

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON THE DIRECTION OF RLVR UPDATES FOR LLM REASONING: IDENTIFICATION AND EXPLOITATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has substantially improved the reasoning capabilities of large language models. While existing analyses identify that RLVR-induced changes are sparse, they primarily focus on the **magnitude** of these updates, largely overlooking their **direction**. In this work, we argue that the direction of updates is a more critical lens for understanding RLVR’s effects, which can be captured by the signed, token-level log probability difference $\Delta \log p$ between the base and final RLVR models. Through statistical analysis and token-replacement interventions, we demonstrate that $\Delta \log p$ more effectively identifies sparse, yet reasoning-critical updates than magnitude-based metrics (e.g., divergence or entropy). Building on this insight, we propose two practical applications: (1) a *test-time extrapolation* method that amplifies the policy along the learned $\Delta \log p$ direction to improve reasoning accuracy without further training; (2) a *training-time reweighting* method that focuses learning on low-probability (corresponding to higher $\Delta \log p$) tokens, which improves reasoning performance across models and benchmarks. Our work establishes the direction of change as a key principle for analyzing and improving RLVR.

1 INTRODUCTION

Recent advances have substantially improved the reasoning capabilities of large language models, giving rise to powerful reasoning-centric models such as OpenAI o1 (Jaech et al., 2024), Deepseek R1 (Guo et al., 2025), Gemini 2.5 (Comanici et al., 2025), and Qwen3 (Yang et al., 2025a). A key algorithmic driver of this progress is reinforcement learning with verifiable rewards (RLVR) (Guo et al., 2025; Team, 2025; Yang et al., 2025a), which fine-tunes a model’s generation policy using feedback from task-specific verifiers, thereby eliciting and amplifying the reasoning ability.

To elucidate how RLVR confers its gains, a natural lens is to compare what changes in the final RL-trained model π_{RL} relative to its base counterpart π_{Base} (Ren & Sutherland, 2025). Previous analyses have consistently shown that the RLVR-induced changes are sparse, impacting only a small subset of tokens in the output sequence. For example, Wang et al. (2025b) associate these changes with high-entropy tokens, Huan et al. (2025) corroborate the sparsity by measuring the KL divergence between π_{Base} and π_{RL} , while Yang et al. (2025b) and Deng et al. (2025) attribute this sparsity to selective gradient updates during RLVR training. However, when studying the difference between base and RLVR models, prior studies primarily emphasize the **magnitude of change**, but largely overlook the **direction** in their distributions. As shown in Fig. 1(b), magnitude-based metrics (e.g., entropy, KL divergence) yield nearly identical histograms for the base and final RLVR models, indicating that magnitude alone is insufficient to characterize the transformation from π_{Base} to π_{RL} .

To address this gap, we directly quantify directional shifts in the model’s distribution using the signed, token-level log-probability difference:

$$\Delta \log p(y_t|x, y_{<t}) = \log \pi_{\text{RL}}(y_t|x, y_{<t}) - \log \pi_{\text{Base}}(y_t|x, y_{<t}), \quad (1)$$

which captures how RLVR shifts the probability mass on each token, with positive values indicating increased probabilities and negative values vice versa. As shown in Fig. 1(b), histograms of $\Delta \log p$ exhibit a clear bimodal pattern with two distinct tails, highlighting a clear directional signature absent in magnitude-based metrics. This metric can reveal which token RLVR prioritizes, such as reasoning-critical tokens (e.g., those enhancing reasoning correctness) versus irrelevant ones. We

Figure 1: (a) Token-level metrics for analyzing RLVR updates. (b) Histograms of each metric on responses generated by base and RLVR models. With a log-scale y-axis, most values concentrate near zero for all metrics, but only $\Delta \log p$ shows a directional shift distinguishing RLVR from the base model. (c) Token-replacement performance: replacing base tokens with RLVR choices at positions selected by each metric, where $\Delta \log p$ recovers RLVR performance with the fewest replacements.

further validate its utility via a token replacement intervention (Deng et al., 2025): for each metric, we identify salient positions and replace the base model’s tokens with the RLVR model’s choices at those positions during generation (cf. Algo. 1). As shown in Fig. 1(c), selecting by $\Delta \log p$ reaches RLVR-level performance with the fewest substitutions, pinpointing tokens where RLVR learns reasoning-critical updates. These findings underscore a key principle: *analyzing the direction of changes, rather than solely their magnitude, provides deeper insights*. The signed log-probability difference provides a practical and effective handle for this diagnostic analysis.

Building on this principle, we first propose a test-time augmentation that extrapolates the RLVR policy’s distribution along the $\Delta \log p$ direction for reasoning-critical tokens selectively, amplifying reasoning-related updates and improving accuracy without additional training. Furthermore, we observe that tokens with the largest $\Delta \log p$ consistently correspond to low-probability tokens during RLVR training. Motivated by this, we design a probability-aware reweighting of policy-gradient advantages, upweighting contributions from low-probability tokens to focus learning on reasoning-critical positions as $\Delta \log p$ indicated. This reweighting yields additional gains over current state-of-the-art RLVR methods (e.g., DAPO (Yu et al., 2025)) across diverse benchmarks and models.

In summary, this work introduces a directional diagnostic for analyzing RLVR’s effects and, based on these findings, develops two practical strategies for reasoning enhancement: a test-time extrapolation technique and a training-time reweighting method. We hope our work offers a new perspective for analyzing and improving RLVR through the lens of update direction.

2 PRELIMINARIES

Group Relative Policy Optimization (GRPO). GRPO (Shao et al., 2024) is a variant of the milestone policy gradient algorithm PPO (Schulman et al., 2017). It is adapted for LLM training by eliminating the need for a separate critic model. For each QA pair (x, a) sampled from dataset \mathcal{D} , GRPO generates a group of G responses $\{y_i\}_{i=1}^G$ using the old policy $\pi_{\theta_{\text{old}}}$, computes their rewards $\{R_i\}_{i=1}^G$, and estimates the advantage of each response in a group-relative manner:

$$\hat{A}_{i,t} = \frac{R_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}. \quad (2)$$

Then the policy π_{θ} is optimized by maximizing the following objective:

$$\begin{aligned} \mathcal{J}_{\text{GRPO}}(\theta) = & \mathbb{E}_{(x,a) \sim \mathcal{D}, \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|x)} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|y_i|} \sum_{t=1}^{|y_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \right. \right. \\ & \left. \left. \text{clip}(r_{i,t}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_{i,t} \right) - \beta \mathbb{D}_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}}) \right], \end{aligned} \quad (3)$$

where $r_{i,t}(\theta) = \frac{\pi_{\theta}(y_{i,t}|x, y_{i,<t})}{\pi_{\theta_{\text{old}}}(y_{i,t}|x, y_{i,<t})}$ is the importance sampling ratio, ϵ is the clipping range for $r_{i,t}(\theta)$, and $\mathbb{D}_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}})$ regularizes the policy to stay close to a reference policy π_{ref} .

108 **Dynamic Sampling Policy Optimization (DAPO).** DAPO(Yu et al., 2025) is a state-of-the-art
 109 critic-free RLVR algorithm that further refines GRPO. It introduces several techniques, including
 110 clip-higher mechanism, dynamic sampling strategy, token-level loss aggregation, overlong punishment,
 111 and removing the KL penalty. DAPO’s objective is defined as:

$$\begin{aligned} \mathcal{J}_{\text{DAPO}}(\theta) = & \mathbb{E}_{(x,a) \sim \mathcal{D}, \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|x)} \left[\frac{1}{\sum_{i=1}^G |y_i|} \sum_{i=1}^G \sum_{t=1}^{|y_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \right. \right. \\ & \left. \left. \text{clip}(r_{i,t}(\theta), 1 - \epsilon_{\text{low}}, 1 + \epsilon_{\text{high}}) \hat{A}_{i,t} \right) \right], \quad \text{s.t. } 0 < |\{y_i \mid \text{is_equivalent}(a, y_i)\}| < G. \end{aligned} \quad (4)$$

118 Given its success, we adopt DAPO as the primary baseline algorithm for our empirical analysis.

120 **Token-level metrics for RLVR analysis.** To study how RLVR turns a base model into the RL-
 121 finetuned counterpart, we mainly compare the following token-level metrics for RLVR analysis:

- 122 • Entropy: Wang et al. (2025b) observed that RLVR-induced changes are sparse and tend to con-
 123 centrate on high-entropy tokens. This token-level entropy is defined as:

$$\mathcal{H}_{\pi}(y_t|x, y_{<t}) = \mathbb{E}_{y_t \sim \pi(\cdot|x, y_{<t})}[-\log \pi(y_t|x, y_{<t})]. \quad (5)$$

126 We calculate this entropy for both the RLVR model $\mathcal{H}_{\pi_{\text{RL}}}$ and the base model $\mathcal{H}_{\pi_{\text{Base}}}$.

