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Abstract
Machine learning subfields define useful repre-
sentations differently: disentanglement strives
for semantic meaning and symmetries, identifi-
ability for recovering the ground-truth factors
of the (unobservable) data-generating process,
group-structured representations for symmetries
We demonstrate that despite their merits, each
approach has shortcomings. Surprisingly, join-
ing forces helps overcome the limitations: we
use insights from latent space statistics, geom-
etry, and topology in our examples to elucidate
how combining the desiderata of identifiability,
disentanglement, and group structure yields more
useful representations.

1. Introduction
Representation learning (Bengio et al., 2013) is in pursuit
of a useful representation. However, usefulness depends on
the (downstream) task and is generally ambiguous to define.
latent variable models (Bishop, 2006; Murphy, 2012) rely
on the latent manifold hypothesis (Bengio et al., 2013)—
i.e., high-dimensional samples such as images belong to
a low-dimensional manifold—to extract low-dimensional
(latent) factors that sufficiently describe the data. Different
machine learning approaches such as disentanglement (Co-
hen & Welling, 2014; Higgins et al., 2018), identifiabil-
ity (Hyvärinen & Pajunen, 1999), and group-structured rep-
resentations (Bronstein et al., 2021) impose distinct induc-
tive biases on the learned representation. Disentanglement
aims to uncover semantically meaningful latent factors. Intu-
itively, a disentangled representation should encode different

*Equal contribution 1Max Planck Institute for Intelligent Sys-
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Figure 1. Useful representations require desiderata from iden-
tifiability, disentanglement, and group-structured representa-
tions: the latent space for two cyclic latents (color θ and orientation
ϕ) is a torus with group structure SO(2)×SO(2). Left: indepen-
dence is insufficient to capture the topology despite no information
loss (i.e., encoding the cyclic latents in [0; 2π)2, cf. Ex. 2.3); right:
the group structure alone cannot ensure independent latents (a
linear combination of θ, ϕ can also parameterize the torus, see
Ex. 2.2); middle: a combination captures the topology and assigns
latent factors encoding separate properties to distinct subspaces

object properties (e.g., color, size) into different latent fac-
tors. In practice, a representation is deemed disentangled if it
excels w.r.t. a disentanglement metric, e.g., DCI (Eastwood
& Williams, 2018) or MIG (Chen et al., 2018)—cf. (Lo-
catello et al., 2019) for a comparison. However, there is no
uniquely-accepted disentanglement definition. Other works
try to learn a representation with a group structure (Cohen
& Welling, 2014; Bronstein et al., 2021); this approach also
inspired researchers to define disentanglement from a group-
based perspective (Higgins et al., 2018). Identifiability
constructs model classes that provably reconstruct the under-
lying latents (up to indeterminacies, such as permutations, or
element-wise transformations). This is impossible without
additional assumptions (Hyvärinen & Pajunen, 1999).
Our contribution illustrates the shortcomings of identifi-
ability, disentanglement, and group-based representation
and shows how combining desiderata from all three fields
contributes to more useful representations.

2. Shortcomings of identifiability and
disentanglement

Both identifiability and (group-based) disentanglement
strive for a useful representation, though it is unclear which
latent properties they can capture. Motivated by practical
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considerations, we refer to a useful representation as one
that encodes the latent factors necessary for the downstream
task without information loss, assigns separate (indepen-
dent) subspaces to factors encoding distinct properties such
as position or color, and captures the latent space topology,
e.g., to measure similarity between samples.1 In the fol-
lowing, we demonstrate how and when identifiability and
disentanglement fail to capture a useful representation, then
propose a means to reconcile these shortcomings. We start
with the classical example of Euler angles, showing that
identifiability does not necessarily imply disentanglement:

Example 2.1 (Identifiability does not guarantee disentan-
glement). Euler angles describe 3D orientation by a non-
commutative sequence of rotations around the x, y, z−axes.
Rotating a 3D cuboid with unequal side lengths (e.g., a
book) with π/2 around two axes in one (e.g., x, y) and the
opposite (y, x) order yields different orientations (Higgins
et al., 2018, Fig. 1B). The Euler angles cannot be disentan-
gled from each other according to Defn. A.2, for no group
affects only one Euler angle, but Euler angles can be disen-
tangled from, e.g., position. Since identifiability is agnostic
to group structure, Euler angles can be identified.

