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ABSTRACT

Selecting targets accurately and quickly with eye-gaze input remains
an open research question. In this paper, we introduce BayesGaze,
a Bayesian approach of determining the selected target given an
eye-gaze trajectory. This approach views each sampling point in an
eye-gaze trajectory as a signal for selecting a target. It then uses the
Bayes’ theorem to calculate the posterior probability of selecting a
target given a sampling point, and accumulates the posterior prob-
abilities weighted by sampling interval to determine the selected
target. The selection results are fed back to update the prior dis-
tribution of targets, which is modeled by a categorical distribution.
Our investigation shows that BayesGaze improves target selection
accuracy and speed over a dwell-based selection method, and the
Center of Gravity Mapping (CM) method. Our research shows that
both accumulating posterior and incorporating the prior are effective
in improving the performance of eye-gaze based target selection.

Index Terms: Human-centered computing—Human computer
interaction (HCI); Human-centered computing—Human com-
puter interaction (HCI)—Interaction techniques; Human-centered
computing—Human computer interaction (HCI)—HCI design and
evaluation methods—User studies;

1 INTRODUCTION

Selecting a target with the gaze remains a central problem of eye-
based interaction. Two factors make this problem challenging [18].
First, gaze input is noisy because of both inadvertent eye movements
and inevitable noise in the tracking device [50]. Therefore, it is
difficult for a user to move their gaze to a particular position and
stabilize it for an extended period of time. Second, unlike using a
mouse, where a user can confirm the selection by clicking a button,
gaze-based interaction lacks an easy-to-use approach to confirm the
selection, adding a layer of difficulty to the design of a selection
technique [43]. Although previous research has explored target
selection using dwell [15, 17], motion correlation [45] and dynamic
user interfaces [26, 30, 40], quickly and accurately selecting a target
with gaze input remains an open research question.
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Inspired by the literature showing that Bayes’ theorem is a promis-
ing principle for handling uncertainty and noise in input signals
(e.g., [4, 52]), we investigate how to apply a Bayesian perspective
to determining the selected target given a gaze trajectory. Applying
Bayes’ theorem to gaze-based target selection raises two main chal-
lenges. First, it is not clear how to obtain the likelihood function
for a gaze trajectory that contains a sequence of input signals (gaze
points), i.e. the probability of observing a gaze trajectory given the
target. Second, unlike touch or mouse input, which have a clear
definitions of the terminal moment of the input, e.g. lifting the finger
from the touch screen or mouse button, gaze input lacks a clear
delimiter of the completion of a selection action. It is therefore
necessary to design a method to determine when the selection action
is completed.

To address these challenges, we introduce BayesGaze (Figure 1),
a Bayesian approach for determining the selected target given a
gaze trajectory. This approach first views each sampling point in
a gaze trajectory as a signal for selecting a target, and then uses
Bayes’ theorem to calculate the posterior probability of selecting
a target given a sampling point. The likelihood of a target being
selected is based on the distance between the sampling point and the
target center, and the prior probability of a target being selected is
modeled by a categorical distribution and updated after a selection
action. BayesGaze then accumulates the posterior probabilities over
all sampling points, weighted by the sampling interval, to determine
the selected target. BayesGaze advances the Center of Gravity
Mapping (CM) [4] by modeling the prior and incorporating it into
the process of determining the selected target. This contribution is
key to improving the performance of gaze-based target selection.
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Figure 1: An overview of how BayesGaze works. Given a gaze posi-
tion si sampled at time i in a gaze trajectory, BayesGaze updates the
accumulated interest of selecting target t, denoted by Ii(t), by adding
P(t|si) weighted by the sampling interval ∆τ to Ii−1(t). P(t|si) is
the posterior probability of selecting t given si, which is calculated
based on Bayes’ theorem. If the accumulated interest Ii(t) exceeds
a threshold θ , the target t is selected. BayesGaze then updates the
prior probability P(t) accordingly.

We report on a controlled experiment showing that BayesGaze
improves target selection accuracy (from 82.1% to 88.3%) and speed
(from 2.49 seconds per selection to 2.23 seconds) over a dwell-based
selection method. BayesGaze also outperforms the CM method [4].



Overall, our investigation shows that accumulating the posterior
probability and incorporating the prior are effective in improving
the performance of gaze-based target selection.

2 RELATED WORK

BayesGaze builds on previous work on gaze input and on Bayesian
approaches. Here we review related work in gaze-based target
selection techniques, Bayesian approaches to gaze input, and gaze-
tracking technology.

2.1 Gaze Based Target Selection

Gaze-based target selection is a key technique for supporting a
number of gaze interaction technologies such as gaze-based text
input [36], gaming [16] or smart device control [37]. Dwell-based
target selection (Dwell) [15, 17, 51] is the most well-known and
most widely used target selection method. It requires a user to dwell
their gaze on a target for a specific uninterrupted period of time
(usually several hundred milliseconds to 1 or 2 seconds) to select it.
Such a highly concentrated action often results in eye fatigue [34].
Many works have been devoted to improving the Dwell technique
by enabling a shorter dwell time and to finding other gaze-based
target selection methods. For example, letting a user adjust the dwell
time manually can lead to a shorter dwell time, from 876 ms to
282 ms [27]. Previous research [15] used Fitts’ law to model gaze
input and suggested selecting the target once the user’s gaze fixates
the target. Other works have explored adjusting the dwell time based
on how likely the target will be selected [32, 35].

