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Abstract001

The success of Vision-Language Models002
(VLMs) often relies on high-resolution003
schemes that preserve image details, while004
these approaches also generate an excess005
of visual tokens, leading to a substantial006
decrease in model efficiency. A typical VLM007
includes a visual encoder, a text encoder,008
and an LLM. Recent studies suggest pruning009
visual tokens based on visual and textual010
priors to accelerate VLMs without additional011
training costs. However, these methods often012
overlook prompt semantics or suffer from013
biased self-attention in the LLM. Inspired by014
the efficient mechanisms of the human brain015
for multimodal understanding, we introduce016
AdaV, a novel training-free visual token017
pruning method. By emulating the neural018
pathways that preprocess visual and auditory019
information before the reasoning stage, we020
shift text-guided visual attention redirection to021
the pre-LLM stage, which reduces biased token022
pruning and enhances model robustness with a023
limited visual token budget. A Self-adaptive024
Cross-modality Attention Redirection (SCAR)025
module is further proposed that effectively026
merges and redirects visual attention with027
text-to-image attention. Extensive experiments028
on seven challenging benchmarks demonstrate029
that our AdaV achieves SOTA performance030
in training-free VLM acceleration and can be031
plug-and-play on various VLMs. We plan to032
open-source the code upon publication.033

1 Introduction034

In recent years, vision-language models (VLMs)035

have demonstrated exceptional performance in var-036

ious visual-grounded tasks. Despite their impres-037

sive achievements, the computational cost associ-038

ated with VLMs remains a significant challenge039

for practical deployment. A key factor contributing040

to this cost is the large number of visual tokens041

required. For instance, LLaVA-NEXT models (Liu042

Reduction Rate (%)

P
er

ce
n

ta
ge

 o
f 

 P
er

fo
rm

an
ce

 (
%

)

75

80

85

90

95

100

75 80 85 90 95

SparseVLM
FastV
FasterVLM
AdaV(Ours)

Figure 1: The comparison of training-free VLM accel-
eration methods on LLaVA-NEXT-7B shows that AdaV
achieves state-of-the-art (SOTA) performance.

et al., 2024) utilize 2,880 visual tokens for single- 043

image tasks, which may significantly exceed the 044

number of tokens typically used in text prompts. 045

Many research efforts have focused on pruning 046

redundant visual tokens to accelerate VLMs with- 047

out additional training. FastV (Chen et al., 2024a) 048

observes that the distribution of attention weights 049

among visual tokens tends to cluster, allowing for 050

the ranking and retention of only the top-ranked to- 051

kens in the LLM layers. SparseVLM (Zhang et al., 052

2024b) selects the keywords from the text and re- 053

serves key visual tokens within the self-attention 054

layers of the LLM. However, FasterVLM (Zhang 055

et al., 2024a) highlights that these methods suffer 056

from biased text-to-image attention of the LLM 057

and may not accurately reflect the importance of vi- 058

sual tokens. To address this, FasterVLM proposes 059

utilizing class attention extracted from the visual 060

encoder as a significance metric for visual token 061

pruning. However, it fails to recall non-salient yet 062

semantically relevant visual information. 063

Previous research has demonstrated that insights 064

from the mechanisms of the human brain can in- 065

spire advancements in intelligent systems (Rivest 066

et al., 2004; Hassabis et al., 2017). The human 067

brain tackles multimodal understanding through a 068
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series of steps: (I) processing visual and linguis-069

tic information separately within their respective070

cortexes, (II) matching information and redirecting071

attention, primarily occurring in the temporopari-072

etal junction (TPJ), and (III) engaging in higher-073

order thinking and response generation within the074

prefrontal cortex (PFC) (Miller and Cohen, 2001;075

Grill-Spector and Weiner, 2014; Doricchi et al.,076

2022a). The TPJ, situated at the convergence of the077

temporal and parietal lobes, is crucial for various078

cognitive functions, including the reorientation of079

attention and the matching of visual and auditory080

language inputs. The encoded visual and linguistic081

information undergoes initial cross-modal atten-082

tion reorientation in regions such as the TPJ. This083

stage of processing is distinct from the subsequent084

activities that occur in the PFC. After the TPJ’s085

involvement, the PFC engages in higher-order cog-086

nitive processes, including decision-making and087

judgment. This workflow enables the brain to con-088

centrate on essential visual information guided by089

linguistic cues (Lupyan et al., 2020; Doricchi et al.,090

2022b).091

Inspired by these cognitive processes, we pro-092

pose AdaV, a novel training-free acceleration093

method that emulates the mechanisms of the hu-094

man brain. As depicted in Fig. 2, we decompose095

the VLM into four components corresponding to096

specific brain regions: (1) the visual encoder (red)097

mirrors the function of the visual cortex, (2) the text098

encoder (purple) aligns with the temporal lobe, re-099

sponsible for comprehending language semantics,100

(3) the LLM (green) parallels the prefrontal cor-101

tex (PFC), which is involved in cognitive process-102

ing and responses, and (4) the Self-adaptive Cross-103

modality Attention Redirection (SCAR) module104

(blue) in the pre-LLM stage mimics the TPJ’s func-105

tion to integrate multimodal information. First,106

we extract visual attention from the self-attention107

layers within the visual encoder. Next, embedded108

text prompts query the visual embeddings to ob-109

tain text-to-image attention. We then measure the110

overall significance of potential visual token col-111

lections using a geometric average of both visual112

and text-to-image attention and employ a one-step113

optimization process to determine the optimal vi-114

sual token collection. Our validation experiments115

demonstrate that, compared with the text-to-image116

attention extracted from the self-attention layers117

of the LLM, the attention in the pre-LLM stage118

mitigates the attention bias, and effectively reflects119

the significance of visual tokens. Additionally, ex-120

tensive experiments show that our AdaV achieves 121

state-of-the-art (SOTA) performance on multiple 122

benchmarks and is even comparable to fine-tuning 123

methods such as VisionZip (Yang et al., 2024). Our 124

contributions are summarized as follows: 125

I. We propose AdaV, a novel training-free VLM 126

acceleration method that effectively speeds up 127

VLMs while maintaining the model’s effectiveness. 128

II. Inspired by the human brain’s multimodal 129

information-processing pathways, we introduce vi- 130

sual attention redirection to the pre-LLM stage and 131

reveal the necessity and feasibility of this design. 132

Experiments demonstrate it significantly enhances 133

the model’s performance given a limited visual to- 134

ken budget. 135

III. We propose a Self-adaptive Cross-modality 136

Attention Redirection (SCAR) module that effec- 137

tively redirects visual attention via text-to-image 138

attention for effective visual token pruning. 139

IV. Extensive experiments on seven benchmarks 140

show that AdaV achieves SOTA performance and 141

is plug-and-play on various VLMs. 142

2 Related work 143

2.1 Vision language models (VLMs) 144

Significant progress has been made in the develop- 145

ment of VLMs. LLaVA (Yifan et al., 2023) is the 146

first approach to effectively combine large language 147

models (LLMs) with foundational vision models. 148

The initial models in the LLaVA family only uti- 149

lize a single image as input, resulting in 576 visual 150

tokens for an image. However, this approach often 151

led to significant information loss, thereby limiting 152

model performance. To retain detailed vision infor- 153

mation of the input, the subsequent VLMs propose 154

dynamic resolution schema to the input image, en- 155

hancing multi-modal capabilities (Lin et al., 2023; 156

Wang et al., 2024b; Chen et al., 2024b). 157

2.2 VLM acceleration with token pruning 158

Token pruning is a straightforward solution for ac- 159

celerating transformer models and is widely used 160

in different deep learning tasks (Kim et al., 2022; 161

Nawrot et al., 2023; Zhong et al., 2023; Wang et al., 162

2024a). Recent works have adopted this concept 163

to accelerate VLMs. Chen et al. (2024a); Ye et al. 164

(2024) propose measuring the significance of vi- 165

sual tokens based on self-attention extracted from 166

layers within LLMs. FasterVLM suggests that text- 167

to-image attentions in LLM layers are biased, and 168

shift to the ends of input image tokens, leading to 169
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Figure 2: The overall framework of the AdaV. Inspired by human brain information-processing pathways, we
redirect the visual attention by the SCAR module before the LLM stage for robust and effective visual token pruning.

inaccuracies. Instead, they propose using visual170

attention to prune non-salient visual tokens. Some171

approaches also fine-tune the VLMs for effective-172

ness. For example, VisionZip (Yang et al., 2024)173

proposes to finetune the MLP projector of the vi-174

sion encoder for the reserved visual tokens.175

3 Method176

3.1 Overall framework177

As depicted in Fig. 2, our overall framework de-178

composes the VLMs into four parts: the visual179

encoder, the text encoder, the LLM, and the SCAR180

module prior to the LLM. Input images and text181

prompts are encoded separately via the correspond-182

ing encoder. The SCAR module then redirects the183

visual attention via text-to-image attention for vi-184

sual token pruning. The retained visual tokens,185

along with the text tokens, are then forwarded to186

the LLM for generating responses.187

3.2 Necessity and feasibility of visual attention188

redirection in the pre-LLM stage189

Recent studies have demonstrated that text-to-190

image attention within the LLM is biased, lead-191

ing to sub-optimal visual token filtering. These192

studies propose introducing text-agnostic visual193

attention for token pruning, which significantly194

boosts model performance (Zhang et al., 2024a;195

Yang et al., 2024). Consequently, before formally196

introducing the proposed AdaV, we address the197

following question:198

Is visual attention alone sufficient for visual199

token pruning?200

We conducted experiments on five benchmarks201

to answer this question: MME, MM-Vet, TextVQA,202

POPE, and GQA. We employed the SAM-2 model203

(Ravi et al., 2024) to segment objects based on text204

prompts and used the CLIP vision encoder (Rad-205

ford et al., 2021) to generate visual attention for206
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Figure 3: The average AUC on different datasets (a) and
the distribution of AUC on each dataset (b∼f). Despite
the AUC on all datasets being large, there exist samples
that visual attention fails to handle.

input images. The area under the curve (AUC) 207

assesses the consistency between visual attention 208

and text-grounded segmentation. Detailed exper- 209

imental procedures are provided in the Appendix 210

(A.2). As illustrated in Fig. 3 (a), the average AUC 211

across datasets exceeds 0.65, indicating that these 212

tasks are generally grounded in salient visual cues. 213

However, as shown in Fig. 3 (b∼f), despite visual 214

attention being a strong priority for informative vi- 215

sual token selection, some tasks exhibit AUC ≤ 0.5, 216

where visual attention fails to perform effectively. 217

Thus, we conclude: 218

No. Although visual attention is impactful, 219

there are tasks it fails to handle. 220

Since visual attention alone is not sufficient, text- 221

guided attention redirection is needed to focus on 222
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non-salient yet semantically important visual infor-223

mation. However, FasterVLM (Zhang et al., 2024a)224

validates that the text-to-image attention extracted225

from the LLM stage is biased, shifting to the ends226

of the image and thus failing to identify the visual227

tokens related to the text prompts accurately. The228

widely utilized CLIP model encodes the vision and229

text input separately and effectively aligns their230

embeddings, which converge to the human brain231

information processing flow before PFC. However,232

unlike CLIP, which utilizes an entire transformer233

model to encode text, the VLM’s text encoder (text234

embedding layer) is much smaller. Therefore, prior235

to adopting text-guided attention redirection to the236

pre-LLM stage, we need to address the following237

question:238

Is text embedding layer sufficient for generat-239

ing well-aligned representations to visual embed-240

dings?241

We address this question in two steps. First, we242

measure the distribution of text-to-image similarity243

for embedded text tokens and visual embeddings244

using a subset of the LLaVA dataset (Liu et al.,245

2023), following FasterVLM. We employed two246

metrics to assess alignment: normalized cosine247

similarity and normalized inner product. The re-248

sults, visualized in Fig. 4, show no attention shift249

in the pre-LLM stage. However, the normalized250

inner product produces significant outliers, poten-251

tially degrading model performance. In contrast,252

normalized cosine similarity demonstrates a more253

uniform distribution, effectively mitigating outliers254

and offering greater reliability.255

Figure 4: Text-to-image similarity distribution of
LLaVA-v1.5-7B and LLaVA-NEXT-7B.

Having established that text-to-image similar-256

ity in pre-LLM layers does not exhibit attention257

shifts, we next investigate whether text embeddings258

are sufficiently aligned with visual embeddings 259

to facilitate effective visual token selection. To 260

achieve this, we use the least number of reserved 261

tokens to cover one visual token relevant to the 262

question as our validation metric. Specifically, if 263

the Nth visual token is the first visual token rele- 264

vant to the question, N serves as the least number 265

of reserved tokens. Following the methodology of 266

FasterVLM, we conducted experiments on a sub- 267

set of the LLaVA data collection. We utilize the 268

same pipeline as described in Sec. 3.2 to determine 269

the relevant visual tokens. Our findings, shown 270

in Fig. 5, indicate that text-to-image similarity re- 271

quires fewer reserved visual tokens to cover at least 272

one relevant visual token, compared to visual atten- 273

tion. We could conclude as follows: 274

Yes. The text embedding layer can generate text 275

representations that are aligned with the visual 276

embeddings while mitigating attention bias. 277
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Figure 5: The average of the least number of reserved
visual tokens to select at least one prompt-related visual
token, validated on LLaVA-1.5-7B.

3.3 Self-adaptive Cross-modality Attention 278

Redirection (SCAR) 279

Redirecting visual attention changes the selec- 280

tion of visual tokens from relying solely on text- 281

agnostic visual attention to a co-dependent ap- 282

proach that incorporates both visual attention and 283

text-to-image attention. As noted in ViT (Doso- 284

vitskiy et al., 2020), the [CLS] token encapsulates 285

global information. We thus identify the visual at- 286

tention with the self-attention weight between the 287

[CLS] token and image patches, which is called 288

“image attention”. Note that image attention dis- 289

tinct from the concept of visual attention. Formally, 290

let the input text embeddings be TE ∈ RNT×D, 291

visual embeddings be TV ∈ RNimg×NI×D, and the 292

[CLS] token be C ∈ RNimg×D, where NT , Nimg, 293

and NI represent the number of text tokens, images, 294

and visual tokens per image, respectively. Denote 295

the image attention of the ith image as SC
i , which 296
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could be calculated as follows:297

SC
i = Softmax

(
CiWQ

(
(TV )iWK

)T
λ

)
. (1)298

A straightforward approach for redirecting visual299

attention involves selecting visual tokens based on300

both image attention and the similarity between text301

and image tokens, denoted as ST2I
i , simultaneously.302

This similarity could be formulated as follows:303

ST2I
i,j = max

k

(
(TE)k(TV )Ti,j

||(TE)k||2||((TV )i,j)||2

)
. (2)304

The text-agnostic visual attention is redirected from305

visual tokens selected solely by image attention to306

those chosen as follows:307 {
Ii =

[
argtop-K

(
SC
i,:

)
; argtop-K

(
ST2I
i,:

)]
(T̂V )i = (TV )Ii

, (3)308

in which (T̂V )i represents the retained tokens for309

the ith image.310

Since the effectiveness of the text-agnostic visual311

attention on identifying informative visual tokens312

could vary across samples and tasks, redirection313

formulated in Eq. 3 could be sub-optimal. SCAR314

optimizes the mixed significance of the valid col-315

lections of visual tokens to determine attention redi-316

rection adaptively. Since the cosine similarity of317

text and visual embeddings has a different distri-318

bution to the image attention which is extracted319

from self-attention layers, we first re-weight the320

similarity as follows:321

S̃T2I
i,j = max

k

(
Softmax

(
(TE)k(TV )Ti,j

||(TE)k||2||((TV )i,j)||2τ

))
,

(4)322

in which τ is a hyper-parameter, which is set to323

0.01. The re-weighted text-to-image similarity is324

called “T2I attention”. For simplicity, we merge325

the dimensionality of images and tokens per im-326

age, so SC and S̃T2I are reshaped to (Nimg ×NI , ).327

Maximizing the T2I and image attention of the se-328

lected visual tokens is equivalent to maximizing329

the following objective:330 ∑
m∈M

S̃T2I
m +

∑
n∈N

SC
n , s.t. |M|+ |N | = K,

(5)331

in which M and N represent the sets of selected332

visual token indices based on T2I attention and im-333

age attention, respectively. Since the distributions334

of T2I attention and image attention are different,335

and only a small group of tokens are retained, max-336

imizing the objective in Eq. 5 may result in solely337

depending on an individual metric, which is not 338

expected. To address this, we utilize the geometric 339

mean of the metrics to measure the importance of 340

the selected tokens: 341√ ∑
m∈M

S̃T2I
m

∑
n∈N

SC
n , s.t. |M|+ |N | = K,

(6) 342

We start by sorting S̃T2I and SC , resulting in the 343

sorted scores ŜT2I and ŜC . Next, we calculate 344

the cumulative summations of these sorted scores, 345

denoted as a and b respectively, as follows: 346

a0 = 0,b0 = 0,

at =
t−1∑
m=0

ŜT2I
m ,bt =

t−1∑
n=0

ŜC
n .

(7) 347

Then we calculate the overall metrics as follows: 348

O = abT . (8) 349

In order for the invalid indices not to be chosen, we 350

utilize a mask M to set the elements of O corre- 351

sponding to such indices to zero. Specifically, the 352

mask M could be calculated as follows: 353

Mm,n =

{
1,m+ n ≤ K
0, otherwise

. (9) 354

Then the number of tokens selected by T2I atten- 355

tion and image attention could be determined as 356

follows: 357

U, V = argmax
m,n

{(O ⊗M)m,n}. (10) 358

Finally, the SCAR module redirects the original 359

text-agnostic visual attention to the following vi- 360

sual tokens: 361
M = {m|rank(S̃T2I

m ) ≤ U}
N = {n|rank(SC

n ) ≤ V }
T̂V = {(TV )k}k∈M∪N

, (11) 362

in which rank(Ai) returns the position of the ele- 363

ment Ai after sorting A in a descending order. We 364

then sort the preserved tokens according to their 365

original position. 366

4 Experiments 367

4.1 Implementation details 368

We evaluate the proposed approach on the LLaVA- 369

v1.5-7B and LLaVA-NEXT models (7B, 13B, 370

and 34B parameters) across seven distinct VLM 371

benchmarks: GQA (Hudson and Manning, 2019), 372

SQA (Lu et al., 2022), MME (Fu et al., 2024), 373

MMBench (Liu et al., 2025), MM-Vet (Yu et al., 374

2023), TextVQA (Singh et al., 2019), and Pope (Yi- 375

fan et al., 2023). All experiments were conducted 376

using the NVIDIA A100-80G GPU. 377
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Table 1: Comparison with SOTA approaches on LLaVA-NEXT-7B. † means that we report both the perception-only
score and the summation of the perception score and the cognition score in parenthesis. ‡ with a gray background
means the model is fine-tuned, which is expected to be stronger. “Average” represents the overall performance.

Method Average GQA SQA-IMG TextVQA POPE MME MMB MM-Vet

LLaVA-NEXT-7B 100.00% 62.93 69.66 59.59 86.32
1513.78

67.70 42.60(1842.00)

Reduction Rate ≈ 75%

FastV 97.35% 60.38 69.81 58.39 83.09 1477.31 65.64 41.10
SparseVLM 93.19% 60.88 67.48 58.08 70.99 1446.10 63.83 38.00
FaseterVLM 98.14% 61.31 68.82 59.33 85.50 1480.68 67.35 40.40
AdaV (Ours) 98.49% 62.04 69.31 58.37 87.20 1509.36 67.35 39.70

VisionZip 97.75% 61.30 68.10 60.20 86.30 1702.00 66.30
AdaV (Ours) 99.13% 62.04 69.31 58.37 87.20 1810.07 67.35
VisionZip+FT‡ 99.00% 62.40 67.90 60.80 87.60 1778.00 65.90

Reduction Rate ≈ 90%

FastV 84.81% 55.86 69.26 55.69 71.66 1282.86 61.60 22.70
SparseVLM 82.08% 56.12 68.62 51.97 63.23 1332.22 54.47 24.70
FaseterVLM 92.47% 58.12 68.12 57.57 80.00 1370.11 63.32 35.70
AdaV (Ours) 96.00% 60.65 68.57 57.09 85.98 1503.25 66.32 36.00

VisionZip 95.07% 59.30 67.30 58.90 82.10 1702.00 63.10
AdaV (Ours) 97.77% 60.65 68.57 57.09 85.98 1812.89 66.32
VisionZip+FT‡ 97.40% 61.00 67.50 59.30 86.20 1770.00 64.40

Reduction Rate ≈ 95%

FastV 75.46% 49.83 68.52 51.85 51.66 1079.46 54.90 21.90
FaseterVLM 87.06% 54.73 68.86 55.97 72.89 1225.96 60.48 31.90
AdaV (Ours) 94.35% 58.53 68.91 55.11 85.25 1452.91 65.20 36.20

VisionZip 90.75% 55.50 68.30 56.20 74.80 1630.00 60.10
AdaV (Ours) 95.62% 58.53 68.91 55.11 85.25 1736.12 65.20
VisionZip+FT‡ 94.80% 58.20 67.50 57.30 83.40 1699.00 63.90

4.2 Comparison with SOTA approaches378

We compare our proposed approach with other379

state-of-the-art (SOTA), training-free token prun-380

ing methods. Due to variations in benchmark381

datasets, reduction rates, and evaluation metrics382

across different studies (e.g., VisionZip uses the383

sum of perception and cognition scores, while384

FasterVLM focuses solely on perception scores),385

we present our detailed comparisons in Table 1386

for clarity, specifically for the LLaVA-NEXT-7B387

model. Additionally, Table 2 briefly demonstrates388

the effectiveness of the proposed AdaV on other389

VLMs, with detailed comparisons available in the390

Appendix (A.5). Our approach achieves state-of-391

the-art performance among training-free methods392

and even surpasses the fine-tuned VisionZip. It393

shows remarkable robustness, particularly when394

preserving less than 10% of visual tokens.395

Table 2: Comparison with SOTA approaches

Method
Reduction Rate

75% 90% 95%

LLaVA-1.5-7B

FastV 94.67% 86.26% 72.48%
SparseVLM 93.22% 78.87% 65.85%
FaseterVLM 98.32% 92.91% 87.76%
AdaV (Ours) 97.83% 93.59% 88.32%

LLaVA-NEXT-13B

FaseterVLM 97.57% 92.79% 86.52%
AdaV (Ours) 97.75% 95.40% 93.14%

LLaVA-NEXT-34B

FaseterVLM / 89.29% 83.90%
AdaV (Ours) / 91.85% 88.11%
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4.3 Ablation study396

Overall ablation We conduct an overall ablation397

study of the proposed approach. As demonstrated398

in Table 3, the T2I attention significantly boosts the399

model performance, especially when the number of400

retained tokens is small. Additionally, the proposed401

SCAR module further improves the model’s perfor-402

mance by over 1.0% at reduction rates exceeding403

90%.404

Table 3: Ablation study of main modules on LLaVA-
NEXT-7B

Model
Reduction Rate (%)

75 90 95

AdaV (Ours) 98.49% 96.00% 94.35%
-SCAR 98.40% 94.89% 92.62%
-T2I Attention 98.18% 92.47% 87.06%

Detailed ablation results on specific datasets405

To further understand the influence of the pro-406

posed mechanisms, we validated the model on two407

datasets: POPE and MMBench. The results are408

presented in Tables 4 and 5. By combining image409

attention with T2I attention, the model effectively410

redirected text-agnostic visual attention to question-411

related visual information, thereby enhancing per-412

formance. However, this simple redirection occa-413

sionally led to performance degradation, indicating414

that the selection might be sub-optimal. The pro-415

posed SCAR module offers an effective integration416

of image and T2I attention, significantly improving417

upon the simple redirection method.418

Table 4: Ablation study on the Pope dataset. “SCAR”,
“T2I” and “IA” demonstrate the SCAR module, T2I
attention and image attention, respectively.

IA T2I SCAR
Reduction Rate (%)
75 90 95

✓ × × 85.50 80.00 72.89
✓ ✓ × 87.07 85.52 84.04
✓ ✓ ✓ 87.20 85.98 85.25

Attention dependency analysis We further an-419

alyzed the attention dependency across different420

datasets, with results illustrated in Fig. 6. Among421

the figure, if a curve is positioned on the left side,422

the model relies more on T2I attention; otherwise,423

it depends more on image attention. Our analysis424

Table 5: Ablation study on the MMBench dataset.
“SCAR”, “T2I” and “IA” demonstrate the SCAR mod-
ule, T2I attention and image attention, respectively.

IA T2I SCAR
Reduction Rate (%)
75 90 95

✓ × × 67.35 63.32 60.48
✓ ✓ × 66.32 65.80 64.17
✓ ✓ ✓ 67.35 66.32 65.20

reveals that the model tends to rely more on image 425

attention for tasks requiring optical character recog- 426

nition, such as TextVQA and MM-Vet. Conversely, 427

for tasks primarily involving natural images, the 428

SCAR module redirects more visual attention to 429

information relevant to the linguistic input. This 430

demonstrates that the proposed SCAR module ef- 431

fectively determines the balance between image 432

and T2I attention, enhancing the performance of 433

the VLMs upon visual token pruning. 434
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Figure 6: The cumulative density function (CDF) of the
proportion of image attention-oriented tokens (J ) on
different benchmarks, validated on LLaVA-NEXT-7B.
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Figure 7: Visualization of selected tokens. Transparent patches indicate unselected tokens. Comparing columns
2 and 4 shows that AdaV successfully identifies non-salient yet relevant visual tokens, which FasterVLM fails to
accomplish. The comparison between columns 4 and 5 demonstrates AdaV’s ability to redirect attention based on
the text prompt, which FasterVLM fails to achieve.

4.4 Visualization of selected tokens435

We further visualize the selected tokens of the436

FasterVLM and the proposed approach in Fig. 7.437

Since the FasterVLM approach is text-agnostic, the438

selected visual tokens are consistent with a cer-439

tain input image, which results in the VLM only440

accessing the salient objects, and failing to allo-441

cate the cases in which the user prompts are about442

non-salient objects in the image. On the contrary,443

the proposed approach effectively leverages the444

strength of both image attention and T2I attention.445

As depicted in Fig. 7, the proposed approach could446

draw attention to the non-salient visual information,447

according to the guidance of the text prompts. Fur-448

thermore, FasterVLM focuses on exactly the same449

visual information for a certain input, discarding450

the change of the question. On the contrary, the451

proposed AdaV is capable of shifting its attention452

according to the text prompt. 453

5 Conclusion 454

In this study, we introduce AdaV, a training-free ap- 455

proach designed to accelerate VLMs by emulating 456

the multimodal information processing pathways 457

of the human brain. Our method positions text- 458

guided visual attention redirection before the LLM, 459

effectively mitigating biased and text-agnostic to- 460

ken preservation. Additionally, we present the 461

Self-adaptive Cross-modality Attention Redirec- 462

tion (SCAR) module, which adaptively integrates 463

and redirects visual attention in conjunction with 464

text-to-image attention. Extensive experiments 465

demonstrate that AdaV achieves state-of-the-art 466

performance compared to existing approaches for 467

training-free VLM acceleration and is plug-and- 468

play on various VLMs. 469
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6 Limitations470

In this section, we discuss the limitations of the471

proposed approach. Although AdaV effectively472

demonstrates the benefits of visual token pruning,473

it relies heavily on the alignment between text em-474

beddings and visual information. Our visualiza-475

tions indicate that many preserved visual tokens476

are still redundant and irrelevant to the text prompt,477

which constrains the model’s performance and ef-478

ficiency. Further exploration into the nature of the479

visual encoder and text embeddings is necessary to480

enhance visual token pruning.481
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A Appendix 647

A.1 Details of involved datasets 648

All the included datasets are open-sourced and al- 649

low academic use. Their details are listed as fol- 650

lows: 651

GQA benchmark is designed to assess structured 652

comprehension and reasoning skills for scenes pre- 653

sented in images. The questions are crafted based 654

on the scene graphs, ensuring questions are aligned 655

with a specific semantic pathway. Evaluation is 656

conducted on the test-dev set, which comprises 657

12,578 image-question pairs. 658

ScienceQA benchmark assesses a model’s ability 659

to generalize zero-shot across various scientific do- 660

mains. Questions of the dataset are systematically 661

categorized by topic, category, and skill level. The 662

vision-grounded subset of the test set is utilized for 663

evaluation, referred to as SQA-IMG, and comprises 664

2,017 image-question pairs. 665

TextVQA benchmark focusing on the combina- 666

tion of optical character recognition (OCR) and 667

natural language processing. The images feature 668

a wide range of scenarios, including signs, bill- 669

boards, and product packaging, all rich in textual 670

content. The validation set that consists of 5,000 671

image-question pairs is utilized for evaluation. 672

POPE benchmark is designed to assess halluci- 673

nations in large vision-language models by posing 674

questions about the presence of specific objects. 675

For evaluation, an F1 score across three differ- 676

ent sampling strategies was applied to the test set, 677

which includes 8,910 image-question pairs. 678
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MME assesses the perceptual and cognitive abil-679

ities of multi-modal models through 14 subtasks,680

including OCR and both coarse- and fine-grained681

recognition. Performance is measured using the682

perception and overall scores across 2,374 image-683

question pairs.684

MMBench evaluates multi-modal models across685

three competence levels. Level one includes per-686

ception and reasoning, level two adds six specific687

capabilities and level three comprises 20 concrete688

tasks with multiple-choice questions, including689

4,377 image-question pairs.690

MM-Vet assesses the integration of core vision-691

language capabilities—recognition, OCR, knowl-692

edge, language generation, spatial awareness, and693

mathematics—across 16 specific tasks, including a694

total of 218 image-question pairs.695

A.2 Pipeline of analyzing the text prompts696

and the visual salient information697

To analyze the alignment of text prompts and the698

visual salient information, we first segment the text-699

relevant objects with SAM-2 model. To ensure at700

least one object is included in each image, we grad-701

ually decrease the confidence threshold to 0.2 (with702

a step of 0.01), until at least one segment mask is703

obtained. If no mask is obtained, we discard the704

(question, image) pair. Then we utilize CLIP-ViT-705

L/14 as the vision encoder to extract the contribu-706

tion of the visual tokens to the [CLS] token. We do707

not utilize the ViT for ImageNet classification since708

the CLIP model has a similar nature to the VLMs.709

The segment mask is separated into 14× 14 non-710

overlap patches to fit the resolution of the vision711

encoder. A patch is considered to be related to the712

text prompt if the mask inside the patch occupies713

more than 50% of the area of the patch if an extra714

statement is not made. Then a (confidence, label)715

pair is created for each visual token to calculate716

the ROC and AUC. We call this the ROC and AUC717

of visual attention. Specifically, the confidence is718

the attention weight, and the label is obtained as719

follows:720

label =
{

0, overlap < 50%
1, otherwise

. (A1)721

A.3 Effect of benchmark pattern on visual722

token pruning723

As illustrated in the paper, the average visual atten-724

tion AUC of the dataset reflects the pattern of the725

dataset: whether this dataset tends to contain ques- 726

tions about the visually salient objects of the image. 727

For each dataset, we calculate the relative perfor- 728

mance of the FasterVLM and the proposed AdaV, 729

with a 95% reduction rate, on different VLMs. The 730

fitted line demonstrates that there is likely to be 731

a pattern: if the AUC of visual attention is large, 732

depending on it is a better choice, otherwise, the 733

model should depend more on text-to-image atten- 734

tion. 735
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Figure A1: The AUC of visual attention and text-
oriented objects versus the relative performance of
AdaV and FasterVLM (PerfAdaV/PerfFasterVLM).

A.4 Influence of model scale 736

We visualize the influence of the model scale for 737

VLM acceleration. As demonstrated in Fig. A2, 738

the increasing scale of the VLMs limits the perfor- 739

mance of the visual token pruning in the pre-LLM 740

layers, especially for the text-oriented tasks. As 741

shown in Fig. A3, the degradation caused by the 742

model scale is independent of the visual token prun- 743

ing method.
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Figure A2: Influence of model scale for visual token
pruning across reduction rates and datasets.

744

A.5 Detailed comparison on LLaVA-v1.5-7B 745

and LLaVA-NEXT-13B/34B 746

We show a detailed comparison of the token 747

pruning methods on LLaVA-NEXT-13B, LLaVA- 748
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Table A1: Comparison with SOTA approaches on LLaVA-NEXT-13B. † means that we report both the perception-
only score and the summation of the perception score and the cognition score in parenthesis. ‡ with a gray
background means the model is fine-tuned, which is expected to be stronger.

Method Average GQA SQA-IMG TextVQA POPE MME MMB MM-Vet

LLaVA-NEXT-13B 100.00% 65.40 73.60 67.10 86.20
1575.00

70.00 48.40
(1901.00)

Reduction Rate ≈ 75%

FaseterVLM 97.57% 63.05 72.88 61.67 85.27 1548.06 69.50 48.00
AdaV (Ours) 97.75% 64.26 73.33 61.93 86.70 1599.80 70.10 44.40

VisionZip 96.93% 63.00 71.20 62.20 85.70 1871.00 68.60
AdaV (Ours) 98.82% 64.26 73.33 61.93 86.70 1938.72 70.10
VisionZip+FT‡ 97.38% 63.70 73.20 64.40 86.30 1829.00 66.60

Reduction Rate ≈ 90%

FaseterVLM 92.79% 59.68 71.24 60.14 80.39 1470.98 67.61 42.90
AdaV (Ours) 95.40% 62.78 73.53 59.76 85.79 1603.05 69.67 39.70

VisionZip 94.19% 60.70 70.30 60.90 82.00 1805.00 67.20
AdaV (Ours) 97.44% 62.78 73.53 59.76 85.79 1912.69 69.67
VisionZip+FT‡ 96.90% 62.50 72.70 63.20 85.70 1861.00 66.90

Reduction Rate ≈ 95%

FaseterVLM 86.52% 56.14 70.40 58.43 73.81 1388.44 64.69 34.30
AdaV (Ours) 93.14% 60.97 72.68 58.05 84.76 1557.43 68.56 37.90

VisionZip 90.44% 57.80 69.30 58.40 76.60 1739.00 64.90
AdaV (Ours) 95.50% 60.97 72.68 58.05 84.76 1867.07 68.56
VisionZip+FT‡ 93.89% 59.70 72.00 60.80 84.00 1766.00 65.30
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Figure A3: Influence of model scale for visual token
pruning across token pruning methods.

NEXT-34B, and LLaVA-v1.5-7B in Tab. A1, A2 749

and A3. The result demonstrates that the pro- 750

posed AdaV achieves SOTA performance on vari- 751

ous VLMs. 752
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Table A2: Comparison with SOTA approaches on LLaVA-NEXT-34B

Method Average GQA SQA-IMG TextVQA POPE MME MMB MM-Vet

LLaVA-NEXT-34B 100.00% 67.10 81.80 69.50 87.70 2028.00 79.30 57.40

Reduction Rate ≈ 90%

FaseterVLM 89.29% 59.60 78.43 60.93 80.35 1869.73 75.85 42.00
AdaV (Ours) 91.85% 62.71 79.08 57.92 86.67 1958.92 75.17 45.50

Reduction Rate ≈ 95%

FaseterVLM 83.90% 55.31 78.78 58.03 74.02 1745.38 71.64 36.90
AdaV (Ours) 88.11% 60.12 78.43 55.05 86.44 1909.81 74.39 37.60

Table A3: Comparison with SOTA approaches on LLaVA-v1.5-7B. † means that we report both the perception-only
score and the summation of the perception score and the cognition score in parenthesis. ‡ with a gray background
means the model is fine-tuned, which is expected to be stronger.

Method Average GQA SQA-IMG TextVQA POPE MME MMB MM-Vet

LLaVA-1.5-7B 100.00% 61.94 69.51 58.21 85.88
1506.47

64.69 31.30(1862.00)

Reduction Rate 75%

FastV 94.67% 56.58 69.11 57.38 73.74 1463.39 64.00 28.60
FitPrune 96.22% 59.38 69.01 56.49 80.75 1472.86 63.92 28.40
SparseVLM 93.22% 55.11 69.36 55.99 77.57 1351.65 59.54 29.90
FaseterVLM 98.32% 58.34 67.92 57.07 83.46 1433.76 62.54 34.20
AdaV (Ours) 97.83% 58.38 69.31 56.66 84.72 1432.68 62.28 32.40

VisionZip 96.12% 57.60 68.90 56.80 83.20 1761.70 62.00 30.00
AdaV (Ours) 97.77% 58.38 69.31 56.66 84.72 1762.32 62.28 32.40
VisionZip+FT‡ 98.36% 58.90 68.30 57.00 83.70 1823.00 62.60 32.90

Reduction Rate 90%

FastV 86.26% 51.20 69.81 54.75 57.30 1210.36 59.97 27.20
FitPrune 81.62% 49.96 68.22 56.49 53.81 1147.46 56.27 21.80
SparseVLM 78.87% 48.86 67.23 55.99 65.82 1030.61 49.05 18.60
FaseterVLM 92.91% 54.91 68.91 55.28 75.85 1348.63 60.57 30.10
AdaV (Ours) 93.59% 55.30 68.82 54.53 82.33 1368.28 60.30 29.20

VisionZip 94.02% 55.10 69.00 55.50 77.00 1690.00 60.10 31.70
AdaV (Ours) 93.63% 55.30 68.82 54.53 82.33 1695.42 60.30 29.20
VisionZip+FT‡ 95.76% 58.90 68.80 56.00 80.90 1756.00 61.50 30.20

Reduction Rate 95%

FastV 72.48% 46.03 70.00 51.56 35.47 971.56 50.17 18.90
FitPrune 65.85% 43.60 68.32 46.75 31.17 855.21 39.69 18.00
FaseterVLM 87.76% 51.51 69.56 53.09 67.24 1254.80 58.51 27.50
AdaV (Ours) 88.32% 52.96 68.42 51.89 78.04 1313.36 58.51 24.00
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