Linear-Attention (LA) (Katharopoulos et al., 2020),
DeltaNet (Yang et al., 2024c), Gated-DeltaNet (Yang et al., 2024a), Mamba2 (Dao & Gu,

2024), and TTT (Sun et al., 2024a). The best results are highlighted .

Model Pile (2k) DPile (8k) Books (512) Books (1k) Books (2k) Books (4k) Books (8k) Books (16k) Books (32k) Pile (2k)
ppl) ppld pplY pplY pplY ppl) ppli pplY ppli ppl)
125M params / 2.4B tokens 350M params / 7.5B tokens

Transformer++ 11.58 11.75 20.60 19.39 18.89 18.38 18.85 29.41 8.48
Linear-Attention 1243 13.26 20.84 19.96 19.60 19.64 20.34 21.87 25.07 9.16
DeltaNet 11.58 1153 20.21 19.21 18.44 17.90 18.05 18.40 19.48 8.62
Mamba2 11.47 11.35 19.96 18.89 18.19 18.07 18.23 18.40 19.33 8.56
Gated-DeltaNet 11.31 10.95 19.71 18.62 17.85 17.48 17.40 17.85 18.38 8.53
TTT 11.44 11.29 19.91 18.78 18.19 18.03 18.54 18.29 19.16 8.62
Trellis 10.87 10.60 19.09 17.92 17.19 16.71 16.56 16.58 17.18 8.26

5 Conclusion

In this paper, we introduced Trellis, a meta in-context learning framework that learns how
to compress the KV cache of attention into a fixed-size memory. Trellis employs a two-
pass recurrent memory update process, in which keys and values are stored in a compact
memory module. To enhance learning from long context, Trellis further incorporates a gating
mechanism that learns how to filter and forget irrelevant past information. Our experimental
results across diverse domains—including language modeling, commonsense reasoning,
needle-in-a-haystack tasks, and time series data—indicate the superior performance of
Trellis compared to modern linear RNNs and Transformers. The results further support the
new architectural design of Trellis, showing that all its components meaningfully contribute
to its overall performance. By introducing learned, dynamic memory compression, Trellis
offers an effective and efficient solution for long-sequence modeling.

Looking ahead, recent advances in non-linear recurrent models such as Titans (Behrouz
et al., 2024; 2025a), Lattice (Karami & Mirrokni, 2025) offer promising directions for further
improving KV cache compression. Additionally, finetuning pretrained Transformers into
RNNSs (T2R) (Kasai et al., 2021) represents another promising direction to explore the capa-
bilities of large pre-trained models with the inference efficiency of recurrent architectures.
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A Experiment Details

Architectural Details. We provide the architectural details of our model in Table 5.

Table 5: Architectural Details.

Model Block Dim Head PeakLR Token

125M 12 768 12 3e-3 2.4B
170M 12 768 16 3e-3 15B
350M 24 1024 16 1.5e-3 15B
780M 24 1536 16 1.25e-3 30B

The Choice of Datasets and Training. We train our models on three different datasets. Our
goal is to highlight the generalizability and power of Trellis across diverse datasets. For
smaller and medium-sized models (125M and 350M parameters), we included a broader
set of baselines and conducted detailed ablation studies. Due to computational constraints,
we limited the training of larger models (780M and 1B parameters) to comparisons with
the most relevant baselines. Note that Tables 1 and 3 present results for models with 780M
and 1B parameters, respectively, to show Trellis’s performance at larger scales. The results
in the bottom row of Figure 2 are based on models trained on The Pile and Books datasets.
All ablation studies and Table 4 are also conducted using models trained on The Pile. The
models used in the remaining experiments (including Table 3 and Figure 3) are trained on
the C4 dataset.
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