In addition to dwell-based methods, researchers have proposed
alternatives to improve gaze-based target selection from the two per-
spectives: handling the noisy gaze input and designing new selection
action [18, 50]. To accommodate the inaccuracy of eye-gaze input,
some works used dynamic expansion/zooming of the display [30,40]
or new UIs, e.g. Actigaze [26] used a set of confirmation buttons to
make gaze target selection easier. Other works investigated error-
aware gaze target selection so that the inaccuracy of target selection
can be tracked and the system can provide design guidelines for
UIs [3, 11]. Gaze target selection actions are also well explored. For
example, motion correlation between the target movement and gaze
trajectory has been proposed to determine the selected target [45].
Actions such as blinking [7] and gaze gesture [9] have also been
explored for target selection.Previous research has also used mul-
timodal input to get rid of the dwelling action. For example, once
the user gazes at the target, a separate input, such as a keyboard
input [22], hand-held touchscreen input [43], EMG input [29] and
the head movement [39] can be employed to perform the selection
action. However, incorporating other input modalities require more
effort from users and extra input device, and it may be infeasible
for some users, such as amyotrophic lateral sclerosis (ALS) pa-
tients with motor disability, who are not able to use a keyboard or a
hand-held touchscreen, neither move their heads.

2.2 Bayesian Approaches to Target Selection

There is a growing interest in applying a Bayesian perspective to
handle uncertainty in target selection. Some of this research is re-
lated to gaze input. For example, previous research has proposed
probabilistic frameworks to deal with uncertainty in the input pro-
cess, such as handling the uncertainty of touch actions on mobile
devices [6, 46] and touchscreens [52], and also handling uncertainty
in gaze-based interactions [4, 33].

Our work is related to the recent work BayesianCommand, which
uses Bayes’ theorem to handle uncertainty in touch target selection
and word-gesture input [52]. The fundamental difference between
our work and BayesianCommand is that in our work, gaze input
does not have well-defined starting or ending moments, but touch
input does (i.e., landing a finger on screen to start input, and taking

finger off to end the input). Therefore, BayesianCommand cannot
be applied to gaze input directly.

Our research is also related to previous work on using a Bayesian
perspective to address the gaze-to-object mapping problem, i.e. the
Center of Gravity Mapping method (CM) [4]. CM is an improved
version of the FM algorithm [48], which performed the best among 9
extant gaze-to-object mapping algorithms [41]. The main difference
between our work and CM is that CM does not model nor update the
prior, while our approach incorporates the prior into the process of
deciding the selected target, which turns out to be the primary reason
why BayesGaze improves target selection accuracy and reduces
selection time. Furthermore, BayesGaze is designed for the gaze
target selection problem while the CM is designed for gaze-to-object
mapping problem. The gaze-based target selection is a different
problem than gaze-to-object mapping [4, 41] because the former
requires a mechanism to commit the selection while the latter does
not.

2.3 Gaze Tracking Technology

Gaze tracking technology is becoming increasingly mature and avail-
able. For example, a number of professional gaze trackers are avail-
able, including Tobii 4C [23], SMI REDn [20] or Eyelink 1000
plus [38], that cost several hundreds up to a few thousand dollars.
Previous research has also enabled gaze tracking with off-the-shelf
cameras by using a fisheye camera [2], the front-facing RGB camera
of a tablet [47], or by leveraging the glint of the screen on the user’s
cornea [14]. Deep learning techniques have also been used to predict
gaze position using Convolutional Neural Networks [19, 49].

Unlike the above approaches, we enabled gaze tracking with an
off-the-shelf and widely used iPad Pro using a true depth camera and
powered by Apple’s ARKit, with which eye gaze can be measured
directly without an extra gaze tracking device.

3 BAYESGAZE: A BAYESIAN PERSPECTIVE ON GAZE TAR-
GET SELECTION

3.1 A Formal Description of the Gaze Based Target Se-
lection Problem

The gaze-based target selection problem can be formally described
as the following research question. Given a gaze trajectory, which
one is the intended target among a set of candidates denoted by
T= {t1, t2, . . . , tN}?

As shown in previous research [4, 41, 48], the existing algorithms
for solving the gaze-based target selection problem can be described
through an interest accumulation framework: each target candidate
(denoted by t) accumulates a certain amount of “time” or “interest”
from gaze input, until one of them reaches a threshold (denoted by
θ ) for being selected. Under this framework, the widely adopted
dwell-based target selection method can be expressed as follow.

Dwell-based Target Selection Method. Assuming that the gaze
trajectory is denoted by S= {s1,s2, . . . ,sK} where si is a sampling
point along the gaze trajectory at time i, the accumulated “interest”
for a target candidate t at time i, denoted by Ii(t), is calculated as:

Ii(t) =
{

Ii−1(t)+∆τ, if si is within the target t
0, otherwise

(1)

where si is the gaze position at time i, and ∆τ is the sampling interval.
Ii(t) represents the duration during which the gaze position stayed
continuously within the target candidate t. If the gaze position moves
outside the target, it resets Ii(t) to 0. To select a target, the eye-gaze
position needs to continuously stay within a target for a period of θ .
In other words, the selected target is the one (denoted by t∗) whose
accumulated selection interest Ii(t∗) first reaches θ (i.e., Ii(t∗)≥ θ ).



