
Under review as a conference paper at ICLR 2023

NON-EQUISPACED FOURIER NEURAL SOLVERS FOR
PDES

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving partial differential equations is difficult. Recently proposed neural
resolution-invariant models, despite their effectiveness and efficiency, usually
require equispaced spatial points of data. However, sampling in spatial domain is
sometimes inevitably non-equispaced in real-world systems, limiting their appli-
cability. In this paper, we propose a Non-equispaced Fourier PDE Solver (NFS)
with adaptive interpolation on resampled equispaced points and a variant of Fourier
Neural Operators as its components. Experimental results on complex PDEs
demonstrate its advantages in accuracy and efficiency. Compared with the spatially-
equispaced benchmark methods, it achieves superior performance with 42.85%
improvements on MAE, and is able to handle non-equispaced data with a tiny
loss of accuracy. Besides, to our best knowledge, NFS is the first ML-based
method with mesh invariant inference ability to successfully model turbulent flows
in non-equispaced scenarios, with a minor deviation of the error on unseen spatial
points.

1 INTRODUCTION

Solving the partial differential equations (PDEs) holds the key to revealing the underlying mechanisms
and forecasting the future evolution of the systems. However, classical numerical PDE solvers require
fine discretization in spatial domain to capture the patterns and assure convergence. Besides, they also
suffer from computational inefficiency. Recently, data-driven neural PDE solvers revolutionize this
field by providing fast and accurate solutions for PDEs. Unlike approaches designed to model one
specific instance of PDE (E & Yu, 2017; Bar & Sochen, 2019; Smith et al., 2020; Pan & Duraisamy,
2020; Raissi et al., 2020), neural operators (Guo et al., 2016; Sirignano & Spiliopoulos, 2018;
Bhatnagar et al., 2019; KHOO et al., 2020; Li et al., 2020b;c; Bhattacharya et al., 2021; Brandstetter
et al., 2022; Lin et al., 2022) directly learn the mapping between infinite-dimensional spaces of
functions. They remedy the mesh-dependent nature of the finite-dimensional operators by producing
a single set of network parameters that may be used with different discretizations.

However, two problems still exist – discretization-invariant modeling for non-equispaced data and
computational inefficiency compared with convolutional neural networks in the finite-dimensional
setting. To alleviate the first problem, MPPDE (Brandstetter et al., 2022) lends basic modules in
MPNN (Gilmer et al., 2017) to model the dynamics for spatially non-equispaced data, but even
intensifies the time complexity due to the pushforward trick and suffers from unsatisfactory accuracy
in complex systems (See Fig. 2(a)). FNO (Li et al., 2020c) has achieved success in tackling the
second problem of inefficiency and inaccuracy, while the spatial points must be equispaced due to its
harnessing the fast Fourier transform (FFT).

To sum up, two properties should be available in neural PDE solvers: (1) discretization-invariance and
(2) equispace-unnecessity. Property (1) is shared by infinite-dimensional neural operators, in which
the learned pattern can be generalized to unseen meshes. By contrast, classical vision models and
graph spatio-temporal models are not discretization-invariant. Property (2) means that the model can
handle irregularly-sampled spatial points. For example, graph spatio-temporal models do not require
the data to be equispaced, but vision models are equispace-necessary, and limited to handling images
as 2-d regular grids. And recently proposed methods can be classified into four types according to
the two properties, as shown in Fig. 1. As discussed, although the equispace-necessary methods
enjoy fast parallel computation and low prediction error, they lack the ability to handle the spatially
non-equispaced data. For these reasons, this paper aims to design a mesh-invariant model (defined in
Fig. 1) called Non-equispaced Fourier neural Solver (NFS) with comparably low cost of computation

1

Under review as a conference paper at ICLR 2023

Equispace

Unnecessity

Discretization

Invariance

No Yes

No

Yes

Vision/Video model

(e.g. VIT, GFN)

Training Inference
Graph spatio-temporal model

(e.g. DCRNN, GraphPDE)

Training Inference

Spatial point seen by model Spatial point not seen by model

Resolution-invariant model

(e.g. FNO)

Inference

Mesh-invariant model

(e.g. MPPDE, MGKN)

Training InferenceTraining

Vision Mixer

Finite-dimentional

operator

Graph spatio-temporal model

Infinite-dimentional

operator

Figure 1: Four types of methods with or without the two concluded limitations.

and high accuracy, by lending the powerful expressivity of FNO and vision models to efficiently
solve the complex PDE systems. Our paper including leading contributions is organized as follows:

• In Sec. 2, we first give some preliminaries on neural operators as related work, with a brief
introduction to Vision Mixers, to build a bridge between Fourier Neural Operator and Vision
Mixers. Thus, we illustrate our motivation for the work: To establish a mesh-invariant neural
operator, by harnessing the network structure of Vision Mixers.

• In Sec. 3, we proposed a Non-equispaced Fourier Solver (NFS), with adaptive interpolation
operators and a variant of Fourier Neural Operators as the components. Approximation
theorems that guarantee the expressiveness of the proposed interpolation operators are
developed. Further discussion gives insights into the relation between NFS, patchwise
embedding and multipole graph models.

• In Sec. 4, extensive experiments on different types of PDEs are conducted to demonstrate
the superiority of our methods. Detailed ablation studies show that both the proposed
interpolation kernel and the architecture of Vision Mixers contribute to the improvements in
performance.

2 BACKGROUND AND RELATED WORK

2.1 PROBLEM STATEMENT

Let D ∈ Rd be the bounded and open spatial domain where ns-point discretization of the domain D
written asX = {xi = (x

(1)
i , . . . , x

(d)
i) : 1 ≤ i ≤ ns} are sampled. The observation of input function

a ∈ A(D;Rda) and output u ∈ U(D;Rdu) on the ns points are denoted by {a(xi), u(xi)}ns
i=1, where

A(D;Rda) and U(D;Rdu) are separable Banach spaces of function taking values in Rda and Rdu
respectively. Suppose x ∼ µ is i.i.d. sampled from the probability measure µ supported on D. An
infinite-dimensional neural operator Gθ : A(D;Rda)→ U(D;Rdu) parameterized by θ ∈ Θ, aims
to build an approximation so that Gθ(a) ≈ u. A cost functional C : U(D;Rdu)×U(D;Rdu)→ R is
defined to optimize the parameter θ of the operator by the objective

min
θ∈Θ

Ex∼µ[C(Gθ(a), u)(x)] ≈ 1

ns

ns∑
i=1

C(Gθ(a), u)(x) (1)

To establish a mesh-invariant operator, X can be non-equispaced, and the learned Gθ should be
transferred to an arbitary discretizationX ′ ∈ D, where x ∈X′ can be not necessarily contained in
X . Because we focus on spatially non-equispaced points, when the PDE system is time-dependent,
we assume that timestamps {tj} are uniformly sampled, which means we do not focus on temporally
irregular sampling or continuous time problem (Rubanova et al., 2019; Chen et al., 2019; Çağatay
Yıldız et al., 2019; Iakovlev et al., 2020).