- 128 • Divergences: Huan et al. (2025) used KL Divergence to quantify the distributional shift, also
 129 finding that the changes are sparse. The token-level KL divergence is defined as:

$$\mathbb{D}_{\pi_{\text{RL}}, \pi_{\text{Base}}}^{\text{KL}}(y_t|x, y_{<t}) = \mathbb{E}_{y_t \sim \pi_{\text{RL}}(\cdot|x, y_{<t})} \left[\log \frac{\pi_{\text{RL}}(y_t|x, y_{<t})}{\pi_{\text{Base}}(y_t|x, y_{<t})} \right]. \quad (6)$$

133 We also include its reversed variant $\mathbb{D}_{\pi_{\text{Base}}, \pi_{\text{RL}}}^{\text{KL}}$ and the averaged KL Divergence $\mathbb{D}^{\text{KL}} =$
 134 $\frac{1}{2}(\mathbb{D}_{\pi_{\text{RL}}, \pi_{\text{Base}}}^{\text{KL}} + \mathbb{D}_{\pi_{\text{Base}}, \pi_{\text{RL}}}^{\text{KL}})$ to avoid asymmetry bias for a comprehensive analysis.

136 3 DISSECTING THE TOKEN-LEVEL CHANGES INTRODUCED BY RLVR

138 This section aims to dissect the token-level mechanisms through which RLVR training transforms a
 139 base model into its fine-tuned counterpart. First, we show that the logp difference ($\Delta \log p$, Eq. 1)
 140 captures directional shifts in probability mass and separates base from RLVR generations, whereas
 141 magnitude-only metrics (entropy/divergence) do not. Second, we conduct a token replacement ex-
 142 periment to validate that $\Delta \log p$ more precisely identifies sparse, reasoning-critical tokens targeted
 143 by RLVR. Finally, we explain the sparsity through a gradient analysis showing that policy updates
 144 concentrate on low-probability tokens of RLVR’s policy gradient updates.

146 3.1 STATISTICAL ANALYSIS: DIRECTIONAL VS. MAGNITUDE-BASED METRICS

148 **Experimental Setup.** We conduct a statistical analysis on outputs from several RLVR-base model
 149 pairs (ORZ (Hu et al., 2025a), DAPO (Yu et al., 2025), UniReason (Huan et al., 2025)) to compare
 150 how different token-level metrics capture RLVR-induced changes. We plot histograms of entropy,
 151 divergences, and logp difference of different models’ generated tokens on the AIME-24 dataset.

152 **Statistical Comparison.** Fig. 1(b) shows the distributions of these metrics for the UniReason model
 153 pair. Across all metrics, the histograms are sharply peaked near zero (note the log-scale y-axis),
 154 confirming that RLVR-induced changes are sparse.¹ However, the entropy and KL divergence dis-
 155 tributions are nearly identical for both the base and RLVR model outputs. In contrast, the $\Delta \log p$
 156 distribution exhibits two distinct tails: a positive tail corresponding to tokens favored by the RLVR
 157 model and a negative tail for the base model. This pattern holds across all tested model pairs and
 158 for multiple entropy/divergence variants (Appx. E): the distributions of magnitude-based metrics
 159 are nearly indistinguishable between tokens generated by the RLVR and base models (Figs. 12-14),
 160 whereas $\Delta \log p$ consistently exhibits clear bimodal patterns (Fig. 11).

161 ¹Wang et al. (2025b) argue that RLVR primarily modifies tokens with high entropy. The observed concen-
 162 tration of near-zero-entropy tokens is therefore consistent with sparse updates under their assumptions.

Figure 2: Token-replacement performance across metrics and model pairs. While all metrics can recover RLVR-level accuracy, $\Delta \log p$ does so with *the fewest replacements*, demonstrating its precision in isolating the reasoning-critical minor tokens changed by RLVR training.

This is because magnitude-only metrics quantify the size of the distributional change but **ignore its direction**, *i.e.*, whether a given token is more favored by the RLVR model or the base model. With directional information, $\Delta \log p$ **reveals a clear difference between the two modes**, enabling more precise identification of the sparse, reasoning-enhancing updates induced by RLVR, and we will validate their impact on reasoning performance in the following section.

3.2 RECOVERING RLVR PERFORMANCE VIA SELECTIVE TOKEN REPLACEMENT

Token Replacement Setup. To further assess how the minority tokens identified by each metric affect reasoning ability, we conduct a *selective token replacement* experiment adapted from [Deng et al. \(2025\)](#). At each decoding step, we sample a token from π_{Base} , then apply a metric-specific criterion f^τ to decide whether to replace the token with one sampled from π_{RL} (Alg. 1). The threshold τ is adjusted to control replacement rates across metrics, enabling fair comparisons.

We compare entropy, KL Divergences², and logp difference, with the corresponding replacement criteria functions defined as follows:

- Entropy: Following the hypothesis that RLVR updates target high-entropy positions ([Wang et al., 2025b](#)), we replace the base model’s token if its token distribution has entropy exceeding a threshold τ : $f_H^\tau(y_t|x, y_{<t}) = \mathbb{I}(\mathcal{H}(y_t|x, y_{<t}) > \tau)$.
- KL Divergences: Similarly, to target positions where the two models diverge most, we replace the token if the divergence is greater than τ : $f_D^\tau(y_t|x, y_{<t}) = \mathbb{I}(\mathbb{D}(y_t|x, y_{<t}) > \tau)$.
- Logp Difference: A large negative $\Delta \log p$ for a token y_t indicates that RLVR has learned to penalize it relative to the base model. We exploit this by replacing tokens whose logp difference falls *below* a threshold τ : $f_{\log p}^\tau(y_t|x, y_{<t}) = \mathbb{I}(\Delta \log p(y_t|x, y_{<t}) < \tau)$.

This selective replacement setup, controlled by the metric-specific thresholds, allows us to compare the impact of tokens identified by each metric on reasoning performance at matched replacement rates. Fig. 2 shows results on AIME-24 for three representative metrics $\mathcal{H}_{\pi_{\text{Base}}}$, \mathbb{D}^{KL} , and $\Delta \log p$, while Fig. 6 in Appx. A.2 provides ablations with additional metrics, including the RLVR model’s entropy $\mathcal{H}_{\pi_{\text{RL}}}$ and KL-divergence variants. All metrics are contrasted with a random baseline that uniformly replaces tokens: $f_{\text{rand}}^\tau(\cdot) = \mathbb{I}_{\rho \sim U[0,1]}(\rho < \tau)$. The key observations are as follows:

Observation I: Selectively replacing a minority of base models’ tokens can recover RLVR performance. As shown in Fig. 2, replacing 5-30% of a base model’s sampled tokens with different

Algorithm 1 Selective Token Replacement

Require: Base and RLVR models $\pi_{\text{Base}}, \pi_{\text{RL}}$, prompt x , criterion function $f^\tau(\cdot) \in \{0, 1\}$

- 1: Initialize response: $t \leftarrow 0, y_{\leq 0} \leftarrow \text{"“"}$
- 2: **while** $y_t \neq \text{"<EOS>"}$ **do**
- 3: $t \leftarrow t + 1$
- 4: Sample from base: $y_t \sim \pi_{\text{Base}}(\cdot|x, y_{<t})$
- 5: **if** $f^\tau(y_t|x, y_{<t}) = 1$ **then**
- 6: Replace the token: $y_t \sim \pi_{\text{RL}}(\cdot|x, y_{<t})$
- 7: **end if**
- 8: **end while**
- 9: **return** $y_{\leq t}$

²We mainly use the averaged KL divergence $\mathbb{D}^{\text{KL}} = \frac{1}{2}(\mathbb{D}_{\pi_{\text{RL}}, \pi_{\text{Base}}}^{\text{KL}} + \mathbb{D}_{\pi_{\text{Base}}, \pi_{\text{RL}}}^{\text{KL}})$ for token replacement to avoid potential asymmetry bias and include KL’s variants $\mathbb{D}_{\pi_{\text{RL}}, \pi_{\text{Base}}}^{\text{KL}}$ and $\mathbb{D}_{\pi_{\text{Base}}, \pi_{\text{RL}}}^{\text{KL}}$ for ablation study.

Figure 3: (a) Token probability and gradient norm coefficient $1 - \pi_\theta(\cdot)$ of a DAPO step, where the gradient concentrates on rare, low-probability tokens. (b) Token probability within different $\Delta \log p$ bins, where higher $\Delta \log p$ bins contain lower probability for both base and RLVR models. (c) Effect of top-p filtering on RLVR training performance. Performance declines with more filtering.

metrics suffices to match the final RLVR model’s accuracy. In contrast, randomly replacing the tokens without metric selection produces much slower performance growth. This demonstrates that RLVR-modified tokens are sparsely distributed along the sequence but disproportionately important for reasoning, highlighting the efficacy of the evaluated metrics in identifying these critical tokens.