Identifiability can imply group-based disentanglement. As-
sume that Z = [a; b]

2 (e.g., 1D position and size and we
have identifiability up to permutation and sign. By the iden-
tifiability guarantee, the inferred latents also factorize and
have a corresponding group action (scalar addition); thus,
the topology is also presevered. When (not group-based)
disentanglement is measured by the DCI score (Eastwood &
Williams, 2018),D=C=1, and the inferred and true latents
have the same dimensionality, then disentanglement does
imply identifiability up to sign and permutation—which is
a very strong identifiability class (Eastwood et al., 2022,
Cor. 3.4). The group-based perspective does not imply iden-
tifiability though: capturing the latents’ topology (which is
not guaranteed by identifiability, cf. Ex. 2.3) does not ensure
that semantic concepts are encoded in different latents.

Example 2.2 (Group-based disentanglement is insufficient
to separate meaningful latents). Assume a torus latent space
(i.e., Z = S1 ×S1 ⊂ R3) with two cyclic latent factors and
a group structure G = SO(2)× SO(2) such as orientation
in the 2D plane and hue. Without considering the statistical
perspective (i.e., the independence of latent factors), the cor-
rect group structure could be recovered without meaningful
latents, due to the Abelian group structure. Consider the
parametrization of the torus by θ, ϕ ∈ [0; 2π) and R, r > 0,
yielding the coordinates x(θ, ϕ) = (R+ r cos θ) cosϕ ,
y(θ, ϕ) = (R+ r cos θ) sinϕ, and z(θ, ϕ) = cos θ. Con-
sidering θ′ = (θ + ϕ) and ϕ′ = (θ − ϕ) such that θ′, ϕ′

are chosen to be in [0; 2π), the topology still corresponds
to a torus, despite the subgroups not corresponding to se-

1A factor such as color can be encoded in multiple dimensions,
which is necessary to encode its cyclic property

mantically meaningful latents, but a linear combination of
orientation and hue.

Ex. 2.2 also demonstrates that besides (group-based) dis-
entanglement does not necessarily imply identifiability, it
cannot ensure that the latent factors are independent.
Identifiability results ensure that inferred and ground-truth
latent factors are related by a well-defined equivalence class.
Despite capturing all information encoded in the latents, it
might yield anomalous results when e.g. measuring sample
similarity or producing latent interpolations.

Example 2.3 (Identifiability does not guarantee the cor-
rect topology). Assume Z = R2 × [0; 2π) encoding x, y
position and orientation θ, i.e., z = [x; y; θ] , and con-
sider three points: A1(x, y, 0), A2(x, y, 2π − π/12) and
A3(x, y, π). Then there is no neighborhood of A1 that con-
tains A2 without containing A3, which violates the topology
of the true latent space. This can also be appreciated by
measuring the Euclidean distance (ℓ2−distance) and the
actual angular distance between the points. We find that
the angular distances, ∢(A;B) = (θA − θB mod 2π),
are ordered as ∢(A1;A2) < ∢(A1;A3); and that Z cap-
tures the latent factors of position and orientation with-
out loss of information. However, the ℓ2−metric yields
∥A1 −A2∥> ∥A1 −A3∥, even for identifiable representa-
tions up to permutations and scalings.

Ex. 2.3 can be resolved when Z , all else being equal, is
structured as R2 × [−1; 1]

2 to capture the periodicity of θ
via [cos θ; sin θ]. Since the unit circle is embedded R2, we
can use the ℓ2-metric to compare orientations.
An additional restriction of identifiability is that it treats the
latent factors as homogeneous, i.e., it restricts the equiv-
alence class for the latent components jointly. Our next
example shows that it is not strictly necessary: when in-
ferring position and orientation, we should ”separate” one
from the other, but e.g. any coordinate system should suffice
for the position.

