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Abstract

Deep learning methods have been proposed for quantitative susceptibility mapping (QSM)
- background field removal, single-step QSM, and field-to-source inversion. However, the
conventional padding mechanism used in CNNs can cause spatial artifacts, especially at the
boundaries of regions of interest. To address this issue, we propose an improved padding
technique which utilizes the neighboring voxels to estimate the invalid pixels at volume
boundaries. Studies using simulated data show that the proposed method greatly improves
estimation accuracy and reduces artifacts in the results. The code is available at .
Keywords: Padding, QSM.

1. Introduction

In QSM, tissue susceptibility is quantitatively estimated by extracting Larmor frequency
offsets from complex MR signals to solve for the source tissue susceptibility (Wang and Liu,
2015). QSM processing usually involves a series of post-processing procedures, including (1)
estimating the magnetic field from the raw MR phase data, (2) eliminating the background
field contributions from outside the region of interest (ROI) to determine the local field, (3)
solving the field-to-source inverse problem. In single-step QSM, the tissue susceptibility is
directly estimated from the total field without background field removal. Both background
field removal and field-to-source inversion require to solve ill-posed inverse problems. With
the development of deep learning (DL), recent efforts have demonstrated the advantages
of DL for QSM in background field removal(Bollmann et al., 2019a; Liu and Koch, 2019),
field-to-source inversion(Yoon et al., 2018; Bollmann et al., 2019b; Jung et al., 2020; Gao
et al., 2021; Chen et al., 2019), and single-step QSM(Wei et al., 2019). All these methods
utilized U-Net (Ronneberger et al., 2015) like architecture with convolutional layers, max-
pooling layers, and deconvolutional layers etc. However, these methods failed to consider
the invalid pixels outside of ROIs, which could introduce inaccurate learning close to volume
boundaries and cause spatial artifacts in the final results. Recent studies have found that
the padding mechanism can cause spatial artifacts in CNNs. Through investigation on
conventional padding techniques such as zero-padding, symmetric padding, and reflective
padding, we found that in CNNs for background field removal and single-step QSM, the
strong background field at the boundaries further hinder the learning process.

To address this problem, a new padding mechanism was proposed. The padding mech-
anism uses the neighboring voxels of feature maps to estimate the invalid voxels at image
boundaries. We used simulated data for quantitative evaluation on the tasks of background
field removal, field-to-source inversion, and single-step QSM tasks.
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2. Method

Let X are the feature values (pixels values) and M is the corresponding binary mask. First,
a convolution with all-one 3x3x3 kernel was the padded binary mask to get the scaling factor
1/sum(M) which applies appropriate scaling to adjust for the varying amount of invalid
inputs. Second, a convolution with all-one 3x3x3 kernel was the each feature map to get the
average value of valid neighboring pixels for the invalid pixels. For better generalization, the
convolution kernels for feature maps and binary mask were trainable, which were initialized

with all-one. After each convolution operation. the mask was not undated.
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Figure 1: Ilustration of Padding. In the feature map (1), the valid pixels show blue and
invalid with white. In (2), the invalid pixels at the boundaries are estimated from
its neighboring valid pixels, with color pink. In (3), the feature map at valid
position are updated after convolution.

3. Experiments

We used the COSMOS result of 2016 QSM reconstruction challenge to generate simulated
data. We applied random elastic transform, contrast change, and adding pseudo high
susceptibility sources to augment the single QSM. The background field were simulated
by using random placed background susceptibility sources with large susceptibility value
outside the brain. The dipole convolution were then performed to get the induced field
from the susceptibility distribution.

100 datasets with matrix size 160x160x160 and voxel size 1.0x1.0x1.0mm? were gener-
ated for network training tasks for background field removal, field-to-source inversion, and
single-step. The network adopted a 3D U-Net like architecture, patch-based training with
patch size 96x96x96, and L2 loss. We compared four padding mechanisms - zero padding,
reflective padding, symmetric padding, and the proposed one. 100 testing datasets were
generated using the same way as training data. The prediction results were evaluated with
respect to the ground truth using quantitative metrics, peak signal-to-noise ratio (PSNR),
normalized root mean squared error (NRMSE), high frequency error norm (HFEN), and
structure similarity (SSIM) index.



4. Results
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Table.1 displays the quantitative evaluation results. In the tasks of background field re-
moval, field-to-source inversion, and single-step QSM, the proposed method achieved the

best scores in all metrics.

Table 1: Quantitative evaluation on 100 synthetic testing data.

PSNR (dB) NRMSE (%) HFEN (%)

Background field removal

zero padding

symmetric padding
reflective padding
neighbor padding

50.3+£5.3
49.1+£54
49.1+£5.3

52.6+5.2

Field-to-source Inversion

zero padding

symmetric padding
reflective padding
neighbor padding

Single-step QSM

zero padding

symmetric padding
reflective padding
neighbor padding

45.3+4.2
45.0 4.3
44.7+£4.3

46.0+4.2

426 £4.4
42.3£0.6
42.14+4.5

44.61+4.3

5. Discussion and Conclusion

12.8 £2.3
14.7+2.3
14.7+2.4
9.9+1.6

19.0£1.8
19.6 £1.8
20.3+1.8
17.4.2£1.7

25.8+2.2
26.8 £2.8
27.4+24
20.6+1.9

11.5£2.6
12.5+24
12.74+2.7
8.9+1.8

19.2+1.5
199+1.6
20.8£1.7

17.3+1.2

2771 £2.7
289 +3.0
29.24+2.9

21.4+1.9

SSIM (0-1)

0.998 + 0.001
0.998+0.002

0.998 + 0.002
0.999 + 0.001

0.984 £ 0.010
0.984+0.010

0.983 £0.010
0.986 £ 0.009

0.974 £ 0.016
0.973+0.017

0.972 £0.017
0.983 £0.010

The proposed padding demonstrated better performance than other three padding mecha-
nism in all three deep learning tasks for QSM. In the tasks of background field and single-
step QSM, the proposed methods significantly outperformed and showed substantial less
error. This may be due to that the strong background field contamination close to brain
boundaries (tissue air interface) causes the conventional padding mechanism inefficient.
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Appendix A.
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Figure 2: Hlustration of QSM processing.
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Figure 3: Ilustration of simulation data.
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Figure 4: Comparison of background field removal performance on an example of testing
data. From the residual error map (2), it is clearly showing that the proposed
padding method has less residual errors, especially close to brain boundaries.
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Figure 5: Comparison of field-to-source performance on an example of testing data. From

the residual error map, all padding mechanisms shows comparable performance
and the proposed padding method has less residual errors.
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Figure 6: Comparison of single-step QSM performance on an example of testing data. From
the residual error map (2), it is clearly showing that the proposed padding method
has less residual errors, especially close to brain boundaries.
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Figure 7: Comparison of single-step QSM performance on an in-vivo data. In the results
of zero padding, reflective padding and symmetric padding show the obvious
artifacts (ii, black arrows) and jagged-like artifacts at the boundaries (iv, white
arrows).
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