3.2 The BayesGaze Algorithm
Under the framework of “accumulating selection interest”, we pro-
pose BayesGaze, a Bayesian perspective for gaze-based target selec-
tion. It views each sampling point in a gaze trajectory as a signal
for selecting a target, and then uses Bayes’ theorem to calculate the
posterior probability of selecting a target given a sampling point.
BayesGaze then accumulates the posterior probabilities over all
sampling points weighted by the sampling interval, as accumulated
interest of selecting a target. A target candidate will be selected
once the accumulated interest reaches a threshold θ . Formally, the
accumulated interest of selecting a target t is calculated as follows,
given the sampling point si:

Ii(t) = Ii−1(t)+∆τ ·P(t|si). (2)

The posterior P(t|si) can be estimated according to Bayes’ theorem,
assuming there are N target candidates:

P(t|si) =
P(si|t)P(t)

P(si)
=

P(si|t)P(t)
∑

N
j=1 P(si|t j)P(t j)

, (3)

where P(t) is the prior probability of target t being the intended
target without observing the current gaze input trajectory, and P(si|t)
is the probability of si if the intended target is t (the likelihood).

BayesGaze has the following characteristics. First, BayesGaze
resumes the accumulation of selection interest from where it left
if the gaze trajectory accidentally leaves a target but returns to it
later. It address a problem of dwell-based method (Equation 1)
that if the eye-gaze position moves outside a target, the accumulated
interest for selecting such a target is reset to 0. Second, it weights the
accumulated interest with the distance between the gaze point and
the target center, through the likelihood function P(si|t). The closer
a gaze point is to the target center, the more “interest” such a point
will contribute to the target selection. Third, it updates the prior
distribution of targets (P(t)) and incorporate it into the procedure of
deciding the selected target.

In the following part, we introduce how to estimate the prior dis-
tribution P(t) and the likelihood P(s|t), which are keys for applying
BayesGaze.

3.2.1 Prior Probability Model
This part introduces a frequency model to estimate the prior distribu-
tion P(t) based on the observable target selection history. We assume
that the user does not select targets randomly and the target selec-
tion follows some distribution, e.g. Zipf’s Law. This assumption is
made based on the selection patterns in menu selection [8, 25, 52],
smartphone APP launching [31], and command triggering [1,10,52].
All of them are tasks that gaze target selection can support.

We model the prior distribution (i.e., a target candidate being
selected prior to observing the current gaze trajectory) as a categor-
ical distribution. More specifically, the outcome of a gaze-based
selection trial that results in a selected target is viewed as a random
variable x whose value is one of N categories (the N target candi-
dates). The core parameter of this random variable x is the parameter
vector ppp = (P(t1),P(t2), ...,P(tN)), which describes the probability
of each category. As a common practice in Bayesian inference, we
also view this parameter vector ppp as a random variable and give it a
prior distribution, using the Dirichlet distribution.

According to the properties of Dirichlet distributions, after each
target selection trial we can update the expected value of the posterior
ppp as follows:

P(ti) =
k+ ci

k ·N +∑
N
j=1 c j

, (4)

where N is the number of candidate targets (e.g., the number of
menu items), ci is the number of times we have observed target ti

being selected, and k is the pseudocount of the Dirichlet prior, a
hyper-parameter of the distribution. The parameter k can also be
viewed as the update rate, which is a positive constant that controls
how quickly the P(ti) are updated. Note that the prior updating
model (Equation 4) is the same as the model proposed by Zhu et
al. [52], although these authors do not describe it under the paradigm
of categorical-Dirichlet distributions. We use the expected value of
ppp (Equation 4) as the prior model in BayesGaze (Equation 3).

This prior model matches our expectations well. When there is
no target selection observed, the probability P(ti) is k

k·N = 1
N , which

means that all candidate targets have equal probability. Whereas
when there are enough target selections observed, i.e. ci� k, we
have P(ti)≈ ci

∑ j c j
, which means that P(ti) can be estimated based

on the frequency of ti having been selected before.
By setting different k, we can balance P(ti) between two extreme

cases: 1) when k → +∞, we have P(ti) ≈ 1
N , that is, the prior

probabilities of all candidate targets are the equal. 2) when k = 0,
we have P(ti) = ci

∑ j c j
, which means that the prior probability is only

based on the history selection frequency. We later use empirical data
to determine an optimal value for k.

3.2.2 Likelihood Model
The goal of this step is to estimate P(si|t), the likelihood of observing
si if t is the intended target. Since si is a single gaze position, a
reasonable assumption is that P(si|t) is higher if si is closer to the
center of t. We follow Bernard et al. [4] and use a Gaussian density
function to describe the likelihood of observing si, a common method
for modeling likelihood for a single-point target selection:

P(si|t) =
1√

2πσ2
exp(−||si− ct ||2

2σ2 ), (5)

where ct is the center of target t, the term ||si− ct || is the L2 Eu-
clidean norm of the vector si − ct , σ is an empirical parameter
defining how concentrated should the gaze points be. The param-
eter σ controls how much interest can be accumulated at a certain
distance. If σ is too small, a target accumulates high interest only
when the gaze point is close to the target center, which could make
the target hard to select. On the other hand, if σ is too large, the
accumulated interests for neighboring targets could become large
and cause mis-selections. We estimate an optimal σ from real data
in the next section.

Algorithm 1 BayesGaze Algorithm

Input: Target set: T = {t1, t2, . . . , tN}, Gaze trajectory: S =
{s1,s2, . . . ,sK}, Threshold: θ

Output: Selected target t, Selection time: τsel
1: for si in S do
2: for t j in T do
3: Obtain prior probability P(t j) and compute likelihood

P(si|t j) using Equation 5;
4: Compute accumulated interest Ii(t j) from Equation 2;
5: if Ii(t j)> θ then
6: Update prior probability P(tm) for each tm ∈ T given

that t j is selected using Equation 4;
7: return t j, i ·∆τ

8: end if
9: end for

10: end for

After obtaining both the prior probability and the likelihood, we
can use BayesGaze to perform target selection. The BayesGaze
algorithm is summarized in Algorithm 1. Note that the algorithm
can be run online, i.e. when a gaze point si is sampled by the gaze



tracker, the top-level for-loop can be executed to check if a target is
selected.

3.2.3 BayesGaze without Prior
If we consider the prior to be Uniform distribution before every
trial (i.e. ∀ti ∈ T,P(ti) = 1/N), BayesGaze will be identical to
the Center of Gravity Mapping (CM) algorithm [4] (referred to
as the CM method hereafter), a previously proposed method for
deciding a target for a gaze-to-object mapping task. Under this
special condition, the accumulated interest of the CM method can
be calculated by Equation 2 with the prior P(t) = 1/N, that is:

Ii(t) = Ii−1(t)+∆τ ·P(t|si) = Ii−1(t)+∆τ · P(si|t)
∑

N
j=1 P(si|t j)

, (6)

where P(si|t) is calculated by Equation 5. Therefore, we view
BayesGaze as an improvement over the CM method that updates
and incorporates the prior in the target selection process. The CM
method is also very similar to the previously proposed Fractional
Mapping method [41, 48]. We later compare BayesGaze with the
CM method to examine to what degree incorporating the prior can
improve gaze target selection performance.

In order to successfully apply the BayesGaze algorithm, we need
to obtain the values of three parameters, denoted as a 3-tuple [k,σ ,θ ],
where k is part of the prior probability model (Equation 4), σ is part
of the likelihood model (Equation 5), and θ is the threshold of the
accumulated interest for committing a selection. We carried out
a study to collect gaze data for target selection and determine the
optimal parameter values from that data.

4 PARAMETER DETERMINATION

We adopted a data-driven simulation approach to search for the opti-
mal parameter values for the BayesGaze algorithm. The procedure
consists of two phases. In Phase 1, we carried out a user study to
collect gaze input data for selecting a target. In Phase 2, we fed the
collected data to the BayesGaze algorithm to search for the optimal
parameter values. We also searched for the optimal parameter for
the Dwell method (Equation 1) and for the CM method (Equation 6).

4.1 Phase 1: Collecting Gaze Input Data
We first carried out a user study to collect gaze input data for select-
ing a target. We focused on a 1-dimensional target selection task,
where the target is a horizontal bar and gaze motion is vertical. We
picked this task because 1-dimensional pointing is a typical target
selection task, and horizontal bars are widely used UI elements on
mobile computing devices such as smartphones and tablets.

4.1.1 Participants
Twelve users (4 female) between 23 and 31 years old (average
27.25±2.22) participated in the experiment. All of them had nor-
mal or correct-to-normal sight and none of them was color blind.
None of them had the experience of using gaze tracking devices or
applications.

4.1.2 Apparatus
We used an 11-inch iPad Pro for gaze tracking and running the ex-
periment. The gaze tracking was implemented using Apple’s ARKit
library, and the sampling rate was 60Hz supported by the library.
Specifically, we used the leftEyeTransform and rightEyeTransform
provided by ARKit library and performed a hitTestWithSegment
call to obtain the raw gaze position. Based on the recommenda-
tion of [11], we used the Outlier Correction filter with a triangle
kernel [21] to obtain smooth gaze tracking. The filter contains a
saccade/fixation detection module so that it can apply sliding win-
dows of different lengths separately for saccades and fixations. The
thresholds for the x and y axis to detect a saccade were both set

to 0.5◦ (calculated based on the estimated face-screen distance).
For fixations, the sliding window size of the filter was set to 40 as
suggested by [11]. For the saccade, the sliding window size of the
filter was set to 10, rather than using the raw position directly, to
increase gaze tracking stability. We also followed the findings of
previous works [24, 39, 42] that allow head movements to improve
target selection performance. We used a gazing task where the user
gazes at 40 different points on the screen with a cursor showing
where the user is looking at to test the gazing accuracy. The result
showed a 0.67◦ with a standard deviation of 0.85, which means the
user may accurately control the gaze to select targets.

4.1.3 Procedure

During the experiment the participant sat in front of a desk where an
iPad Pro running the experiment was placed on a phone holder. The
participant can freely adjust the iPad position, and was instructed to
keep the distance between their eyes and the iPad at around 40 cm.

The study includes multiple target selection trials. In each trial, a
horizontal bar in blue was displayed on the screen as the target and
the participant was instructed to select it via gaze input. Figure 2
shows the setup. Before each trial, the participant first moved the
gaze-controlled cursor in the starting gray bar. After 3 seconds,
the starting bar turned green, signaling the start of the trial. The
participant was then instructed to move the cursor with their gaze
to select a target of width (W ) at a distance D from the starting
bar. We collected gaze input data for 5 seconds after a trial started.
We assumed that 5 seconds was long enough for the participants to
select a target. After 5 seconds, a new trial starts. Each participant
took a break after 15 trials. In total the experiment lasted around 15
minutes per participant.

(a) A screenshot of the experiment

(b) A user is doing the experiment

Figure 2: A screenshot of the study. The green button is the starting
bar, and the target is shown as a blue bar. There is a red cursor
indicating where the participant is looking.

We adopted a within-participant 3× 4× 2 design with three levels
of target width W : 2 cm (2.86◦ calculated based on a participant-
screen distance of 40 cm), 3 cm (4.29◦), and 4 cm (5.76◦), four
levels of distance D: 6 cm (8.53◦), 8 cm (11.31◦), 10 cm (14.04◦),
and 12 cm (16.70◦), and two levels of gaze motion direction: up



(a) Selecting the 2nd target (b) Selecting the 3rd target (c) Selecting the 4th target

Figure 3: An example of using the same gaze trajectory to simulate selecting a target (the blue one) at different indices among the five horizontal
bars. The three red line shows the same gaze trajectory collected in the experiment. The red dot indicates the start of the trajectory. A simulated
user is selecting the 2nd (a), the 3rd (b), and the 4th (c) target among 5 target candidates, with the same gaze trajectory.

or down from the starting bar. We counterbalanced the factors by
randomizing the trials in the experiment.

In total, the study resulted in 12 participant × 3 target sizes × 4
distances × 2 directions × 2 repetitions = 576 trials.

4.2 Phase 2: Determining Parameters from the Col-
lected Data

We created a set of gaze-based target selection tasks, simulated gaze
input based on the data collected in Phase 1, and searched for the
parameter values for the BayesGaze, CM, and Dwell that led to high
input accuracy and fast input speed.

4.2.1 Simulating Eye-Gaze Target Selection Tasks
We first created a set of target selection tasks in which a user is
supposed to control their gaze to select a target among N candidates.
These N candidates are stacked together with no gap between them
to simulate the common vertical list or vertical menu design of
mobile devices (e.g., settings menus in iOS). We included the same
3 target sizes in the simulation as in the data collection study (2, 3,
and 4 cm) and set N = 5. The gaze trajectories for selecting a target
are obtained from the collected data, according to the target sizes.
Figure 3 shows examples of simulated gaze trajectories for selecting
different targets on the screen.

Since previous research has shown that the distribution of menu
items being selected follows Zipf’s distribution [1, 8, 10, 25, 31, 52],
we assumed that the frequency of each candidate being the target
follows Zipf’s Law:

f (l;α,N) =
1/lα

∑
N
n=1 (1/nα )

, (7)

where N is the number of candidate targets (in the simulation, N = 5),
l ∈ {1,2, . . . ,N}, n is the rank of each target, and α is the value of
the exponent characterizing the distribution. We include 4 α values
(0.5, 1, 2, 3) in the simulation.

For each target size, we had 192 collected trajectories. Among the
N candidates, we randomly assigned the frequencies. For example,
when N = 5 and α = 1, the generated frequencies can be [28, 84,
21, 42, 17], which means that the first target among 5 candidates
will be selected 28 times, the second 84 times, etc. We randomly
selected trajectories (without repetition) to simulate selecting targets
at different indices given the generated frequencies.

4.2.2 Searching for the Parameter Values
Given a particular parameter tuple [k,σ ,θ ], we ran the BayesGaze
algorithm to determine the selected target in the simulated target

selection tasks. We viewed the process of searching for the optimal
parameter values as an optimization problem: determining parameter
values that optimizes target selection performance, measured in
terms of success rate and selection time.

We performed a grid search to search for optimal parameter values
for k, σ and θ . In the grid search, k ranges from 0.5 to 5 by steps
of 0.5, σ ranges from 0.14 cm (0.2◦) to 1.4 cm (2◦) by steps of
0.14 cm, θ ranges from 0.2 seconds to 2 seconds by steps of 0.1
seconds. The simulation results showed that different values for k do
not influence performance. We chose k∗=1, as in [52]. When k=1,
the Dirichlet prior of the Categorical distribution, without observing
any selection results, becomes a Uniform distribution, i.e. an equally
distributed prior. The best parameters for σ were from 0.28 cm to
0.56 cm for BayesGaze. We chose σ∗=0.28 cm to reduce the chance
of mis-selections.

Because we want to improve two objectives, success rate and
selection time, we adopted a Pareto optimization process to find the
optimal θ .The process generates a set of parameter values, called
the Pareto-optimal set or Pareto front. Each parameter in the set is
Pareto-optimal, which means that none of the two metrics (success
rate or selection time) can be improved without hurting the other
metric. We plot the Pareto front of BayesGaze in Figure 4a. We
followed the exact same optimization process to search for the opti-
mal parameter values for the CM and Dwell methods, and generated
the corresponding Pareto fronts in Figure 4b and 4c. For the CM
method, the parameters are a 2-tuple [σ ,θ ], as it does not incorpo-
rate the prior into the accumulated interest. For the Dwell method,
the parameter is θ , the threshold for deciding whether a target is
selected based on the accumulated selection interest.

To balance the success rate and selection time, we assigned equal
weights to success rate and selection time. We first normalized the
success rate and selection time to the range [0,1]. We picked a
parameter value θ∗ that leads to the best overall score S, which is
defined as:

S = 0.5×SuccessRate−0.5×SelectionTime, (8)

where SuccessRate and SelectionTime are the normalized values
between 0 and 1, according to the highest and lowest values dis-
played in Figure 4. The coefficient of SelectionTime is -0.5 because
the lower the selection time, the higher the selection performance.
The optimal parameters for different α values are the same and are
summarized in Table 1.

5 A TARGET SELECTION EXPERIMENT

To empirically evaluate BayesGaze, we conducted an 1D gaze-based
target selection study using the parameters from the simulations. We
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Figure 4: The Pareto front of different parameter combinations for 3 target selection methods under α = 1 in Zipf’s Law. The enlarged dots
represent the selected parameter settings for three methods, respectively. These settings have the most balanced performance according to
Equation 8.

Target Selection Method k∗ σ∗ θ∗

BayesGaze 1 0.28 cm 0.9
CM – 0.28 cm 0.9

Dwell – – 0.8

Table 1: Optimal parameters (same for different α in Zipf’s Law)
selected on the Pareto front for three target selection methods

included CM and Dwell as baselines in our study because (1) Dwell
was a widely adopted target selection method and CM was one of
the best-performed algorithms from the literature, and (2) CM can
be viewed as BayesGaze without prior. Including these two methods
in comparison allowed us to evaluate whether BayesGaze improved
the performance with extant algorithms, and to understand how the
two components of BayesGaze (likelihood function and prior) would
contribute the target selection performance improvement.

(a) A screenshot of the experiment

(b) A user is doing the experiment

Figure 5: The controlled 1D gaze target selection experiment

5.1 Participants and Apparatus
Eighteen adults (5 female) between 24 and 31 years old (average
27.2±2.1) participated in the study. All of them had normal sight or
correct-to-normal sight and none of them reported himself/herself
as color blind.

The apparatus was the same as that used in the Wizard-of-Oz
study (Section 4.1.2), so was the eye-gaze tracking technology: we
used an iPad Pro with true-depth camera; the eye-gaze tracking
technology was implemented with the ARKit library, as previously
described.

5.2 Design
We adopted a [3× 2× 2] within-participant design. The three in-
dependent variables were: (1) the target selection method with 3
levels (BayesGaze, CM, Dwell), (2) the target size with 2 levels (1
cm or 1.43◦, and 2 cm or 2.86◦), and (3) the α value of the Zipf’s
distribution with 2 levels (α = 1, and α = 2). The Zipf’s distri-
bution controls the distribution of the intended targets among the
candidates.

For each selection method × target size × Zipf’s law α com-
bination, each participant performed 24 trials. When α = 1, the
frequencies of the 5 target candidates being the intended targets
were 11, 5, 4, 3, 1; when α = 2, these frequencies were 16, 4, 2, 1, 1.
We included two α values to evaluate whether the skewness of the
target distribution affects selection performance. Among a set of 24
trials, the distance between the target and the starting bar was either
4 cm or 5 cm with 50% probability for each distance, and the target
was either above or below the starting bar, also with 50% probability
for each option.

5.3 Procedure
For each trial, the participant was instructed to select one of the five
adjacent horizontal bars displayed on the iPad screen via eye-gaze.
The tracked gaze position was rendered as a cross-hair cursor on
the display, as shown in Figure 5. The target to be selected was
shown in blue and other targets in cyan. A starting bar was also
displayed, which served as the starting position for the gaze input.
Prior to starting a trial, the participant was asked to move the cursor
into the starting bar which was initially displayed in gray. The bar
turned to green after three seconds, signaling the start of a trial. The
participant then moved the cursor to select the target bar on the
screen. The selected target then turned dark. If the user selected
the wrong target, or did not select any target after 5 seconds after
the beginning of the trial, it was considered a miss. The participant
moved to the next trial regardless of the outcome of the trial. To
alleviate eye fatigue, the participant was allowed to take a break no
longer than 2 minutes every 15 trials. Figure 5 shows a screenshot
of the experiment and a participant performing a trial.



After each trial, BayesGaze updated the prior probability for each
target candidate. We assumed that each condition corresponds to a
particular interface, and when the experimental condition changes
(e.g., target size, or α value in Zipf’s distribution), we reset all the
prior information.

The participants were guided to select the target as accurately
and quickly as possible. At the end of the study, participants were
asked to rate their preference over the three methods on a scale of
1 to 5 (1: dislike, 5: like very much). They also answered a subset
of NASA-TLX [12] questions to measure the workload of the gaze
target selection task, including about mental and physical demand.
The rating of the workload was from 1 to 10, from least to most
demanding. The experiment lasted about 50 minutes.

To counterbalance the independent variables, the methods were
fully balanced based on all 6 possible orders. For half of the users, α

was set to 1 for the first half of the trials, and to 2 for the other half.
For the other half of the users, it was the opposite order. Other factors
were randomized. In total, we collected 18 users × 3 methods × 2
target sizes × 2 α × 24 trials = 5184 trials.

5.4 Results
We evaluate the performance of the BayesGaze, CM, and Dwell by
the success rate and selection time.
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Figure 6: The average success rate with 95% CI and the decom-
position of the error rate (Mis-Selection (MS) and Non-Selection
(NS))

5.4.1 Success Rate
The success rate measures the ratio of correct selections over the total
number of trials. The results (Figure 6a) show that: 1) BayesGaze
always has the highest success rate and Dwell has the lowest success

rate, which confirms the effectiveness of Bayesian approach and
the benefit of using the prior. 2) Large targets (2cm) have higher
success rate than small targets (1cm), because it is much easier to
move one’s gaze into a large target.

A repeated measures ANOVA on success rate shows two signifi-
cant main effects: target selection method (F2,34 = 11.45, p< 0.001)
and target size (F1,17 = 30.76, p < 0.001). The test does not show a
significant main effect of Zipf’s Law’s α (F1,17 = 1.722, p = 0.207).
There is no significant interaction effect. Pairwise comparisons with
Holm adjustment [13] on the success rate show significant differ-
ences between BayesGaze vs. Dwell (p < 0.01), CM vs. Dwell
(p < 0.05), and BayesGaze vs. CM (p < 0.05).

The overall mean±95% confidence interval (CI) of success
rate among all target sizes and α is 88.3%±3.6 for BayesGaze,
85.9%±4.3 for CM, and 82.1%±5.2 for Dwell. In total, BayesGaze
improves the success rate by 6.2% over Dwell, and by 2.4% over
CM.

In addition to the success rate, we also look into the error rate,
which measures the ratio of the cases where the right target is not
selected. There are two types of errors: (1) Mis-Selection (MS),
where a wrong target is selected, and (2) Non-Selection (NS), where
no target is selected. We examine the error rates of these two types
of errors separately. Figure 6b shows the decomposition of the error
rate. The major part of the error rate of BayesGaze and CM comes
from mis-selection, and the same for Dwell when the target size is
2 cm. However, when the target size is 1 cm, Dwell suffers from
not selecting any target. The result implies that using a Bayesian
framework can alleviate the problem of not being able to select
target.

With BayesGaze, a potential side effect of incorporating the prior
might be that less frequent targets are more difficult to select. Ta-
ble 2 shows the success rates by target frequency. Although the
success rates for items with a frequency of 1 are lower than for
the high frequency items, they are still near 80%. A repeated mea-
sures ANOVA does not show significant main effects of frequency
on success rate for BayesGaze (F9,153 = 0.776, p = 0.639), CM
(F9,153 = 1.248, p = 0.27), or Dwell (F9,153 = 0.669, p = 0.736),
indicating that this potential side effect is minor.

5.4.2 Selection Time
Figure 7 shows the results for selection time, which measures the
time to select the target from the start of the trial. As with the success
rate, we observe that: 1) BayesGaze has the lowest selection time,
and Dwell has the longest one; 2) Small targets (1cm) take longer to
select than large ones (2cm), especially for Dwell.
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Figure 7: The average selection time (with 95% CI) by target size ×
Zipf’s Law’s α

A repeated measures ANOVA on selection time shows two signifi-
cant main effects: target selection method (F2,34 = 21.19, p< 0.001)



Target Selection Method Frequencies when ααα === 111 Frequencies when ααα === 222
11 5 4 3 1 16 4 2 1 1

BayesGaze 88.1 86.1 88.9 84.3 77.8 90.6 87.5 90.3 88.9 83.3
CM 85.6 82.8 84.0 86.1 86.1 85.9 87.5 93.1 88.9 88.9

Dwell 83.1 85.6 75.7 84.3 88.9 79.9 85.4 83.3 86.1 83.3

Table 2: The success rate (%) for different target selection frequencies (the lowest success rate is marked in bold)

and target size (F1,17 = 116.9, p < 0.001). The test does not show a
significant main effect of Zipf’s Law’s α (F1,17 = 1.685, p = 0.212).
The only significant interaction effect is target size × target selec-
tion method (F2,34 = 31.81, p < 0.001). Pairwise comparisons with
Holm adjustment on selection time show significant differences for
BayesGaze vs. Dwell (p < 0.001) and CM vs. Dwell (p < 0.01).
The pairwise comparisions does not show a significant difference
for BayesGaze vs. CM (p = 0.09).

The overall mean±95% CI selection time among all target sizes
and σ is 2.23±0.15 seconds for BayesGaze, 2.30±0.15 seconds for
CM, and 2.49±0.18 seconds for Dwell. In total, BayesGaze can
save 10.4% selection time over Dwell, and 3% over CM.

5.4.3 Subjective Feedback

The result of subjective feedback is shown in Figure 8. For overall
preference, the median ratings for BayesGaze, CM and Dwell are
4, 3.5 and 3 respectively. BayesGaze has the highest median rating.
For mental and physical demand, the medians are 6.5 and 5.5 for
BayesGaze, 6 and 6 for CM, and 7.5 and 7.5 for Dwell. Non-
parametric Friedman tests do not show significant main effects of
selection method on three metrics: overall preference (X2

r (2) =
1.11, p = 0.57), physical demand (X2

r (2) = 2.93, p = 0.085), and
mental demand (X2

r (2)= 5.24, p= 0.073). The p values for physical
and mental demanding are approaching statistical significance.
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Figure 8: The median of subjective ratings of overall preference,
mental demand and physical demand. For overall preference, higher
ratings are better. For mental and physical demand, lower ratings
are better.