Observation II: Logp difference > divergence > entropy in identifying RLVR-learned reasoning patterns. Across all model pairs (Fig. 2), $\Delta \log p$ -based replacement reaches the RLVR model’s accuracy with the *fewest* substitutions (around 10% of tokens). In comparison, magnitude-only metrics (*e.g.*, divergence and entropy) require clearly more replacement to match RLVR performance, indicating lower precision in identifying reasoning-critical changes introduced by RLVR. Between these two, divergence consistently outperforms entropy, suggesting that RLVR changes may not be restricted to high-entropy positions. This ordering— $\Delta \log p$ highest, followed by divergence, then entropy—remains stable across different divergence and entropy variants (Fig. 6 in Appx. A.2), further validating the superiority of logp difference in isolating the most influential positions.

3.3 A GRADIENT-BASED EXPLANATION FOR THE SPARSE UPDATES

Our previous analysis established that the RLVR model differs from its base counterpart on a small but critical subset of tokens most effectively identified by $\Delta \log p$. Here, we provide a gradient-based explanation for this sparsity of changes: RLVR’s policy gradient inherently concentrates updates on rare, low-probability tokens, correlating with tokens with high $\Delta \log p$ in the final model.

RLVR’s policy gradient sparsely concentrates on low-probability tokens. The gradient of the DAPO objective $\mathcal{J}_{\text{DAPO}}$ for an un-clipped token $y_{i,t}$ can be written as $w_{i,t} \cdot \nabla_\theta \log \pi_\theta(y_{i,t}|x, y_{i,<t})$, where $w_{i,t} = r_{i,t}(\theta) \hat{A}_{i,t}$ combines the importance sampling ratio and advantage. To analyze the token’s gradient norm, we have the following lemma (see the proof in Appx. D):

Lemma 3.1. *For a softmax-parameterized LLM policy with logits vector z for the output token $y_{i,t}$, the ℓ_1 -norm of the DAPO objective’s gradient w.r.t. z is given by:*

$$\|\nabla_z \mathcal{J}_{\text{DAPO}}(y_{i,t}|x, y_{i,<t})\|_1 = 2|w_{i,t}| \cdot (1 - \pi_\theta(y_{i,t}|x, y_{i,<t})).$$

This partial gradient’s ℓ_1 -norm directly depends on $1 - \pi_\theta(y_{i,t}|x, y_{i,<t})$, with larger gradient sizes for lower-probability tokens. Furthermore, Yang et al. (2025b) formally proved that the full gradient norm is tightly bounded by the $1 - \pi_\theta(\cdot)$ term. Consequently, low-probability tokens, despite their rarity, receive disproportionately large gradient updates. We corroborate this empirically in Fig. 3(a), which plots tokens’ probability and their gradient coefficient from an intermediate DAPO training step. Although low-probability tokens are sampled infrequently, they account for most of the total gradient mass. This concentration of gradients explains why RLVR’s modifications are sparse: learning is naturally focused on a small, high-impact set of low-probability positions.

High $\Delta \log p$ tokens are the updated low-probability tokens. To complete the argument, we link the low-probability tokens that dominate training updates to the high- $\Delta \log p$ tokens in the final model. Fig. 3(b) analyzes tokens grouped by their $\Delta \log p$ values. It reveals two patterns: first, the

270 probability of tokens in high- $\Delta \log p$ bins increases substantially from the base to the RLVR model;
 271 second, these high- $\Delta \log p$ tokens have clearly lower probabilities in both models. This confirms that
 272 the most significant updates learned by RLVR target those low-probability tokens, and the sparsity
 273 of RLVR’s changes is therefore a direct consequence of sparse, high-magnitude gradients acting on
 274 these critical tokens, which can be effectively identified post-hoc by their large $\Delta \log p$.

275 **Excluding low-probability tokens during training impairs performance.** To causally verify the
 276 importance of these low-probability tokens, we conduct a training-time intervention experiment to
 277 provide direct evidence for our hypothesis. We train the Qwen2.5-Math-7B base model (Yang et al.,
 278 2024) using DAPO but adopt a top-p sampling strategy during rollout to filter out low-probability
 279 tokens. The results, plotted in Fig. 3(c), are conclusive. Even a mild filter (e.g., top-p=0.95) leads to
 280 a substantial drop in performance compared to the default setting (top-p=1.0). As the filter becomes
 281 more aggressive (i.e., with lower top-p thresholds), performance degrades sharply. This experiment
 282 demonstrates that these low-probability tokens are not merely correlated with gradient size but are
 283 essential for the reasoning improvements achieved by RLVR training.

284 **Takeaway**

285

- 286 **RLVR’s gains stem from sparse, high-impact modifications.** Our analysis reveals
 287 that RLVR’s performance gains originate not from a global distribution shift, but from
 288 targeted, high-impact changes to a minority of tokens.
- 289 **Logp difference pinpoints these sparse changes.** By capturing the direction of prob-
 290 ability shifts from base to RLVR, logp difference outperforms magnitude-only metrics
 291 like entropy or divergence in isolating the reasoning-critical tokens that RLVR learns.
- 292 **Sparsity originates from RLVR’s focus on low-probability tokens.** The sparse dif-
 293 ference is explained by the inherent concentration of RLVR’s gradients on rare, low-
 294 probability tokens, making these tokens the focal point for improvement and the source
 295 of the sparse, high- $\Delta \log p$ changes we observe.

297

298 4 EXPLOITING RLVR’S DIRECTIONAL UPDATES TO BOOST REASONING

299

300 Building on Sec. 3, which isolates sparse and directional updates via $\Delta \log p$, we propose two prac-
 301 tical strategies to utilize this directional learning: (i) a *test-time selective extrapolation* that shifts
 302 probability mass further along the learned direction on critical tokens; (ii) a *training-time advan-*
 303 *tage reweighting* that prioritizes low-probability tokens implicated by high $\Delta \log p$. Both methods
 304 provide practical ways to boost performance by exploiting the directional mechanisms of RLVR.

305

306 4.1 TEST-TIME ENHANCEMENT VIA EXTRAPOLATION

307

308 **Selective test-time extrapolation along the $\Delta \log p$ direction.** Our token replacement experiment
 309 demonstrated that $\Delta \log p$ effectively identifies the reasoning-critical changes of RLVR. This raises
 310 a natural question: Can we move beyond simple replacement and actively amplify these critical
 311 changes to surpass the RLVR model’s performance? We therefore instantiate a token-level extrap-
 312 olation: treat $\Delta \log p = \log \pi_{\text{RL}}(\cdot) - \log \pi_{\text{Base}}(\cdot)$ as a learned “reasoning direction” pointing from
 313 base to RLVR distribution. Our strategy is to amplify this signal by extrapolating the RLVR model’s
 314 distribution further along this direction. The extrapolated policy $\pi_{\text{Extra}}^{\gamma}$ is given by:

$$\begin{aligned} 315 \log \pi_{\text{Extra}}^{\gamma}(y_t|x, y_{<t}) &:= \log \pi_{\text{RL}}(y_t|x, y_{<t}) + \gamma \cdot \Delta \log p(y_t|x, y_{<t}) + z(x, y_{<t}) \\ 316 &= (1 + \gamma) \cdot \log \pi_{\text{RL}}(y_t|x, y_{<t}) - \gamma \cdot \log \pi_{\text{Base}}(y_t|x, y_{<t}) + z(x, y_{<t}), \end{aligned} \quad (7)$$

317

318 where γ is a hyperparameter controlling the extrapolating strength, and $z(\cdot)$ is a log-partition func-
 319 tion. In probability space, this is equivalent to re-weighting the RLVR distribution:

$$320 \pi_{\text{Extra}}^{\gamma}(y_t|x, y_{<t}) \propto \pi_{\text{RL}}(y_t|x, y_{<t}) \cdot \exp(\gamma \Delta \log p(y_t|x, y_{<t})).$$

321

322 This framing connects our method to reward-guided decoding literature (Khanov et al., 2024; Liu
 323 et al., 2024; Xu et al., 2025), where a reward function is used to re-weight the probability distribution.
 Our $\Delta \log p$ thereby acts as a token-level reward that encourages better reasoning in this framework.

324
 325 **Why selective?** RLVR’s improvements concentrate on a minority of tokens; most positions exhibit
 326 negligible $\Delta \log p$. A global intervention risks distorting well-calibrated tokens. We therefore apply
 327 extrapolation *selectively*, using $f_{\log p}^\tau$ to gate positions with large negative $\Delta \log p$, and sample from
 328 the extrapolated policy $\pi_{\text{extra}}^\gamma$ only at those positions (substituting π_{RL} in Algo. 1, Line 6).

