
Trust the PRoC3S: Solving Long-Horizon Robotics
Problems with LLMs and Constraint Satisfaction

Aidan Curtis∗, Nishanth Kumar∗, Jing Cao, Tomás Lozano-Pérez, Leslie Pack Kaelbling
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Abstract: Recent developments in pretrained large language models (LLMs) ap-
plied to robotics have demonstrated their capacity for sequencing a set of discrete
skills to achieve open-ended goals in simple robotic tasks. In this paper, we ex-
amine the topic of LLM planning for a set of continuously parameterized skills
whose execution must avoid violations of a set of kinematic, geometric, and phys-
ical constraints. We prompt the LLM to output code for a function with open
parameters, which, together with environmental constraints, can be viewed as a
Continuous Constraint Satisfaction Problem (CCSP). This CCSP can be solved
through sampling or optimization to find a skill sequence and continuous param-
eter settings that achieve the goal while avoiding constraint violations. Addition-
ally, we consider cases where the LLM proposes unsatisfiable CCSPs, such as
those that are kinematically infeasible, dynamically unstable, or lead to colli-
sions, and re-prompt the LLM to form a new CCSP accordingly. Experiments
across simulated and real-world domains demonstrate that our proposed strategy,
PRoC3S, is capable of solving a wide range of complex manipulation tasks with
realistic constraints much more efficiently and effectively than existing baselines.
Website: https://proc3s.csail.mit.edu.
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1 Introduction

Recent progress on large-scale foundation models, particularly large language models (LLMs) and
vision-language models (VLMs), has enabled a variety of flexible and general-purpose decision-
making systems for robotic tasks [1, 2, 3, 4, 5, 6, 7]. These systems leverage few-shot prompting
as well as the commonsense and sequence prediction abilities of LLMs and VLMs to output se-
quences of robotic skills that achieve a wide variety of goals. Such systems are generally more
capable at handling open-world environments than classical systems, like task and motion planners
(TAMP) [8], since they often do not require hand-specified symbolic components (e.g. predicates
and operators), and can perform tasks specified directly in natural language or images.

While foundation models have been applied to a range of robotic tasks, these tasks share many com-
mon simplifying and limiting assumptions. In most cases, the system is provided with a fixed set of
discrete skills such as robot.move to door() or robot.pick can() and asked to perform tasks
that simply require composing these skills in a particular order. Discrete skills with minimal to no
control over the skill outcome may be sufficient for simple tasks and settings, but are insufficient for
domains with complex constraints or goals that depend on continuous properties or relationships,
which are common in robotics. For instance, consider the goal shown in the Arrange-YCB domain
from Figure 4 in which the robot is tasked with packing a set of YCB objects into a small region.
Collision constraints on placing locations restrict the space of possible picking grasps on each ob-
ject. A single monolithic robot.pick can() skill is not sufficient in this context, regardless of
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Figure 1: Illustration of some common constraints in robotic domains.

that skill’s success rate in isolation. Additionally, goals that specify continuous properties or rela-
tionships between objects require actions with continuous parameters. For example, a goal such as
“place the object in the top right corner” or “draw a star” displayed in Figure 4 require the planning
system to have fine-grained access to specific skill outcomes to avoid the kinds of failures displayed
in Figure 1. Such access requires parameterized skills [9, 10].

We seek to address these limitations and enable planning systems based on foundation model to
address complex robotic tasks with realistic constraints using parameterized skills. Towards this
goal, we take inspiration from TAMP, and separate planning into two distinct phases [11, 12, 8].
In the first phase, we ask an LLM to generate a program that takes in some continuous parameters
as input and produces a sequence of skills with all their parameters specified. We also prompt the
LLM to associate a sampling function with each continuous parameter. The result of this phase is
thus a kind of continuous constraint satisfaction problem (CCSP) [13, 14, 8, 15]: the solver must
now find values for the continuous parameters of each skill such that the proposed sequence of skills
can be executed to achieve the goal without violating any constraints in the world (Figure 1). The
second phase attempts to solve this CCSP via a simple generate-and-test procedure. If it is unable to
find a setting for all the continuous parameters that leads to goal achievement, it reports the failure
modes encountered and asks the first stage for a new, different sequence that resolves this issue. This
planning process, similar to TAMP, is carried out entirely within a simulated world model, which
can be constructed from visual inputs using pretrained perception models [16]. Once a viable plan
is found, we execute it in the real environment and replan if necessary.

We evaluate our approach, Planning for Robots via Code for Continuous Constraint Satisfaction
(PRoC3S), on a range of challenging robotic tasks in three different simulated domains, and one
real-world domain. In particular, we measure the agent’s success rate at completing the tasks in-
volving drawing, rearranging, stacking, and packing objects into configurations specified by a natu-
ral language goal. In contrast to classical planning systems, our approach demonstrates the ability to
satisfy a diverse set of natural language goals without symbolic predicates or operators. Our system
also exhibits greater robustness to real-world constraints than existing methods that apply foundation
models to robotics problems.

2 Related Work

The traditional approach to solving long-horizon robotics problems with complex constraints is task
and motion planning (TAMP), which combines both a higher-level logical planner and a set of low
level parameterized skills [8, 11, 16, 12, 17]. While this is a powerful framework that enables
zero-shot generalization to new problems, the set of capabilities of the system are limited to goals
that can be expressed using some set of pre-specified predicates, and via a sequence of pre-specified
symbolic operators. Some recent work has used LLMs to guide search and translate natural language
goals into logical ones, but still require manual specification of operator preconditions and effects or
goal predicate classifiers [18, 19, 20]. By contrast, our approach is able to accomplish tasks where
specifying symbolic predicates and operators is either challenging or impossible (e.g. the tasks from
our ‘Drawing’ domain in Section 5).
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def domain (initial: State):
   return {
      “center_x”: [0, 100],
      “center_y”: [0, 100],
      “rotation”: [-180, 180],
      “radius”: [20, 30],
      “num_points”: {5, 6}
   }

def domain (initial: State):
   return {
      “center_x”: [0, 100],
      “center_y”: [0, 100],
      “rotation”: [-180, 180],
      “side_length”: [20, 30]
   }

“Draw a square”

[{”shape”: “circle”,
  “color”: “yellow”,
  “pose”: [3,4,0]}, ...]

def draw_square (
   initial: State
   center_x: float,
   center_y: float,
   rotation: float,
   side_length: float
):

def draw_star (
   initial: State
   center_x: float,
   center_y: float,
   rotation: float,
   radius: float,
   num_points: int
):

...

...
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Goal: “Draw a star”

[{”shape”: “square”,
  “color”: “blue”,
  “pose”: [9,1,0]}, ...]

Skills 
[draw_line(x0, y0, x1, y1)]

Success

Figure 2: Overview of PRoC3S. An LLM is prompted with an example initial state, goal, LMP, and associated
LMP domain for drawing a square. When prompted with a new state and goal for drawing a star, the language
model outputs a new LMP and associated domain. We then sample inputs to the function and test them against
a set of pre-specified constraints via a simulator. If no satisfying assignment is found after N samples, we feed
back the primary failure modes to the LLM to generate an updated LMP and domain.

Recent advances in LLMs have enabled LLM-based planning systems wherein the available skills
are described in natural language and their effects on the world need not be explicitly defined [21].
One of the first such approaches sequences discrete object-specific skills to satisfy rearrangement
goals [4]. Many follow-up papers have extended this framework to handle longer-horizon tasks
with temporal dependencies [7, 22, 2]. Others have made these action-selection strategies more
reactive by reprompting with feedback from the environment or running optimization over skill se-
quences [23, 6, 24, 25]. Although more flexible than TAMP, these approaches can only make use of
discrete skills with no continuous input parameters, which greatly restricts the class of problems they
can solve. Some recent work has sought to remedy this by having the LLM generate code that trans-
forms environment parameters into action input parameters via a code interpreter [1]. A downside
of this method is that it does not properly handle kinematic, collision, or dynamic constraints of the
robot’s embodiment. Other approaches have the LLM directly output continuous action parameters
and use environmental feedback to adjust those parameters to satisfy encountered constraints [3, 24].
These methods directly rely on an LLM or VLM to resolve constraints, which assumes these model
are capable of complex geometric and physical reasoning they are generally not trained for.

Some existing work has taken environmental constraints into account when executing skills by build-
ing more context-aware skill primitives [5, 26] or used solvers to satisfy LLM-suggested constraints
for non-robotic domains [27, 28]. We instead focus on long horizon robotic manipulation problems
with continuously parameterized skills and temporally dependent constraints.

3 Problem Setting

We consider a robot planning task with object-oriented states and parameterized skills defined by the
tuple ⟨ℓG,S, s0,Φ, f, C⟩. Here, ℓG is a natural language goal represented by a string corresponding
to some unknown goal condition defined over the state space G ⊆ S.

S is the robot’s state-space. We assume the state is object-oriented and fully-observable: i.e., it is
factored into a discrete set of objects, each with a set of attributes that may be discrete, continuous, or
a string. We assume each object is an instance of a class in the object-oriented programming sense.
Given a finite set of objects, the state space S is defined by the possibly infinite set of assignments
to these object’s attributes. The initial state s0 is a collection of instantiated objects. For example,
an initial state of our Arrange-Blocks environment with two objects might be:

{"o1": Object(cat="block", color="yellow", pose=[0.04, -0.36, 0.02, 0.0, -0.0, -0.0])
"o2": Object(cat="bowl", color="green", pose=[-0.14, -0.35, 0.03, 0.0, -0.0, 0.0])}
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We also assume that the robot has access to a set of lifted parameterized skills Φ. Each lifted skill
ϕΛ,Θ ∈ Φ (e.g. Pick([obj], [x, y, z, r, p, y])) has a name (i.e., Pick), a natural language
description (e.g. “Move the robot’s gripper to location x, y, z and close the gripper.”), and a tuple
of discrete Λ (i.e., [obj]) and continuous parameters Θ (i.e., [x, y, z, r, p, y]) that govern
the behavior of the skill. Each λ ∈ Λ has a discrete domain and each θ ∈ Θ has a continuous
domain that are skill-specific. For example, the obj parameter would have a domain consisting of
the names of all the objects in the current world state (i.e., banana, spam, etc. in the Arrange-YCB
domain), while the [x, y, z] parameters would have domains corresponding to the edges of the
table surface, and the [r, p, y] parameters are constrained to be within [0, 2π] radians. A lifted
skill ϕ can be grounded ϕ by selecting values for each of the parameters, resulting in a possibly
infinite set of ground skills Φ. Ground skills can be executed from any s ∈ S and terminate upon
reaching a skill-specific termination condition, which will result in a new state s′ ∈ S , where it’s
possible that s = s′. For instance, a Pick(banana, [0.1, 0.2, 0.16, π/2, 0, π/4]) attempts a grasp
relative to the banana pose. It can be executed from any state in the Arrange-YCB environment,
and may or may not pick up the banana depending on these parameters. Lastly, as in any planning
system, the robot is given access to a transition model f : S × Φ → S . In our case, this is
implemented with a physics simulator.

Lastly, we assume a finite set of user-defined constraints C. Each constraint ci ∈ C has a cor-
responding natural language description of what violating the constraint entails (e.g. “Pose is not
reachable by gripper”), and a classifier cψi : S → {true, false} mapping a state s ∈ S to a boolean
value indicating whether or not the particular constraint is violated. Constraints may be induced by
the kinematics of the robot, collisions with the environment, or dynamic properties like stability of
the robot or objects the robot is interacting with, and are common across a wide range of robotic
tasks. To check whether a constraint has been violated, we will set our simulator f to a particular
state and call the constraint’s classifier function2.

The robot’s objective is to find a plan [ϕ
0
, ϕ

1
, ..., ϕ

K
] defined by a sequence of ground skills such

that: (1) sequential execution of the plan from s0 yields a state sequence [s1, s2, . . . , sK+1] such
that sK+1 ∈ G, and (2) no state s ∈ [s1, s2, . . . , sK+1] violates a constraint function (i.e., ∄s ∈
[s1, s2, . . . , sK+1] : ∃ci ∈ C : cψi (s) = true) 3.

4 Method

Following previous work [1, 3, 2], we solve planning tasks by querying an LLM to directly generate
a sequence of skills that achieve the goal from the initial state s0. However, generating a plan with an
LLM is a challenging problem because it involves both correctly sequencing skills together, and also
finding a specific setting of all the continuous parameters that enables the plan to achieve the goal.
For instance, consider the “Draw a star” task depicted in Figure 4. Here, the robot is provided with
a robot.draw line(x0, y0, x1, y1) skill, that draws a straight line between the points (x0, y0) and
(x1, y1) respectively. To successfully accomplish the task, the robot must invoke this skill at least 5
times in sequence. Moreover, it must specify at least 20 continuous parameters (10 pairs of (x0, y0)
tuples) such that the shape can be drawn without violating collision or reachability constraints.

To address these challenges, we take inspiration from TAMP in two significant ways: (1) we provide
the LLM with access to code for a set of samplers [29, 8], Σ, to help it sample continuous param-
eters, and (2) we separate planning into a two stage LLM-Modulo framework [30] with each stage
designed to solve a different part of the overall planning problem. Samplers are named functions
that take in one or more arguments, as well as particular arguments, and output a set of continuous
values that may be useful for grounding skill(s). For instance, a simple uniform random sampler
(which we call Continuous in the code and examples below) might sample a number uniformly
at random within some provided bounds. A grasp sampler might take in no arguments and simply

2Note that our notion of constraint is broader than the typical notion in the CSP literature. Some of our
constraints are implicit: they are checked via a simulator rather than expressed as simple symbolic expressions.

3Overall, our problem setting is analogous to that of TAMP [8] without symbolic predicates or operators.
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output a valid grasp. Note importantly that these samplers are generally unaware of the constraints:
a grasp sampler might output a grasp that is kinematically infeasible or unstable.

We leverage these samplers within a two-stage planning process. In the first stage of planning, which
we call LMP generation, we prompt an LLM to generate a Language Model Program (LMP) [1].
This LMP is a function that takes in the text representation of the object-oriented state and certain
parameters and outputs a plan that we assume achieves ℓG. We also ask the LLM to generate
bounds for and invoke the provided samplers to yield a sampling function that outputs values for the
parameters of the LMP. In the next stage, which we call constraint satisfaction, we sample parameter
choices for inputs to this LMP and execute them in our simulator to find parameters that ensure the
plan does not violate any constraints from C. If the constraint satisfaction phase fails after a fixed
sampling budget, we pass information about the most common constraints violated back to the LMP
generation phase and request a new LMP and constraint bounds in light of the observed failure. An
overview of this process is depicted in Figure 2.

We now discuss each phase in more detail. To ground this discussion, consider a simple running
example in the Arrange-Blocks domain shown in Figure 4. Here, ℓG is: “Place the green block in
the bowl”. The state is represented using the Object class mentioned in Section 3, and the initial
state is such that an orange block (o12) is atop the green block (o7). The robot is provided with a
single simple continuous sampler and two skills, pick(x,y,z) and place(x,y,z), that move the
gripper to a particular (x,y,z) location and then close/open the gripper respectively.

LMP Generation: The objective of this stage is to generate an LMP that consists of: (1) a plan-
sketch function that takes in a state as well as some arbitrary input parameters and outputs a plan
[ϕ

0
, ϕ

1
, ..., ϕ

K
] when executed with an interpreter4, and (2) a sampling function that leverages sam-

plers with LLM-generated bounds to output parameters that (1) takes as input. Here, (1) together
with the user-defined environment constraints C defines a CCSP, and (2) helps define a sampling
procedure that can be leveraged to solve this CCSP. To achieve this, we prompt an LLM with (a)
the classes and objects used to represent the state-space S, (b) the initial state s0, (c) the available
parameterized skills Φ, (d) the provided samplers Σ, and (e) an example of an expected output LMP
from a different task that shares the same state-space and many of the same skills (see Appendix
B for the prompts used in our three environments). Importantly, note that the LLM is not provided
with any of the constraints (rather, these will be checked in the next phase).

Consider the following generated LMP on our running example task of placing a block into a bowl:

def gen_plan(init:State, dx, dy):
plan = []
block, bowl = init["o7"], init["o8"]
plan += [Action("pick", block.point)]
x, y, z = bowl.point
plan += [Action("place", [x+dx, y+dy, z])]
return plan

def gen_domain(init:State):
return {

"dx": Continuous(-.04, .04),
"dy": Continuous(-.04, .04),

}

Here, the gen plan function is the plan-sketch. It takes in a particular state (named init) cor-
responding to the initial state s0, as well as two parameters and generates a plan in terms of the
provided pick and place skills. Importantly, note that the two input parameters to the function
(namely dx, dy), are different from the parameters of the pick or place skills. The above gener-
ated sequence of one pick and one place skill would ordinarily require six continuous parameters
(x, y, z for each skill) for grounding. However, the generated LMP reduces the sampling space
to a lower-dimensional, two-parameter space (namely dx, dy). Thus, the generated LMP makes
downstream CCSP simpler by leveraging the common-sense and reasoning capabilities of LLMs.

Constraint Satisfaction and Feedback: In this work, we opt for a very simple sample-and-test
procedure for constraint satisfaction. Specifically, we sample a fixed number of values for all the
plan-sketch’s input variables (namely dx and dy in the above example) using the sampling function

4This function represents a family of plans that only differ in one or more continuous parameters.
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Figure 3: Top-down view of solutions produced by baselines on the star drawing task in our ‘Drawing’ domain.

that was generated by the previous stage. Given a particular sample, we can simply evaluate the
LMP to output a plan. We then check for constraint violations by executing each step of this plan
using our simulator f , and running each constraint classifier cψi from ci ∈ C.

If a plan is found that does not violate any constraints, we return this plan. If no satisfying plan
is found after the fixed budget is exhausted, we enter a feedback stage. The objective of this stage
is to provide information to the first stage such that it will return a new LMP that avoids the same
constraint violations. In our implementation, we return the following information during feedback:
(1) descriptions of the top 2 most common constraint violations, (2) the most common ground skill
name that was run in the simulator before the violation, and (3) the most common index in the
plan at which each of the above constraint violations occurred. This loop between LMP generation,
constraint satisfaction and feedback continues until a legal plan is found.

In our running example, we exhaust our sampling budget due to collisions with the orange block and
return the following feedback information: “Step 0, Action pick, Violation:Collision

detected between object o12, gripper.”. Given this, as well as the context of its previ-
ous LMP, the LLM generates a new LMP that moves object o12 out of the way before object o7 (the
green block of interest) is manipulated:

def gen_plan(init:State, dx, dy,
x_place_12, y_place_12):

plan = []
block_12 = init["o12"]
plan += [Action("pick", block_12.point)]
plan += [Action("place", [x_place_12,

y_place_12, TABLE_BOUNDS[2][1]])]
[block, bowl] = init["o7"], init["o8"]
plan += [Action("pick", block.point)]
x, y, z = bowl.pose.point
plan += [Action("place", [x+dx, y+dy, z])]
return plan

def gen_domain(init:State):
return {

"dx": Continuous(-.04, .04),
"dy": Continuous(-.04, .04),
"x_place_12": Continuous(

TABLE_BOUNDS[0][0],
TABLE_BOUNDS[0][1]),

"y_place_12": Continuous(
TABLE_BOUNDS[1][0],
TABLE_BOUNDS[1][1])

}

5 Experiments

Our experiments are designed to test the ability of our method (PRoC3S) to sequence a set of simple
continuously parameterized skills to generalize to satisfying unseen natural language goals while
obeying environmental constraints, both in simulated domains and on real-world hardware.

Constraints. We make use of four general constraint types across environments. These are kine-
matic constraints on the robot, collision constraints for robot motion, grasp constraints (i.e., check-
ing for stable grasps), and placement constraints (i.e., checking for stable placements). Details on
implementation are provided in Appendix A.2.

Environments. We now provide high-level environment and task descriptions with details in Ap-
pendix A. All of our simulated domains consist of a 6 DoF UR5 robot arm with a Robotiq 2F-85
gripper in front of a table of objects. Experiments in these domains involve different initial states,
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Drawing Arrange Blocks Arrange YCB
Star Arrow Letters Enclosed Pyramid Line Packing Unstack Packing Stacking

LLM3 40% 40% 90% 50% 0% 50% 30% 20% 0% 0%
LLM3-NF 20% 0% 40% 20% 10% 30% 60% 20% 0% 0%

LLM3-Gaussian 20% 0% 0% 0% 30% 40% 30% 20% 0% 0%
CaP 10% 0% 50% 30% 20% 20% 20% 20% 40% 10%

CaP-Gaussian 10% 20% 0% 40% 10% 30% 30% 30% 20% 10%
PRoC3S-NF 100% 40% 50% 90% 30% 10% 70% 20% 10% 40%

PRoC3S 80% 80% 80% 90% 60% 70% 70% 70% 60% 70%

Table 1: Percentage of correct final states over 10 evaluations across simulated domains. Values not signifi-
cantly different from the top performer are bolded. Tests are a one-tailed Z-test with α = 0.1.

object sets, and goals based on the simulated Ravens tabletop environment first introduced by Zeng
et al. [31]. Our real-world domain consists of a tabletop setup with a Franka Emika Panda robot.

• Drawing: The robot is provided with a parameterized skill to draw a line, and a variety of goals
involving drawing different shapes. We attempt four different goals in this environment: “draw
a star”, “draw an arrow pointing at the biggest obstacle in the environment”, “draw the letter M”,
and “draw a shape that encloses two obstacles”. The main challenge of these tasks is drawing a
shape that avoids collisions with the obstacles in the cluttered environment.

• Arrange-Blocks: A tabletop in front of the robot is strewn with a variety of colored blocks and
bowls. We attempt 4 tasks in this environment: “stack an upright pyramid out of three blocks”,
“Put five blocks in a line flat on the table”, “Place all blocks within 0.06 of the center of the
table”, and “Place the green block in a bowl”. The first three are challenging due to low-tolerance
stability and collision constraints. The final task is challenging because there are always other
blocks atop the green one that prevent it from being picked directly.

• Arrange-YCB: The same as the above Arrange-Blocks environment, but with objects from the
YCB dataset [32] instead of blocks and bowls. The goals are: “Place all objects within 0.06 of
the center of the table”, “stack any two objects”. Both of these tasks require satisfying grasp
constraints on arbitrary object meshes and kinematic/reachability constraints on the selected
grasps. In the case of the packing problem, collision constraints between objects are the main
constraint violation, whereas placement stability is more significant for the stacking task.

• Real Robot Domain: We implement 4 tasks from the ‘Arrange-Blocks’ and ‘Arrange-YCB’
domains on a real-world tabletop setup with a Franka Emika Panda robot. The goals are: “Put
three/five blocks in a line flat on the table” (referred to as ‘3-line’ and ‘5-line’ respectively),
“Place all blue blocks in the blue bowl and red blocks in the red bowl” (‘Sort’), and “Place
all objects within 0.06 of the center of the table” (‘YCB-packing’). See Appendix D for an
illustration of our setup, as well as implementation details necessary to apply our approach to
this challenging domain. Note that we report results from directly executing computed plans
‘open-loop’ on the real robot and do not attempt to replan upon failure.

Approaches. We now briefly describe the approaches that we compare to PRoC3S.

• PRoC3S without feedback (PRoC3S-NF): PRoC3S but with the feedback component ablated.
Thus, if the first returned plan doesn’t work, we consider the task failed.

• Code as Policies (CaP) [1]: This approach attempts to write helper functions and leverage exist-
ing Python libraries to output an LMP that produces skill sequences and corresponding continu-
ous parameters give a task, without any environment feedback.

• CaP-Gaussian: In an approach loosely based on a previous paper [18], We add gaussian noise
to the action space of the skills output by the LMP generated by CaP, which can help avoid
constraints violations but detracts from the intended goal. See Appendix B.5 for details.

• LLM3[3]:. This approach performs LLM planning with parameterized skills and feedback, but
uses the LLM to directly output continuous parameters. We also ablate the feedback component
of this approach (LLM3-NF), and include a version that places Gaussian noise on the output
similar to CaP-Gaussian (LLM3-Gaussian).

Experimental Setup. For each task and approach, we run 10 random seeds where we randomize the
initial locations and sizes (where appropriate) of objects. For our real robot domain, we run 5 random
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seeds of the approach that had the best performance across simulated domains with randomization
of the initial state. For approaches that use feedback (i.e., PRoC3S and LLM3), we limit the number
of feedback iterations to 5. We specify three samplers (Σ) and provide all approaches with access
to them (details in Appendix C and Appendix B). We fix a sampling budget of 10000 for tasks in
the Drawing domain, and 1000 for all other domains. For all approaches, we use the OpenAI GPT-
4 LLM [33], specifically the gpt-4-0125-preview checkpoint. We record success on achieving the
natural language task goal as judged by the authors and report additional metrics in Appendix A.1.

Results and Analysis. As can be seen from Table 1, PRoC3S consistently achieves the highest suc-
cess rate across simulated domains. PRoC3S-NF’s success rate is at least 30% lower on most tasks,
illustrating the importance of feedback. This is further validated by the fact that the performance
of LLM3-NF is significantly worse than LLM3. We see that LLM3 itself performs comparably to
PRoC3S on 2 tasks, and find that it falters because the LLM is unable to directly output continu-
ous parameters that satisfy the various task constraints, as can be seen from the example in Figure
5. CaP is only comparable to our approach on one task and generally fails because it is unable to
generate viable continuous parameters (e.g. Figure 5). While gaussian noise helps these baselines
avoid constriant violations, it prevents them from achieving the overall task goal as shown in Figure
5. Additionally, Table 2 indicates that our approach is able to operate on challenging real-world
variants of several simulated tasks and achieve a non-trivial success rate.

Seed 3-line 5-line Sort YCB-packing
1 ✓ ✓ ✓ ✓
2 ✓ Grasp fail ✓ ✓
3 ✓ CSP timeout ✓ Grasp fail
4 ✓ ✓ ✓ Grasp fail
5 ✓ ✓ Self-collision Object collision

Table 2: Results on real-world robot tasks. ✓ indicates success.

Qualitatively, we observe
two common failures in
simulation. Firstly, we
observe cases in the ‘Ar-
range Blocks’ and ‘Arrange
YCB’ domains where our
method cannot correctly re-
fine its LMP given feed-
back. Once an incorrect
modification is made, we
find that the LLM rarely recovers in future feedback iterations. Secondly, as observed in prior
works [34, 30], we find that the LLM is unable to yield a valid plan for the longer horizon problems.
On the real-world tasks, we observe that most failures stem from the sim-to-real gap. Only one
observed failure (‘5-line’ task seed 3) was due to our method failing to find a plan: all other failures
were due to failed grasps or unexpected collisions during real-world execution after planning.

6 Limitations and Future Work

There are several limitations of our method. Firstly, our method requires a physics simulator, which
introduces a significant sim-to-real gap that can lead to execution failures (as observed in Table 1).
Secondly, the open parameters in the generated LMPs from the first phase of our method depend
heavily on the example task we choose to provide as part of the input prompt, making effective
prompting crucial for the success of our approach. Thirdly, our method of solving CCSPs is naive
and can be very slow, especially in domains like Arrange-YCB. Additionally, our framework guar-
antees neither soundness nor completeness nor optimality of the generated plans.

In future work, we aim to improve the sampling technique for continuous parameters, opting for
a backtracking search or optimization algorithm to select parameter values as part of the sampling
phase of our method. As part of this, we hope to explore expressing constraints in terms of contin-
uous cost functions instead of binary failure detectors. We also plan to instill the robot with visual
reasoning by exploring the use of vision language models (VLMs), potentially enabling it to recog-
nize a wide range of constraint violations without us having to explicitly define constraint classifier
functions. Lastly, we hope to extend our method to partially-observable environments and thereby
tackle larger mobile-manipulation tasks.
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nipulation of unknown objects via task and motion planning with estimated affordances. In
International Conference on Robotics and Automation (ICRA), 2022. URL https://arxiv.

org/pdf/2108.04145.

[17] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki. Incremental task and motion
planning: A constraint-based approach. In Robotics: Science and Systems (RSS), 2016. URL
https://www.roboticsproceedings.org/rss12/p02.pdf.

[18] Y. Ding, X. Zhang, C. Paxton, and S. Zhang. Task and motion planning with large language
models for object rearrangement. In 2023 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2023. URL https://arxiv.org/pdf/2303.06247.

[19] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion: from natural language
instructions to feasible plans. Autonomous Robots (AuRo), 2023. URL https://arxiv.org/

pdf/2303.12153.

[20] Y. Chen, J. Arkin, C. Dawson, Y. Zhang, N. Roy, and C. Fan. Autotamp: Autoregressive task
and motion planning with llms as translators and checkers. In arXiv preprint, 2024.

[21] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. CoRR, abs/2201.07207, 2022. URL
https://arxiv.org/abs/2201.07207.

[22] R. Hazra, P. Z. Dos Martires, and L. De Raedt. Saycanpay: Heuristic planning with large
language models using learnable domain knowledge. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2024. URL https://arxiv.org/pdf/2308.12682.

[23] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, P. Sermanet, N. Brown, T. Jackson, L. Luu, S. Levine, K. Hausman, and B. Ichter.
Inner monologue: Embodied reasoning through planning with language models. In Conference
on Robot Learning (CoRL), 2023. URL https://openreview.net/pdf?id=3R3Pz5i0tye.

[24] M. Skreta, Z. Zhou, J. L. Yuan, K. Darvish, A. Aspuru-Guzik, and A. Garg. Replan: Robotic
replanning with perception and language models. In arxiv preprint, 2024. URL https://

arxiv.org/pdf/2401.04157.

[25] C. Agia, T. Migimatsu, J. Wu, and J. Bohg. Stap: Sequencing task-agnostic policies. In 2023
IEEE International Conference on Robotics and Automation (ICRA), 2023. URL https:

//arxiv.org/pdf/2210.12250.

[26] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d
value maps for robotic manipulation with language models. In Conference on Robot Learning
(CoRL), 2023. URL https://voxposer.github.io/voxposer.pdf.

10

https://people.eecs.berkeley.edu/~russell/papers/icra14-planrob.pdf
https://people.eecs.berkeley.edu/~russell/papers/icra14-planrob.pdf
https://arxiv.org/abs/2106.02397
https://www.sciencedirect.com/science/article/pii/S0020025503000653
https://www.sciencedirect.com/science/article/pii/S0020025503000653
https://arxiv.org/pdf/2108.04145
https://arxiv.org/pdf/2108.04145
https://www.roboticsproceedings.org/rss12/p02.pdf
https://arxiv.org/pdf/2303.06247
https://arxiv.org/pdf/2303.12153
https://arxiv.org/pdf/2303.12153
https://arxiv.org/abs/2201.07207
https://arxiv.org/pdf/2308.12682
https://openreview.net/pdf?id=3R3Pz5i0tye
https://arxiv.org/pdf/2401.04157
https://arxiv.org/pdf/2401.04157
https://arxiv.org/pdf/2210.12250
https://arxiv.org/pdf/2210.12250
https://voxposer.github.io/voxposer.pdf


[27] Y. Hao, Y. Chen, Y. Zhang, and C. Fan. Large language models can plan your travels rigorously
with formal verification tools. In arxiv preprint, 2024. URL https://arxiv.org/abs/

2404.11891.

[28] X. Ye, Q. Chen, I. Dillig, and G. Durrett. Satlm: Satisfiability-aided language models using
declarative prompting. Advances in Neural Information Processing Systems (NeurIPS), 2024.
URL https://arxiv.org/pdf/2305.09656.

[29] R. Chitnis, T. Silver, J. B. Tenenbaum, T. Lozano-Perez, and L. P. Kaelbling. Learning neuro-
symbolic relational transition models for bilevel planning. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2022. URL https://arxiv.org/

pdf/2105.14074.

[30] S. Kambhampati, K. Valmeekam, L. Guan, K. Stechly, M. Verma, S. Bhambri, L. Saldyt,
and A. Murthy. Llms can’t plan, but can help planning in llm-modulo frameworks. In arXiv
preprint, 2024. URL https://arxiv.org/pdf/2402.01817.

[31] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, and J. Lee. Transporter networks: Rearranging the visual world
for robotic manipulation. Conference on Robot Learning (CoRL), 2020. URL https://

proceedings.mlr.press/v155/zeng21a/zeng21a.pdf.

[32] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar. Benchmarking in
manipulation research: The ycb object and model set and benchmarking protocols. In arXiv
preprint, 2015. URL https://arxiv.org/pdf/1502.03143.

[33] O. J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Al-
tenschmidt, S. Altman, S. Anadkat, R. Avila, I. Babuschkin, S. Balaji, V. Balcom, P. Baltescu,
H. Bao, M. Bavarian, J. Belgum, I. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner, L. Bog-
donoff, O. Boiko, M. Boyd, A.-L. Brakman, G. Brockman, T. Brooks, M. Brundage, K. But-
ton, T. Cai, R. Campbell, A. Cann, B. Carey, C. Carlson, R. Carmichael, B. Chan, C. Chang,
F. Chantzis, D. Chen, S. Chen, R. Chen, J. Chen, M. Chen, B. Chess, C. Cho, C. Chu, H. W.
Chung, D. Cummings, J. Currier, Y. Dai, C. Decareaux, T. Degry, N. Deutsch, D. Deville,
A. Dhar, D. Dohan, S. Dowling, S. Dunning, A. Ecoffet, A. Eleti, T. Eloundou, D. Farhi,
L. Fedus, N. Felix, S. P. Fishman, J. Forte, I. Fulford, L. Gao, E. Georges, C. Gibson, V. Goel,
T. Gogineni, G. Goh, R. Gontijo-Lopes, J. Gordon, M. Grafstein, S. Gray, R. Greene, J. Gross,
S. S. Gu, Y. Guo, C. Hallacy, J. Han, J. Harris, Y. He, M. Heaton, J. Heidecke, C. Hesse,
A. Hickey, W. Hickey, P. Hoeschele, B. Houghton, K. Hsu, S. Hu, X. Hu, J. Huizinga, S. Jain,
S. Jain, J. Jang, A. Jiang, R. Jiang, H. Jin, D. Jin, S. Jomoto, B. Jonn, H. Jun, T. Kaftan,
L. Kaiser, A. Kamali, I. Kanitscheider, N. S. Keskar, T. Khan, L. Kilpatrick, J. W. Kim, C. Kim,
Y. Kim, H. Kirchner, J. R. Kiros, M. Knight, D. Kokotajlo, L. Kondraciuk, A. Kondrich,
A. Konstantinidis, K. Kosic, G. Krueger, V. Kuo, M. Lampe, I. Lan, T. Lee, J. Leike, J. Le-
ung, D. Levy, C. M. Li, R. Lim, M. Lin, S. Lin, M. Litwin, T. Lopez, R. Lowe, P. Lue, A. A.
Makanju, K. Malfacini, S. Manning, T. Markov, Y. Markovski, B. Martin, K. Mayer, A. Mayne,
B. McGrew, S. M. McKinney, C. McLeavey, P. McMillan, J. McNeil, D. Medina, A. Mehta,
J. Menick, L. Metz, A. Mishchenko, P. Mishkin, V. Monaco, E. Morikawa, D. P. Mossing,
T. Mu, M. Murati, O. Murk, D. M’ely, A. Nair, R. Nakano, R. Nayak, A. Neelakantan, R. Ngo,
H. Noh, O. Long, C. O’Keefe, J. W. Pachocki, A. Paino, J. Palermo, A. Pantuliano, G. Paras-
candolo, J. Parish, E. Parparita, A. Passos, M. Pavlov, A. Peng, A. Perelman, F. de Avila Bel-
bute Peres, M. Petrov, H. P. de Oliveira Pinto, M. Pokorny, M. Pokrass, V. H. Pong, T. Powell,
A. Power, B. Power, E. Proehl, R. Puri, A. Radford, J. Rae, A. Ramesh, C. Raymond, F. Real,
K. Rimbach, C. Ross, B. Rotsted, H. Roussez, N. Ryder, M. D. Saltarelli, T. Sanders, S. San-
turkar, G. Sastry, H. Schmidt, D. Schnurr, J. Schulman, D. Selsam, K. Sheppard, T. Sherbakov,
J. Shieh, S. Shoker, P. Shyam, S. Sidor, E. Sigler, M. Simens, J. Sitkin, K. Slama, I. Sohl, B. D.
Sokolowsky, Y. Song, N. Staudacher, F. P. Such, N. Summers, I. Sutskever, J. Tang, N. A.
Tezak, M. Thompson, P. Tillet, A. Tootoonchian, E. Tseng, P. Tuggle, N. Turley, J. Tworek,

11

https://arxiv.org/abs/2404.11891
https://arxiv.org/abs/2404.11891
https://arxiv.org/pdf/2305.09656
https://arxiv.org/pdf/2105.14074
https://arxiv.org/pdf/2105.14074
https://arxiv.org/pdf/2402.01817
https://proceedings.mlr.press/v155/zeng21a/zeng21a.pdf
https://proceedings.mlr.press/v155/zeng21a/zeng21a.pdf
https://arxiv.org/pdf/1502.03143


J. F. C. Uribe, A. Vallone, A. Vijayvergiya, C. Voss, C. L. Wainwright, J. J. Wang, A. Wang,
B. Wang, J. Ward, J. Wei, C. Weinmann, A. Welihinda, P. Welinder, J. Weng, L. Weng, M. Wi-
ethoff, D. Willner, C. Winter, S. Wolrich, H. Wong, L. Workman, S. Wu, J. Wu, M. Wu,
K. Xiao, T. Xu, S. Yoo, K. Yu, Q. Yuan, W. Zaremba, R. Zellers, C. Zhang, M. Zhang, S. Zhao,
T. Zheng, J. Zhuang, W. Zhuk, and B. Zoph. Gpt-4 technical report. In arxiv preprint, 2023.
URL https://arxiv.org/pdf/2303.08774.

[34] K. Valmeekam, A. Olmo, S. Sreedharan, and S. Kambhampati. Large language models still
can’t plan (a benchmark for llms on planning and reasoning about change). In NeurIPS 2022
Foundation Models for Decision Making Workshop. URL https://openreview.net/pdf?

id=wUU-7XTL5XO.

[35] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for
games, robotics and machine learning. 2016. URL https://docs.google.com/

document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.

2ye70wns7io3.

[36] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling. Pddlstream: Integrating symbolic plan-
ners and blackbox samplers via optimistic adaptive planning. In International Conference on
Automated Planning and Scheduling, 2018. URL https://api.semanticscholar.org/

CorpusID:210861196.

[37] A. Curtis, X. Fang, L. P. Kaelbling, T. Lozano-Pérez, and C. R. Garrett. Long-horizon ma-
nipulation of unknown objects via task and motion planning with estimated affordances. In
2022 International Conference on Robotics and Automation (ICRA), 2022. URL https:

//arxiv.org/pdf/2108.04145.

[38] T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen, X. Huang, Y. Chen, F. Yan, Z. Zeng,
H. Zhang, F. Li, J. Yang, H. Li, Q. Jiang, and L. Zhang. Grounded sam: Assembling open-
world models for diverse visual tasks, 2024. URL https://arxiv.org/abs/2401.14159.

12

https://arxiv.org/pdf/2303.08774
https://openreview.net/pdf?id=wUU-7XTL5XO
https://openreview.net/pdf?id=wUU-7XTL5XO
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3
https://api.semanticscholar.org/CorpusID:210861196
https://api.semanticscholar.org/CorpusID:210861196
https://arxiv.org/pdf/2108.04145
https://arxiv.org/pdf/2108.04145
https://arxiv.org/abs/2401.14159


Drawing Arrange-Blocks Arrange-YCB

Draw a star

Draw an arrow pointing
at the largest obstacle

Stack a pyramid of blocks
Pack all objects into 
the region

Form a line out of �ve 
blocks

Place a green block in a 
green bowl

Draw the letter M

Draw a rectangle 
enclosing any obstacle

Pack all objects into 
the region

Stack any two objects

Figure 4: Illustration of tasks in our simulated environments, along with corresponding language goals.

A Simulated Environment Details and Setup

In this section, we describe details on the constraints implemented across environments, as well
as the setup for each task in each environment shown in Figure 4. All experiments in simulated
domains were conducted on machines with 8-core CPU’s and 32GB of RAM.

A.1 Additional Experiment Statistics

Tables 3 and 4 show the number of samples and wall-clock time required by our various approaches
to perform constraint satisfaction. As can be seen from these results, performing sampling is critical
to solving each of our presented tasks. PRoC3S generally requires the smallest number of CSP
samples compared to baselines, especially in the first two tasks of the ‘Drawing’ domain. For tasks
where our approach requires more CSP samples (e.g. ‘Pyramid’ and ‘Unstack’ in ‘Arrange Blocks’,
and ‘Packing’ in ‘Arrange YCB’), our approach achieves a much higher success rate, indicating the
baselines were able to terminate easily because they yielded incorrect plan generators. We observe
a similar trend in Table 5, which shows the overall planning time required by each method. Table 6
lists the number of feedback queries (i.e., number of times the LLM was queried for an LMP after
the first time) across the various baselines that use feedback. Compared to LLM3, our approach
uses significantly fewer feedback iterations on all tasks except ‘Unstack’, ‘Packing’, and ‘Stacking’
in which our approach has significantly higher success rate. This is especially noteworthy in the
‘Drawing’ domain, where our approach requires less than 1 feedback iteration on average. Finally,
Table 7 lists the wall-clock time spent querying the LLM for all approaches and tasks. We see that
a significant fraction of the total planning time taken by our approach (over 50% in most tasks) is
spent querying the LLM. There are only relatively few tasks (e.g. ‘Packing’ and ‘Unstack’ in the
‘Arrange Blocks’ domain) where sampling takes up the majority of the planning time.

A.2 Constraints

• Kinematic Constraints: We make use of the PyBullet [35] inverse kinematic solver to reach
desired end-effector positions. If the solver returns joint positions that result in an incorrect
end-effector position, we deem the target as kinematically infeasible.

• Collision Constraints: If the gripper collides with any unexpected objects during robot motion,
we consider this a collision constraint violation. Expected collisions, such as those between the
gripper and held object, are not considered collisions.
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Drawing Arrange Blocks Arrange YCB
Star Arrow Letters Enclosed Pyramid Line Packing Unstack Packing Stacking

LLM3 - - - - - - - - - -
LLM3-NF - - - - - - - - - -

LLM3-Gaussian 1983.10±
3288.05

1371.80±
3028.34

1148.40±
724.10

5047.50±
4558.19

274.00±
451.81

897.00±
433.77

1555.67±
1422.02

176.80±
192.37

0.00±
0.00

0.00±
0.00

CaP - - - - - - - - - -

CaP-Gaussian 1799.00±
2834.45

1145.90±
2959.80

2318.90±
2733.69

4172.10±
4766.29

174.40±
113.95

199.20±
99.60

126.00±
329.98

134.40±
115.76

899.10±
299.70

249.00±
0.00

PRoC3S-NF 5.70±
9.61

8.60±
10.01

2001.50±
3998.75

1001.20±
2999.27

39.80±
74.34

52.40±
88.91

513.78±
462.69

199.20±
99.60

40.80±
116.52

8.56±
11.31

PRoC3S 3.50±
5.68

8.70±
10.13

1000.70±
3000.10

5000.80±
14998.07

336.60±
456.99

54.50±
148.30

312.22±
403.32

523.70±
465.13

1160.00±
1332.93

3.30±
2.24

Table 3: Average number of samples required to solve CSP. Standard deviation is indicated after ±. Baselines
that do not leverage sampling to solve the CSP are listed with a −. Note that these results do not enable direct
comparison of methods (i.e., lower numbers are not necessarily better) because they do not account for success
rate from Table 1.

Drawing Arrange Blocks Arrange YCB
Star Arrow Letters Enclosed Pyramid Line Packing Unstack Packing Stacking

LLM3 - - - - - - - - - -
LLM3-NF - - - - - - - - - -

LLM3-Gaussian 3.64±
5.25

2.35±
4.81

1.85±
1.17

8.49±
7.80

2.54±
3.99

19.28±
16.41

18.27±
16.01

0.90±
1.16

0.00±
0.00

0.00±
0.00

CaP - - - - - - - - - -

CaP-Gaussian 4.02±
6.26

1.93±
4.63

3.58±
4.26

6.63±
7.52

2.67±
1.52

3.42±
2.55

2.75±
5.36

0.68±
0.36

473.53±
272.29

330.15±
220.86

PRoC3S-NF 0.02±
0.02

0.02±
0.02

2.69±
5.36

1.26±
3.77

6.33±
8.22

23.74±
50.77

193.76±
222.47

1.13±
0.50

30.50±
86.47

6.34±
5.49

PRoC3S 0.02±
0.01

0.02±
0.02

1.26±
3.75

10.70±
32.06

79.69±
132.53

4.98±
4.93

165.51±
230.33

29.13±
53.43

648.26±
716.99

8.05±
13.09

Table 4: Average wall clock time spent on continuous constraint satisfaction. Standard deviation is indicated
after ±. Baselines that do not use constraint satisfaction are listed with a −. Note that these results do not enable
direct comparison of methods (i.e., lower numbers are not necessarily better) because they do not account for
success rate from Table 1.

• Grasp Constraints: We consider the following as constraint violations when selecting grasps:
(1) the end-effector pose (before the gripper is closed) is in collision with the robot or any other
objects in the scene, (2) no part of the object is between the two gripper fingers, (3) the object
falls out of the hand when tested in simulation.

• Placement Constraints: If the object moves significantly if we step physics simulation for a fixed
number of time steps after the gripper opens to release it, we consider this a placement constraint
violation.

A.3 Drawing

For each of the four drawing tasks, we randomize the position of five circles with random radii.

A.3.1 Skills

draw line(p1 x, p1 y, p2 x, p2 y)

Moves the arm to a point (p1 x, p1 y, 0.1) (where the table surface is at height 0.0), draws a
straight line from point (p1 x, p1 y) to point (p2 x, p2 y) while keeping the pen at z pose 0.0,
and then moves the arm back up to the point (p1 x, p1 y, 0.1). The orientation of the gripper
is fixed to be top-down throughout.
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Drawing Arrange Blocks Arrange YCB
Star Arrow Letters Enclosed Pyramid Line Packing Unstack Packing Stacking

LLM3 29.11±
15.78

14.62±
7.44

20.48±
11.42

28.28±
5.69

16.04±
12.95

45.25±
14.82

24.41±
11.31

4.33±
0.84

0.00±
0.00

0.00±
0.00

LLM3-NF 7.45±
2.48

5.21±
1.14

5.47±
1.16

5.18±
1.29

5.07±
0.86

8.38±
1.26

6.48±
0.85

2.23±
0.26

0.00±
0.00

6.63±
0.94

LLM3-Gaussian 11.46±
7.53

9.09±
7.91

7.40±
1.43

16.19±
10.69

13.25±
11.58

86.09±
54.32

37.61±
26.14

7.15±
7.25

0.00±
0.00

0.00±
0.00

CaP 15.01±
1.66

10.36±
1.43

16.82±
2.16

17.02±
2.39

15.77±
2.64

16.57±
4.66

15.17±
4.07

12.34±
14.50

15.88±
3.09

15.57±
2.67

CaP-Gaussian 19.71±
8.85

11.95±
4.70

20.66±
4.11

23.53±
10.30

15.68±
2.85

22.87±
16.39

17.05±
5.79

13.33±
14.53

489.65±
273.18

349.08±
220.48

PRoC3S-NF 19.34±
2.44

20.85±
3.82

26.10±
6.57

18.26±
5.65

42.01±
35.99

42.47±
51.83

213.86±
220.92

14.51±
1.67

53.31±
87.38

25.51±
7.35

PRoC3S 20.50±
3.55

20.35±
2.68

30.41±
10.15

37.93±
58.66

140.48±
172.30

44.62±
38.85

187.65±
236.75

121.95±
130.72

727.57±
751.57

32.28±
15.75

Table 5: Average wall-clock time taken to return a plan (i.e., perform LMP generation and sampling to find a
non-violating solution, including any feedback iterations). Standard deviation is shown after ±. Note that these
results do not enable direct comparison of methods (i.e., lower numbers are not necessarily better) because they
do not account for success rate from Table 1.

Drawing Arrange Blocks Arrange YCB
Star Arrow Letters Enclosed Pyramid Line Packing Unstack Packing Stacking

LLM3 3.10±
1.97

2.10±
1.64

2.60±
1.80

4.00±
0.89

1.90±
2.21

4.00±
1.49

2.44±
1.71

0.70±
0.46

0.00±
0.00

0.00±
0.00

LLM3-NF - - - - - - - - - -

LLM3-Gaussian 0.10±
0.30

0.10±
0.30

0.00±
0.00

0.40±
0.49

1.10±
1.81

3.70±
1.79

1.56±
1.42

0.70±
0.78

0.00±
0.00

0.00±
0.00

CaP - - - - - - - - - -
CaP-Gaussian - - - - - - - - - -
PRoC3S-NF - - - - - - - - - -

PRoC3S 0.00±
0.00

0.00±
0.00

0.10±
0.30

0.50±
1.50

1.50±
2.11

0.20±
0.60

0.22±
0.42

2.10±
1.81

2.20±
2.04

0.30±
0.64

Table 6: Average number of times feedback was queried. Standard deviation is indicated after ±. Approaches
that do not leverage feedback are listed with a −. Note that these results do not enable direct comparison
of methods (i.e., lower numbers are not necessarily better) because they do not account for success rate from
Table 1.

A.4 Arrange-Blocks

For the pyramid-stacking task and the line-forming task, we randomize the position of two bowls
and six blocks such that no objects are stacked on top of each other.

For the region-packing task, we randomize the position of five red blocks and create a low square
prism centered at the middle of the table to represent the region for the red blocks to be packed. The
red blocks are arranged so that no blocks are stacked on top of each other.

For the task of placing a green block into a green bowl, we randomize the position of a green bowl
and eight blocks with at least one green block. Blocks may be stacked on top of each other.

A.4.1 Skills

pick(x, y, z)

Move the gripper to location (x, y, z) and close the gripper.
The pick skill moves the robot’s gripper to a specified location (pick pose), closes the grip-
per to grasp an object, and then lifts the object back to a hover position that is simply (x, y, z +
0.1) (where the table height is 0.0). The orientation of the gripper is fixed to be top-down throughout.

place(x, y, z)

Move the gripper to location (x, y, z) and open the gripper.
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Drawing Arrange Blocks Arrange YCB
Star Arrow Letters Enclosed Pyramid Line Packing Unstack Packing Stacking

LLM3 29.11±
15.78

14.62±
7.44

20.48±
11.42

28.28±
5.69

16.04±
12.95

45.25±
14.82

24.41±
11.31

4.33±
0.84

0.00±
0.00

0.00±
0.00

LLM3-NF 7.45±
2.48

5.21±
1.14

5.47±
1.16

5.18±
1.29

5.07±
0.86

8.38±
1.26

6.48±
0.85

2.23±
0.26

0.00±
0.00

6.63±
0.94

LLM3-Gaussian 7.82±
5.05

6.74±
4.60

5.55±
0.90

7.69±
3.17

10.70±
7.65

66.81±
50.45

19.34±
10.32

6.26±
6.19

0.00±
0.00

0.00±
0.00

CaP 15.01±
1.66

10.36±
1.43

16.82±
2.16

17.02±
2.39

15.77±
2.64

16.57±
4.66

15.17±
4.07

12.34±
14.50

15.88±
3.09

15.57±
2.67

CaP-Gaussian 15.69±
3.76

10.02±
2.96

17.08±
3.68

16.89±
3.92

13.01±
2.48

19.45±
14.52

14.30±
3.30

12.65±
14.38

16.12±
2.54

18.93±
2.27

PRoC3S-NF 19.33±
2.44

20.83±
3.82

23.42±
4.60

17.00±
2.71

35.68±
33.70

18.73±
4.27

20.10±
3.32

13.38±
1.81

22.82±
3.55

19.16±
3.18

PRoC3S 20.49±
3.55

20.33±
2.68

29.16±
6.64

27.23±
26.62

60.79±
54.54

39.64±
38.97

22.14±
7.28

92.82±
83.34

79.31±
56.18

24.23±
12.78

Table 7: Average wall-clock time spent querying the language model in seconds. Standard deviation is included
after ±. Note that these results do not enable direct comparison of methods (i.e., lower numbers are not
necessarily better) because they do not account for success rate from Table 1.

The place skill moves the robot’s gripper to a specified location (place pose) to place the object
and releases the object. It then moves the gripper back to a hover position that is simply (x, y,
z + 0.1) (where the table height is 0.0). The orientation of the gripper is fixed to be top-down
throughout.

A.5 Arrange-YCB

For the region-packing task, we randomize the positions of three objects: a banana, a strawberry,
and a meat can. We also create a low square prism centered on the table to represent the packing
region for these objects.

For the stacking task, we randomize the positions of six objects: a banana, a power drill, a meat can,
a strawberry, an apple, and a pear.

A.5.1 Skills

pick(o, g)

Pick up object o at grasp g sampled from a grasp sampler.
The pick skill moves the robot’s gripper to a target object’s position (gripper target) using
predefined poses (hover pose and gripper target). The gripper closes around the object and
lifts the object back to the hover position.

place(o, g, p)

If holding an object o at grasp g, place the object at pose p.
The place skill moves the robot’s gripper to a target location (gripper target) using a hover
position. It then releases the object and the robot moves back to the hover position.

B PRoC3S Prompting Details

Here we provide details on the prompting scheme used for each environment. As outlined in Section
4, the initial prompt to the LLM consists of (a) the classes and objects used to represent the state-
space S, (b) the initial state s0, (c) the available parameterized skills Φ, and (d) the provided samplers
Σ, and (e) an example of an expected output from a different task. We now provide the prompts we
use for each of our environments and task. We start by providing a common prompt ‘template’ that’s
shared by all tasks in an environment. We then further specify elements that differ between tasks.
Since there exists a domain example for each domain/method combination, we point readers to our
public code release for full example prompts.
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The prompting template for each environment is structured as follows:

{{{system_prompt}}}

{{{domain_setup_code}}}

{{{skill_preface}}}

{{{domain_skills}}}

{{{method_role}}}

{{domain_example}}

The system prompt, skill preface, and role are identical for all three environments and estab-
lish context for the robot.

system prompt:

#define system
You are a robot operating in an environment
with the following state

skill preface:

You have access to the following set of skills expressed as pddl predicates followed
by descriptions.↪→

You have no other skills you can use, and you must exactly follow the number of
inputs described below.↪→

The coordinate axes are x, y, z where x is distance from the robot base, y is
left/right from the robot base, and z is the height off the table.↪→

We now provide prompts which are unique to each environment: domain setup code,
domain skills, example input task details, and example LMP output.

B.1 Drawing

drawing setup code

COLORS = ["blue", "green", "pink", "purple"]

@dataclass
class Obstacle:

name: str
x_pos: float
y_pos: float
radius: float
color: str

@dataclass
class DrawnLine:

p1_x: float
p1_y: float
p2_x: float
p2_y: float

@dataclass
class DrawingState:

obstacles:List[Obstacle] = field(default_factory=list)
drawn_lines:List[DrawnLine] = field(default_factory=list)

@dataclass
class ContinuousSampler:

min: float = 0
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max: float = 1

def sample(self):
return random.uniform(self.min, self.max)

@dataclass
class DiscreteSampler:

values: List[int]

def sample(self):
return random.choice(self.values)

@dataclass
class Action:

name: str
params: List[float]

drawing skills

Action("draw_line", [p1_x, p1_y, p2_x, p2_y])
Draws a straight line from (p1_x, p1_y) to (p2_x, p2_y).
The pen is lifted up to get to the start of the next action.

B.2 Arrange

arrange setup code

CATEGORIES = ["bowl", "block"]
TABLE_BOUNDS = [[-0.3, 0.3], [-0.8, -0.2], [0, 0]] # X Y Z
TABLE_CENTER = [0, -0.5, 0]
BLOCK_SIZE = 0.04

@dataclass
class ArrangePose:

x: float = 0
y: float = 0
z: float = 0
roll: float = 0
pitch: float = 0
yaw: float = 0

@property
def point(self):

...

@property
def euler(self):

...

@dataclass
class ArrangeObject:

category: str
color: str
pose: ArrangePose = field(default_factory=lambda: ArrangePose())
body: Optional[int] = None

@dataclass
class ArrangeBelief:

objects: Dict[str, ArrangeObject] = field(default_factory=dict)
observations: List[Any] = field(default_factory=list)

@dataclass
class ContinuousSampler:

min: float = 0
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max: float = 1

def sample(self):
return random.uniform(self.min, self.max)

@dataclass
class Action:

name: str
params: List[float]

arrange skills

Action("pick", [x, y, z])
Move to the gripper to location x, y, z and close the gripper

Action("place", [x, y, z])
Move to the gripper to location x, y, z and open the gripper

B.3 Arrange YCB

arrange ycb setup code

CATEGORIES = ["bowl", "block"]
TABLE_BOUNDS = [[-0.3, 0.3], [-0.8, -0.2], [0, 0]] # X Y Z
TABLE_CENTER = [0, -0.5, 0]
BLOCK_SIZE = 0.04

@dataclass
class ArrangePose:

x: float = 0
y: float = 0
z: float = 0
roll: float = 0
pitch: float = 0
yaw: float = 0

@property
def point(self):

...

@property
def euler(self):

...

@dataclass
class ArrangeObject:

category: str
color: str
pose: ArrangePose = field(default_factory=lambda: ArrangePose())
body: Optional[int] = None

@dataclass
class ArrangeBelief:

objects: Dict[str, ArrangeObject] = field(default_factory=dict)
observations: List[Any] = field(default_factory=list)

@dataclass
class ContinuousSampler:

min: float = 0
max: float = 1

def sample(self):
return random.uniform(self.min, self.max)
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@dataclass
class DiscreteSampler:

values: List[int]

def sample(self):
return random.choice(self.values)

@dataclass
class Action:

name: str
params: List[float]

@dataclass
class GraspSampler(Sampler):

def sample(self) -> ArrangeGrasp:
...

arrange ycb skills

Action("pick", [o, g])
Pick up object o at grasp g sampled from a grasp sampler. Grasps MUST come from

grasp samplers.↪→

Action("place", [o, g, p])
If holding an object o at grasp g, place the object at pose p.

B.4 Method Prompts

We now go through all of the method specific prompts, which involve a role specification and a
method-specific example.

proc3s role:

Your goal is to generate two things:

First, generate a python function named `gen_plan` that can take any discrete or
continuous inputs. No list inputs are allowed.↪→

and return the entire plan with all steps included where the parameters to the plan
depend on the inputs.↪→

Second, generate a python function `gen_domain` that returns a set of bounds for the
continuous or discrete input parameters. The number of bounds in the↪→

generated domain should exactly match the number of inputs to the function excluding
the state input↪→

The function you give should always achieve the goal regardless of what parameters
from the domain are passed as input.↪→

The `gen_plan` function therefore defines a family of solutions to the problem.
Explain why the function will always satisfy the goal regardless of the input
parameters.

↪→
↪→
Make sure your function inputs allow for as much variability in output plan as

possible while still achieving the goal.↪→
Your function should be as general as possible such that any correct answer

corresponds to some input parameters to the function.↪→

All of these parameter samples may fail, in which case it will return feedback about
what constraints caused the failure.↪→

In the event of a constraint satisfaction fail, explain what went wrong and then
return an updated gen_plan and gen_domain that fixes the issue.↪→

This may involve adding actions to the beginning of the plan to move obstructing
objects leading to collisions and adding new continuous input parameters that
are used for those new actions.

↪→
↪→
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Do not add complex logic or too much extra code to fix issues due to constraint
violations.↪→

The main function should be named EXACTLY `gen_plan` and the domain of the main
function should be named EXACTLY `gen_domain`. Do not change the names. Do not
create any additional classes or overwrite any existing ones.

↪→
↪→
Aside from the inital state all inputs to the `gen_plan` function MUST NOT be of

type List or Dict. List and Dict inputs to `gen_plan` are not allowed.↪→

cap role:

Your goal is to generate a python function that returns a plan that performs the
provided task. This function can↪→

use helper functions that must be defined within the scope of the function itself.

The main function should be named EXACTLY `gen_plan`, and it should take in only one
parameter corresponding to the environment state as input. Do not change the
names. Do not create any additional classes or overwrite any existing ones. You
are only allowed to create helper functions inside the `gen_plan` function.

↪→
↪→
↪→

llm3 role:

Your goal is to generate a sequence of actions that are stored in a variable named
`gen_plan`↪→

The checker may fail, in which case it will return feedback about what constraints
caused the failure.↪→

In the event of a failure, propose a modified plan that avoids all potential reasons
for failure.↪→

DO NOT use placeholders, equations, mathematical operations.
Always give a ground plan that could be directly executed in the environment.

You must always return a block of python code that assigns a list of actions to a
variable named EXACTLY `gen_plan`↪→

B.5 Gaussian Sampling

Gaussian sampling is applied to the parameter space of the skills outputted by the action, which
means it can be used for any method. The sampling uses a similar feedback loop to constraint
satisfaction and runs for the same number of samples as constraint satisfaction (domain dependent).
The initial Gaussian standard deviation is set to zero and is increased linearly to 1 until either a
solution is found with no constraint violations or the maximum number of samples is reached.

C Sampler Details

We implement 3 different samplers (Σ) in python:

@dataclass
class ContinuousSampler(Sampler):

min: float = 0
max: float = 1
def sample(self):

return random.uniform(self.min,
self.max)

@dataclass
class DiscreteSampler:

values: List[int]
def sample(self):

return random.choice(self.values)

@dataclass
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Figure 5: Examples from the perception system used as part of implementing our real-world domains. See
Appendix D for details.

class GraspSampler(Sampler):
def sample(self) -> ArrangeGrasp:

return ArrangePose(
x=random.uniform(-0.02, 0.02),
y=random.uniform(-0.02, 0.02),
pitch=np.pi,
yaw=random.uniform(-math.pi,

math.pi),
).multiply(ArrangePose(z=-0.005))

The GraspSampler is only provided in the Arrange-YCB environment.

D Real-world Robot Implementation Details

Similar to TAMP approaches [36, 37], we deploy PRoC3S on real-world hardware by: (1) leveraging
pre-trained vision models to estimate the features of some known set of objects in a real-scene, (2)
instantiating a digital-twin simulation in which we perform planning, (3) executing the plan open-
loop on the real-world robot 5.

Our implementation assumes access to (1) a set of object models compatible with a physics sim-
ulator, and (2) a set of strings describing each object model (e.g. ”apple“). Each of these models
and its associated string corresponds to an object class. Given these, we leverage open-vocabulary
object detection and segmentation (specifically, Ren et al. [38]) to segment and associate portions of
a point-cloud with each string. For each detection, we extract the centroid of the segment, transform
this into the robot’s coordinate system, and use these as the position (i.e., x, y, z) of the correspond-
ing object model within our physics simulator. While full pose-estimation is possible within this
setup, we leave this for future work. Additionally, we extract object colors from the masked point-
cloud returned by object detection. This is done by taking the average RGB values of all points in
the pointcloud, and retrieving the closest color (as determined by L2 distance) to a predefined color
set. Each object is thus equipped with a feature called ‘color’ with a string value referring to the
name of its color. While assuming object models can be a strong assumption, model-free versions of
this setup have been demonstrated to work on TAMP systems [37], and could similarly be adopted
in this framework.

5If the real-world execution fails, then the system can be simply made to ‘replan’ by restarting from step (1)
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