Example 2.4 (More strict identifiability classes can be un-
necessary when considering the latent space structure). Con-
sider a ground-truth latent space Z∗ = R2 × [0; 2π) en-
coding x, y position and orientation θ, i.e., z∗ = [x; y; θ] .
Equip the inferred spaces Z,Z ′ with the ℓ2-metric, assume
identifiability up to a linear map i.e., Z = AZ∗,Z ′ =
A′Z∗ such that:

A =

1 0 1
0 1 0
1 0 −1

 , A′ =

1 1 0
1 −1 0
0 0 1

 ,

yielding z = [x+ θ; y;x− θ] and z′ = [x+ y;x− y; θ] .
Euclidean distance does not express the similarity of mean-
ingful properties for Z , for Z is not structured by a group;
however, there is no such problem for Z ′: though A′ can
be thought as a change of basis up to scaling, it does not
combine latent factors with different semantics. Z ′ has a

2



Desiderata for Representation Learning from Identifiability, Disentanglement, and Group-Structuredness

group structure with linear group actions for 2D-position
and orientation:

gxy =

(
I2 δ

01×2 1

)
; gθ =

(
cos δ sin δ
− sin δ cos δ

)
,

where δ = [δx; δy] ∈ R2, δ ∈ [0; 2π) and gxy, gθ are
applied to x, y parametrized as homogeneous coordinates
[x; y; 1] and θ encoded as [cos θ; sin θ]. By not capturing
latent semantics (as group-based disentanglement does),
identifiability might unnecessarily restrict the equivalence
class. E.g., identifying the latent ”blocks” of (x; y) and θ
(subspaces of Z) can suffice without further constraints in
the subspace. Requiring, e.g., linear latent interpolations
might rule out elementwise nonlinearities, but this approach
is still permits the change of basis within a subspace.

3. Equivalence of Group-Structured
Representations

Higgins et al. (2018) introduced a notion of disentangle-
ment of group structured representations w.r.t. a given group
decomposition. However, without knowing which group
decomposition provides semantically meaningful direct sub-
groups, there are often infinitely many possible group de-
compositions and, therefore, infinitely many ways to disen-
tangle the group-structured representations. In this section,
we define an equivalence class over group-structured and
over disentangled group-structured representations, then we
highlight the challenge of finding the right disentanglement.

Criteria for the equivalence class: Assume that the rep-
resentations fθ : X → Z and fθ′ : X → Z ′ capture the
structure of the generative factors (or a part thereof) through
equivariance. We consider them as equivalent if (1) they
are both invariant/equivariant to the same group elements;
and (2) information orthogonal to the group action (e.g.,
the object’s identity when acted on by some displacement
group) is encoded in the latent spaces the same way. We
consider the group homomorphisms ρ, ρ′ induced by the
group actions on Z,Z ′, respectively. Condition (1) corre-
sponds to Ker(ρ) = Ker(ρ′), whereas condition (2) can be
translated into the quotient spaces of the representations be-
ing homeomorphic, i.e., fθ(X )/G ∼ fθ′(X )/G. We can
now define an equivalence class that satisfies these criteria:

Definition 3.1 (Equivalence of group-structured represen-
tations). Two group-structured representations fθ,fθ′ are
equivalent w.r.t. the group G if there is a mapping ψ : Z →
Z ′ such that: ψ|fθ(X ) is injective and Fig. 2 commutes, i.e.,
fθ′(x) = ψ(fθ(x)).

From Defn. 3.1, we derive an equivalence class for disen-
tangled representations.

Definition 3.2 (Equivalence of Disentangled Group-Struc-
tured Representations). Let fθ and fθ′ be disentangled
w.r.t. the group decompositions G = G1 ⊗ · · · ⊗ Gn and

X

Z1 Z2

fθ

fθ′

ψ

Figure 2. Commutativity diagram for Defn. 3.1

G = G′
1⊗· · ·⊗G′

n′ (cf. Definition A.2). Let I (resp. I ′) be
the subset of indices i for which the action of Gi (resp. G′

i)
is not trivial on Zi (resp. Z ′

i). Then the two disentangled
representations are equivalent if and only if there exists an
injective mapping φ : I 7→ I ′ such that Gi ∼= G′

φ(i) and the
projected representations fθ,i and fθ′,φ(i) are equivalent
with regard to the action of the group Gi.

We can learn such decompositions unsupervisedly if we
enforce block-diagonality of any group element in matrix
form (Keurti et al., 2022). However, when the decom-
position’s subgroups are commutative or contain a non-
trivial center, multiple decompositions may fit the same
block-diagonal structure. Similar to (Higgins et al., 2018),
assume that a 2D shape is transitively acted on by the
group of cyclic translations G = SO(2) × SO(2), where
the first subgroup corresponds to cyclic translations along
the x axis and the second subgroup to color shifts on
the hue wheel h. This is the semantically meaningful
decomposition that the group-structured representation is
expected to learn. Let fθ be such a disentangled rep-
resentation with the associated induced group homomor-
phism ρ = ρ1 ⊕ ρ2. However, G admits an identical de-
composition SO(2) × SO(2) where the subgroups corre-
spond to cyclic translations along the x + h and x − h
axes. If fθ′ is disentangled along this second decompo-
sition with the associated induced group homomorphism
ρ′ = ρ′1 ⊕ ρ′2 then the two representations are not equiva-
lent disentangled group representations. Indeed, looking at
the kernels we find that Ker(ρ′1) = {(x, h) ∈ G|x = −h}
which is different than both kernels for the sub-
representations of ρ: Ker(ρ1) = {(x, 0)|x ∈ G1} and
Ker(ρ2) = {(0, h)|h ∈ G2}. This ambiguity does not con-
cern centerless subgroups, e.g.,G = SO(3)×SO(2) acting
on the 3D orientation (α, β, γ) and the color hue h of a 3D
shape. If we find a disentangled group-structured represen-
tation with the associated induced group homomorphism
ρ = ρ1 ⊕ ρ2 such that both ρ1/2 have a non-trivial kernel,
then ρ1 represents SO(3) and ρ2 represents SO(2) or the
other way. The proposition 3.3 summarizes these insights.

Proposition 3.3. A group decomposition G = G1 ×G2 is
identifiable up to a mixing of the centers of G1 and G2.

4. Discussion
Limitations. Our work illustrates how current definitions
of identifiability and (group-based) disentanglement fail to
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capture aspects of the underlying latent space. Despite our
proposal on how to reconcile these shortcomings theoreti-
cally, we do not provide practical means to do so.

Conclusion. Our examples illustrate that disentanglement
into independent variables can lead to an inconsistent latent
topology. On the other hand, disentanglement according
to group structure may capture the structure but admit in-
finitely many decompositions besides the semantic ones.
We defined an equivalence class for both group-structured
representations and disentangled group-structured represen-
tations and have shown how we may get equivalent group-
structured representations but not equivalent disentangled
group-structured representations, depending on the struc-
turing group. This specific limitation might be overcome
by looking at the statistical structure while learning the
group-structured representations.
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A. Definitions
We follow the definitions proposed by Higgins et al. (2018) for group structured representations and disentangled group-
structured representations.
Definition A.1 (Group Structured Representation). Let Z∗ be the generative factors of the observed space X through the
mapping b : Z∗ → X , structured by a group G through the action · : G×Z∗ → Z∗. A vector representation fθ : X → Z
is a group-structured representation if it satisfies:

1. There is a (non-trivial) action of G on Z , i.e., ·Z : G×Z → Z .

2. The composition f = fθ ◦ b : Z∗ → Z is equivariant, meaning that transformations of Z∗ are reflected on Z , i.e.,
∀g ∈ G, z∗ ∈ Z∗, f(g ·Z∗ z∗) = g ·Z f(z∗).

Definition A.2 (Disentangled Group Structured Representation). The group-structured representation is disentangled with
regard to the group decomposition G = G1 × ...×Gn if it satisfies this additional condition:

3. Z can be written as a product of spaces Z = Z1 × ...× Zn or as a direct sum of subspaces Z = Z1 ⊕ ...⊕ Zn such
that each subgroup Gi acts non trivially on Zi and acts trivially on Zj for j ̸= i.

