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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has substantially im-
proved the reasoning capabilities of large language models. While existing anal-
yses identify that RLVR-induced changes are sparse, they primarily focus on the
magnitude of these updates, largely overlooking their direction. In this work,
we argue that the direction of updates is a more critical lens for understanding
RLVR’s effects, which can be captured by the signed, token-level log probability
difference ∆ log p between the base and final RLVR models. Through statistical
analysis and token-replacement interventions, we demonstrate that ∆ log p more
effectively identifies sparse, yet reasoning-critical updates than magnitude-based
metrics (e.g., divergence or entropy). Building on this insight, we propose two
practical applications: (1) a test-time extrapolation method that amplifies the pol-
icy along the learned ∆ log p direction to improve reasoning accuracy without
further training; (2) a training-time reweighting method that focuses learning on
low-probability (corresponding to higher ∆log p) tokens, which improves rea-
soning performance across models and benchmarks. Our work establishes the
direction of change as a key principle for analyzing and improving RLVR.

1 INTRODUCTION

Recent advances have substantially improved the reasoning capabilities of large language models,
giving rise to powerful reasoning-centric models such as OpenAI o1 (Jaech et al., 2024), Deepseek
R1 (Guo et al., 2025), Gemini 2.5 (Comanici et al., 2025), and Qwen3 (Yang et al., 2025a). A key
algorithmic driver of this progress is reinforcement learning with verifiable rewards (RLVR) (Guo
et al., 2025; Team, 2025; Yang et al., 2025a), which fine-tunes a model’s generation policy using
feedback from task-specific verifiers, thereby eliciting and amplifying the reasoning ability.

To elucidate how RLVR confers its gains, a natural lens is to compare what changes in the final RL-
trained model πRL relative to its base counterpart πBase (Ren & Sutherland, 2025). Previous analyses
have consistently shown that the RLVR-induced changes are sparse, impacting only a small subset of
tokens in the output sequence. For example, Wang et al. (2025b) associate these changes with high-
entropy tokens, Huan et al. (2025) corroborate the sparsity by measuring the KL divergence between
πBase and πRL, while Yang et al. (2025b) and Deng et al. (2025) attribute this sparsity to selective
gradient updates during RLVR training. However, when studying the difference between base and
RLVR models, prior studies primarily emphasize the magnitude of change, but largely overlook
the direction in their distributions. As shown in Fig. 1(b), magnitude-based metrics (e.g., entropy,
KL divergence) yield nearly identical histograms for the base and final RLVR models, indicating
that magnitude alone is insufficient to characterize the transformation from πBase to πRL.

To address this gap, we directly quantify directional shifts in the model’s distribution using the
signed, token-level log-probability difference:

∆ log p(yt|x, y<t) = log πRL(yt|x, y<t)− log πBase(yt|x, y<t), (1)

which captures how RLVR shifts the probability mass on each token, with positive values indicating
increased probabilities and negative values vice versa. As shown in Fig. 1(b), histograms of ∆ log p
exhibit a clear bimodal pattern with two distinct tails, highlighting a clear directional signature
absent in magnitude-based metrics. This metric can reveal which token RLVR prioritizes, such as
reasoning-critical tokens (e.g., those enhancing reasoning correctness) versus irrelevant ones. We
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Figure 1: (a) Token-level metrics for analyzing RLVR updates. (b) Histograms of each metric on re-
sponses generated by base and RLVR models. With a log-scale y-axis, most values concentrate near
zero for all metrics, but only ∆ log p shows a directional shift distinguishing RLVR from the base
model. (c) Token-replacement performance: replacing base tokens with RLVR choices at positions
selected by each metric, where ∆ log p recovers RLVR performance with the fewest replacements.

further validate its utility via a token replacement intervention (Deng et al., 2025): for each metric,
we identify salient positions and replace the base model’s tokens with the RLVR model’s choices
at those positions during generation (cf. Algo. 1). As shown in Fig. 1(c), selecting by ∆ log p
reaches RLVR-level performance with the fewest substitutions, pinpointing tokens where RLVR
learns reasoning-critical updates. These findings underscore a key principle: analyzing the direction
of changes, rather than solely their magnitude, provides deeper insights. The signed log-probability
difference provides a practical and effective handle for this diagnostic analysis.

Building on this principle, we first propose a test-time augmentation that extrapolates the RLVR
policy’s distribution along the ∆ log p direction for reasoning-critical tokens selectively, amplifying
reasoning-related updates and improving accuracy without additional training. Furthermore, we
observe that tokens with the largest ∆log p consistently correspond to low-probability tokens during
RLVR training. Motivated by this, we design a probability-aware reweighting of policy-gradient
advantages, upweighting contributions from low-probability tokens to focus learning on reasoning-
critical positions as ∆log p indicated. This reweighting yields additional gains over current state-
of-the-art RLVR methods (e.g., DAPO (Yu et al., 2025)) across diverse benchmarks and models.

In summary, this work introduces a directional diagnostic for analyzing RLVR’s effects and, based
on these findings, develops two practical strategies for reasoning enhancement: a test-time extrapo-
lation technique and a training-time reweighting method. We hope our work offers a new perspective
for analyzing and improving RLVR through the lens of update direction.

2 PRELIMINARIES

Group Relative Policy Optimization (GRPO). GRPO (Shao et al., 2024) is a variant of the mile-
stone policy gradient algorithm PPO (Schulman et al., 2017). It is adapted for LLM training by
eliminating the need for a separate critic model. For each QA pair (x, a) sampled from dataset D,
GRPO generates a group of G responses {yi}Gi=1 using the old policy πθold , computes their rewards
{Ri}Gi=1, and estimates the advantage of each response in a group-relative manner:

Âi,t =
Ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
. (2)

Then the policy πθ is optimized by maximizing the following objective:

JGRPO(θ) =E(x,a)∼D,{yi}G
i=1∼πθold (·|x)

[
1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min
(
ri,t(θ)Âi,t,

clip
(
ri,t(θ), 1− ϵ, 1 + ϵ

)
Âi,t

)
− βDKL(πθ∥πref)

]
,

(3)

where ri,t(θ) =
πθ(yi,t|x,yi,<t)
πθold (yi,t|x,yi,<t)

is the importance sampling ratio, ϵ is the clipping range for ri,t(θ),
and DKL(πθ∥πref) regularizes the policy to stay close to a reference policy πref .
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Dynamic Sampling Policy Optimization (DAPO). DAPO(Yu et al., 2025) is a state-of-the-art
critic-free RLVR algorithm that further refines GRPO. It introduces several techniques, including
clip-higher mechanism, dynamic sampling strategy, token-level loss aggregation, overlong punish-
ment, and removing the KL penalty. DAPO’s objective is defined as:

JDAPO(θ) =E(x,a)∼D,{yi}G
i=1∼πθold (·|x)

[
1∑G

i=1 |yi|

G∑
i=1

|yi|∑
t=1

min
(
ri,t(θ)Âi,t,

clip
(
ri,t(θ), 1− ϵlow, 1 + ϵhigh

)
Âi,t

)]
, s.t. 0 < |{yi | is equivalent(a, yi)}| < G.

(4)
Given its success, we adopt DAPO as the primary baseline algorithm for our empirical analysis.

Token-level metrics for RLVR analysis. To study how RLVR turns a base model into the RL-
finetuned counterpart, we mainly compare the following token-level metrics for RLVR analysis:

• Entropy: Wang et al. (2025b) observed that RLVR-induced changes are sparse and tend to con-
centrate on high-entropy tokens. This token-level entropy is defined as:

Hπ(yt|x, y<t) = Eyt∼π(·|x,y<t)[− log π(yt|x, y<t)]. (5)

We calculate this entropy for both the RLVR modelHπRL
and the base modelHπBase

.

• Divergences: Huan et al. (2025) used KL Divergence to quantify the distributional shift, also
finding that the changes are sparse. The token-level KL divergence is defined as:

DKL
πRL,πBase

(yt|x, y<t) = Eyt∼πRL(·|x,y<t)

[
log

πRL(yt|x, y<t)

πBase(yt|x, y<t)

]
. (6)

We also include its reversed variant DKL
πBase,πRL

and the averaged KL Divergence DKL =
1
2 (D

KL
πRL,πBase

+ DKL
πBase,πRL

) to avoid asymmetry bias for a comprehensive analysis.

3 DISSECTING THE TOKEN-LEVEL CHANGES INTRODUCED BY RLVR

This section aims to dissect the token-level mechanisms through which RLVR training transforms a
base model into its fine-tuned counterpart. First, we show that the logp difference (∆ log p, Eq. 1)
captures directional shifts in probability mass and separates base from RLVR generations, whereas
magnitude-only metrics (entropy/divergence) do not. Second, we conduct a token replacement ex-
periment to validate that ∆ log p more precisely identifies sparse, reasoning-critical tokens targeted
by RLVR. Finally, we explain the sparsity through a gradient analysis showing that policy updates
concentrate on low-probability tokens of RLVR’s policy gradient updates.

3.1 STATISTICAL ANALYSIS: DIRECTIONAL VS. MAGNITUDE-BASED METRICS

Experimental Setup. We conduct a statistical analysis on outputs from several RLVR-base model
pairs (ORZ (Hu et al., 2025a), DAPO (Yu et al., 2025), UniReason (Huan et al., 2025)) to compare
how different token-level metrics capture RLVR-induced changes. We plot histograms of entropy,
divergences, and logp difference of different models’ generated tokens on the AIME-24 dataset.

Statistical Comparison. Fig. 1(b) shows the distributions of these metrics for the UniReason model
pair. Across all metrics, the histograms are sharply peaked near zero (note the log-scale y-axis),
confirming that RLVR-induced changes are sparse.1 However, the entropy and KL divergence dis-
tributions are nearly identical for both the base and RLVR model outputs. In contrast, the ∆ log p
distribution exhibits two distinct tails: a positive tail corresponding to tokens favored by the RLVR
model and a negative tail for the base model. This pattern holds across all tested model pairs and
for multiple entropy/divergence variants (Appx. E): the distributions of magnitude-based metrics
are nearly indistinguishable between tokens generated by the RLVR and base models (Figs. 12-14),
whereas ∆ log p consistently exhibits clear bimodal patterns (Fig. 11).

1Wang et al. (2025b) argue that RLVR primarily modifies tokens with high entropy. The observed concen-
tration of near-zero-entropy tokens is therefore consistent with sparse updates under their assumptions.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
RLVR Replace Ratio (%)

10

20

30

40
AI

M
E2

4 
Av

g@
32

Base: 3.02

RLVR: 46.15

On ORZ-32B (Qwen2.5)

Logp Diff. log p
KL Divergence DKL

Entropy H Base

Random

0 5 10 15 20 25 30
RLVR Replace Ratio (%)

10

20

30

40

50

AI
M

E2
4 

Av
g@

32

Base: 6.67

RLVR: 52.50

On DAPO-32B (Qwen2.5)

Logp Diff. log p
KL Divergence DKL

Entropy H Base

Random

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
RLVR Replace Ratio (%)

10

20

30

40

50

AI
M

E2
4 

Av
g@

32

Base: 11.46

RLVR: 54.58

On UniReason-14B (Qwen3)

Logp Diff. log p
KL Divergence DKL

Entropy H Base

Random

Performance Across Varying RLVR Replace Ratios

Figure 2: Token-replacement performance across metrics and model pairs. While all metrics can
recover RLVR-level accuracy, ∆ log p does so with the fewest replacements, demonstrating its pre-
cision in isolating the reasoning-critical minor tokens changed by RLVR training.

This is because magnitude-only metrics quantify the size of the distributional change but ignore its
direction, i.e., whether a given token is more favored by the RLVR model or the base model. With
directional information, ∆ log p reveals a clear difference between the two modes, enabling more
precise identification of the sparse, reasoning-enhancing updates induced by RLVR, and we will
validate their impact on reasoning performance in the following section.

3.2 RECOVERING RLVR PERFORMANCE VIA SELECTIVE TOKEN REPLACEMENT

Algorithm 1 Selective Token Replacement

Require: Base and RLVR models πBase, πRL,
prompt x, criterion function fτ (·) ∈ {0, 1}

1: Initialize response: t← 0, y≤0 ← “”
2: while yt ̸= “<EOS>” do
3: t← t+ 1
4: Sample from base: yt ∼ πBase(·|x, y<t)
5: if fτ (yt|x, y<t) = 1 then
6: Replace the token: yt ∼ πRL(·|x, y<t)
7: end if
8: end while
9: return y≤t

Token Replacement Setup. To further assess
how the minority tokens identified by each met-
ric affect reasoning ability, we conduct a selec-
tive token replacement experiment adapted from
Deng et al. (2025). At each decoding step, we
sample a token from πBase, then apply a metric-
specific criterion fτ to decide whether to replace
the token with one sampled from πRL (Alg. 1).
The threshold τ is adjusted to control replacement
rates across metrics, enabling fair comparisons.

We compare entropy, KL Divergences2, and logp
difference, with the corresponding replacement
criteria functions defined as follows:

• Entropy: Following the hypothesis that RLVR updates target high-entropy positions (Wang et al.,
2025b), we replace the base model’s token if its token distribution has entropy exceeding a thresh-
old τ : fτ

H(yt|x, y<t) = I(H(yt|x, y<t) > τ).

• KL Divergences: Similarly, to target positions where the two models diverges most, we replace
the token if the divergence is greater than τ : fτ

D(yt|x, y<t) = I
(
D(yt|x, y<t) > τ

)
.

• Logp Difference: A large negative ∆log p for a token yt indicates that RLVR has learned to
penalize it relative to the base model. We exploit this by replacing tokens whose logp difference
falls below a threshold τ : fτ

logp(yt|x, y<t) = I
(
∆ log p(yt|x, y<t) < τ

)
.