2

Under review as a conference paper at ICLR 2023

2.2 DISCRETE FOURIER TRANSFORM

Let kl = (k
(1)
l , . . . , k

(d)
l) the l-th frequency corresponding toX , with kl ∈ Zd. The discrete Fourier

transform of f : D → Rdf is denoted by F(f)(k) ∈ Cdf , with F−1 as its inverse, then

F(f)(j)(kl) =

ns∑
i=1

f (j)(xi)e
−2iπ<xi,kl>, F−1(f)(j)(xi) =

ns∑
l=1

f (j)(kl)e
2iπ<xi,kl>, (2)

where j means the j-th dimension of f . General Fourier transforms have complexity O(n2
s). When

the spatial points are distributed uniformly on equispaced grids, fast Fourier transform (FFT) and its
inverse (IFFT) (Rader & Brenner, 1976) can be implemented to reduce the complexity toO(ns log ns).

2.3 FOURIER NEURAL OPERATOR

Neural Operators. To model one specific instance of PDEs, a line of neural solvers have been
designed, with prior physical knowledge as constraints. Different from these methods, neural
operators (Lu et al., 2021; Nelsen & Stuart, 2021) require no knowledge of underlying PDEs, and
only data. Finite-dimensional operator methods (Guo et al., 2016; Sirignano & Spiliopoulos, 2018;
Bhatnagar et al., 2019; KHOO et al., 2020) are discretization-variant, meaning that the model can
only learn the patterns of the spatial points which have been fed to the model in the training process.
By contrast, infinite-dimensional operator methods (Li et al., 2020b;c; Bhattacharya et al., 2021;
Brandstetter et al., 2022) are proposed to be discretization-invariant, enabling the learned models to
generalize well to unseen meshes with zero-shot.

Kernel integral operator method (Li et al., 2020a) is a family of infinite-dimensional operators,
in which (Gθ(a))(x) = Q ◦ vT ◦ · · · ◦ v1 ◦ P (a)(x) is formulated as an iterative architecture. A
higher-dimensional representation function is first obtained by v0 = P (a) ∈ U(D;Rdv), where P is
a shallow fully-connected network. It is updated by

vt+1(x) := σ(Wvt(x) +Kφ(a)vt(x)), ∀x ∈ D (3)

where Kφ : A → L(U) is a kernel integral operator mapping, mapping a to bounded linear operators,
with parameters φ. W is a linear transform and σ is a non-linear activation function. After the final
iteration, Q projects vT(x) back to U(D;Rdu).

Fourier Neural Operator (FNO) (Li et al., 2020c) as a member in kernel integral operator methods,
updates the representation by applying the convolution theorem as:

Kφ(a)v(x) = F−1(F(κφ) · F(v))(x) = F−1(Rφ · F(v))(x), (4)

where Rφ as the Fourier transform of a periodic kernel function κφ, is directly learned as the
parameters in the updating process. To be resolution-invariant, FNO picks a finite-dimensional
parameterization by truncating the Fourier series of both F(v) and Rφ as a maximal number of
modes k(l)

max for 1 ≤ l ≤ d. Because the sampled spatial points are equispaced in FNO, it can conduct
FFT and IFFT to get the Fourier series, which can be very efficient.

2.4 VISION MIXER AND GRAPH SPATIO-TEMPORAL MODEL

Vision Mixers (Tolstikhin et al., 2021; Rao et al., 2021; Guibas et al., 2021) are a line of models
with a stack of (token mixing) - (channel mixing) - (token mixing) as their network structure for
vision tasks. They are based on the assumption that the key component for the effectiveness of Vision
Transformers (VIT) (Dosovitskiy et al., 2020) is attributed to the proper mixing of tokens. The
defined tokens are equivalent to equispaced spatial points in the former definition, and the research on
the mixing of them can be an analogy to modeling the proper interaction or message-passing patterns
among spatial points. In specific, VIT uses a non-Mercer kernel function (Wright & Gonzalez, 2021)
κφ to adaptively learn the pattern of message-passing through the iterative updating process

vt+1(x) = σ(ChannelMix ◦ TokenMix(vt(x)));

TokenMix(v(x)) =
∑
i

κφ(x,xi, v(x), v(xi)) · v(xi); ChannelMix(v(x)) = Wv(x), (5)

where W is a linear transform called channel mixing layer because it transforms the input on the
channel of an image whose dimension is equivalent to function dimension df . Note that we omit the
residual connection in Eq. (3) for simplicity.

3

Under review as a conference paper at ICLR 2023

Remark. The FNO can be regarded as a member of the family of Vision Mixers. The reason is that a
component in an iteration in Eq. (4) can be written as (Rφ · F(v))(x) = Rφ ·

∑
i e
−2πi<x,xi>v(xi),

because in the equispaced scenarios, xi can be regarded as lying on the same grids as k after
scaling. The kernel κφ is parameterized by κφ(x,xi, v(x), v(xi)) = e−2πi<x,xi> , and the matrix
multiplication of Rφ also performs mixing on channels. Besides, the inverse Fourier transform can
also be regarded as token mixing layers, or so-called token demixing layers (Guibas et al., 2021).

However, the powerful fitting ability and efficiency of Vision Mixers are limited to being applied
to non-equispaced spatial points. Another option for non-equispaced data is graph spatio-temporal
models, in which interaction patterns among spatial points are modeled in a graph message-passing
way (Gilmer et al., 2017; Atwood & Towsley, 2016; Defferrard et al., 2017). The mechanism is
similar to the token mixing in Vision Mixers by means of the summation in Eq. (5) conducted in the
predefined neighborhood of each point. Unfortunately, the graph spatio-temporal models (Seo et al.,
2016; Li et al., 2018; Bai et al., 2020; Lin et al., 2021) suffer from high computational complexity
and unsatisfactory accuracy in solving complex dynamical systems (such as turbulent flows).

2.5 MOTIVATION

Since FNO belongs to Vision Mixers, this firstly raised a question to us: Do models employing
Vision Mixers’s architecture have the potential to model complex PDE systems? Thus, experiments
are conducted to give an intuitive explanation of our motivation as shown in Fig. 2. The data are
generated by Navier-Stokes equations. It is noted that graph spatio-temporal methods can also handle
the equispaced data. Detailed setup is given in Sec. 4.

-6 -5 -4 -3 -2 OOM
log(RMSE)

3

4

5

6

OOM

lo
g(

se
co

nd
)

VIT
MLPMIXER
GFN
FNO
DCRNN
AGCRN
GCGRU
MPPDE
NFS (Ours)

(a) Equispaced comparison

-6 -5 -4 -3 -2 OOM
log(RMSE)

3

4

5

6

OOM

lo
g(

se
co

nd
)

DCRNN
AGCRN
GCGRU
MPPDE
NFS (Ours)

(b) Non-equispaced comparison

0 100 200 300 400 500
Epoch

-6

-5

-4

-3

-2

-1

lo
g(

R
M

SE
)

Early Stopping

GFN (Eq)
MPPDE (Eq)
NFS (Eq)
MPPDE (Neq)
NFS (Neq)

(c) Loss on Validation Set

Figure 2: Intuitive explanation of our motivation: In (a) and (b), ‘4’ represents Vision Mixers, ‘�’
represents graph spatio-temporal models and ‘©’ is the proposed NFS. In (c), ‘Eq’ and ‘Neq’ mean
the methods are trained in equispaced and non-equispaced scenarios respectively.

We find that (1) All of the evaluated Vision Mixers are able to model the dynamical systems effectively,
in spite of FNO as the only discretization-invariant model; (2) The complex dynamics of the systems
are hardly captured by graph spatio-temporal models, whose performance on both accuracy and
computational efficiency is very unsatisfactory in either equispaced or non-equispaced scenarios.
Fig. 2(c) shows the problem of infeasibility of graph spatio-temporal models through the loss curves
on the validation set, compared with Vision Mixers. However, Vision Mixers fail to handle the
non-equispaced data. Therefore, we aim to (1) establish a mesh-invariant model, by harnessing the
network structure of Vision Mixers to achieve competitive efficiency and effectiveness in equispaced
scenarios, as shown in Fig. 2(a); (2) Besides, it should allow applicability and comparable accuracy
in non-equispaced scenarios for solving PDEs, as shown in Fig. 2(b).

3 PROPOSED METHOD

3.1 NON-EQUISPACED FOURIER TRANSFORM

Nonuniformly signals are unavoidable in certain real-world physics scenarios, such as signals obtained
by meteorological stations on the earth surface, which urge the fast Fourier transform (FFT) to be
extended to non-equispaced data with efficient implementation of FFT. Non-equispaced FFTs usually
rely on a mixture of interpolation and the judicious use of FFT, where the calculations of interpolation
are no more than O(ns log ns) operations (Kalamkar et al., 2012; Cheema et al., 2017). For example,
Lagrange interpolation is used to approximate the signal values on ms resampled equispaced points

4

Under review as a conference paper at ICLR 2023

Predefined

interpolation kernel

Adaptively learned

interpolation kernel

Equispaced signals

Nonequispaced signals

NEI Layer

FNO Layers

Fourier Token
Mixing

Channel
Mixing

Fourier Token
Demixing

Linear
Transform

or

Equispaced signals

Predefined

interpolation Kernel

Adaptively learned

interpolation kernel

Nonequispaced signals

NEI Layer

or

Norm

Figure 3: The architecture of NFS: In non-equispaced inperpolation (NEI) layers, the interpolation
kernels are adaptively learned rather than predefined, and the interpolated equispaced signals are
processed through a stack of FNO layers with the same structure of Vision Mixers.

{xj}1≤j≤ms , and then implement FFT on the interpolated points. A low rank approximation with
complexity of O(ns log(1/ε)) is used to replace the interpolation with complexity of O(n2

s) with
ε as the precision of computations (Dutt & Rokhlin, 1995). Another example is commonly used
Gaussian-based interpolation (Kestur et al., 2010). Denote F as equispaced FFT in particular, andH
as the interpolation operator, and the proposed non-equispaced FFT can be written as

(F ◦ H(f))(k) ≈
√
π

τ
eτ<k,k>

ms∑
j=1

e−2iπ<k,xj>
ns∑
i=1

f(xi)hτ (xi − xj). (6)

H(f)(xj) =
∑ns

i=1 f(xi)hτ (xi − xj) interpolates values on resampled points via convolution with
the periodic heat kernel hτ (x−y) =

∑
l∈Zd e−(x−l)2/4τ , with τ as a constant. Multiplication of the

inperploation matrix (Hτ)i,j = hτ (xi−xj) and the signal vector (f)i = f(xi) includesO(nsms) ≈
O(n2

s) operations. For the kernel hτ , it is a summation of Gaussian kernel, and convolution with
a single Gaussian in each points xi’s neighborhood N (xi) can yeid a tiny error depending on τ ,
so the interpolation operator can be approximate via H(f)(xj) =

∑
xj∈N (xi)

f(xi)hτ (xi − xj).
Restricting the neighbor number to |N (xi)| ≤ log ns leads the complexity to reduce to O(ns log ns).

3.2 NON-EQUISPACED FOURIER NEURAL PDE SOLVER

Non-equispaced interpolation. To harness the effectiveness of FNO, we use non-equispaced
Fourier token mixing instead of the equispaced one. It generalizes the equispaced FFT in Eq. (4) as

F̃(v) = (F ◦ Hη(a))(v). (7)

We denoteHη : A → L(U) as the interpolation operator mapping, which maps parametric function
to a bounded interpolation operator. Hη(a) gets the inerploated values on ms resampled equispaced
points via the convolution with kernel hη as

(Hη(a)v)(xj) =
1

ns

ns∑
i=1

v(xi)hη(xj − xi,xi, a(xi)), (8)

where xj lies on resampled equispaced grids. AnotherH′ζ interpolates back on the ns non-equispaced
ones in the same way via the convolution with kernel hζ . To reduce the operations to no more than
O(ns log ns), the summation is restricted in the neighborhood of xi and xj , such that |N (xi)| ≈
|N (xj)| ≤ c log ns with c as a predefined constant determining the neighborhood size of spatial
points. We formulate the kernel with a shallow feed-forward neural networks. Thanks to the universal
approximation of neural networks, the following theorem assures that the interpolation operator can
approximate the representation function v arbitrarily well. (For detailed proof, see Appendix. A.3.)
Empirical observations on the convergence of interpolation operators are given in Appendix C.

5

Under review as a conference paper at ICLR 2023

Theorem 3.1 (Approximation Theorem of the Adaptive Interpolation). Assume the setting of Theorem
A2 in Appendix. A.3 is satisfied. µ is the probability measure supported on D. For v ∈ U , suppose
U = Lp(D;Rdv), for any 1 < p < ∞. Then, given ε > 0, there exist a neural network hη :
Rd × Rd × Rda → Rdv , such that ||v̂ − v||U ≤ ε, where v̂(x) =

∫
D
hη(x− y,x, a(y))v(y)dµ(y).

Applicability of Layer-Norm. As shown in Fig. 3, besides the comparison of the proposed interpo-
lation operator with the traditional ones, a notable difference between the original FNO and FNO
layers in our Vision Mixer architecture is the applicability of normalization layers (Layer-Norm)
which is usually used in Vision Mixers’ architecture. FNO cannot adapt Layer-Norm layers, because
the change of resolution will make the trained normalization parameters and spatial points disagree
with each other. In comparison, the resampled equispaced points are fixed in our architecture, no
matter how the discretization of the input changes. Therefore, the normalization layers can be added,
in a similar way to Vision Mixers, bringing considerable improvements (See Sec. 4.3).

Mesh invariance. In the intermediate layers, which adopt equispaced FNO, the resampled points are
fixed in both training and inference process, invariant to the input meshes. In the interpolation layers,
the operatorHη(a) is discretization-invariant because the kernel can be inductively obtained by the
newly observed signals a(x), its coordinate x and resampled spatial points’ relative coordinates
xj − x. In the same way,H′ζ(a) is also mesh-invariant. This allows the NFS to achieve zero-shot
mesh-invariant inference ability, which is demonstrated in Sec. 4.2.

Complexity analysis. The complexity of FNO is O(ns log ns + nskmax). In the interpolation
layers, because the interpolated values of resampled points are determined by their neighbors, we
set the size of each resampled point’s neighborhood in G and observed non-equispaced points’s
neighborhood in G′ as |N (xi)| ≈ |N (xj)| ≤ c log(ns), for 1 ≤ i ≤ ns, 1 ≤ j ≤ ms. And in this
way, the sparsity of the interpolation matrix reduces the complexity of the two interpolation layers to
O(c · ns log ns + c ·ms log ns). If we set the resampled points number as ns, the overall complexity
is O(2c · ns log ns + ns log ns + nskmax) ∼ O(ns log ns + nskmax).

3.3 FURTHER DISCUSSION

Relation to Vision Mixer. The interpolation can be compared to patchwise embedding in Vision
Mixers. For example, MLPMIXER learns the token mixing patterns adaptively with a feed-forward
network, but the high resolution of input images does not permit the global mixing of tokens due to
the complexity of O(n2

s). Therefore, the input images are firstly rearranged into patches, with each
patch containing np pixels. In this way, the complexity is reduced to O(n2

s/n
2
p), enabling feasible

token mixing. The patchwise embedding is very similar to interpolating the values on resampled
points, as the former one first chooses patches’ centers as n2

s/n
2
p resampled points, and ‘interpolates’

the resampled points by lifting the embedding dimension and the rearranging of their neighbors’
values as the interpolated values, rather than using a kernel.

Relation to multipole graph model. The adaptively learned interpolation layer in NFS has
a similar formulation of multipole graph models (Li et al., 2020b). In multipole graph mod-
els, the high-level nodes aggregate messages from their low-level neighbors as vHigh(xj) =

1
|N (xj)|

∑
xi∈N (xj) v

Low(xi)hη(xj ,xi, a(xj), a(xi)). Compared to multipole graph models, the
values of high-level resampled equispaced nodes are approximated with low-level non-equispaced
nodes’ values in NFS, but nodes’ values of low levels are given in multipole graphs. This causes
differences in multipole graph models’ message-passing and NFS’s interpolation: In the former one,
messages flow circularly among different levels of nodes, while in NFS, messages only exchange
twice between the nodes of two levels – one is from low-level non-equispaced nodes to high-level
resampled equispaced nodes, and the other is the opposite.

4 EXPERIMENTS

4.1 EXPERIEMNTAL SETUP

Benchmarks for comparison. For finite-dimensional operators, we choose Vision Mixers includ-
ing VIT (Dosovitskiy et al., 2020), GFN (Rao et al., 2021) and MLPMIXER (Tolstikhin et al.,
2021) as equispaced problem solvers, with DEEPONET-V and DEEPONET-U as two variants for
DeepONet(Lu et al., 2021) and graph spatio-temporal models including DCRNN (Li et al., 2018),

6

Under review as a conference paper at ICLR 2023

AGCRN (Bai et al., 2020) and GCGRU (Seo et al., 2016) as non-equispaced problem solvers. For
infinite-dimensional operators, the state-of-the-art FNO (Li et al., 2020c) for equispaced problems
and MPPDE (Brandstetter et al., 2022) for non-equispaced problems are chosen. A brief introduction
to these models is shown in Appendix. B.1. In Vision Mixers, the different timestamps in temporal
axis are also regarded as ‘tokens’ in that timestamps are uniformly sampled.

Protocol. The widely-used metrics - Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) are deployed to measure the performance. The reported mean and standard deviation of
metrics are obtained through 5 independent experiments. All the models for comparison are trained
with target function of MSE, i.e. C(u, v)(x) = ||u(x) − v(x)||2 corresponding to Eq. (1), and
optimized by Adam optimizer in 500 epochs. The hyper-parameters are chosen through a carefully
tuning on the validation set. Every trial is implemented on a single Nvidia-V100 (32510MB).

4.2 NUMERICAL EXPERIMENTS

Data. We choose four equations for numerical experiments, three of which are time-dependent (KdV,
Burgers’ and NS), while the other one is not (Darcy Flows). For 1-d problem, we consider Korteweg
de Vries (KdV) and Burgers’ equation (given in Appendix. B.2.).

For 2-d PDEs, we consider Darcy Flow (given in Appendix. B.2.) and Navier-Stokes (NS) equation
for a viscous, incompressible fluid in vorticity form on the unit torus:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x),

∇ · u(x, t) = 0, w(x, 0) = w0(x),
(9)

where x ∈ [0, 1]2, t ∈ [0, 1]. u is the velocity field, w = ∇ × u is the vorticity, w0 is the initial
vorticity, ν ∈ R+ is the viscosity coefficient, and f is the forcing function.

The total number of instances is 1200, with percentages of 0.7, 0.1 and 0.2 for training, validating
and testing, respectively. The original simulated resolutions of PDE signals are 128 × 128 in NS
equation. For others, see Appendix. B.2. When evaluating their performance in equispaced scenarios
of different resolutions, we can downsample the resolution for training to low-resolution data, e.g.
64 × 64 in NS equation. To evaluate their performance in non-equispaced scenarios of different
meshes, we randomly choose ns spatial points for training.

Table 1: MAE(×10−3) comparison with vision mixer benchmarks.
Burgers’ (nt = 10) Darcy Flow NS (nt = 1) NS (nt = 10)

r 512 512 1024 64 128 256 64 64 128 64 64 128
n′t 10 40 20 1 1 1 10 40 20 10 40 20

VIT 0.5042 2.4269 1.5327 0.5073 0.9865 1.1078 9.3797 22.8565 15.7398 3.9609 12.3433 9.3010
MLPMIXER 0.1973 0.4210 0.3303 0.4970 0.8909 0.9125 7.5246 15.8632 14.9360 3.1530 7.9291 7.7410
GFN 0.2383 0.4187 0.3500 0.4739 0.8659 0.9618 3.5524 10.2250 6.3976 1.7396 5.4464 3.1261
FNO 0.0978 0.1815 0.1430 0.4289 0.7086 0.9075 3.3425 8.9857 4.4627 2.4076 7.6979 3.7001
DEEPONET-U 0.4471 1.9624 0.6541 0.3753 0.9488 0.9692 7.4912 16.0440 14.3476 3.4436 10.2950 7.1394
DEEPONET-V 0.4782 2.1707 1.6131 0.5119 0.9614 1.3216 8.6986 18.5561 16.0587 3.9745 12.3314 9.3471
NFS 0.0958 0.1708 0.1474 0.1497 0.2254 0.4216 1.7425 4.7882 2.6988 0.8636 3.1122 1.8406

Table 2: MAE(×10−3) comparison with graph spatio-temporal benchmarks.
Burgers’ (nt = 10) Darcy Flow NS (nt = 1) NS (nt = 10)

ns 512 512 256 4096 16384 1024 4096 4096 1024 4096 4096 1024
n′t 10 40 20 1 1 1 10 40 20 10 40 20

DCRNN 2.6122 8.5880 4.6126 1.7629 OOM 1.8146 30.6756 88.3382 52.1290 8.7025 59.6602 27.1069
AGCRN 4.6667 15.6143 10.4900 1.7336 OOM 1.6938 OOM OOM 59.9393 OOM OOM 42.4197
GCGRU 1.6643 5.7653 3.1400 1.7403 OOM 1.7633 28.8537 85.9303 49.9352 6.3570 57.2493 21.3537
MPPDE 1.1271 4.1213 2.4554 0.5608 0.6384 0.6673 8.9810 54.2387 20.7453 5.4353 42.3057 17.5902
NFS 0.1085 0.1983 0.1634 0.1430 0.2379 0.1727 2.1992 4.7865 3.9178 0.9335 3.2768 1.8239

Performance comparison. In this part, for time-dependent PDEs, our target is to map the observed
physical quantities from initial condition u(X,T) ∈ Rns×nt , where T = {ti : ti < T}1≤i≤nt , to
quantities at some later time u(X,T ′) ∈ Rns×n′

t , where T ′ = {ti : T < ti < T ′}1≤i≤n′
t
. We set

the input timestamp number nt as 1 (initial state to future dynamics) and 10 (sequence to sequence),
and prediction horizon n′t as 10, 20 and 40 as short-, mid- and long-term settings. For Darcy Flows,
which are independent of time, we directly build an operator to map a to u. In equispaced scenarios,
the resolution is denoted by rd = ns, where d is the spatial dimension. In non-equispaced scenarios,

7

Under review as a conference paper at ICLR 2023

the spatial points number is denoted by ns. The comparison of benchmarks with or without equispace-
unnecessity are shown in Table. 1 and 2 respectively, and detailed results including KdV equations
with RMSE and standard deviations are given in Appendix. B.3. It can be concluded that (1) In
equispaced scenarios, the proposed NFS obtains the lowest error in most 1-d PDE settings, and in
solving 2-d PDEs, its superiority over other Vision Mixers are significant, with 42.85% improvements
on MAE according to the trials of NS (r = 64, nt = 10, n′t = 40). (2) In non-equispaced scenarios,
the evaluated graph spatio-temporal models’ performance is unsatisfactory, especially in NS equations.
In comparison, NFS achieves comparable high accuracy to the equispaced scenarios, for instance,
according to columns of NS (r = 64, nt = 10, n′t = 40) with (ns = 4096, nt = 10, n′t = 40). (3)
In some trials such as Burgers’ (nt = 1) in Table. B4 in Appendix. B.3, Vison Mixers including
FNO also suffer from non-convergence of loss; while NFS can still generate accurate predictions.
The explanation of the phenomenon will be our future work.

Figure 4: Visualization on non-equispaced NS equation: The training mesh (ns = 4096) differs from
the mesh in inference process (n′s = 8192). Appendix. B.4 gives more visualization.

Table 3: Results on NS equation: MAE(×10−3) of NFS and different variants of NFS on seen and
unseen meshes. ‘Flex + LN’ is the proposed NFS. ‘Flex’ represents the flexible interpolation layer
defined in Eq. (8), ‘LN’ is the Layer-Norm and ‘Gaus’ is the predefined Gaussian interpolation.
Appendix. B.5 gives details and results on other equations.

(ns = 4096, nt = 10, n′t = 10) (ns = 1024, nt = 10, n′t = 20) (ns = 4096, nt = 10, n′t = 40)

n′s Flex + LN Gaus + LN Flex +��LN Flex + LN Gaus + LN Flex +��LN Flex + LN Gaus + LN Flex +��LN

ns 0.9335 1.6341 1.2138 1.8239 2.1976 2.5119 3.2768 3.6422 5.6761
2ns 0.9731 2.8589 1.4882 2.3530 3.7465 7.0203 3.5439 3.9092 5.8975
3ns 1.1071 3.4513 1.6384 2.5179 5.7712 7.9177 3.6584 4.2102 6.6622
4ns 1.1015 3.4357 1.6975 2.5919 5.5990 7.1962 3.6608 4.2628 6.6951

Mesh-invariance evaluation. We use (u(X,T), u(X,T ′)) as the training set, and evaluate the
model’s performance of mesh-invariant inference ability onX′, where |X′| = n′s. X

′ is a different
mesh withX ⊆X′. The visualization results of NS (ns = 4096, n′t = 40) are shown in Fig. 4. For
a fixed n′s, we randomly sampled different X′ for 100 times, to get the mean errors and standard
deviations (given in Appendix. B.5) of different spatial meshes. We can conclude from Table. 3 that
(1) The errors on unseen meshes are larger than the errors on seen meshes, showing the overfitting
effects. However, the errors on unseen meshes are acceptable, since they are even lower than other
models’ prediction error on seen meshes. (2) Larger n′s leads to higher prediction error because a
large number of unseen points are likely to disturb the learned token mixing patterns. On the other
hand, NS (ns = 1024, n′t = 10) implies that small spatial point numbers of training meshes (ns)
hinder model’s generalizing ability on unseen meshes, due to excessive loss of spatial information.

4.3 ARCHITECTURE ANALYSIS

Two modules in NFS differ from FNO. The first is the interpolation layers at the beginning and
the end of the architecture. The second is the extra Layer-Norm in the FNO layers, which can be
applicable in NFS thanks to its fixed resampled equispaced points, but inapplicable to FNO for
preserving its resolution-invariance. We aim to figure out what makes NFS outperform FNO.

8

Under review as a conference paper at ICLR 2023

Effects of neighborhood sizes. It is widely believed that modeling the long-range dependency
among tokens brings improvements (Naseer et al., 2021; Tuli et al., 2021; Mao et al., 2021).
By contrast, some local kernel methods demonstrate their superiority (Yang et al., 2019; Liu
et al., 2021; Chu et al., 2021; Park & Kim, 2022). For this reason, we first conjecture that
the large neighborhood sizes in the interpolation layer are conducive to predictive performance.

3.1 4.3 4.8 5.1 6.0 7.0
log(Mean Neighborhood Number)

2.8

2.9

3.0

3.1

3.2

3.3

M
A

E

5.0000

3.1122

Out of Memory

MAE of PFNO
MAE of NFS

3.8

3.9

4.0

4.1

4.2

4.3

R
M

SE

6.5412

4.1950

RMSE of PFNO
RMSE of NFS

Figure 5: Effects of neighborhood sizes on NS
(r = 64, n′t = 10, n′t = 40).

Besides, as demonstrated in Sec. 3.3, the patchwise
embedding in Vision Mixers can be an analogy to
the resampling and interpolating, so we further es-
tablish a patchwise FNO (PFNO), with patch size
equaling to 4 and [4, 4] in 1-d and 2-d PDE problems,
equivalent to each resampled points aggregating 4
and 16 points in spatial domains in 1-d and 2-d sit-
uations respectively. Layer-Norm is stacked in the
FNO layers in PFNO, for a fair comparison. Re-
sults of Fig. 5 show that the long-range dependency
may even compromise the performance, as larger
mean neighborhood sizes often cause higher errors.
However, no matter how large is the neighbor size,
the NFS outperforms PFNO. More details are given
in Appendix. B.6. Therefore, we rule out the possibility of performance gains brought form large
neighborhood sizes and suppose that proposed kernel interpolation layers are the key, and is superior
to the simple patchwise embedding methods.

Benefits from learned interpolation kernel. Since the kernel interpolation is likely to hold
the key to improvements, we investigate the performance gains brought from adaptively learned
interpolation kernels over the predefined one (See Fig. 3). We use an inflexible Gaussian kernel
h(xj − xi) = β exp(−(xj − xi − µ)T (Γ)−1(xj − xi − µ)) as a predefined one as discussed
in Sec. 3.1, where Γ = diag(γ(1), . . . , γ(d)), and µ ∈ Rd, γ(1), . . . , γ(d), β ∈ R+ are learnable
parameters. By setting all the other modules and the interpolation neighborhood sizes as the same,
we compare performance on different meshes of the two interpolation kernels in Table. 3 (Gaus +
LN), where the adaptively learned kernels achieve better accuracy.

Benefits from normalization layers. Previous works demonstrated the normalization is necessary
for network architecture, for fast convergence and stable training (Dong et al., 2021; Ba et al.,
2016). A notable difference between NFS and FNO is that the Layer-Norm can be implemented
in NFS’s layers without disabling its discretization-invariance. The improvements brought from the
normalization layers are given in Table. 3 (Flex +��LN), where the performance gap is obvious on
unseen meshes.

4.4 NON-EQUISPACED VISION MIXERS

Since NFS can be regarded as a combination of our interpolation layers with the revised FNO, our
interpolation layers can also be implemented in the other Vision Mixers, so that these methods are
equipped with the ability to handle non-equispaced data. Details are given in Appendix. B.7. We find
that (1) From Table. B10 and Table. 1, the degeneration of performance is obvious in other Vision
Mixers. In comparison, FNO as intermediate equispaced layers, truncates the high frequency in its
channel mixing and retains the low frequency shared by both resampled and original signals, so the
loss of accuracy in non-equispaced scenarios is tiny in our NFS; (2) Although the performance on
unseen meshes is more stable in these non-equispaced Vision Mixers, the performance gap is still
large, according to Table. B10 and Table. 3.

4.5 COMPLEXITY COMPARISON

The discussed Fig. 2 shows time complexity of each method. Vision Mixers are the fastest, while
graph spatio-temporal models are far much slower. NFS falls in between because the interpolation
layer can be an analogy to a graph-message-passing layer (See Sec. 3.3), and the intermediate are
equispaced token-channel mixing layers of Vision Mixers’ structure. Memory usage shows storing
each point’s neighbors in the interpolation layer is very memory-consuming.

9

Under review as a conference paper at ICLR 2023

REFERENCES

James Atwood and Don Towsley. Diffusion-convolutional neural networks, 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
network for traffic forecasting, 2020.

Leah Bar and Nir Sochen. Unsupervised deep learning algorithm for pde-based forward and inverse
problems, 2019.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik.
Prediction of aerodynamic flow fields using convolutional neural networks. Computational
Mechanics, 64(2):525–545, jun 2019. doi: 10.1007/s00466-019-01740-0. URL https:
//doi.org/10.1007%2Fs00466-019-01740-0.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B. Kovachki, and Andrew M. Stuart. Model
reduction and neural networks for parametric pdes, 2021.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers, 2022.
URL https://arxiv.org/abs/2202.03376.

Umer I. Cheema, Gregory Nash, Rashid Ansari, and Ashfaq Khokhar. Memory-optimized re-gridding
architecture for non-uniform fast fourier transform. IEEE Transactions on Circuits and Systems I:
Regular Papers, 64(7):1853–1864, 2017. doi: 10.1109/TCSI.2017.2681723.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations, 2019.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE Transactions on
Neural Networks, 6(4):911–917, 1995. doi: 10.1109/72.392253.

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and
Chunhua Shen. Twins: Revisiting the design of spatial attention in vision transformers, 2021. URL
https://arxiv.org/abs/2104.13840.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering, 2017.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth, 2021. URL https://arxiv.org/abs/
2103.03404.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2020. URL https://arxiv.org/abs/2010.11929.

A. Dutt and V. Rokhlin. Fast fourier transforms for nonequispaced data, ii. Applied and Com-
putational Harmonic Analysis, 2(1):85–100, 1995. ISSN 1063-5203. doi: https://doi.org/10.
1006/acha.1995.1007. URL https://www.sciencedirect.com/science/article/
pii/S106352038571007X.

Weinan E and Bing Yu. The deep ritz method: A deep learning-based numerical algorithm for solving
variational problems, 2017.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry, 2017.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catanzaro.
Adaptive fourier neural operators: Efficient token mixers for transformers, 2021. URL https:
//arxiv.org/abs/2111.13587.

10

https://arxiv.org/abs/1607.06450
https://doi.org/10.1007%2Fs00466-019-01740-0
https://doi.org/10.1007%2Fs00466-019-01740-0
https://arxiv.org/abs/2202.03376
https://arxiv.org/abs/2104.13840
https://arxiv.org/abs/2103.03404
https://arxiv.org/abs/2103.03404
https://arxiv.org/abs/2010.11929
https://www.sciencedirect.com/science/article/pii/S106352038571007X
https://www.sciencedirect.com/science/article/pii/S106352038571007X
https://arxiv.org/abs/2111.13587
https://arxiv.org/abs/2111.13587

Under review as a conference paper at ICLR 2023

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pp. 481–490, New York, NY, USA, 2016. Associa-
tion for Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.2939738. URL
https://doi.org/10.1145/2939672.2939738.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989. ISSN 0893-6080. doi: https:
//doi.org/10.1016/0893-6080(89)90020-8. URL https://www.sciencedirect.com/
science/article/pii/0893608089900208.

Valerii Iakovlev, Markus Heinonen, and Harri Lähdesmäki. Learning continuous-time pdes from
sparse data with graph neural networks, 2020. URL https://arxiv.org/abs/2006.
08956.

Dhiraj D. Kalamkar, Joshua D. Trzaskoz, Srinivas Sridharan, Mikhail Smelyanskiy, Daehyun Kim,
Armando Manduca, Yunhong Shu, Matt A. Bernstein, Bharat Kaul, and Pradeep Dubey. High
performance non-uniform fft on modern x86-based multi-core systems. In 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, pp. 449–460, 2012. doi: 10.1109/
IPDPS.2012.49.

Srinidhi Kestur, Sungho Park, Kevin M. Irick, and Vijaykrishnan Narayanan. Accelerating the
nonuniform fast fourier transform using fpgas. In 2010 18th IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines, pp. 19–26, 2010. doi: 10.1109/FCCM.
2010.13.

YUEHAW KHOO, JIANFENG LU, and LEXING YING. Solving parametric PDE prob-
lems with artificial neural networks. European Journal of Applied Mathematics, 32(3):421–
435, jul 2020. doi: 10.1017/s0956792520000182. URL https://doi.org/10.1017%
2Fs0956792520000182.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces, 2021. URL http://tensorlab.cms.caltech.edu/users/anima/pubs/
GraphPDE_Journal.pdf.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting, 2018.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations, 2020a. URL https://arxiv.org/abs/2003.03485.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Multipole graph neural operator for parametric partial differential
equations, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations,
2020c. URL https://arxiv.org/abs/2010.08895.

Haitao Lin, Zhangyang Gao, Yongjie Xu, Lirong Wu, Ling Li, and Stan. Z. Li. Conditional local
convolution for spatio-temporal meteorological forecasting, 2021.

Haitao Lin, Guojiang Zhao, Lirong Wu, and Stan Z. Li. Stonet: A neural-operator-driven spatio-
temporal network, 2022. URL https://arxiv.org/abs/2204.08414.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows, 2021. URL
https://arxiv.org/abs/2103.14030.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3:218–229, 2021.

11

https://doi.org/10.1145/2939672.2939738
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://arxiv.org/abs/2006.08956
https://arxiv.org/abs/2006.08956
https://doi.org/10.1017%2Fs0956792520000182
https://doi.org/10.1017%2Fs0956792520000182
http://tensorlab.cms.caltech.edu/users/anima/pubs/GraphPDE_Journal.pdf
http://tensorlab.cms.caltech.edu/users/anima/pubs/GraphPDE_Journal.pdf
https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2204.08414
https://arxiv.org/abs/2103.14030

Under review as a conference paper at ICLR 2023

Xiaofeng Mao, Gege Qi, Yuefeng Chen, Xiaodan Li, Ranjie Duan, Shaokai Ye, Yuan He, and Hui Xue.
Towards robust vision transformer, 2021. URL https://arxiv.org/abs/2105.07926.

Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and
Ming-Hsuan Yang. Intriguing properties of vision transformers, 2021. URL https://arxiv.
org/abs/2105.10497.

Nicholas H. Nelsen and Andrew M. Stuart. The random feature model for input-output maps between
banach spaces, 2021.

Shaowu Pan and Karthik Duraisamy. Physics-informed probabilistic learning of linear embeddings
of nonlinear dynamics with guaranteed stability. SIAM Journal on Applied Dynamical Systems, 19
(1):480–509, Jan 2020. ISSN 1536-0040. doi: 10.1137/19m1267246. URL http://dx.doi.
org/10.1137/19M1267246.

Namuk Park and Songkuk Kim. How do vision transformers work?, 2022. URL https://arxiv.
org/abs/2202.06709.

C. Rader and N. Brenner. A new principle for fast fourier transformation. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 24(3):264–266, 1976. doi: 10.1109/TASSP.1976.
1162805.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for
image classification, 2021. URL https://arxiv.org/abs/2107.00645.

Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent odes for irregularly-sampled time
series, 2019.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks, 2016.

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375:1339–1364, dec 2018. doi: 10.1016/
j.jcp.2018.08.029. URL https://doi.org/10.1016%2Fj.jcp.2018.08.029.

Jonathan D. Smith, Kamyar Azizzadenesheli, and Zachary E. Ross. Eikonet: Solving the eikonal
equation with deep neural networks, 2020.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021. URL https:
//arxiv.org/abs/2105.01601.

Shikhar Tuli, Ishita Dasgupta, Erin Grant, and Thomas L. Griffiths. Are convolutional neural
networks or transformers more like human vision?, 2021. URL https://arxiv.org/abs/
2105.07197.

Matthew A. Wright and Joseph E. Gonzalez. Transformers are deep infinite-dimensional non-mercer
binary kernel machines, 2021. URL https://arxiv.org/abs/2106.01506.

Baosong Yang, Longyue Wang, Derek Wong, Lidia S. Chao, and Zhaopeng Tu. Convolutional
self-attention networks, 2019. URL https://arxiv.org/abs/1904.03107.

Çağatay Yıldız, Markus Heinonen, and Harri Lähdesmäki. Ode2vae: Deep generative second order
odes with bayesian neural networks, 2019.

12

https://arxiv.org/abs/2105.07926
https://arxiv.org/abs/2105.10497
https://arxiv.org/abs/2105.10497
http://dx.doi.org/10.1137/19M1267246
http://dx.doi.org/10.1137/19M1267246
https://arxiv.org/abs/2202.06709
https://arxiv.org/abs/2202.06709
https://arxiv.org/abs/2107.00645
https://doi.org/10.1016%2Fj.jcp.2018.08.029
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.07197
https://arxiv.org/abs/2105.07197
https://arxiv.org/abs/2106.01506
https://arxiv.org/abs/1904.03107

Under review as a conference paper at ICLR 2023

A METHODS

A.1 NOTATION

Symbol Used for

X A discretization of the domain D, which is used to train the model.
X′ A discretization of the domain D, which is used to evaluate the model.
x Coordinate of spatial point in D.
ns Number of spatial points of seen meshes for training, as |X| = ns.
n′s Number of spatial points of unseen meshes for inference, as |X′| = n′s.
nt Number of input timestamps as the number of input time-dependent

PDE’s initial states.
n′t Number of output timestamps as the number of output time-dependent

PDE’s future states.
a Input function, where a ∈ A(D;Rda) means for x ∈ D, a(x) ∈ Rda .

In time-dependent PDEs, a = u(·,T), where T = {ti}nt
i=1.

u Target function for approximation, where u ∈ U(D;Rdu) means for
x ∈ D, u(x) ∈ Rdu .

v Representation function, where v ∈ U(D;Rdv) means for x ∈ D,
v(x) ∈ Rdv , which is a function obtained by a lifter which project a
into a higher dimensional space.

Gθ Approximation operator, where Gθ(a) ≈ u.
µ The probability measure for sampling Spatial points x, which is sup-

ported on D.
C Cost functional as the minimum optimization target.
F Discrete Fourier transform for equispaced spatial points.
F−1 Discrete Inverse Fourier transform for equispaced spatial points.
P Project operator, with P (a)(x) ∈ Rdv .
Q Project operator, with Q(v)(x) ∈ Rdu .
vt t-th iterative representation function after kernel operators’ update.
Kφ Kernel integral operator mapping, which maps a to a bounded linear

operator, with parameter φ.
W Linear transform on the dv dimension (channel) of v(x) ∈ dv .
Rφ Fourier transform of a periodic kernel function, which is learnable

parameters in a single iterative process in FNO.
ChannelMix Channel-mixing operator as a linear transform in the dimensoion of

channel (dv).
TokenMix Token-mixing operator as a linear transform in the dimensoion of

spatial points (ns).
F̃ Proposed non-equispaced Fourier transform, where F̃ = (F ◦ H(a)).
ms Spatial points’ number on resampled equi-spaced points.
H Interpolation operator to interpolate the non-equispaced spatial points

on equispaced spatial grids.
τ Parameter in Gaussian interpolation kernels controlling smoothness of

the kernel.
µ Parameter in Gaussian interpolation kernels, as the mean of Gaussian

kernels.
Hη Interpolation operator mapping, where Hη(a) is an interpolation op-

erator used to map signals on the non-equispaced spatial points to
equispaced spatial grids.

H′ζ Interpolation operator mapping, where H′ζ(a) is a interpolation op-
erator used to map signals on the equispaced spatial points to non-
equispaced spatial grids.

N (x) Neighborhood of spatial point x.

Table A1: Glossary of Notations used in this paper.

13

Under review as a conference paper at ICLR 2023

A.2 GRAPH CONSTRUCTION

Neighborhood construction. