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Abstract

The success of Vision-Language Models
(VLMs) often relies on high-resolution
schemes that preserve image details, while
these approaches also generate an excess
of visual tokens, leading to a substantial
decrease in model efficiency. A typical VLM
includes a visual encoder, a text encoder,
and an LLM. Recent studies suggest pruning
visual tokens based on visual and textual
priors to accelerate VLMs without additional
training costs. However, these methods often
overlook prompt semantics or suffer from
biased self-attention in the LLM. Inspired by
the efficient mechanisms of the human brain
for multimodal understanding, we introduce
AdaV, a novel training-free visual token
pruning method. By emulating the neural
pathways that preprocess visual and auditory
information before the reasoning stage, we
shift text-guided visual attention redirection to
the pre-LLM stage, which reduces biased token
pruning and enhances model robustness with a
limited visual token budget. A Self-adaptive
Cross-modality Attention Redirection (SCAR)
module is further proposed that effectively
merges and redirects visual attention with
text-to-image attention. Extensive experiments
on seven challenging benchmarks demonstrate
that our AdaV achieves SOTA performance
in training-free VLM acceleration and can be
plug-and-play on various VLMs. We plan to
open-source the code upon publication.

1 Introduction

In recent years, vision-language models (VLMs)
have demonstrated exceptional performance in var-
ious visual-grounded tasks. Despite their impres-
sive achievements, the computational cost associ-
ated with VLMs remains a significant challenge
for practical deployment. A key factor contributing
to this cost is the large number of visual tokens
required. For instance, LLaVA-NEXT models (Liu
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Figure 1: The comparison of training-free VLM accel-
eration methods on LLaVA-NEXT-7B shows that AdaV
achieves state-of-the-art (SOTA) performance.

et al., 2024) utilize 2,880 visual tokens for single-
image tasks, which may significantly exceed the
number of tokens typically used in text prompts.

Many research efforts have focused on pruning
redundant visual tokens to accelerate VLMs with-
out additional training. FastV (Chen et al., 2024a)
observes that the distribution of attention weights
among visual tokens tends to cluster, allowing for
the ranking and retention of only the top-ranked to-
kens in the LLM layers. SparseVLM (Zhang et al.,
2024b) selects the keywords from the text and re-
serves key visual tokens within the self-attention
layers of the LLM. However, FasterVLM (Zhang
et al., 2024a) highlights that these methods suffer
from biased text-to-image attention of the LLM
and may not accurately reflect the importance of vi-
sual tokens. To address this, FasterVLM proposes
utilizing class attention extracted from the visual
encoder as a significance metric for visual token
pruning. However, it fails to recall non-salient yet
semantically relevant visual information.

Previous research has demonstrated that insights
from the mechanisms of the human brain can in-
spire advancements in intelligent systems (Rivest
et al., 2004; Hassabis et al., 2017). The human
brain tackles multimodal understanding through a



series of steps: (I) processing visual and linguis-
tic information separately within their respective
cortexes, (II) matching information and redirecting
attention, primarily occurring in the temporopari-
etal junction (TPJ), and (IIT) engaging in higher-
order thinking and response generation within the
prefrontal cortex (PFC) (Miller and Cohen, 2001;
Grill-Spector and Weiner, 2014; Doricchi et al.,
2022a). The TP]J, situated at the convergence of the
temporal and parietal lobes, is crucial for various
cognitive functions, including the reorientation of
attention and the matching of visual and auditory
language inputs. The encoded visual and linguistic
information undergoes initial cross-modal atten-
tion reorientation in regions such as the TPJ. This
stage of processing is distinct from the subsequent
activities that occur in the PFC. After the TPJ’s
involvement, the PFC engages in higher-order cog-
nitive processes, including decision-making and
judgment. This workflow enables the brain to con-
centrate on essential visual information guided by
linguistic cues (Lupyan et al., 2020; Doricchi et al.,
2022b).

Inspired by these cognitive processes, we pro-
pose AdaV, a novel training-free acceleration
method that emulates the mechanisms of the hu-
man brain. As depicted in Fig. 2, we decompose
the VLM into four components corresponding to
specific brain regions: (1) the visual encoder (red)
mirrors the function of the visual cortex, (2) the text
encoder (purple) aligns with the temporal lobe, re-
sponsible for comprehending language semantics,
(3) the LLM (green) parallels the prefrontal cor-
tex (PFC), which is involved in cognitive process-
ing and responses, and (4) the Self-adaptive Cross-
modality Attention Redirection (SCAR) module
(blue) in the pre-LLM stage mimics the TPJ’s func-
tion to integrate multimodal information. First,
we extract visual attention from the self-attention
layers within the visual encoder. Next, embedded
text prompts query the visual embeddings to ob-
tain text-to-image attention. We then measure the
overall significance of potential visual token col-
lections using a geometric average of both visual
and text-to-image attention and employ a one-step
optimization process to determine the optimal vi-
sual token collection. Our validation experiments
demonstrate that, compared with the text-to-image
attention extracted from the self-attention layers
of the LLM, the attention in the pre-LLM stage
mitigates the attention bias, and effectively reflects
the significance of visual tokens. Additionally, ex-

tensive experiments show that our AdaV achieves
state-of-the-art (SOTA) performance on multiple
benchmarks and is even comparable to fine-tuning
methods such as VisionZip (Yang et al., 2024). Our
contributions are summarized as follows:

I. We propose AdaV, a novel training-free VLM
acceleration method that effectively speeds up
VLMs while maintaining the model’s effectiveness.

II. Inspired by the human brain’s multimodal
information-processing pathways, we introduce vi-
sual attention redirection to the pre-LLM stage and
reveal the necessity and feasibility of this design.
Experiments demonstrate it significantly enhances
the model’s performance given a limited visual to-
ken budget.

III. We propose a Self-adaptive Cross-modality
Attention Redirection (SCAR) module that effec-
tively redirects visual attention via text-to-image
attention for effective visual token pruning.

IV. Extensive experiments on seven benchmarks
show that AdaV achieves SOTA performance and
is plug-and-play on various VLMs.

2 Related work
2.1 Vision language models (VLMs)

Significant progress has been made in the develop-
ment of VLMs. LLaVA (Yifan et al., 2023) is the
first approach to effectively combine large language
models (LLMs) with foundational vision models.
The initial models in the LLaVA family only uti-
lize a single image as input, resulting in 576 visual
tokens for an image. However, this approach often
led to significant information loss, thereby limiting
model performance. To retain detailed vision infor-
mation of the input, the subsequent VLMSs propose
dynamic resolution schema to the input image, en-
hancing multi-modal capabilities (Lin et al., 2023;
Wang et al., 2024b; Chen et al., 2024b).

2.2 VLM acceleration with token pruning

Token pruning is a straightforward solution for ac-
celerating transformer models and is widely used
in different deep learning tasks (Kim et al., 2022;
Nawrot et al., 2023; Zhong et al., 2023; Wang et al.,
2024a). Recent works have adopted this concept
to accelerate VLMs. Chen et al. (2024a); Ye et al.
(2024) propose measuring the significance of vi-
sual tokens based on self-attention extracted from
layers within LLMs. FasterVLM suggests that text-
to-image attentions in LLM layers are biased, and
shift to the ends of input image tokens, leading to
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Figure 2: The overall framework of the AdaV. Inspired by human brain information-processing pathways, we
redirect the visual attention by the SCAR module before the LLM stage for robust and effective visual token pruning.

inaccuracies. Instead, they propose using visual
attention to prune non-salient visual tokens. Some
approaches also fine-tune the VLMs for effective-
ness. For example, VisionZip (Yang et al., 2024)
proposes to finetune the MLP projector of the vi-
sion encoder for the reserved visual tokens.

3 Method

3.1 Opverall framework

As depicted in Fig. 2, our overall framework de-
composes the VLMs into four parts: the visual
encoder, the text encoder, the LLM, and the SCAR
module prior to the LLM. Input images and text
prompts are encoded separately via the correspond-
ing encoder. The SCAR module then redirects the
visual attention via text-to-image attention for vi-
sual token pruning. The retained visual tokens,
along with the text tokens, are then forwarded to
the LLM for generating responses.

3.2 Necessity and feasibility of visual attention
redirection in the pre-LLM stage

Recent studies have demonstrated that text-to-
image attention within the LLM is biased, lead-
ing to sub-optimal visual token filtering. These
studies propose introducing text-agnostic visual
attention for token pruning, which significantly
boosts model performance (Zhang et al., 2024a;
Yang et al., 2024). Consequently, before formally
introducing the proposed AdaV, we address the
following question:

Is visual attention alone sufficient for visual
token pruning?

We conducted experiments on five benchmarks
to answer this question: MME, MM-Vet, TextVQA,
POPE, and GQA. We employed the SAM-2 model
(Ravi et al., 2024) to segment objects based on text
prompts and used the CLIP vision encoder (Rad-
ford et al., 2021) to generate visual attention for
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Figure 3: The average AUC on different datasets (a) and
the distribution of AUC on each dataset (b~f). Despite
the AUC on all datasets being large, there exist samples
that visual attention fails to handle.
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input images. The area under the curve (AUC)
assesses the consistency between visual attention
and text-grounded segmentation. Detailed exper-
imental procedures are provided in the Appendix
(A.2). As illustrated in Fig. 3 (a), the average AUC
across datasets exceeds 0.65, indicating that these
tasks are generally grounded in salient visual cues.
However, as shown in Fig. 3 (b~f), despite visual
attention being a strong priority for informative vi-
sual token selection, some tasks exhibit AUC < 0.5,
where visual attention fails to perform effectively.
Thus, we conclude:

No. Although visual attention is impactful,
there are tasks it fails to handle.

Since visual attention alone is not sufficient, text-
guided attention redirection is needed to focus on



non-salient yet semantically important visual infor-
mation. However, FasterVLM (Zhang et al., 2024a)
validates that the text-to-image attention extracted
from the LLM stage is biased, shifting to the ends
of the image and thus failing to identify the visual
tokens related to the text prompts accurately. The
widely utilized CLIP model encodes the vision and
text input separately and effectively aligns their
embeddings, which converge to the human brain
information processing flow before PFC. However,
unlike CLIP, which utilizes an entire transformer
model to encode text, the VLM’s text encoder (text
embedding layer) is much smaller. Therefore, prior
to adopting text-guided attention redirection to the
pre-LLM stage, we need to address the following
question:

Is text embedding layer sufficient for generat-
ing well-aligned representations to visual embed-
dings?

We address this question in two steps. First, we
measure the distribution of text-to-image similarity
for embedded text tokens and visual embeddings
using a subset of the LLaVA dataset (Liu et al.,
2023), following FasterVLM. We employed two
metrics to assess alignment: normalized cosine
similarity and normalized inner product. The re-
sults, visualized in Fig. 4, show no attention shift
in the pre-LLM stage. However, the normalized
inner product produces significant outliers, poten-
tially degrading model performance. In contrast,
normalized cosine similarity demonstrates a more
uniform distribution, effectively mitigating outliers
and offering greater reliability.

Normalized Normalized
Cosine Similarity Inner Product
LLaVA
v1.5-7B
LLaVA
NEXT-7B

Figure 4: Text-to-image similarity distribution of
LLaVA-v1.5-7B and LLaVA-NEXT-7B.

Having established that text-to-image similar-
ity in pre-LLM layers does not exhibit attention
shifts, we next investigate whether text embeddings

are sufficiently aligned with visual embeddings
to facilitate effective visual token selection. To
achieve this, we use the least number of reserved
tokens to cover one visual token relevant to the
question as our validation metric. Specifically, if
the IV;y, visual token is the first visual token rele-
vant to the question, N serves as the least number
of reserved tokens. Following the methodology of
FasterVLM, we conducted experiments on a sub-
set of the LLaVA data collection. We utilize the
same pipeline as described in Sec. 3.2 to determine
the relevant visual tokens. Our findings, shown
in Fig. 5, indicate that text-to-image similarity re-
quires fewer reserved visual tokens to cover at least
one relevant visual token, compared to visual atten-
tion. We could conclude as follows:

Yes. The text embedding layer can generate text
representations that are aligned with the visual
embeddings while mitigating attention bias.
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Figure 5: The average of the least number of reserved
visual tokens to select at least one prompt-related visual
token, validated on LLaVA-1.5-7B.

3.3 Self-adaptive Cross-modality Attention
Redirection (SCAR)

Redirecting visual attention changes the selec-
tion of visual tokens from relying solely on text-
agnostic visual attention to a co-dependent ap-
proach that incorporates both visual attention and
text-to-image attention. As noted in ViT (Doso-
vitskiy et al., 2020), the [CLS] token encapsulates
global information. We thus identify the visual at-
tention with the self-attention weight between the
[CLS] token and image patches, which is called
“image attention”. Note that image attention dis-
tinct from the concept of visual attention. Formally,
let the input text embeddings be T € RNt xD,
visual embeddings be Ty, € RNimeXN1xD "and the
[CLS] token be C' € RNmexP where Ny, Nimg,
and N7 represent the number of text tokens, images,
and visual tokens per image, respectively. Denote
the image attention of the 7;;, image as SZ-C , Which



could be calculated as follows:

C; W, (TV)iWK r
o L ) ) (1)

Sic = Softmax(

A straightforward approach for redirecting visual
attention involves selecting visual tokens based on
both image attention and the similarity between text
and image tokens, denoted as ST?!, simultaneously.
This similarity could be formulated as follows:

( (Te)x(Tv)]; )

T21 __
Sij = MaX | [y L@ )T

k

2

The text-agnostic visual attention is redirected from
visual tokens selected solely by image attention to
those chosen as follows:

{ I, = {argtop—K(Sg);argtOP'K(Sz‘T,:ZI)}

. , 3
(Tv)i = (Tv)y,

in which (7}); represents the retained tokens for
the 7, image.

Since the effectiveness of the text-agnostic visual
attention on identifying informative visual tokens
could vary across samples and tasks, redirection
formulated in Eq. 3 could be sub-optimal. SCAR
optimizes the mixed significance of the valid col-
lections of visual tokens to determine attention redi-
rection adaptively. Since the cosine similarity of
text and visual embeddings has a different distri-
bution to the image attention which is extracted
from self-attention layers, we first re-weight the
similarity as follows:

(Te)s(Tv)]; >>

(Te)ell2ll(Tv)ig)ll2T ) |7

“4)
in which 7 is a hyper-parameter, which is set to
0.01. The re-weighted text-to-image similarity is
called “T2I attention”. For simplicity, we merge
the dimensionality of images and tokens per im-
age, so S and S™! are reshaped to (Nimg X N7, ).
Maximizing the T2I and image attention of the se-
lected visual tokens is equivalent to maximizing
the following objective:

S 8¢ st
meM neN

SZTJZI = ml?x (Softmax(

M|+ V] = K,

&)
in which M and N represent the sets of selected
visual token indices based on T2I attention and im-
age attention, respectively. Since the distributions
of T2I attention and image attention are different,
and only a small group of tokens are retained, max-
imizing the objective in Eq. 5 may result in solely

depending on an individual metric, which is not
expected. To address this, we utilize the geometric
mean of the metrics to measure the importance of
the selected tokens:

ST OST S 50 st
meM neN

M|+ |N| =K,

(6)
We start by sorting STl and S©, resulting in the
sorted scores ST and SC. Next, we calculate
the cumulative summations of these sorted scores,
denoted as a and b respectively, as follows:

ap — 0, bo = 0,

t—1 t—1 (7)
ay — Z S;FnZI,bt = Z SS

m= n=0

Then we calculate the overall metrics as follows:
O = ab”. (8)

In order for the invalid indices not to be chosen, we
utilize a mask M to set the elements of O corre-
sponding to such indices to zero. Specifically, the
mask M could be calculated as follows:
My = { é’m+”§K .

, otherwise

©)

Then the number of tokens selected by T2I atten-
tion and image attention could be determined as
follows:

U,V = argmax{(O @ M)m;n}.

o (10)
Finally, the SCAR module redirects the original
text-agnostic visual attention to the following vi-
sual tokens:
M = {m]rank(SI?") < U}
N = {n|rank(SS) <V} |
Ty = {(Tv )k b remun

in which rank(A;) returns the position of the ele-
ment A; after sorting A in a descending order. We
then sort the preserved tokens according to their
original position.

(1)

4 Experiments

4.1 Implementation details

We evaluate the proposed approach on the LLaVA-
v1.5-7B and LLaVA-NEXT models (7B, 13B,
and 34B parameters) across seven distinct VLM
benchmarks: GQA (Hudson and Manning, 2019),
SQA (Lu et al., 2022), MME (Fu et al., 2024),
MMBench (Liu et al., 2025), MM-Vet (Yu et al.,
2023), TextVQA (Singh et al., 2019), and Pope (Yi-
fan et al., 2023). All experiments were conducted
using the NVIDIA A100-80G GPU.



Table 1: Comparison with SOTA approaches on LLaVA-NEXT-7B. { means that we report both the perception-only
score and the summation of the perception score and the cognition score in parenthesis. I with a gray background
means the model is fine-tuned, which is expected to be stronger. “Average” represents the overall performance.

Method Average ‘ GQA SQA-IMG TextVQA POPE MME MMB MM-Vet
1513.78

LLaVA-NEXT-7B 100.00% | 62.93 69.66 59.59 86.32 (1842.00) 67.70 42.60
Reduction Rate ~ 75%

FastV 97.35% | 60.38 69.81 58.39 83.09 147731 65.64 41.10

SparseVLM 93.19% | 60.88 67.48 58.08 70.99 1446.10  63.83 38.00

FaseterVLM 98.14% | 61.31 68.82 59.33 85.50 1480.68 67.35 40.40

AdaV (Ours) 98.49% | 62.04 69.31 58.37 87.20 1509.36 67.35 39.70

VisionZip 97.75% | 61.30 68.10 60.20 86.30 1702.00 66.30

AdaV (Ours) 99.13% | 62.04 69.31 58.37 87.20 1810.07 67.35

VisionZip+FTi 99.00% | 62.40 67.90 60.80 87.60 1778.00 65.90
Reduction Rate ~ 90%

FastV 84.81% | 55.86 69.26 55.69 71.66 1282.86 61.60 22.70

SparseVLM 82.08% | 56.12 68.62 51.97 63.23 1332.22 5447 24.70

Faseter VLM 92.47% | 58.12 68.12 57.57 80.00 1370.11 63.32 35.70

AdaV (Ours) 96.00% | 60.65 68.57 57.09 8598 1503.25 66.32 36.00

VisionZip 95.07% | 59.30 67.30 58.90 82.10 1702.00 63.10

AdaV (Ours) 97.77% | 60.65 68.57 57.09 8598 1812.89 66.32

VisionZip+FTfF 97.40% | 61.00 67.50 59.30 86.20 1770.00 64.40
Reduction Rate ~ 95%

FastV 75.46% | 49.83 68.52 51.85 51.66 1079.46  54.90 21.90

FaseterVLM 87.06% | 54.73 68.86 55.97 72.89 122596  60.48 31.90

AdaV (Ours) 94.35% | 58.53 68.91 55.11 85.25 145291 65.20 36.20

VisionZip 90.75% | 55.50 68.30 56.20 74.80  1630.00 60.10

AdaV (Ours) 95.62% | 58.53 68.91 55.11 85.25 1736.12 65.20

VisionZip+FTi 94.80% | 58.20 67.50 57.30 83.40 1699.00 63.90

4.2 Comparison with SOTA approaches

We compare our proposed approach with other
state-of-the-art (SOTA), training-free token prun-
ing methods. Due to variations in benchmark
datasets, reduction rates, and evaluation metrics
across different studies (e.g., VisionZip uses the
sum of perception and cognition scores, while
FasterVLM focuses solely on perception scores),
we present our detailed comparisons in Table 1
for clarity, specifically for the LLaVA-NEXT-7B
model. Additionally, Table 2 briefly demonstrates
the effectiveness of the proposed AdaV on other
VLMs, with detailed comparisons available in the
Appendix (A.5). Our approach achieves state-of-
the-art performance among training-free methods
and even surpasses the fine-tuned VisionZip. It
shows remarkable robustness, particularly when
preserving less than 10% of visual tokens.

Table 2: Comparison with SOTA approaches

Reduction Rate

Method 75% 90% 95%
LLaVA-1.5-7B

FastV 9%4.67% 8626% 72.48%

SparseVLM 93.22% 78.87% 65.85%

Faseter VLM 98.32% 9291% 87.76%

AdaV (Ours) 97.83% 93.59% $8.32%
LLaVA-NEXT-13B

Faseter VLM~ 97.57% 92.79%  86.52%

AdaV (Ours) 97.75% 95.40% 93.14%
LLaVA-NEXT-34B

Faseter VLM / 89.29%  83.90%

AdaV (Ours) / 91.85% 88.11%




4.3 Ablation study

Overall ablation We conduct an overall ablation
study of the proposed approach. As demonstrated
in Table 3, the T2I attention significantly boosts the
model performance, especially when the number of
retained tokens is small. Additionally, the proposed
SCAR module further improves the model’s perfor-
mance by over 1.0% at reduction rates exceeding
90%.

Table 3: Ablation study of main modules on LLaVA-
NEXT-7B

Reduction Rate (%)
Model 75 90 95
AdaV (Ours) | 98.49% 96.00% 94.35%
-SCAR 98.40% 94.89% 92.62%
-T2I Attention | 98.18% 92.47% 87.06%

Detailed ablation results on specific datasets
To further understand the influence of the pro-
posed mechanisms, we validated the model on two
datasets: POPE and MMBench. The results are
presented in Tables 4 and 5. By combining image
attention with T2I attention, the model effectively
redirected text-agnostic visual attention to question-
related visual information, thereby enhancing per-
formance. However, this simple redirection occa-
sionally led to performance degradation, indicating
that the selection might be sub-optimal. The pro-
posed SCAR module offers an effective integration
of image and T2I attention, significantly improving
upon the simple redirection method.

Table 4: Ablation study on the Pope dataset. “SCAR”,
“T2I” and “IA” demonstrate the SCAR module, T21
attention and image attention, respectively.

Reduction Rate (%)

IA T2 SCAR 75 oy o5
vV ox  x 8550 80.00 72.89
Vv x 8707 8552 84.04
v v v 8720 8598 8525

Attention dependency analysis We further an-
alyzed the attention dependency across different
datasets, with results illustrated in Fig. 6. Among
the figure, if a curve is positioned on the left side,
the model relies more on T2I attention; otherwise,
it depends more on image attention. Our analysis

Table 5: Ablation study on the MMBench dataset.
“SCAR”, “T2I” and “IA” demonstrate the SCAR mod-
ule, T2I attention and image attention, respectively.

Reduction Rate (%)
75 90 95

IA T2I SCAR
v X X
v v X
v v v

67.35 63.32 60.48
66.32 65.80 64.17
67.35 66.32 65.20

reveals that the model tends to rely more on image
attention for tasks requiring optical character recog-
nition, such as TextVQA and MM-Vet. Conversely,
for tasks primarily involving natural images, the
SCAR module redirects more visual attention to
information relevant to the linguistic input. This
demonstrates that the proposed SCAR module ef-
fectively determines the balance between image
and T2I attention, enhancing the performance of
the VLMs upon visual token pruning.
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Figure 6: The cumulative density function (CDF) of the
proportion of image attention-oriented tokens (7) on
different benchmarks, validated on LLaVA-NEXT-7B.
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Figure 7: Visualization of selected tokens. Transparent patches indicate unselected tokens. Comparing columns
2 and 4 shows that AdaV successfully identifies non-salient yet relevant visual tokens, which FasterVLLM fails to
accomplish. The comparison between columns 4 and 5 demonstrates AdaV’s ability to redirect attention based on

the text prompt, which FasterVLM fails to achieve.

4.4 Visualization of selected tokens

We further visualize the selected tokens of the
FasterVLM and the proposed approach in Fig. 7.
Since the FasterVLM approach is text-agnostic, the
selected visual tokens are consistent with a cer-
tain input image, which results in the VLM only
accessing the salient objects, and failing to allo-
cate the cases in which the user prompts are about
non-salient objects in the image. On the contrary,
the proposed approach effectively leverages the
strength of both image attention and T2I attention.
As depicted in Fig. 7, the proposed approach could
draw attention to the non-salient visual information,
according to the guidance of the text prompts. Fur-
thermore, FasterVLM focuses on exactly the same
visual information for a certain input, discarding
the change of the question. On the contrary, the
proposed AdaV is capable of shifting its attention

according to the text prompt.

5 Conclusion

In this study, we introduce AdaV, a training-free ap-
proach designed to accelerate VLMs by emulating
the multimodal information processing pathways
of the human brain. Our method positions text-
guided visual attention redirection before the LLM,
effectively mitigating biased and text-agnostic to-
ken preservation. Additionally, we present the
Self-adaptive Cross-modality Attention Redirec-
tion (SCAR) module, which adaptively integrates
and redirects visual attention in conjunction with
text-to-image attention. Extensive experiments
demonstrate that AdaV achieves state-of-the-art
performance compared to existing approaches for
training-free VLM acceleration and is plug-and-
play on various VLMs.



6 Limitations

In this section, we discuss the limitations of the
proposed approach. Although AdaV effectively
demonstrates the benefits of visual token pruning,
it relies heavily on the alignment between text em-
beddings and visual information. Our visualiza-
tions indicate that many preserved visual tokens
are still redundant and irrelevant to the text prompt,
which constrains the model’s performance and ef-
ficiency. Further exploration into the nature of the
visual encoder and text embeddings is necessary to
enhance visual token pruning.
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A Appendix

A.1 Details of involved datasets

All the included datasets are open-sourced and al-
low academic use. Their details are listed as fol-
lows:

GQA benchmark is designed to assess structured
comprehension and reasoning skills for scenes pre-
sented in images. The questions are crafted based
on the scene graphs, ensuring questions are aligned
with a specific semantic pathway. Evaluation is
conducted on the test-dev set, which comprises
12,578 image-question pairs.

ScienceQA  benchmark assesses a model’s ability
to generalize zero-shot across various scientific do-
mains. Questions of the dataset are systematically
categorized by topic, category, and skill level. The
vision-grounded subset of the test set is utilized for
evaluation, referred to as SQA-IMG, and comprises
2,017 image-question pairs.

TextVQA benchmark focusing on the combina-
tion of optical character recognition (OCR) and
natural language processing. The images feature
a wide range of scenarios, including signs, bill-
boards, and product packaging, all rich in textual
content. The validation set that consists of 5,000
image-question pairs is utilized for evaluation.

POPE benchmark is designed to assess halluci-
nations in large vision-language models by posing
questions about the presence of specific objects.
For evaluation, an F1 score across three differ-
ent sampling strategies was applied to the test set,
which includes 8,910 image-question pairs.
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MME assesses the perceptual and cognitive abil-
ities of multi-modal models through 14 subtasks,
including OCR and both coarse- and fine-grained
recognition. Performance is measured using the
perception and overall scores across 2,374 image-
question pairs.