329 **Empirical Setup.** We evaluate our method on the AIME-
 330 24 benchmark using the ORZ, DAPO, and UniReason
 331 model pairs, generating 32 samples per question (see
 332 Appx. A.1 for more details). To isolate the impact of our
 333 strategy, we compare three approaches: (1) RLVR: The
 334 original, non-intervened RLVR model π_{RL} ; (2) Selective
 335 Replace: Base model with tokens replaced by π_{RL} ; (3)
 336 Selective Extrapolate: Base model with tokens replaced
 337 by $\pi_{\text{Extra}}^\gamma$. For a controlled comparison, we use the same
 338 selection criteria for (2) and (3), with the only difference
 339 being the extrapolation.

340 **Results.** On AIME-24, Selective Extrapolation yields
 341 higher Avg@32 (average of 32 samples) than π_{RL} across
 342 ORZ-32B, DAPO-32B, and UniReason-14B under matched gates (Fig. 4). In contrast, Selective Re-
 343 place matches but does not surpass the RL baseline under the same criteria. These results indicate
 344 that moving beyond π_{RL} along $\Delta \log p$ provides incremental gains in reasoning accuracy.

345 **Extrapolating on π_{RL} .** We also apply selective extrapolation
 346 directly on π_{RL} rather than on π_{Base} in Algo. 1
 347 (Line 4). As the threshold τ in $f_{\log p}^\tau$ increases, the AIME-
 348 24 performance improves up to a moderate intervention
 349 ratio, after which gains plateau (Table 1). This pattern
 350 aligns with the sparsity finding: amplifying a limited set
 351 of reasoning-critical tokens is effective, whereas aggressive
 352 interventions yield diminishing returns.

353 **Theoretical Justification.** Following a standard simplification in theoretical analysis for LLM
 354 RL training (Munos et al., 2024; Shi et al., 2025), we consider a tabular softmax bandit policy:
 355 $\pi_\theta(y|x) \propto \exp(\theta_{x,y})$, where the logit is individually parameterized by θ for each prompt-response
 356 pair (x, y) . We assume the policy is trained with Natural Policy Gradient (NPG (Kakade, 2001)) following
 357 Cui et al. (2025), since its updates resemble the controlled optimization of PPO (Schulman
 358 et al., 2017). The update rule of NPG via backtracking simplifies to: $\theta_{x,y}^{t+1} - \theta_{x,y}^t = \eta \cdot A^t(x, y)$,
 359 where η is the step size and A^t is the advantage function (Agarwal et al., 2021). In this context, our
 360 extrapolated policy (Eq. 7) is defined as $\pi_{\omega(\theta^t, \gamma)}$, where $\omega(\theta^t, \gamma) = \theta^t + \gamma(\theta^t - \theta^0)$. Under these
 361 conditions, we have the following theorem (the proof can be found in Appx. D):

362 **Theorem 4.1.** For a given prompt x , if a tabular softmax policy π_{θ^t} is updated via natural policy
 363 gradient (Kakade, 2001), then the extrapolated policy $\pi_{\omega(\theta^t, \gamma)}$ satisfies:

$$\exists \gamma > 0, \mathbb{E}_{y \sim \pi_{\omega(\theta^t, \gamma)}(\cdot|s)}[R_{x,y}] \geq \mathbb{E}_{y \sim \pi_{\theta^t}(\cdot|s)}[R_{x,y}].$$

364 *Equality holds if and only if the reward $R_{x,y}$ is constant for all y .*

365 This theorem shows that, in the simplified setting, extrapolating along the learned difference di-
 366 rection of $\Delta \log p$ can improve the expected reward. Nevertheless, we need to note that the proof
 367 relies on the idealized NPG’s update rule, with a monotonic learning process consistently adjusting
 368 the logits along the reward’s direction. In contrast, our empirical analysis has shown that the up-
 369 dates learned by RLVR concentrate only on a minority of tokens, with $\Delta \log p$ on most tokens being
 370 negligible. This disparity motivates our selective extrapolation only on positions with a significant
 371 difference, which exhibit the consistent, directional updates assumed by the theory.

372 4.2 TRAINING-TIME ENHANCEMENT VIA ADVANTAGE REWEIGHTING

373 **Training-time enhancement via probability-aware advantage reweighting.** While our test-time
 374 approach amplifies the learned reasoning signal post-hoc, our training-time strategy proactively
 375 strengthens the model’s reasoning signal during learning. Instead of extrapolating the final log

376 Figure 4: Extrapolation Performance

377 Table 1: Selective Extrapolate ($\gamma = 0.1$) on the RLVR model (DAPO-32B) instead of the base model.

Replace Ratio	0.0%	1.8%	5.2%	20.0%
Avg@32	52.50	53.96	55.31	55.10
Threshold τ	N/A	-0.5	-0.2	0.0

378 Table 2: Comparison of our reweighting method and DAPO on math reasoning benchmarks.
379

380 381 382 Model	383 384 385 Method	386 387 388 AIME24		389 390 391 AIME25		392 393 394 AMC		395 396 397 Average	
		398 Avg@32	399 Pass@16	398 Avg@32	399 Pass@16	398 Avg@32	399 Pass@16	398 Avg@32	399 Pass@16
383 384 385 Qwen2.5- 386 387 388 Math-7B	383 384 385 Base	14.79	47.46	6.67	27.84	40.62	79.25	20.69	51.52
	383 384 385 DAPO	35.73	54.09	17.6	30.45	73.04	89.03	42.12	57.86
	383 384 385 Ours	39.06	60.58	18.54	36.72	73.64	89.69	43.75	62.33
383 384 385 Qwen3- 386 387 388 8B-Base	383 384 385 Base	5.42	30.63	5.73	32.8	27.64	78.09	12.93	47.17
	383 384 385 DAPO	36.98	72.3	26.67	46.76	69.13	88.51	44.26	69.19
	383 384 385 Ours	38.13	69.87	31.15	55.38	71.05	92.3	46.78	72.52

389 difference $\Delta \log p$, we leverage the observed correlation between high $\Delta \log p$ and low-probability
390 tokens (Fig. 3(b)), and propose to amplify the learning signal of these critical low-probability
391 tokens. Since the parameter update is driven by the advantage term $\hat{A}_{i,t}$ in policy gradient methods,
392 we modify the advantage in DAPO (Eq. 4) to prioritize low-probability tokens:

$$393 \tilde{A}_{i,t} = [1 + \alpha \cdot (1 - \pi_{\theta_{\text{old}}}(y_{i,t}|x, y_{i,<t}))] \cdot \hat{A}_{i,t}, \quad (8)$$

394 where α is a hyperparameter controlling the reweighting strength. Such a concentration on low-
395 probability tokens also aligns with our top-p experiment in Fig. 3(c), which finds that low-probability
396 tokens are irreplaceable for RLVR training.

400 **Experimental setup.** We modify only the advantage (Eq. 8) in the standard DAPO recipe and keep
401 all other hyperparameters fixed. We evaluate model performance on three math reasoning bench-
402 marks: AIME-24, AIME-25, and AMC. Following DAPO’s setup, we use top-p=0.7 for sampling
403 during evaluation. We report Avg@32 and Pass@16³, both computed over 32 samples per problem
404 to ensure a stable estimate of the pass rates (Chen et al., 2021).

405 **Results: performance gains across models and datasets.** We compare our reweighting method on
406 two models: Qwen2.5-Math-7B (Yang et al., 2024) and Qwen3-8B-Base (Yang et al., 2025a). As
407 shown in Tab. 2, enhancing low-probability tokens’ weight consistently improves reasoning accu-
408 racy across all tested models and datasets. Notably, this enhanced accuracy (Avg@32) doesn’t come
409 at the cost of exploration ability (often measured by Pass@k) (Yue et al., 2025); in fact, the average
410 Pass@16 also increases over the DAPO baseline.

411 **Comparison of different reweighting.** While our reweighting method is motivated by the
412 critical role of low-probability tokens, existing work has proposed alternative reweighting
413 strategies that stem from different hypotheses: (1) PPL: Deng et al. (2025) find that RLVR up-
414 dates favor *low-ppl* responses, so they reweight
415 advantage to enhance these responses: $\tilde{A}_{i,t}^{\text{ppl}} =$
416 $[1 - \alpha \cdot w_{\text{ppl}}(y_i)] \cdot \hat{A}_{i,t}$, where $w_{\text{ppl}}(y_i)$ is a nor-
417 malized log-PPL weight. (2) Dominate: Yang
418 et al. (2025b) argue that RLVR training can be
419 *over-dominated* by low-probability tokens, so
420 they propose to counteract this by upweighting
421 high-probability tokens: $\tilde{A}_{i,t}^{\text{dom}} = [\alpha \cdot \pi_{\theta}(y_{i,t}) + 1 - \alpha] \cdot \hat{A}_{i,t}$. We implement these methods us-
422 ing their recommended hyperparameters and compare the performance on Qwen2.5-Math-7B. As
423 shown in Table 3, our method of directly amplifying low-probability tokens achieves the best over-
424 all performance for both Avg@32 and Pass@16. The training dynamics in Fig. 5 provide further
425 insight: Our method not only exhibits higher reasoning accuracy but also a steady increase in re-
426 sponse length. This simultaneous increase in performance and length is a key pattern in effective
427 reasoning RLVR training (Guo et al., 2025), suggesting the promoted reasoning behavior by our
428 method. Moreover, the training entropy of $\tilde{A}_{i,t}^{\text{dom}}$ reweighting is clearly lower, since they adopt a
429 430 431

Table 3: Results of various reweighting methods.

	Method	PPL	Dominate	Ours
AIME24	Avg@32	35.63	36.35	39.06
	Pass@16	61.95	55.27	60.58
AIME25	Avg@32	16.46	13.02	18.54
	Pass@16	32.19	20.69	36.72
AMC	Avg@32	72.06	79.97	73.64
	Pass@16	89.1	84.93	89.69
Average	Avg@32	41.38	43.11	43.75
	Pass@16	61.08	53.63	62.33

³With 32 samples, we report the more stable Pass@16 instead of Pass@32 for Pass@k evaluation.

Figure 5: Training curves for different reweighting methods on Qwen2.5-Math-7B.

more restrictive clip-higher ratio of $\epsilon_{\text{high}} = 0.24$ than the default $\epsilon_{\text{high}} = 0.28$ in DAPO⁴. The lower entropy (less exploration) also explains their reduced Pass@k performance in Tab. 3.

5 RELATED WORK

Reinforcement learning for LLM. Reinforcement learning is a pivotal component of the LLM post-training pipeline. Early applications centered on Reinforcement Learning from Human Feedback (RLHF) for model alignment (Ouyang et al., 2022; Stiennon et al., 2020), while recent advancements shift their focus to building reasoning models with RL. OpenAI o1 (Jaech et al., 2024) is the first reasoning model, and DeepSeek R1 (Guo et al., 2025) introduces a detailed RLVR (Lambert et al., 2024) recipe for building reasoning models with the GRPO algorithm (Shao et al., 2024). These seminal works inspired the development of a series of subsequent models, from industrial systems like Kimi(Team, 2025), Qwen3 (Yang et al., 2025a), and Gemini 2.5 (Comanici et al., 2025), to open-source academic algorithms such as Dr.GRPO (Liu et al., 2025), Open-Reasoner-Zero (Hu et al., 2025a), DAPO (Yu et al., 2025), and GSPO (Zheng et al., 2025), to further improve the reasoning abilities. In this paper, we adopt DAPO as our baseline RLVR algorithm.

Understanding the effects of RLVR. The success of RLVR has prompted a line of research dedicated to understanding its effects. While early work analyzed high-level cognitive behaviors of RLVR-trained models (Gandhi et al., 2025; Hu et al., 2025b; Bogdan et al., 2025), recent studies have deepened the analysis with token-level quantification (Qian et al., 2025; Wang et al., 2025a). Cui et al. (2025) studied the token entropy change during RLVR, Yang et al. (2025b) quantified the gradient norm of specific tokens, and Deng et al. (2025) used token replacement to measure their impact on reasoning performance. A core finding from these analyses is that RLVR induces sparse updates, which have been verified through high-entropy tokens (Wang et al., 2025b), KL Divergences (Huan et al., 2025), and the sparse gradient norm (Yang et al., 2025b; Deng et al., 2025). However, when studying the differences between base and RLVR models, prior studies mainly focus on the magnitude of changes, largely overlooking their direction. While (Yang et al., 2025b) analyzes the update direction (increase or decrease) of probabilities at each gradient step, we extend the notion of update direction to the full distributional shift from the base model to the RLVR model, and we propose explicitly extrapolating along this learned direction in distribution space.

6 CONCLUSION

In this work, we introduced a directional analysis of RLVR based on the logp difference $\Delta \log p$, shown to be more effective in identifying sparse yet reasoning-critical updates than magnitude-based metrics (e.g., divergence or entropy). Building on this, we proposed a test-time extrapolation to amplify these directional updates and a training-time reweighting to focus learning on the low-probability tokens that $\Delta \log p$ highlights. Both methods improve reasoning performance across different settings, validating our key principle: diagnose and improve RLVR by its update direction.

Limitations and future work. One primary limitation of our extrapolation method is the requirement of two models; future work could integrate this with parameter-efficient finetuning to reduce computational cost. The extrapolation also introduces additional hyperparameters, and future work can explore combining the selection threshold and extrapolation strength for a more adaptive extrapolation. Additionally, our reweighting approach could be evaluated for different model scales or combined with other adaptive training techniques.

⁴This follows the recommended value in their paper (Yang et al., 2025b). We also tested the default $\epsilon_{\text{high}} = 0.28$, but it resulted in unstable training.

486 REPRODUCIBILITY STATEMENT
487488 To ensure the reproducibility of our work, we provide detailed descriptions of our experimental
489 setup, including necessary implementation details and hyperparameter settings in the appendix.
490 We'll also release our source code publicly upon acceptance.
491492 REFERENCES
493494 Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy
495 gradient methods: Optimality, approximation, and distribution shift. *Journal of Machine Learning
496 Research*, 22(98):1–76, 2021. URL <http://jmlr.org/papers/v22/19-736.html>.497 Paul C. Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought anchors: Which llm rea-
498 soning steps matter?, 2025. URL <https://arxiv.org/abs/2506.19143>.
499500 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
501 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, et al. Evaluating
502 large language models trained on code, 2021.
503504 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
505 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
506 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
507 bilities. *arXiv preprint arXiv:2507.06261*, 2025.508 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
509 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
510 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025.511 Jia Deng, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, and Ji-Rong Wen. Decomposing the entropy-
512 performance exchange: The missing keys to unlocking effective reinforcement learning, 2025.
513514 Kanishk Gandhi, Ayush K Chakravarthy, Anikait Singh, Nathan Lile, and Noah Goodman. Cog-
515 nitive behaviors that enable self-improving reasoners, or, four habits of highly effective STars.
516 In *Second Conference on Language Modeling*, 2025. URL [https://openreview.net/
517 forum?id=QGJ9ttXLTy](https://openreview.net/forum?id=QGJ9ttXLTy).518 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, et al. Deepseek-r1
519 incentivizes reasoning in llms through reinforcement learning. *Nature*, 645:633–638, 2025.
520521 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
522 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
523 model. *arXiv preprint arXiv:2503.24290*, 2025a.
524525 Xiao Hu, Xingyu Lu, Liyuan Mao, YiFan Zhang, Tianke Zhang, Bin Wen, Fan Yang, Tingting Gao,
526 and Guorui Zhou. Why distillation can outperform zero-rl: The role of flexible reasoning. *arXiv
527 preprint arXiv:2505.21067*, 2025b.528 Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Pooven-
529 dran, Graham Neubig, and Xiang Yue. Does math reasoning improve general llm capabilities?
530 understanding transferability of llm reasoning. *arXiv preprint arXiv:2507.00432*, 2025.
531532 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
533 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv
534 preprint arXiv:2412.16720*, 2024.535 Sham M Kakade. A natural policy gradient. In T. Dietterich, S. Becker, and Z. Ghahramani (eds.),
536 *Advances in Neural Information Processing Systems*, volume 14. MIT Press, 2001.
537538 Maxim Khanov, Jirayu Burapachewp, and Yixuan Li. ARGs: Alignment as reward-guided search.
539 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=shgx0eqdw6>.

540 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 541 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
 542 in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

543

544 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 545 masesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
 546 Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
 547 guage models. In *Proceedings of the 36th International Conference on Neural Information Pro-
 548 cessing Systems*, NeurIPS '22, Red Hook, NY, USA, 2022.

549

550 Tianlin Liu, Shangmin Guo, Leonardo Bianco, Daniele Calandriello, Quentin Berthet, Felipe
 551 Llinares-López, Jessica Hoffmann, Lucas Dixon, Michal Valko, and Mathieu Blondel. Decoding-
 552 time realignment of language models. In *Proceedings of the 41st International Conference on
 553 Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 31015–31031.
 PMLR, 21–27 Jul 2024.

554

555 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
 556 and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint
 557 arXiv:2503.20783*, 2025.

558

559 Remi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
 560 Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Côme Fiegele, et al. Nash
 561 learning from human feedback. In *Forty-first International Conference on Machine Learning*,
 2024.

562

563 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 564 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 565 instructions with human feedback. *Advances in neural information processing systems (NeurIPS)*,
 35:27730–27744, 2022.

566

567 Chen Qian, Dongrui Liu, Haochen Wen, Zhen Bai, Yong Liu, and Jing Shao. Demystifying reason-
 568 ing dynamics with mutual information: Thinking tokens are information peaks in llm reasoning.
 569 *arXiv preprint arXiv:2506.02867*, 2025.

570

571 Yi Ren and Danica J. Sutherland. Learning dynamics of LLM finetuning. In *The Thirteenth Inter-
 572 national Conference on Learning Representations*, 2025.

573

574 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 575 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

576

577 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 578 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 579 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

580

581 Ruizhe Shi, Runlong Zhou, and Simon Shaolei Du. The crucial role of samplers in online direct pref-
 582 erence optimization. In *The Thirteenth International Conference on Learning Representations*,
 583 2025. URL <https://openreview.net/forum?id=F6z3utfcYw>.

584

585 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 586 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances
 587 in Neural Information Processing Systems (NeurIPS)*, 33:3008–3021, 2020.

588

589 Kimi Team. Kimi k1. 5: Scaling reinforcement learning with llms. *arXiv preprint arXiv:2501.12599*,
 590 2025.

591

592 Qwen Team. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.

593

594 Haozhe Wang, Qixin Xu, Che Liu, Junhong Wu, Fangzhen Lin, and Wenhui Chen. Emergent hi-
 595 erarchical reasoning in llms through reinforcement learning. *arXiv preprint arXiv:2509.03646*,
 596 2025a.

597

598 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 599 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 600 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025b.

594 Yuancheng Xu, Udari Madhushani Sehwag, Alec Koppel, Sicheng Zhu, Bang An, Furong Huang,
 595 and Sumitra Ganesh. GenARM: Reward guided generation with autoregressive reward model for
 596 test-time alignment. In *The Thirteenth International Conference on Learning Representations*,
 597 2025. URL <https://openreview.net/forum?id=J0qTpmbSbh>.

598 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
 599 Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
 600 Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
 601 pert model via self-improvement, 2024.

602

603 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 604 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 605 *arXiv:2505.09388*, 2025a.

606 Zhihe Yang, Xufang Luo, Zilong Wang, Dongqi Han, Zhiyuan He, Dongsheng Li, and Yunjian Xu.
 607 Do not let low-probability tokens over-dominate in rl for llms. *arXiv preprint arXiv:2505.12929*,
 608 2025b.

609

610 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 611 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 612 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

613 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
 614 Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
 615 base model? *arXiv preprint arXiv:2504.13837*, 2025.

616 Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shao-
 617 han Huang, Lei Cui, Qixiang Ye, et al. Geometric-mean policy optimization. *arXiv preprint*
 618 *arXiv:2507.20673*, 2025.

619

620 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
 621 Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. *arXiv preprint*
 622 *arXiv:2507.18071*, 2025.

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A SELECTIVE TOKEN REPLACEMENT & EXTRAPLOATION
649650 A.1 IMPLEMENTATION DETAILS
651652 **Models.** Our experiments use several publicly available RLVR-trained models and their corresponding
653 base models from the Qwen series (Yang et al., 2025a; Team, 2024):654 • ORZ: The Open-Reasoner-Zero-32B model (Hu et al., 2025a), finetuned from Qwen2.5-32B base
655 model using the PPO algorithm.
656 • DAPO: The DAPO-Qwen-32B model (Yu et al., 2025), finetuned from the same Qwen2.5-32B
657 base but with the DAPO algorithm.
658 • UniReason: The UniReason-Qwen3-14B-RL model (Huan et al., 2025), finetuned from Qwen3-
659 14B-Base using the GRPO algorithm.
660661 **Sampling settings.** We utilize the AIME-24 dataset to evaluate the replacement performance. We
662 adopt the default chat prompt template from each model, with the user prompt defined as follows:
663664 [Question]
665 Please reason step by step, and put your final answer within \boxed{}.666 We set the sampling parameters with top-p=0.7, temperature=1.0, max-length=20k, and sample 32
667 responses for each question. The answer is extracted from the last “boxed” wrapped text and verified
668 using Math-Verify. We report the correctness averaged over 32 samples, *i.e.*, Avg@32.
669670 **Hyperparameters for extrapolation.** As described in Algo. 1, the replacement is adopted selec-
671 tively, controlled by the threshold τ in the criteria function f^τ , while the extrapolation strength is
672 adjusted by the parameter γ in $\pi_{\text{Extra}}^\gamma$. For the extrapolation results in Fig. 4, the “Selective Extrpo-
673 late” and “Selective Replace” methods share the same hyperparameters for each model, which we
674 summarize as follows:675 Table 4: Hyperparameters for the extrapolation results (Fig. 4).
676677

Model	ORZ	UniReason	DAPO
Threshold τ for f_{logp}^γ	-0.4	-0.35	-0.3
Replaced Ratio	10.1%	7.5%	11.4%
γ in $\pi_{\text{Extra}}^\gamma$	0.1	0.1	0.05

683 A.2 ADDITIONAL EXPERIMENTS

685 **Additional metrics.** As described in Sec. 3, our primary metrics for token replacement are the base
686 model’s entropy $\mathcal{H}_{\text{Base}}$, KL Divergence \mathbb{D}^{KL} , and logp difference $\Delta \log p$. For our ablation study,
687 we include additional metrics: the RLVR model’s entropy \mathcal{H}_{RL} and two KL-divergence variants:
688 $\mathbb{D}_{\pi_{\text{RL}}, \pi_{\text{Base}}}^{\text{KL}}$ and $\mathbb{D}_{\pi_{\text{Base}}, \pi_{\text{RL}}}^{\text{KL}}$. We evaluate these metrics as criteria for the DAPO model’s selective
689 replacement. By varying the threshold τ for each criterion, we control the token replacement fre-
690 quency and plot the performance on AIME-24 against various replacement ratios in Fig. 6. As
691 shown in the figure, although the additional metrics’ selected replacements also approach the RLVR
692 model’s performance, they still require more replacement than $\Delta \log p$ does. This confirms the per-
693 formance ordering for identifying reasoning-critical tokens: logp difference > divergence > entropy.
694695 **Selected Tokens.** To provide an intuitive comparison of the metrics, we analyze the tokens utilized
696 for replacing the base model’s choice during DAPO’s token replacement of entropy $\mathcal{H}_{\pi_{\text{Base}}}$, KL Di-
697 vergence \mathbb{D}^{KL} , and logp difference $\Delta \log p$. To ensure a fair comparison, we adjust the threshold for
698 each metric to achieve a replacement rate of approximately 8%. Fig. 7 illustrates each criterion’s
699 top 50 substitution tokens. The figure reveals that entropy-based selection favors logical transi-
700 tion words (e.g., Thus, need, can), while the divergence and $\Delta \log p$ criteria utilize more specific
701 mathematical reasoning tokens, including a higher proportion of math symbols. Combined with the
702 inferior performance of the entropy criterion, this suggests that these specific mathematical tokens
703 might be more efficient for improving reasoning performance.

Figure 6: Selective token replacement results with additional criteria for DAPO.

Figure 7: Top 50 tokens for replacing the base model’s choice under different metrics’ selection.

Per-Problem Accuracy during Replacement. We also report the per-problem accuracy changes in the token-replacement experiment in Fig. 8, to more finely examine how gradually increasing the replacement ratio affects model performance. We observe that: (1) There exist some problems that are inherently difficult for the model, for which the accuracy remains zero across all replacement ratios. (2) For the remaining problems, the overall trend is that accuracy generally increases as the replacement ratio grows, and then begins to fluctuate. This is consistent with the fact that, when only performing token replacement, the performance is ultimately capped by the upper bound of the RLVR model. (3) For a small number of problems, accuracy initially drops when we introduce a small amount of replacement, and then begins to improve as the replacement ratio continues to increase (e.g., problem 0 of DAPO). A qualitative inspection of these cases suggests that, for some of them, a small number of RL-replaced tokens introduce token options that the base model is not familiar with. As a result, the base model fails to continue the generation coherently, leading to an initial degradation in accuracy. However, when we further increase the replacement ratio, the generation becomes more strongly guided by the RL tokens, and the model’s performance on these problems recovers and improves.

791 Figure 8: Per-problem accuracy changes on AIME24 during each model's selective token replacement experiment. We report the results with $\Delta \log p$ being the selection criterion.

794 A.3 HYPERPARAMETER SENSITIVITY ANALYSIS

795 Our test-time extrapolation distribution $\pi_{\text{Extra}}^{\gamma}$ introduces a hyperparameter γ that determines the strength of extrapolation along the learned $\Delta \log p$ direction. This intervention operates within the token replacement procedure (Algo. 1) and is applied only to tokens selected by the criterion $\Delta \log p < \tau$. To verify the robustness of the performance gain of extrapolation over simply replacing the token from π_{RL} , we perform a grid search over both γ and the token-selection threshold τ . We evaluate $\gamma \in \{0.05, 0.1\}$ and vary τ across different ranges for different models. For DAPO and ORZ, we test $\tau \in \{-0.5, -0.4, -0.3, -0.2, -0.1\}$. For UniReason, we adopt a denser grid $\tau \in \{-0.5, -0.45, -0.4, -0.35, -0.3\}$ because relatively few replacements are needed to reach the RLVR performance level (Fig. 2).

805 As shown in Tab. 5, across nearly all models and hyperparameter settings, extrapolation consistently 806 outperforms the replace-only variant, demonstrating a strong robustness of our method. Notably, 807 once the replacement ratio is sufficiently high to match the RLVR's performance, further increases 808 in replacement provide little to no additional benefit, since the performance is bounded by the RLVR 809 model itself. In contrast, a proper test-time extrapolation can further exceed RLVR performance by 1-3 points without any additional training.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 5: Hyperparameter sensitivity analysis for the selective extrapolation experiment. The $*$ sign marks the reported value for extrapolation results in Fig. 4, while the \dagger sign corresponds to the end point in token replacement of Fig. 2.

(a) Hyperparameters and Avg@32 performance on AIME24 of DAPO (Avg@32 of π_{RL} : 52.60).

Threshold τ	-0.5	-0.4	-0.3	-0.2	-0.1
Average Replace ratio	8.8%	10.0%	11.4%	13.4%	16.5%
Replace w/ π_{RL}	51.98 \dagger	51.56	51.67	52.71	51.98
Extrapolate w/ $\gamma = 0.05$	51.88	53.02	55.42*	54.06	54.9
Extrapolate w/ $\gamma = 0.1$	54.17	53.33	53.85	53.85	54.27

(b) Hyperparameters and Avg@32 performance on AIME24 of ORZ (Avg@32 of π_{RL} : 46.15).

Threshold τ	-0.5	-0.4	-0.3	-0.2	-0.1
Average Replace ratio	9.5%	10.1%	10.8%	11.6%	12.7%
Replace w/ π_{RL}	43.65	43.33	46.15 \dagger	44.90	42.81
Extrapolate w/ $\gamma = 0.05$	47.19	45.52	45.83	46.25	43.44
Extrapolate w/ $\gamma = 0.1$	43.75	47.50*	45.52	47.08	45.42

(c) Hyperparameters and Avg@32 performance on AIME24 of UniReason (Avg@32 of π_{RL} : 54.58).

Threshold τ	-0.5	-0.45	-0.4	-0.35	-0.3
Average Replace ratio	5.4%	6.0%	6.8%	7.5%	8.5%
Replace w/ π_{RL}	53.65 \dagger	53.33	53.12	54.06	53.54
Extrapolate w/ $\gamma = 0.05$	51.88	54.79	53.54	55.00	54.69
Extrapolate w/ $\gamma = 0.1$	54.37	53.75	53.96	55.83*	55.10

B RLVR TRAINING SETTING

We adopt the open-sourced [DAPO recipe](#) for RLVR training. Our configuration includes double clip ratios ($\epsilon_{\text{low}} = 0.2$ and $\epsilon_{\text{high}} = 0.28$) and a learning rate of 1e-6 with a 10-step warmup. Each RLVR step consists of 512 prompts with 16 sampled responses each, processed in mini-batches of 32 prompts to yield 16 gradient updates per step. Maximum generation length and overlong penalty thresholds are set to 8k/4k for Qwen2.5-Math-7B and 20k/16k for Qwen3-8b-base, respectively.

For reweighting, our parameter α (Eq. 8) is set to 0.2 for Qwen2.5 and 0.1 for Qwen3. Following the recommended values by [Deng et al. \(2025\)](#) and [Yang et al. \(2025b\)](#), we set α to 0.1 for $\tilde{A}_{i,t}^{\text{dom}}$ and 0.01 for $\tilde{A}_{i,t}^{\text{PPL}}$. For $\tilde{A}_{i,t}^{\text{dom}}$ specifically, we also adjust ϵ_{high} to 0.24.

C PERFORMANCE BEYOND PURE-MATH REASONING TASKS

Although our models are primarily trained and evaluated on math-focused datasets, it is important to assess their reasoning ability on non-math tasks to evaluate generalization ability. Following prior work ([Zhao et al., 2025](#)), we use the Minerva dataset ([Lewkowycz et al., 2022](#)), which contains 272 undergraduate-level STEM problems spanning diverse subjects such as Chemistry and Astronomy.

We begin by benchmarking the RLVR-trained models on Minerva using the same sampling parameters as in other evaluations (*e.g.*, AIME24). As shown in Tab. 6, models trained with our reweighting method continue to outperform baselines in reasoning accuracy. Importantly, these gains do not come at the expense of exploration ability, as reflected by comparable or improved Pass@k scores.

We further evaluate test-time extrapolation on Minerva. Because Minerva is substantially larger than AIME24 (around 7 times more questions), we report Avg@8 for the evaluated 14B–32B models. As shown in Fig. 9, test-time extrapolation consistently improves over the RLVR model’s accuracy, validating its generalization ability beyond pure-math datasets. We also report the hyperparameter

864 grids in Tab. 7, where the extrapolation results also consistently outperform replacing with π_{RL} only.
 865

866
867 Table 6: Performance of RLVR-trained models on Minerva.
868

869 (a) On Qwen2.5-Math-7B

Method	Base	DAPO	PPL	Dominate	Ours
Avg@32	18.35	46.43	48.68	47.01	49.72
Pass@16	61.04	<u>69.44</u>	<u>68.69</u>	64.59	70.37

870 (b) On Qwen3-8B-Base
871

Method	Base	DAPO	Ours
Avg@32	29.8	<u>55.04</u>	56.57
Pass@16	70.43	76.98	<u>76.78</u>

900 Figure 9: Extrapolation results on Minerva.
901902 Table 7: Hyperparameters and Avg@8 performance on Minerva benchmark. The * sign marks the
903 tuned value in Fig. 9.
904

	DAPO		ORZ		UniReason	
Threshold τ	-1.0	-0.9	-1.0	-0.9	-1.0	-0.9
<i>Avg replace ratio</i>	6.5%	7.0%	9.2%	9.6%	1.8%	2.2%
Replace w/ π_{RL}	56.63	56.43	56.41	56.39	54.00	54.14
Extrapolate w/ $\gamma = 0.05$	56.8	57.22	57.17*	57.08	54.50	54.50
Extrapolate w/ $\gamma = 0.1$	58.27*	56.57	55.51	55.28	54.32	56.16*

905 D PROOFS

906
907
908
909
910
911
912 *Proof of Lemma 3.1.* For ease of notation, we omit the context $x, y_{i,<t}$ here. The derivative of
913 DAPO on an unclipped token $y_{i,t}$ is:

$$\begin{aligned}
 \nabla_{\theta} \mathcal{J}_{\text{DAPO}}(y_{i,y}) &= \nabla_{\theta} r_{i,t}(\theta) \hat{A}_{i,t} = \nabla_{\theta} \frac{\pi_{\theta}(y_{i,t})}{\pi_{\theta_{\text{old}}}(y_{i,t})} \hat{A}_{i,t} \\
 &= r_{i,t}(\theta) \hat{A}_{i,t} \cdot \nabla_{\theta} \log \pi_{\theta}(y_{i,t}) \\
 &= w_{i,t} \cdot \nabla_{\theta} \log \pi_{\theta}(y_{i,t}).
 \end{aligned}$$

918 For the softmax-parameterized policy π_θ with logits z for $y_{i,t}$, assuming $y_{i,t}$ corresponds to index k
919 of vocabulary \mathcal{V} , we have:

$$\begin{aligned}
921 \quad \frac{\partial}{\partial z_j} \log \pi_\theta(y_{i,t}) &= \frac{1}{\pi_\theta(y_{i,t})} \cdot \frac{\partial}{\partial z_j} \frac{\exp(z_k)}{\sum_l \exp(z_l)} \\
922 \quad &= \frac{1}{\pi_\theta(y_{i,t})} \cdot \begin{cases} \frac{\exp(z_k) \sum_l \exp(z_l) - \exp(z_k) \exp(z_k)}{(\sum_l \exp(z_l))^2}, & j = k \\ \frac{-\exp(z_k) \exp(z_j)}{(\sum_l \exp(z_l))^2}, & j \neq k \end{cases} \\
923 \quad &= \begin{cases} 1 - \pi_\theta(\mathcal{V}_k), & j = k \\ -\pi_\theta(\mathcal{V}_j), & j \neq k \end{cases} \\
924 \quad &= \mathbb{I}(j = k) - \pi_\theta(\mathcal{V}_j).
\end{aligned}$$

930 So the ℓ_1 -norm of $\nabla_z \mathcal{J}_{\text{DAPo}}(y_{i,t})$ becomes:

$$\begin{aligned}
931 \quad \|\nabla_z \mathcal{J}_{\text{DAPo}}(y_{i,t})\|_1 &= \|w_{i,t} \nabla_z \log \pi_\theta(y_{i,t})\|_1 \\
932 \quad &= |w_{i,t}| \cdot \sum_j |\mathbb{I}(j = k) - \pi_\theta(\mathcal{V}_j)| \\
933 \quad &= |w_{i,t}| \cdot \left(1 - \pi_\theta(y_{i,t}) + \sum_{j \neq k} \pi_\theta(\mathcal{V}_j)\right) \quad (y_{i,t} = \mathcal{V}_k) \\
934 \quad &= |w_{i,t}| \cdot 2(1 - \pi_\theta(y_{i,t})).
\end{aligned}$$

935 \square

936 *Proof of Theorem 4.1.* Let $\mathcal{J}(\theta_x) = \mathbb{E}_{y \sim \pi_{\theta_x}(\cdot)}[R_{x,y}]$, and we need to show that for each x :

$$937 \quad \exists \gamma > 0, \mathcal{J}(\theta_x^t + \gamma(\theta_x^t - \theta_x^0)) \geq \mathcal{J}(\theta_x^t).$$

938 Denote the extrapolation direction as $d_x^t = \theta_x^t - \theta_x^0$, this is equivalent to showing the directional
939 derivative of \mathcal{J} at θ_x^t along d_x^t is positive.