Definition A.3 (Strong Identifiability (Khemakhem et al., 2020b)). Given a parameter class Θ, when the feature extractors
fθ1 ,fθ2 : X → Z produce latent representations z1 = fθ1(x), z2 = fθ2(x) that are equivalent up to scaled permutations
and offsets c for all θ1, θ2 ∈ Θ, i.e.,

θ1 ∼ θ2 ⇐⇒ z = fθ1(x) = DPfθ2(x) + c, (1)

where D is a diagonal and P a permutation matrix. Then θ1, θ2 fulfill an equivalence relationship.
Definition A.4 (Weak Identifiability (Khemakhem et al., 2020b)). Given a parameter class Θ, when the feature extrac-
tors fθ1 ,fθ2 : X → Z produce latent representations z1 = fθ1(x), z2 = fθ2(x) that are equivalent up to matrix
multiplications and offsets c for all θ1, θ2 ∈ Θ, i.e.,

θ1 ∼ θ2 ⇐⇒ z = fθ1(x) = Afθ2(x) + c, (2)

where rank (A) ≥ min (dimZ; dimX ). Then θ1, θ2 fulfill an equivalence relationship.
Definition A.5 (Identifiability up to elementwise nonlinearities (Hyvärinen & Morioka, 2017)). Given a parameter class
Θ, when the feature extractors fθ1 ,fθ2 : X → Z produce latent representations z1 = fθ1(x), z2 = fθ2(x) that are
equivalent up to elementwise nonlinearities, matrix multiplications and offsets c for all θ1, θ2 ∈ Θ, i.e.,

θ1 ∼ θ2 ⇐⇒ z = fθ1(x) = Aσ [fθ2(x)] + c, (3)

where rank (A) ≥ min (dimZ; dimX ) and σ denotes an elementwise nonlinear transformation. Then θ1, θ2 fulfill an
equivalence relationship.

B. Background
Let fθ : X → Z be a feature extractor (encoder) parametrized by θ ∈ Θ, where X ⊆ RD,Z ⊆ Rd are the observation and
latent spaces. A ∈ GL(d), c ∈ Rd,D=diag (D1, . . . , Dd) : Di ̸= 0.

Group theory. A group G structures the space S ∈ {X ,Z} through a group action · : G × S → S, associating an
invertible transformation of S to every group element g ∈ G. The induced map is a group homomorphism. E.g., given
the orientation of a 2D image by a scalar phase, it can be changed via scalar addition modulo the rotation period in Z ,
or by a rotation matrix in X . The structure of the latent space and the symmetry group is expressed via decomposition,
i.e., Z = Z1 × · · · × Zk and G = G1 × · · · × Gk, where only the subgroup Gi affects the subspace Zi via the action
·i : G × Zi → Zi (k ≤ d)—the dimensionality of Zi and that of the action’s representation of Gi can have different
dimensions. E.g., the cyclic, scalar representation of color cannot be expressed with a one-dimensional linear transformation.
Among symmetry relationships, equivariance has a distinguished role, i.e., when fθ (g · x) = g · fθ (x) holds.

Disentanglement. Inspired by Weyl’s principle from physics (Kanatani, 2011), an equivariance-based notion of disen-
tanglement was first proposed by Cohen & Welling (2014), followed by Higgins et al. (2018). ?? deems a representation
disentangled w.r.t. a decomposition of G if the representation also decomposes into independent subspaces Zi that are only
affected by Gi. ?? depends on the group decomposition into subgroups. I.e., disentangled representations are non-unique
since the ”true decomposition” is nontrivial. For the subgroups’ dimensionality is not prescribed, the representation
granularity and the bases of Zi can be arbitrary.
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Identifiability. Identifiability attempts to construct model classes with theoretical guarantees for reconstructing the latent
factors (up to indeterminacies, such as scalings, permutations, or elementwise transformations). This is impossible without
additional assumptions (Hyvärinen & Pajunen, 1999) restricting the data distribution (Guo et al., 2022; Hyvärinen &
Morioka, 2017; Khemakhem et al., 2020a; Morioka et al., 2021; Hyvärinen & Morioka, 2016) or the function class (Gresele
et al., 2021). A factorizing joint latent distribution p (z) =

∏
i p (zi) over Z is central to identifiability, with recent work

relying on auxiliary variables u that introduce conditional independence (Khemakhem et al., 2020a). Furthermore, f is
assumed to be at least injective (Khemakhem et al., 2020a); most works assume bijectivity (Hyvärinen & Morioka, 2017;
2016; Zhang & Hyvarinen, 2012; Hyvärinen et al., 2019) since they assume dimX = dimZ . Appx. A summarizes the
notions of identifiability—with the common denominator that ∀θ1, θ2 ∈ Θ the marginals pθ1 (x) , pθ2 (x) are equivalent;
expressed as θ1 ∼ θ2. However, the feature extractors fθi map x to an equivalent z up to a certain equivalence class,
including invertible transformations: DPz + c with permutation matrix P for strong; Az + c for weak identifiability.
Hyvärinen & Morioka (2017; 2016) include elementwise (monotonous) (non)linear transformations (denoted as σ), i.e.,
Aσ[z] + c. Alternatively, the parameters θ1, θ2 are equivalent if they parametrize feature extractors that (or, equivalently,
the representation they produce) equal up to specific transformations.

Useful representations. The usefulness of a representation is not well-defined: identifiability defines it via independence
and a relation to the ground truth, disentanglement via semantic meaning and symmetries. Achille & Soatto (2018) postulate
sufficiency, minimality, invariance, and disentanglement to call a representation optimal. Eastwood & Williams (2018)
use disentanglement, completeness, and informativeness. Cohen & Welling (2014) and Higgins et al. (2018) advocate for
group-based structure. The plethora of metrics measuring disentanglement makes it especially hard to navigate the literature.
To add insult to injury, the word disentanglement is overloaded several times, and the metrics measure distinct though often
correlated propeties (Locatello et al., 2019; Sepliarskaia et al., 2021; Eastwood & Williams, 2018; Higgins et al., 2018).

C. Related work
Identifiability reasons about the true Data Generating Process (DGP), whereas disentanglement takes a more empirical
approach and measures the performance of (heuristic) methods such as β-Variational Autoencoder (VAE) (Higgins et al.,
2017), TCVAE (Chen et al., 2018), FactorVAE (Kim & Mnih, 2018) with a set of diverse metrics (for comparison,
see (Locatello et al., 2019)). Thus, despite a conceptual connection was already present in the seminal work of Bengio
et al. (2013), the two communities largely developed independently; metrics, such as Mean Correlation Coefficient
(MCC) (Hyvärinen & Morioka, 2016) started to appear in the disentanglement literature, although proposed for identifiability.
The group-theoretic formalization of disentanglement is a recent development (Cohen & Welling, 2014; Higgins et al.,
2017; 2022; Bronstein et al., 2021) and was leveraged for different problems (Cohen et al., 2019; Keurti et al., 2022). Until
recently, there was no formal connection between the two notions. The first such result known to the authors is (Eastwood
et al., 2022), which proves a connection between optimizing the DCI disentanglement score (Eastwood & Williams, 2018)
and identifiability up to permutation and sign. Ahuja et al. (2022) describe the identifiability indeterminacies for a specific
model from the perspective of the equivariances of the mechanisms mapping Z → X .

D. Notation
Acronyms

DCI Disentanglement Completeness Informativeness score
DGP Data Generating Process

MCC Mean Correlation Coefficient

MIG Mutual Information Gap

VAE Variational Autoencoder

Nomenclature

G symmetry group
u auxiliary variable vector
S hypersphere
Ker kernel space
f encoder map X → Z
g group element

Algebra

D diagonal matrix
P permutation matrix

Latents
z latent vector
Z latents
d dimensionality of the latent space Z
z latent single component
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Observations
D dimensionality of the observation space X

x observation vector
X observation space
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