MMBench evaluates multi-modal models across
three competence levels. Level one includes per-
ception and reasoning, level two adds six specific
capabilities and level three comprises 20 concrete
tasks with multiple-choice questions, including
4,377 image-question pairs.

MM-Vet assesses the integration of core vision-
language capabilities—recognition, OCR, knowl-
edge, language generation, spatial awareness, and
mathematics—across 16 specific tasks, including a
total of 218 image-question pairs.

A.2 Pipeline of analyzing the text prompts
and the visual salient information

To analyze the alignment of text prompts and the
visual salient information, we first segment the text-
relevant objects with SAM-2 model. To ensure at
least one object is included in each image, we grad-
ually decrease the confidence threshold to 0.2 (with
a step of 0.01), until at least one segment mask is
obtained. If no mask is obtained, we discard the
(question, image) pair. Then we utilize CLIP-ViT-
L/14 as the vision encoder to extract the contribu-
tion of the visual tokens to the [CLS] token. We do
not utilize the ViT for ImageNet classification since
the CLIP model has a similar nature to the VLMs.
The segment mask is separated into 14 x 14 non-
overlap patches to fit the resolution of the vision
encoder. A patch is considered to be related to the
text prompt if the mask inside the patch occupies
more than 50% of the area of the patch if an extra
statement is not made. Then a (confidence, label)
pair is created for each visual token to calculate
the ROC and AUC. We call this the ROC and AUC
of visual attention. Specifically, the confidence is
the attention weight, and the label is obtained as

follows:
label = {

A.3 Effect of benchmark pattern on visual
token pruning

0, overlap < 50%
1, otherwise ’

(AD)

As illustrated in the paper, the average visual atten-
tion AUC of the dataset reflects the pattern of the
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dataset: whether this dataset tends to contain ques-
tions about the visually salient objects of the image.
For each dataset, we calculate the relative perfor-
mance of the FasterVLM and the proposed AdaV,
with a 95% reduction rate, on different VLMs. The
fitted line demonstrates that there is likely to be
a pattern: if the AUC of visual attention is large,
depending on it is a better choice, otherwise, the
model should depend more on text-to-image atten-
tion.
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Figure Al: The AUC of visual attention and text-
oriented objects versus the relative performance of
AdaV and Faster VLM (PerfAdaV / PerfFasterVLM).

A.4 Influence of model scale

We visualize the influence of the model scale for
VLM acceleration. As demonstrated in Fig. A2,
the increasing scale of the VLMs limits the perfor-
mance of the visual token pruning in the pre-LLM
layers, especially for the text-oriented tasks. As
shown in Fig. A3, the degradation caused by the
model scale is independent of the visual token prun-
ing method.
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MM-Vet

—
=3
S

s—

\.

N3
P

MMB
== SQA
=== POPE
=== MME

8

o0
9

Reduction
Rate (%)
® 75
9
A 95

o
>

~
wn

Relative VLM Performance (%)

=
=]

=)
)]

7B 13B 34B

Figure A2: Influence of model scale for visual token
pruning across reduction rates and datasets.

A.5 Detailed comparison on LLaVA-v1.5-7B
and LLaVA-NEXT-13B/34B

We show a detailed comparison of the token
pruning methods on LLaVA-NEXT-13B, LLaVA-



Table Al: Comparison with SOTA approaches on LLaVA-NEXT-13B. 1 means that we report both the perception-
only score and the summation of the perception score and the cognition score in parenthesis. I with a gray
background means the model is fine-tuned, which is expected to be stronger.

Method Average ‘ GQA SQA-IMG TextVQA POPE MME MMB MM-Vet
1575.00
LLaVA-NEXT-13B  100.00% | 65.40 73.60 67.10 86.20 70.00 48.40
(1901.00)
Reduction Rate ~ 75%
FaseterVLM 97.57% | 63.05 72.88 61.67 85.27 1548.06  69.50 48.00
AdaV (Ours) 97.75% | 64.26 73.33 61.93 86.70 1599.80 70.10 44.40
VisionZip 96.93% | 63.00 71.20 62.20 85.70  1871.00 68.60
AdaV (Ours) 98.82% | 64.26 73.33 61.93 86.70 1938.72 70.10
VisionZip+FTi 97.38% | 63.70 73.20 64.40 86.30 1829.00 66.60
Reduction Rate ~ 90%
Faseter VLM 92.79% | 59.68 71.24 60.14 80.39 147098 67.61 42.90
AdaV (Ours) 95.40% | 62.78 73.53 59.76 85.79 1603.05 69.67 39.70
VisionZip 94.19% | 60.70 70.30 60.90 82.00 1805.00 67.20
AdaV (Ours) 97.44% | 62.78 73.53 59.76 85.79 1912.69 69.67
VisionZip+FTi 96.90% | 62.50 72.70 63.20 85.70 1861.00 66.90
Reduction Rate ~ 95%
FaseterVLM 86.52% | 56.14 70.40 58.43 73.81 1388.44  64.69 34.30
AdaV (Ours) 93.14% | 60.97 72.68 58.05 84.76 1557.43 68.56 37.90
VisionZip 90.44% | 57.80 69.30 58.40 76.60  1739.00 64.90
AdaV (Ours) 95.50% | 60.97 72.68 58.05 84.76 1867.07 68.56
VisionZip+FTi 93.89% | 59.70 72.00 60.80 84.00 1766.00 65.30

NEXT-34B, and LLaVA-v1.5-7B in Tab. Al, A2
and A3. The result demonstrates that the pro-
posed AdaV achieves SOTA performance on vari-
ous VLMs.

AdaV RR=75%
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Figure A3: Influence of model scale for visual token
pruning across token pruning methods.
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Table A2: Comparison with SOTA approaches on LLaVA-NEXT-34B

Method Average ‘ GQA SQA-IMG TextVQA POPE MME MMB MM-Vet

LLaVA-NEXT-34B  100.00% ‘ 67.10 81.80 69.50 87.70  2028.00 79.30 57.40
Reduction Rate =~ 90%

Faseter VLM 89.29% | 59.60 78.43 60.93 80.35 1869.73 75.85 42.00

AdaV (Ours) 91.85% | 62.71 79.08 57.92 86.67 1958.92 75.17 45.50
Reduction Rate =~ 95%

Faseter VLM 83.90% | 55.31 78.78 58.03 74.02 1745.38 71.64 36.90

AdaV (Ours) 88.11% | 60.12 78.43 55.05 86.44 1909.81 74.39 37.60

Table A3: Comparison with SOTA approaches on LLaVA-v1.5-7B. { means that we report both the perception-only
score and the summation of the perception score and the cognition score in parenthesis.  with a gray background
means the model is fine-tuned, which is expected to be stronger.

Method Average ‘ GQA SQA-IMG TextVQA POPE MME MMB MM-Vet
1506.47
LLaVA-1.5-7B 100.00% | 61.94 69.51 58.21 85.88 (1862.00) 64.69 31.30
Reduction Rate 75%
FastV 94.67% | 56.58 69.11 57.38 73.74 1463.39  64.00 28.60
FitPrune 96.22% | 59.38 69.01 56.49 80.75 1472.86  63.92 28.40
SparseVLM 93.22% | 55.11 69.36 55.99 77.57 1351.65 59.54 29.90
FaseterVLM 98.32% | 58.34 67.92 57.07 83.46 1433.76  62.54 34.20
AdaV (Ours) 97.83% | 58.38 69.31 56.66 84.72 1432.68 62.28 32.40
VisionZip 96.12% | 57.60 68.90 56.80 83.20 1761.70  62.00 30.00
AdaV (Ours) 97.77% | 58.38 69.31 56.66 84.72 1762.32 62.28 32.40
VisionZip+FTI 98.36% | 58.90 68.30 57.00 83.70 1823.00 62.60 32.90
Reduction Rate 90%
FastV 86.26% | 51.20 69.81 54.75 57.30 1210.36  59.97 27.20
FitPrune 81.62% | 49.96 68.22 56.49 53.81 1147.46  56.27 21.80
SparseVLM 78.87% | 48.86 67.23 55.99 65.82 1030.61 49.05 18.60
FaseterVLM 9291% | 5491 68.91 55.28 75.85 1348.63  60.57 30.10
AdaV (Ours) 93.59% | 55.30 68.82 54.53 82.33 1368.28 60.30 29.20
VisionZip 94.02% | 55.10 69.00 55.50 77.00 1690.00 60.10 31.70
AdaV (Ours) 93.63% | 55.30 68.82 54.53 82.33 169542 60.30 29.20
VisionZip+FTi 95.76% | 58.90 68.80 56.00 80.90 1756.00 61.50 30.20
Reduction Rate 95%
FastV 72.48% | 46.03 70.00 51.56 35.47 971.56 50.17 18.90
FitPrune 65.85% | 43.60 68.32 46.75 31.17 855.21 39.69 18.00
FaseterVLM 87.76% | 51.51 69.56 53.09 67.24 1254.80  58.51 27.50
AdaV (Ours) 88.32% | 52.96 68.42 51.89 78.04 1313.36 58.51 24.00
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