940 The directional derivative is given by:

$$\begin{aligned}
941 \quad \nabla_{d_x^t} \mathcal{J}(\theta^t) &= \nabla_{\theta_x} \mathcal{J}(\theta_x^t)^\top \frac{d_x^t}{\|d_x^t\|} = \frac{1}{\|d_x^t\|} \cdot \sum_y \frac{\partial \mathcal{J}(\theta_x^t)}{\partial \theta_{x,y}} d_{x,y}^t.
\end{aligned}$$

942 For the softmax policy $\pi_{\theta_x}(y) = \exp(\theta_{x,y}) / \sum_{y'} \exp(\theta_{x,y'})$, its gradient satisfies:

$$\begin{aligned}
943 \quad \frac{\partial \pi_{\theta_x}(y')}{\partial \theta_{x,y}} &= \pi_{\theta_x}(y') (\mathbb{I}(y = y') - \pi_{\theta_x}(y)).
\end{aligned}$$

944 So the partial gradient of \mathcal{J} on y is:

$$\begin{aligned}
945 \quad \frac{\partial \mathcal{J}(\theta_x)}{\partial \theta_{x,y}} &= \sum_{y'} R_{x,y'} \frac{\partial \pi_{\theta_x}(y')}{\partial \theta_{x,y}} = R_{x,y} \pi_{\theta_x}(y) - \pi_{\theta_x}(y) \sum_{y'} R_{x,y'} \pi_{\theta_x}(y') = \pi_{\theta_x}(y) (R_{x,y} - \pi_{\theta_x}^\top R_x).
\end{aligned}$$

946 Note that the advantage is $A^t(x, y) = R_{x,y} - \pi_{\theta_x}^\top R_x$ under the bandit setting, the directional derivative thus becomes:

$$\begin{aligned}
947 \quad \nabla_{d_x^t} \mathcal{J}(\theta^t) &= \frac{1}{\|d_x^t\|} \cdot \sum_y \pi_{\theta_x^t}(y) (R_{x,y} - \pi_{\theta_x^t}^\top R_x) d_{x,y}^t \\
948 \quad &= \frac{1}{\|d_x^t\|} \cdot \sum_a \pi_{\theta_x^t}(y) \cdot A^t(x, y) \cdot d_{x,y}^t
\end{aligned}$$

949 We now analyze the order of $A^t(x, y)$ and $d_{x,y}^t$.

950 Under the assumed bandit setting, the order of $A^t(x, y)$ is the same as the order of $R_{x,y}$, i.e.,
951 $A^t(x, y_1) > A^t(x, y_2)$ if and only if $R_{x,y_1} > R_{x,y_2}$. For $d_{x,y}^t$, we can prove that its order is
952 also the same as $R_{x,y}$ with induction.

972 At $t = 1$, using the update rule of NPG, we have:
 973

$$974 d_{x,y}^1 - d_{x,y'}^1 = \eta \cdot (A^0(x, y) - A^0(x, y')) = \eta \cdot (R_{x,y} - R_{x,y'}).$$

975 So the order of $d_{x,y}^1$ is the same as $R_{x,y}$. Assume at iteration t , the order of $d_{x,y}^t$ is the same as $R_{x,y}$,
 976 then at iteration $t + 1$, we have:
 977

$$978 d_{x,y}^{t+1} - d_{x,y'}^{t+1} = d_{x,y}^t - d_{x,y'}^t + \eta \cdot (A^t(x, y) - A^t(x, y')) = d_{x,y}^t - d_{x,y'}^t + \eta \cdot (R_{x,y} - R_{x,y'}).$$

980 So we still have $d_{x,y}^{t+1} > d_{x,y'}^{t+1} \iff R_{x,y} > R_{x,y'}$. Thus by induction, the order of $d_{x,y}^t$ is the same
 981 as $R_{x,y}$ for all t .
 982

983 Since the order of $A^t(x, y)$ and $d_{x,y}^t$ are the same, we can apply the Chebyshev sum inequality to
 984 get:
 985

$$986 \sum_y \pi_{\theta_x^t}(y) \cdot \sum_y \pi_{\theta_x^t}(y) \cdot A^t(x, y) \cdot d_{x,y}^t \geq \left(\sum_y \pi_{\theta_x^t}(y) \cdot A^t(x, y) \right) \cdot \left(\sum_y \pi_{\theta_x^t}(y) \cdot d_{x,y}^t \right),$$

988 with the equality holds if and only if $A^t(x, y)$ or $d_{x,y}^t$ is a constant for all y (i.e., constant reward).
 989

990 Note that the expectation of advantage $\sum_y \pi_{\theta_x^t}(y) \cdot A^t(x, y) = 0$, so we have:
 991

$$992 \nabla_{d_x^t} \mathcal{J}(\theta^t) = \frac{1}{\|d_x^t\|} \cdot \sum_y \pi_{\theta_x^t}(y) \cdot A^t(x, y) \cdot d_{x,y}^t \geq 0.$$

994 The equality holds if and only if $R_{x,y}$ is a constant for all y .
 995 \square
 996

997 E STATISTICAL COMPARISON OF DIFFERENT METRICS

1000 **Empirical setup.** We evaluate three RLVR models: ORZ, DAPO, UniReason, and their base coun-
 1001 terparts. For each model, we generate 32 responses per question from the AIME-24 dataset, with
 1002 a sampling strategy of top-p=0.7 and temperature=1.0. Our analysis focuses on several metrics
 1003 comparing the model pairs: the base/RLVR model’s entropy, KL divergences, and the logp differ-
 1004 ence. The probability distribution versus different $\Delta \log p$ bins in Fig. 3(b) is also measured on the
 1005 DAPO’s generation under this setting.
 1006

1007 **Statistics of Different Metrics.** We compute each metric of the three RLVR model pairs on both
 1008 the base model and the RLVR model’s generation. As shown in Fig. 11, the distribution of logp
 1009 difference $\Delta \log p$ is bimodal, with a positive tail for the RLVR’s generated text and a negative tail
 1010 for the base model’s generation. In contrast, the distributions of other magnitude-based metrics are
 1011 nearly identical regardless of which model generated the output (Fig. 12-14).
 1012

1013 **Word Clouds of High- $\Delta \log p$ Tokens.** To gain qualitative insight into the tokens identified as
 1014 higher $\Delta \log p$, whose probabilities are substantially increased by the RLVR training process, we
 1015 generated word clouds from the top-100 high- $\Delta \log p$ tokens for each model (Figure 10). As the
 1016 figure shows, these tokens correspond to words related to problem-solving. They fall into two clear
 1017 categories: explicit reasoning actions (e.g., combine, break, simplify) and logical transitions (e.g.,
 1018 wait, think, step). The prevalence of this vocabulary suggests that the RLVR model has learned to
 1019 construct more effective reasoning processes.
 1020

1021 F THE USE OF LARGE LANGUAGE MODELS

1022 We utilize LLMs only to polish some of the language of this paper. All content was originally
 1023 drafted by the authors. The use of LLMs was restricted to refining some pre-existing text, and any
 1024 suggested modifications were reviewed by the authors to confirm their accuracy and alignment with
 1025 the original meaning.
 1026

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

Figure 10: Word clouds of top $\Delta \log p$ tokens, measured w/ different RLVR-trained models.

Figure 12: Divergence and entropy histograms of UniReason and its corresponding base model measured on UniReason or the base model's generations.

Figure 13: Divergence and entropy histograms of DAPO and its corresponding base model measured on DAPO or the base model's generations.

Figure 14: Divergence and entropy histograms of ORZ and its corresponding base model measured on ORZ or the base model's generations.