5.5 Discussion

Performance. The experiment results show that BayesGaze outper-
formed both the Dwell and CM methods, in both selection accu-
racy and speed. BayesGaze improved the success rate of Dwell
from 82.1% to 88.3%, i.e. a 6.2% increase, and reduced selection
time from 2.49 seconds to 2.23 seconds,i.e. a 10.4% deduction.
BayesGaze also improved the success rate of CM by 2.4%, and
reduced the selection time by 3%. Pairwise comparisons with Holm

adjustment showed all these differences to be significant (p < 0.05),
except for selection time between BayesGaze vs. CM (p = 0.09).

The promising performance of BayesGaze first shows that in-
corporating the prior significantly improves target selection perfor-
mance. Compared with CM, which can be viewed as BayesGaze
without prior, BayesGaze performed better in both accuracy and
speed across all conditions. This suggests that incorporating the
prior distribution of targets is effective in improving the perfor-
mance of gaze-based target selection tasks. Second, both BayesGaze
and CM outperformed Dwell, indicating that accumulating the inter-
est, which is represented by the posterior in BayesGaze and by the
likelihood in CM, is also effective for gaze-based target selection.

Prior. Incorporating the prior might make less frequent targets
more difficult to select, even though we did not observe it in our
experiment, as shown in Table 2. There are several ways to prevent
this potential problem: (1) Set a lower bound for the target frequency
so that no target will become hard to select. (2) In real-world applica-
tions, leverage user actions to address the problem. For example, if
the previous selection is incorrect (back/cancel action is performed
immediately), reduce the probability of the incorrect target. (3) Sim-
ilar to what we do in this paper, use a small σ for the likelihood
model in order to decrease interference between neighboring targets.

Target Dimension. This paper considers 1D targets to show that
Bayes’ theorem can be adopted to improve the performance of gaze-
based target selection. In real applications, there are many linear
menus on computers and smartphones where our method can be
directly applied. However, the underlying principle (Equation 2 - 5)
is not tied to a specific type of target and can also be used for 2D
target selection. The main difference between 1D and 2D target
selection lies in the likelihood function (Equation 5). For 1D targets,
we adopted a 1D Gaussian; for 2D targets it should be replaced
by a 2D Gaussian distribution. For the 2D Gaussian likelihood
function, we need to decide the variance in the X and Y direction
and a covariance between the X and Y direction. We can obtain the
the variance and covariance by using a grid search method based
on collected gaze trajectories for selecting targets. We can also fit
the 2D Gaussian model to the collected gaze trajectories to obtain
the parameters. The rest of the method, including updating priors,
accumulating weighted posterior, and using Pareto optimization to
balance accuracy and selection time will remain the same.

Midas-Touch Problem. The Midas-Touch Problem describes
unintentional eye-gaze target selection when the user is reading
content. Our method can work with existing approaches to solve
the Midas-Touch problem in gaze target selection, for example: (1)
We can use methods like [5, 44] to infer whether a user is reading
content on the UI or controlling their gaze to select a target. These
methods will classify gaze positions into content reading phase and
target selection phase. BayesGaze can discard the gaze positions
in the content reading phase, and use only the gaze positions in
the target selection phase to decide the target. (2) We can increase
the threshold of accumulated posterior for selection to mitigate the
Midas-Touch problem. Reading content on UI tends to take a shorter
period of time than controlling gaze to select a target. Increasing
the threshold could prevent falsely activating the selection, and the
actual threshold should be set based on specific scenarios. This
approach is also adopted by dwell-based methods (e.g., [28]) to



mitigate the Midas-Touch problem.
Scalability. BayesGaze uses a gaze position buffer to store the

gaze trajectory and empties it after each selection action. Our study
(Figure 7) shows that most selections happen within 3 seconds,
which takes only a small amount of memory to store gaze data. In
real-world applications, we may set a rolling-window with a size
of 3 seconds to store gaze position. It can then scale up and handle
long gaze-based input.

6 CONCLUSION

In this paper, we introduced BayesGaze, a Bayesian approach to
determining the selected target given an eye-gaze trajectory. This
approach views each sampling point in a gaze trajectory as a signal
for selecting a target, uses Bayes’ theorem to calculate the posterior
probability of selecting a target given a sampling point, and accumu-
lates the posterior probabilities weighted by the sampling interval
over all sampling points to determine the selected target. The selec-
tion results are fed back to update the prior distribution of targets,
which is modeled by a categorical distribution with a Dirichlet prior.
Our controlled experiment showed that BayesGaze improves target
selection accuracy from 82.1% to 88.3% and selection time from
2.49 seconds per selection to 2.23 seconds over the widely adopted
dwell-based selection method. It also improves selection accuracy
and selection time over the CM method [4] (85.9%, 2.3 seconds
per selection), a high-performance gaze target selection algorithm.
Overall, our research shows that both incorporating the prior and ac-
cumulating the posterior are effective in improving the performance
of gaze-based target selection.
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