This selective replacement setup, controlled by the metric-specific thresholds, allows us to compare
the impact of tokens identified by each metric on reasoning performance at matched replacement
rates. Fig. 2 shows results on AIME-24 for three representative metrics HπBase , DKL, and ∆log p,
while Fig. 6 in Appx. A.2 provides ablations with additional metrics, including the RLVR model’s
entropy HπRL and KL-divergence variants. All metrics are contrasted with a random baseline that
uniformly replaces tokens: fτ

rand(·) = Iρ∼U [0,1](ρ < τ). The key observations are as follows:

Observation I: Selectively replacing a minority of base models’ tokens can recover RLVR per-
formance. As shown in Fig. 2, replacing 5-30% of a base model’s sampled tokens with different

2We mainly use the averaged KL divergence DKL = 1
2
(DKL

πRL,πBase
+ DKL

πBase,πRL
) for token replacement

to avoid potential asymmetry bias and include KL’s variants DKL
πRL,πBase

and DKL
πBase,πRL

for ablation study.
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Figure 3: (a) Token probability and gradient norm coefficient 1− πθ(·) of a DAPO step, where the
gradient concentrates on rare, low-probability tokens. (b) Token probability within different ∆ log p
bins, where higher ∆ log p bins contain lower probability for both base and RLVR models. (c) Effect
of top-p filtering on RLVR training performance. Performance declines with more filtering.

metrics suffices to match the final RLVR model’s accuracy. In contrast, randomly replacing the to-
kens without metric selection produces much slower performance growth. This demonstrates that
RLVR-modified tokens are sparsely distributed along the sequence but disproportionately important
for reasoning, highlighting the efficacy of the evaluated metrics in identifying these critical tokens.

Observation II: Logp difference > divergence > entropy in identifying RLVR-learned reason-
ing patterns. Across all model pairs (Fig. 2), ∆log p-based replacement reaches the RLVR model’s
accuracy with the fewest substitutions (around 10% of tokens). In comparison, magnitude-only met-
rics (e.g., divergence and entropy) require clearly more replacement to match RLVR performance,
indicating lower precision in identifying reasoning-critical changes introduced by RLVR. Between
these two, divergence consistently outperforms entropy, suggesting that RLVR changes may not be
restricted to high-entropy positions. This ordering—∆log p highest, followed by divergence, then
entropy—remains stable across different divergence and entropy variants (Fig. 6 in Appx. A.2),
further validating the superiority of logp difference in isolating the most influential positions.

3.3 A GRADIENT-BASED EXPLANATION FOR THE SPARSE UPDATES

Our previous analysis established that the RLVR model differs from its base counterpart on a small
but critical subset of tokens most effectively identified by ∆log p. Here, we provide a gradient-based
explanation for this sparsity of changes: RLVR’s policy gradient inherently concentrates updates on
rare, low-probability tokens, correlating with tokens with high ∆ log p in the final model.

RLVR’s policy gradient sparsely concentrates on low-probability tokens. The gradient of the
DAPO objective JDAPO for an un-clipped token yi,t can be written as wi,t ·∇θ log πθ(yi,t|x, yi,<t),
where wi,t = ri,t(θ)Âi,t combines the importance sampling ratio and advantage. To analyze the
token’s gradient norm, we have the following lemma (see the proof in Appx. D):
Lemma 3.1. For a softmax-parameterized LLM policy with logits vector z for the output token yi,t,
the ℓ1-norm of the DAPO objective’s gradient w.r.t. z is given by:

∥∇zJDAPO(yi,t|x, yi,<t)∥1 = 2|wi,t| ·
(
1− πθ(yi,t|x, yi,<t)

)
.

This partial gradient’s ℓ1-norm directly depends on 1 − πθ(yi|x, yi,<t), with larger gradient sizes
for lower-probability tokens. Furthermore, Yang et al. (2025b) formally proved that the full gradi-
ent norm is tightly bounded by the 1 − πθ(·) term. Consequently, low-probability tokens, despite
their rarity, receive disproportionately large gradient updates. We corroborate this empirically in
Fig. 3(a), which plots tokens’ probability and their gradient coefficient from an intermediate DAPO
training step. Although low-probability tokens are sampled infrequently, they account for most of
the total gradient mass. This concentration of gradients explains why RLVR’s modifications are
sparse: learning is naturally focused on a small, high-impact set of low-probability positions.

High ∆log p tokens are the updated low-probability tokens. To complete the argument, we
link the low-probability tokens that dominate training updates to the high-∆ log p tokens in the final
model. Fig. 3(b) analyzes tokens grouped by their ∆log p values. It reveals two patterns: first, the
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probability of tokens in high-∆ log p bins increases substantially from the base to the RLVR model;
second, these high-∆log p tokens have clearly lower probabilities in both models. This confirms that
the most significant updates learned by RLVR target those low-probability tokens, and the sparsity
of RLVR’s changes is therefore a direct consequence of sparse, high-magnitude gradients acting on
these critical tokens, which can be effectively identified post-hoc by their large ∆ log p.

Excluding low-probability tokens during training impairs performance. To causally verify the
importance of these low-probability tokens, we conduct a training-time intervention experiment to
provide direct evidence for our hypothesis. We train the Qwen2.5-Math-7B base model (Yang et al.,
2024) using DAPO but adopt a top-p sampling strategy during rollout to filter out low-probability
tokens. The results, plotted in Fig. 3(c), are conclusive. Even a mild filter (e.g., top-p=0.95) leads to
a substantial drop in performance compared to the default setting (top-p=1.0). As the filter becomes
more aggressive (i.e., with lower top-p thresholds), performance degrades sharply. This experiment
demonstrates that these low-probability tokens are not merely correlated with gradient size but are
essential for the reasoning improvements achieved by RLVR training.

Takeaway

1. RLVR’s gains stem from sparse, high-impact modifications. Our analysis reveals
that RLVR’s performance gains originate not from a global distribution shift, but from
targeted, high-impact changes to a minority of tokens.

2. Logp difference pinpoints these sparse changes. By capturing the direction of prob-
ability shifts from base to RLVR, logp difference outperforms magnitude-only metrics
like entropy or divergence in isolating the reasoning-critical tokens that RLVR learns.

3. Sparsity originates from RLVR’s focus on low-probability tokens. The sparse dif-
ference is explained by the inherent concentration of RLVR’s gradients on rare, low-
probability tokens, making these tokens the focal point for improvement and the source
of the sparse, high-∆ log p changes we observe.

4 EXPLOITING RLVR’S DIRECTIONAL UPDATES TO BOOST REASONING

Building on Sec. 3, which isolates sparse and directional updates via ∆ log p, we propose two prac-
tical strategies to utilize this directional learning: (i) a test-time selective extrapolation that shifts
probability mass further along the learned direction on critical tokens; (ii) a training-time advan-
tage reweighting that prioritizes low-probability tokens implicated by high ∆log p. Both methods
provide practical ways to boost performance by exploiting the directional mechanisms of RLVR.

4.1 TEST-TIME ENHANCEMENT VIA EXTRAPOLATION

Selective test-time extrapolation along the ∆log p direction. Our token replacement experiment
demonstrated that ∆log p effectively identifies the reasoning-critical changes of RLVR. This raises
a natural question: Can we move beyond simple replacement and actively amplify these critical
changes to surpass the RLVR model’s performance? We therefore instantiate a token-level extrap-
olation: treat ∆log p = log πRL(·) − log πBase(·) as a learned “reasoning direction” pointing from
base to RLVR distribution. Our strategy is to amplify this signal by extrapolating the RLVR model’s
distribution further along this direction. The extrapolated policy πγ

Extra is given by:

log πγ
Extra(yt|x, y<t) := log πRL(yt|x, y<t) + γ ·∆ log p(yt|x, y<t) + z(x, y<t)

= (1 + γ) · log πRL(yt|x, y<t)− γ · log πBase(yt|x, y<t) + z(x, y<t),
(7)

where γ is a hyperparameter controlling the extrapolating strength, and z(·) is a log-partition func-
tion. In probability space, this is equivalent to re-weighting the RLVR distribution:

πγ
Extra(yt|x, y<t) ∝ πRL(yt|x, y<t) · exp

(
γ ∆log p(yt|x, y<t)

)
.

This framing connects our method to reward-guided decoding literature (Khanov et al., 2024; Liu
et al., 2024; Xu et al., 2025), where a reward function is used to re-weight the probability distribution.
Our ∆ log p thereby acts as a token-level reward that encourages better reasoning in this framework.

6
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Why selective? RLVR’s improvements concentrate on a minority of tokens; most positions exhibit
negligible ∆ log p. A global intervention risks distorting well-calibrated tokens. We therefore apply
extrapolation selectively, using fτ

logp to gate positions with large negative ∆ log p, and sample from
the extrapolated policy πγ

extra only at those positions (substituting πRL in Algo. 1, Line 6).

ORZ-32B
(Qwen2.5)
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(Qwen2.5)
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Figure 4: Extrapolation Performance

Empirical Setup. We evaluate our method on the AIME-
24 benchmark using the ORZ, DAPO, and UniReason
model pairs, generating 32 samples per question (see
Appx. A.1 for more details). To isolate the impact of our
strategy, we compare three approaches: (1) RLVR: The
original, non-intervened RLVR model πRL; (2) Selective
Replace: Base model with tokens replaced by πRL; (3)
Selective Extrapolate: Base model with tokens replaced
by πγ

Extra. For a controlled comparison, we use the same
selection criteria for (2) and (3), with the only difference
being the extrapolation.

Results. On AIME-24, Selective Extrapolation yields
higher Avg@32 (average of 32 samples) than πRL across
ORZ-32B, DAPO-32B, and UniReason-14B under matched gates (Fig. 4). In contrast, Selective Re-
place matches but does not surpass the RL baseline under the same criteria. These results indicate
that moving beyond πRL along ∆ log p provides incremental gains in reasoning accuracy.

Table 1: Selective Extrapolate (γ =
0.1) on the RLVR model (DAPO-32B)
instead of the base model.

Replace Ratio 0.0% 1.8% 5.2% 20.0%

Avg@32 52.50 53.96 55.31 55.10
Threshold τ N/A -0.5 -0.2 0.0

Extrapolating on πRL. We also apply selective extrap-
olation directly on πRL rather than on πBase in Algo. 1
(Line 4). As the threshold τ in fτ

logp increases, the AIME-
24 performance improves up to a moderate intervention
ratio, after which gains plateau (Table 1). This pattern
aligns with the sparsity finding: amplifying a limited set
of reasoning-critical tokens is effective, whereas aggres-
sive interventions yield diminishing returns.

Theoretical Justification. Following a standard simplification in theoretical analysis for LLM
RL training (Munos et al., 2024; Shi et al., 2025), we consider a tabular softmax bandit policy:
πθ(y|x) ∝ exp(θx,y), where the logit is individually parameterized by θ for each prompt-response
pair (x, y). We assume the policy is trained with Natural Policy Gradient (NPG (Kakade, 2001)) fol-
lowing Cui et al. (2025), since its updates resemble the controlled optimization of PPO (Schulman
et al., 2017). The update rule of NPG via backtracking simplifies to: θt+1

x,y − θtx,y = η · At(x, y),
where η is the step size and At is the advantage function (Agarwal et al., 2021). In this context, our
extrapolated policy (Eq. 7) is defined as πω(θt,γ), where ω(θt, γ) = θt + γ(θt − θ0). Under these
conditions, we have the following theorem (the proof can be found in Appx. D):
Theorem 4.1. For a given prompt x, if a tabular softmax policy πθt is updated via natural policy
gradient (Kakade, 2001), then the extrapolated policy πω(θt,γ) satisfies:

∃ γ > 0,Ey∼πω(θt,γ)(·|s)[Rx,y] ≥ Ey∼πθt (·|s)[Rx,y].

Equality holds if and only if the reward Rx,y is constant for all y.

This theorem shows that, in the simplified setting, extrapolating along the learned difference di-
rection of ∆ log p can improve the expected reward. Nevertheless, we need to note that the proof
relies on the idealized NPG’s update rule, with a monotonic learning process consistently adjusting
the logits along the reward’s direction. In contrast, our empirical analysis has shown that the up-
dates learned by RLVR concentrate only on a minority of tokens, with ∆ log p on most tokens being
negligible. This disparity motivates our selective extrapolation only on positions with a significant
difference, which exhibit the consistent, directional updates assumed by the theory.

4.2 TRAINING-TIME ENHANCEMENT VIA ADVANTAGE REWEIGHTING

Training-time enhancement via probability-aware advantage reweighting. While our test-time
approach amplifies the learned reasoning signal post-hoc, our training-time strategy proactively
strengthens the model’s reasoning signal during learning. Instead of extrapolating the final logp

7
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Table 2: Comparison of our reweighting method and DAPO on math reasoning benchmarks.

Model Method AIME24 AIME25 AMC Average
Avg@32 Pass@16 Avg@32 Pass@16 Avg@32 Pass@16 Avg@32 Pass@16

Qwen2.5-
Math-7B

Base 14.79 47.46 6.67 27.84 40.62 79.25 20.69 51.52
DAPO 35.73 54.09 17.6 30.45 73.04 89.03 42.12 57.86
Ours 39.06 60.58 18.54 36.72 73.64 89.69 43.75 62.33

Qwen3-
8B-Base

Base 5.42 30.63 5.73 32.8 27.64 78.09 12.93 47.17
DAPO 36.98 72.3 26.67 46.76 69.13 88.51 44.26 69.19
Ours 38.13 69.87 31.15 55.38 71.05 92.3 46.78 72.52

difference ∆ log p, we leverage the observed correlation between high ∆log p and low-probability
tokens (Fig. 3(b)), and propose to amplify the learning signal of these critical low-probability to-
kens. Since the parameter update is driven by the advantage term Âi,t in policy gradient methods,
we modify the advantage in DAPO (Eq. 4) to prioritize low-probability tokens:

Ãi,t =
[
1 + α ·

(
1− πθold(yi,t|x, yi,<t)

)]
· Âi,t, (8)

where α is a hyperparameter controlling the reweighting strength. Such a concentration on low-
probability tokens also aligns with our top-p experiment in Fig. 3(c), which finds that low-probability
tokens are irreplaceable for RLVR training.

Experimental setup. We modify only the advantage (Eq. 8) in the standard DAPO recipe and keep
all other hyperparameters fixed. We evaluate model performance on three math reasoning bench-
marks: AIME-24, AIME-25, and AMC. Following DAPO’s setup, we use top-p=0.7 for sampling
during evaluation. We report Avg@32 and Pass@163, both computed over 32 samples per problem
to ensure a stable estimate of the pass rates (Chen et al., 2021).

Results: performance gains across models and datasets. We compare our reweighting method on
two models: Qwen2.5-Math-7B (Yang et al., 2024) and Qwen3-8B-Base (Yang et al., 2025a). As
shown in Tab. 2, enhancing low-probability tokens’ weight consistently improves reasoning accu-
racy across all tested models and datasets. Notably, this enhanced accuracy (Avg@32) doesn’t come
at the cost of exploration ability (often measured by Pass@k) (Yue et al., 2025); in fact, the average
Pass@16 also increases over the DAPO baseline.

Table 3: Results of various reweighting methods.

Method PPL Dominate Ours

AIME24 Avg@32 35.63 36.35 39.06
Pass@16 61.95 55.27 60.58

AIME25 Avg@32 16.46 13.02 18.54
Pass@16 32.19 20.69 36.72

AMC Avg@32 72.06 79.97 73.64
Pass@16 89.1 84.93 89.69

Average Avg@32 41.38 43.11 43.75
Pass@16 61.08 53.63 62.33

Comparison of different reweighting. While
our reweighting method is motivated by the
critical role of low-probability tokens, exist-
ing work has proposed alternative reweighting
strategies that stem from different hypotheses:
(1) PPL: Deng et al. (2025) find that RLVR up-
dates favor low-ppl responses, so they reweight
advantage to enhance these responses: Ãppl

i,t =

[1−α ·wppl(yi)] · Âi,t, where wppl(yi) is a nor-
malized log-PPL weight. (2) Dominate: Yang
et al. (2025b) argue that RLVR training can be
over-dominated by low-probability tokens, so
they propose to counteract this by upweighting
high-probability tokens: Ãdom

i,t = [α · πθ(yi,t) + 1 − α] · Âi,t. We implement these methods us-
ing their recommended hyperparameters and compare the performance on Qwen2.5-Math-7B. As
shown in Table 3, our method of directly amplifying low-probability tokens achieves the best over-
all performance for both Avg@32 and Pass@16. The training dynamics in Fig. 5 provide further
insight: Our method not only exhibits higher reasoning accuracy but also a steady increase in re-
sponse length. This simultaneous increase in performance and length is a key pattern in effective
reasoning RLVR training (Guo et al., 2025), suggesting the promoted reasoning behavior by our
method. Moreover, the training entropy of Ãdom

i,t reweighting is clearly lower, since they adopt a

3With 32 samples, we report the more stable Pass@16 instead of Pass@32 for Pass@k evaluation.
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Figure 5: Training curves for different reweighting methods on Qwen2.5-Math-7B.

more restrictive clip-higher ratio of ϵhigh = 0.24 than the default ϵhigh = 0.28 in DAPO4. The lower
entropy (less exploration) also explains their reduced Pass@k performance in Tab. 3.

5 RELATED WORK

Reinforcement learning for LLM. Reinforcement learning is a pivotal component of the LLM
post-training pipeline. Early applications centered on Reinforcement Learning from Human Feed-
back (RLHF) for model alignment (Ouyang et al., 2022; Stiennon et al., 2020), while recent ad-
vancements shift their focus to building reasoning models with RL. OpenAI o1 (Jaech et al., 2024)
is the first reasoning model, and DeepSeek R1 (Guo et al., 2025) introduces a detailed RLVR (Lam-
bert et al., 2024) recipe for building reasoning models with the GRPO algorithm (Shao et al., 2024).
These seminal works inspired the development of a series of subsequent models, from industrial sys-
tems like Kimi(Team, 2025), Qwen3 (Yang et al., 2025a), and Gemini 2.5 (Comanici et al., 2025),
to open-source academic algorithms such as Dr.GRPO (Liu et al., 2025), Open-Reasoner-Zero (Hu
et al., 2025a), DAPO (Yu et al., 2025), and GSPO (Zheng et al., 2025), to further improve the
reasoning abilities. In this paper, we adopt DAPO as our baseline RLVR algorithm.

Understanding the effects of RLVR. The success of RLVR has prompted a line of research ded-
icated to understanding its effects. While early work analyzed high-level cognitive behaviors of
RLVR-trained models (Gandhi et al., 2025; Hu et al., 2025b; Bogdan et al., 2025), recent studies
have deepened the analysis with token-level quantification (Qian et al., 2025; Wang et al., 2025a).
Cui et al. (2025) studied the token entropy change during RLVR, Yang et al. (2025b) quantified the
gradient norm of specific tokens, and Deng et al. (2025) used token replacement to measure their
impact on reasoning performance. A core finding from these analyses is that RLVR induces sparse
updates, which have been verified through high-entropy tokens (Wang et al., 2025b), KL Diver-
gences (Huan et al., 2025), and the sparse gradient norm (Yang et al., 2025b; Deng et al., 2025).
However, when studying the differences between base and RLVR models, prior studies mainly fo-
cus on the magnitude of changes, largely overlooking their direction. While (Yang et al., 2025b)
analyzes the update direction (increase or decrease) of probabilities at each gradient step, we extend
the notion of update direction to the full distributional shift from the base model to the RLVR model,
and we propose explicitly extrapolating along this learned direction in distribution space.

6 CONCLUSION

In this work, we introduced a directional analysis of RLVR based on the logp difference ∆ log p,
shown to be more effective in identifying sparse yet reasoning-critical updates than magnitude-
based metrics (e.g., divergence or entropy). Building on this, we proposed a test-time extrapolation
to amplify these directional updates and a training-time reweighting to focus learning on the low-
probability tokens that ∆ log p highlights. Both methods improve reasoning performance across
different settings, validating our key principle: diagnose and improve RLVR by its update direction.

Limitations and future work. One primary limitation of our extrapolation method is the require-
ment of two models; future work could integrate this with parameter-efficient finetuning to reduce
computational cost. The extrapolation also introduces additional hyperparameters, and future work
can explore combining the selection threshold and extrapolation strength for a more adaptive ex-
trapolation. Additionally, our reweighting approach could be evaluated for different model scales or
combined with other adaptive training techniques.

4This follows the recommended value in their paper (Yang et al., 2025b). We also tested the default ϵhigh =
0.28, but it resulted in unstable training.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide detailed descriptions of our experimental
setup, including necessary implementation details and hyperparameter settings in the appendix.
We’ll also release our source code publicly upon acceptance.
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A SELECTIVE TOKEN REPLACEMENT & EXTRAPLOATION

A.1 IMPLEMENTATION DETAILS

Models. Our experiments use several publicly available RLVR-trained models and their correspond-
ing base models from the Qwen series (Yang et al., 2025a; Team, 2024):

• ORZ: The Open-Reasoner-Zero-32B model (Hu et al., 2025a), finetuned from Qwen2.5-32B base
model using the PPO algorithm.

• DAPO: The DAPO-Qwen-32B model (Yu et al., 2025), finetuned from the same Qwen2.5-32B
base but with the DAPO algorithm.

• UniReason: The UniReason-Qwen3-14B-RL model (Huan et al., 2025), finetuned from Qwen3-
14B-Base using the GRPO algorithm.

Sampling settings. We utilize the AIME-24 dataset to evaluate the replacement performance. We
adopt the default chat prompt template from each model, with the user prompt defined as follows:

[Question]
Please reason step by step, and put your final answer within \\boxed{}.

We set the sampling parameters with top-p=0.7, temperature=1.0, max-length=20k, and sample 32
responses for each question. The answer is extracted from the last “boxed” wrapped text and verified
using Math-Verify. We report the correctness averaged over 32 samples, i.e., Avg@32.

Hyperparameters for extrapolation. As described in Algo. 1, the replacement is adopted selec-
tively, controlled by the threshold τ in the criteria function fτ , while the extrapolation strength is
adjusted by the parameter γ in πγ

Extra. For the extrapolation results in Fig. 4, the “Selective Extrpo-
late” and “Selective Replace” methods share the same hyperparameters for each model, which we
summarize as follows:

Table 4: Hyperparameters for the extrapolation results (Fig. 4).

Model ORZ UniReason DAPO
Threshold τ for fγ

logp -0.4 -0.35 -0.3
Replaced Ratio 10.1% 7.5% 11.4%
γ in πγ

Extra 0.1 0.1 0.05

A.2 ADDITIONAL EXPERIMENTS

Additional metrics. As described in Sec. 3, our primary metrics for token replacement are the base
model’s entropy HBase, KL Divergence DKL, and logp difference ∆ log p. For our ablation study,
we include additional metrics: the RLVR model’s entropy HRL and two KL-divergence variants:
DKL

πRL,πBase
and DKL

πBase,πRL
. We evaluate these metrics as criteria for the DAPO model’s selective

replacement. By varying the threshold τ for each criterion, we control the token replacement fre-
quency and plot the performance on AIME-24 against various replacement ratios in Fig. 6. As
shown in the figure, although the additional metrics’ selected replacements also approach the RLVR
model’s performance, they still require more replacement than ∆ log p does. This confirms the per-
formance ordering for identifying reasoning-critical tokens: logp difference > divergence > entropy.

Selected Tokens. To provide an intuitive comparison of the metrics, we analyze the tokens utilized
for replacing the base model’s choice during DAPO’s token replacement of entropyHπBase

, KL Di-
vergence DKL, and logp difference ∆ log p. To ensure a fair comparison, we adjust the threshold for
each metric to achieve a replacement rate of approximately 8%. Fig. 7 illustrates each criterion’s
top 50 substitution tokens. The figure reveals that entropy-based selection favors logical transi-
tion words (e.g., Thus, need, can), while the divergence and ∆ log p criteria utilize more specific
mathematical reasoning tokens, including a higher proportion of math symbols. Combined with the
inferior performance of the entropy criterion, this suggests that these specific mathematical tokens
might be more efficient for improving reasoning performance.
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Figure 6: Selective token replacement results with additional criteria for DAPO.
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Figure 7: Top 50 tokens for replacing the base model’s choice under different metrics’ selection.

Per-Problem Accuracy during Replacement. We also report the per-problem accuracy changes
in the token-replacement experiment in Fig. 8, to more finely examine how gradually increasing the
replacement ratio affects model performance. We observe that: (1) There exist some problems that
are inherently difficult for the model, for which the accuracy remains zero across all replacement
ratios. (2) For the remaining problems, the overall trend is that accuracy generally increases as the
replacement ratio grows, and then begins to fluctuate. This is consistent with the fact that, when
only performing token replacement, the performance is ultimately capped by the upper bound of
the RLVR model. (3) For a small number of problems, accuracy initially drops when we introduce
a small amount of replacement, and then begins to improve as the replacement ratio continues to
increase (e.g., problem 0 of DAPO). A qualitative inspection of these cases suggests that, for some
of them, a small number of RL-replaced tokens introduce token options that the base model is not
familiar with. As a result, the base model fails to continue the generation coherently, leading to
an initial degradation in accuracy. However, when we further increase the replacement ratio, the
generation becomes more strongly guided by the RL tokens, and the model’s performance on these
problems recovers and improves.
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(a) Per-problem accuracy on AIME24 of DAPO’s token replacement experiment
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(b) Per-problem accuracy on AIME24 of ORZ’s token replacement experiment

0.01 0.02 0.03 0.04 0.05 0.06
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 0

0.00 0.02 0.04 0.06
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 1

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 2

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 3

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 4

0.00 0.01 0.02 0.03 0.04 0.05
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 5

0.00 0.02 0.04 0.06
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 6

0.01 0.02 0.03 0.04 0.05 0.06
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 7

0.00 0.02 0.04 0.06 0.08
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 8

0.02 0.04 0.06 0.08
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 9

0.00 0.02 0.04 0.06 0.08
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 10

0.000 0.025 0.050 0.075 0.100 0.125
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 11

0.01 0.02 0.03 0.04
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 12

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 13

0.00 0.02 0.04 0.06 0.08
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 14

0.00 0.02 0.04 0.06 0.08
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 15

0.00 0.02 0.04 0.06
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 16

0.00 0.02 0.04 0.06
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 17

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 18

0.00 0.02 0.04 0.06
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 19

0.00 0.01 0.02 0.03 0.04
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 20

0.000 0.025 0.050 0.075 0.100 0.125
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 21

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 22

0.00 0.02 0.04 0.06
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 23

0.01 0.02 0.03 0.04
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 24

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 25

0.00 0.02 0.04 0.06 0.08
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 26

0.00 0.01 0.02 0.03 0.04 0.05
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 27

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 28

0.000 0.025 0.050 0.075 0.100 0.125 0.150
Avg Resample Rate

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

Ac
cu

ra
cy

Problem 29

(c) Per-problem accuracy on AIME24 of UniReason’s token replacement experiment

Figure 8: Per-problem accuracy changes on AIME24 during each model’s selective token replace-
ment experiment. We report the results with ∆ log p being the selection criterion.

A.3 HYPERPARAMETER SENSITIVITY ANALYSIS

Our test-time extrapolation distribution πγ
Extra introduces a hyperparameter γ that determines the

strength of extrapolation along the learned ∆log p direction. This intervention operates within
the token replacement procedure (Algo. 1) and is applied only to tokens selected by the criterion
∆ log p < τ . To verify the robustness of the performance gain of extrapolation over simply replac-
ing the token from πRL, we perform a grid search over both γ and the token-selection threshold τ .
We evaluate γ ∈ {0.05, 0.1} and vary τ across different ranges for different models. For DAPO
and ORZ, we test τ ∈ {−0.5,−0.4,−0.3,−0.2,−0.1}. For UniReason, we adopt a denser grid
τ ∈ {−0.5,−0.45,−0.4,−0.35,−0.3} because relatively few replacements are needed to reach the
RLVR performance level (Fig. 2).

As shown in Tab. 5, across nearly all models and hyperparameter settings, extrapolation consistently
outperforms the replace-only variant, demonstrating a strong robustness of our method. Notably,
once the replacement ratio is sufficiently high to match the RLVR’s performance, further increases
in replacement provide little to no additional benefit, since the performance is bounded by the RLVR
model itself. In contrast, a proper test-time extrapolation can further exceed RLVR performance by
1–3 points without any additional training.
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Table 5: Hyperparameter sensitivity analysis for the selective extrapolation experiment. The ∗sign
marks the reported value for extrapolation results in Fig. 4, while the †sign corresponds to the end
point in token replacement of Fig. 2.

(a) Hyperparameters and Avg@32 performance on AIME24 of DAPO (Avg@32 of πRL: 52.60).

Threshold τ -0.5 -0.4 -0.3 -0.2 -0.1
Average Replace ratio 8.8% 10.0% 11.4% 13.4% 16.5%

Replace w/ πRL 51.98† 51.56 51.67 52.71 51.98
Extrapolate w/ γ = 0.05 51.88 53.02 55.42∗ 54.06 54.9
Extrapolate w/ γ = 0.1 54.17 53.33 53.85 53.85 54.27

(b) Hyperparameters and Avg@32 performance on AIME24 of ORZ (Avg@32 of πRL: 46.15).

Threshold τ -0.5 -0.4 -0.3 -0.2 -0.1
Average Replace ratio 9.5% 10.1% 10.8% 11.6% 12.7%

Replace w/ πRL 43.65 43.33 46.15† 44.90 42.81
Extrapolate w/ γ = 0.05 47.19 45.52 45.83 46.25 43.44
Extrapolate w/ γ = 0.1 43.75 47.50∗ 45.52 47.08 45.42

(c) Hyperparameters and Avg@32 performance on AIME24 of UniReason (Avg@32 of πRL: 54.58).

Threshold τ -0.5 -0.45 -0.4 -0.35 -0.3
Average Replace ratio 5.4% 6.0% 6.8% 7.5% 8.5%

Replace w/ πRL 53.65† 53.33 53.12 54.06 53.54
Extrapolate w/ γ = 0.05 51.88 54.79 53.54 55.00 54.69
Extrapolate w/ γ = 0.1 54.37 53.75 53.96 55.83∗ 55.10

B RLVR TRAINING SETTING

We adopt the open-sourced DAPO recipe for RLVR training. Our configuration includes double
clip ratios (ϵlow = 0.2 and ϵhigh = 0.28) and a learning rate of 1e-6 with a 10-step warmup. Each
RLVR step consists of 512 prompts with 16 sampled responses each, processed in mini-batches of
32 prompts to yield 16 gradient updates per step. Maximum generation length and overlong penalty
thresholds are set to 8k/4k for Qwen2.5-Math-7B and 20k/16k for Qwen3-8b-base, respectively.

For reweighting, our parameter α (Eq. 8) is set to 0.2 for Qwen2.5 and 0.1 for Qwen3. Following
the recommended values by Deng et al. (2025) and Yang et al. (2025b), we set α to 0.1 for Ãdom

i,t

and 0.01 for ÃPPL
i,t . For Ãdom

i,t specifically, we also adjust ϵhigh to 0.24.

C PERFORMANCE BEYOND PURE-MATH REASONING TASKS

Although our models are primarily trained and evaluated on math-focused datasets, it is important
to assess their reasoning ability on non-math tasks to evaluate generalization ability. Following prior
work (Zhao et al., 2025), we use the Minerva dataset (Lewkowycz et al., 2022), which contains 272
undergraduate-level STEM problems spanning diverse subjects such as Chemistry and Astronomy.

We begin by benchmarking the RLVR-trained models on Minerva using the same sampling param-
eters as in other evaluations (e.g., AIME24). As shown in Tab. 6, models trained with our reweight-
ing method continue to outperform baselines in reasoning accuracy. Importantly, these gains do not
come at the expense of exploration ability, as reflected by comparable or improved Pass@k scores.

We further evaluate test-time extrapolation on Minerva. Because Minerva is substantially larger than
AIME24 (around 7 times more questions), we report Avg@8 for the evaluated 14B–32B models.
As shown in Fig. 9, test-time extrapolation consistently improves over the RLVR model’s accuracy,
validating its generalization ability beyond pure-math datasets. We also report the hyperparameter
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grids in Tab. 7, where the extrapolation results also consistently outperform replacing with πRL only.

Table 6: Performance of RLVR-trained models on Minerva.

(a) On Qwen2.5-Math-7B

Method Base DAPO PPL Dominate Ours
Avg@32 18.35 46.43 48.68 47.01 49.72
Pass@16 61.04 69.44 68.69 64.59 70.37

(b) On Qwen3-8B-Base

Method Base DAPO Ours
Avg@32 29.8 55.04 56.57
Pass@16 70.43 76.98 76.78

UniReason-14B
(Qwen3)

ORZ-32B
(Qwen2.5)

DAPO-32B
(Qwen2.5)

53

54

55

56
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58
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vg
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54.1454.23

56.16
56.4156.46

57.17
56.6356.42

58.27

Extrapolation Performance
Selective Replace
RLVR
Selective Extrapolate

Figure 9: Extrapolation results on Minerva.

Table 7: Hyperparameters and Avg@8 performance on Minerva benchmark. The ∗sign marks the
tuned value in Fig. 9.

DAPO ORZ UniReason

Threshold τ -1.0 -0.9 -1.0 -0.9 -1.0 -0.9
Avg replace ratio 6.5% 7.0% 9.2% 9.6% 1.8% 2.2%

Replace w/ πRL 56.63 56.43 56.41 56.39 54.00 54.14
Extrapolate w/ γ = 0.05 56.8 57.22 57.17∗ 57.08 54.50 54.50
Extrapolate w/ γ = 0.1 58.27∗ 56.57 55.51 55.28 54.32 56.16∗

D PROOFS

Proof of Lemma 3.1. For ease of notation, we omit the context x, yi,<t here. The derivative of
DAPO on an unclipped token yi,t is:

∇θJDAPO(yi,y) = ∇θ ri,t(θ)Âi,t = ∇θ
πθ(yi,t)

πθold(yi,t)
Âi,t

= ri,t(θ)Âi,t · ∇θ log πθ(yi,t)

= wi,t · ∇θ log πθ(yi,t).
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For the softmax-parameterized policy πθ with logits z for yi,t, assuming yi,t corresponds to index k
of vocabulary V , we have:

∂

∂zj
log πθ(yi,t) =

1

πθ(yi,t)
· ∂

∂zj

exp(zk)∑
l exp(zl)

=
1

πθ(yi,t)
·

{
exp(zk)

∑
l exp(zl)−exp(zk) exp(zk)

(
∑

l exp(zl))
2 , j = k

− exp(zk) exp(zj)
(
∑

l exp(zl))
2 , j ̸= k

=

{
1− πθ(Vk), j = k
−πθ(Vj), j ̸= k

= I(j = k)− πθ(Vj).

So the ℓ1-norm of ∇zJDAPO(yi,t) becomes:

∥∇zJDAPO(yi,t)∥1 = ∥wi,t∇z log πθ(yi,t)∥1

= |wi,t| ·
∑
j

∣∣∣I(j = k)− πθ(Vj)
∣∣∣

= |wi,t| ·
(
1− πθ(yi,t) +

∑
j ̸=k

πθ(Vj)
)

(yi,t = Vk)

= |wi,t| · 2
(
1− πθ(yi,t)

)
.

Proof of Theorem 4.1. Let J (θx) = Ey∼πθx (·)[Rx,y], and we need to show that for each x:

∃ γ > 0,J (θtx + γ(θtx − θ0x)) ≥ J (θtx).

Denote the extrapolation direction as dtx = θtx − θ0x, this is equivalent to showing the directional
derivative of J at θtx along dtx is positive.

The directional derivative is given by:

∇dt
x
J (θt) = ∇θxJ (θtx)⊤

dtx
∥dtx∥

=
1

∥dtx∥
·
∑
y

∂J (θtx)
∂θx,y

dtx,y.

For the softmax policy πθx(y) = exp(θx,y)/
∑

y′ exp(θx,y′), its gradient satisfies:

∂πθx(y
′)

∂θx,y
= πθx(y

′) (I(y = y′)− πθx(y)) .

So the partial gradient of J on y is:

∂J (θx)
∂θx,y

=
∑
y′

Rx,y′
∂πθx(y

′)

∂θx,y
= Rx,yπθx(y)−πθx(y)

∑
y′

Rx,y′πθx(y
′) = πθx(y)(Rx,y−π⊤

θxRx).

Note that the advantage is At(x, y) = Rx,y−π⊤
θt
x
Rx under the bandit setting, the directional deriva-

tive thus becomes:

∇dt
x
J (θt) = 1

∥dtx∥
·
∑
y

πθt
x
(y)(Rx,y − π⊤

θt
x
Rx)d

t
x,y

=
1

∥dtx∥
·
∑
a

πθt
x
(y) ·At(x, y) · dtx,y

We now analyze the order of At(x, y) and dtx,y .

Under the assumed bandit setting, the order of At(x, y) is the same as the order of Rx,y , i.e.,
At(x, y1) > At(x, y2) if and only if Rx,y1

> Rx,y2
. For dtx,y , we can prove that its order is

also the same as Rx,y with induction.
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At t = 1, using the update rule of NPG, we have:

d1x,y − d1x,y′ = η · (A0(x, y)−A0(x, y′)) = η · (Rx,y −Rx,y′).

So the order of d1x,y is the same as Rx,y . Assume at iteration t, the order of dtx,y is the same as Rx,y ,
then at iteration t+ 1, we have:

dt+1
x,y − dt+1

x,y′ = dtx,y − dtx,y′ + η · (At(x, y)−At(x, y′)) = dtx,y − dtx,y′ + η · (Rx,y −Rx,y′).

So we still have dt+1
x,y > dt+1

x,y′ ⇐⇒ Rx,y > Rx,y′ . Thus by induction, the order of dtx,y is the same
as Rx,y for all t.

Since the order of At(x, y) and dtx,y are the same, we can apply the Chebyshev sum inequality to
get:∑

y

πθt
x
(y) ·

∑
y

πθt
x
(y) ·At(x, y) · dtx,y ≥

(∑
y

πθt
x
(y) ·At(x, y)

)
·

(∑
y

πθt
x
(y) · dtx,y

)
,

with the equality holds if and only if At(x, y) or dtx,y is a constant for all y (i.e., constant reward).

Note that the expectation of advantage
∑

y πθt
x
(y) ·At(x, y) = 0, so we have:

∇dt
x
J (θt) = 1

∥dtx∥
·
∑
y

πθt
x
(y) ·At(x, y) · dtx,y ≥ 0.

The equality holds if and only if Rx,y is a constant for all y.

E STATISTICAL COMPARISON OF DIFFERENT METRICS

Empirical setup. We evaluate three RLVR models: ORZ, DAPO, UniReason, and their base coun-
terparts. For each model, we generate 32 responses per question from the AIME-24 dataset, with
a sampling strategy of top-p=0.7 and temperature=1.0. Our analysis focuses on several metrics
comparing the model pairs: the base/RLVR model’s entropy, KL divergences, and the logp differ-
ence. The probability distribution versus different ∆ log p bins in Fig. 3(b) is also measured on the
DAPO’s generation under this setting.

Statistics of Different Metrics. We compute each metric of the three RLVR model pairs on both
the base model and the RLVR model’s generation. As shown in Fig. 11, the distribution of logp
difference ∆log p is bimodal, with a positive tail for the RLVR’s generated text and a negative tail
for the base model’s generation. In contrast, the distributions of other magnitude-based metrics are
nearly identical regardless of which model generated the output (Fig. 12-14).

Word Clouds of High-∆ log p Tokens. To gain qualitative insight into the tokens identified as
higher ∆log p, whose probabilities are substantially increased by the RLVR training process, we
generated word clouds from the top-100 high-∆ log p tokens for each model (Figure 10). As the
figure shows, these tokens correspond to words related to problem-solving. They fall into two clear
categories: explicit reasoning actions (e.g., combine, break, simplify) and logical transitions (e.g.,
wait, think, step). The prevalence of this vocabulary suggests that the RLVR model has learned to
construct more effective reasoning processes.

F THE USE OF LARGE LANGUAGE MODELS

We utilize LLMs only to polish some of the language of this paper. All content was originally
drafted by the authors. The use of LLMs was restricted to refining some pre-existing text, and any
suggested modifications were reviewed by the authors to confirm their accuracy and alignment with
the original meaning.
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Top-100 Tokens by Log Probability Difference

(a) Top ∆log p tokens of DAPO
Top-100 Tokens by Log Probability Difference

(b) Top ∆log p tokens of ORZ
Top-100 Tokens by Log Probability Difference

(c) Top ∆log p tokens of UniReason

Figure 10: Word clouds of top ∆ log p tokens, measured w/ different RLVR-trained models.
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Figure 11: Logp Difference histograms of different RLVR models, comparing the RLVR and base
model’s generations.
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(a) Divergence on UniReason’s generations
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(b) Entropy on UniReason’s generations

(c) Divergence on base’s generations
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Figure 12: Divergence and entropy histograms of UniReason and its corresponding base model
measured on UniReason or the base model’s generations.
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Figure 13: Divergence and entropy histograms of DAPO and its corresponding base model measured
on DAPO or the base model’s generations.
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Figure 14: Divergence and entropy histograms of ORZ and its corresponding base model measured
on ORZ or the base model’s generations.
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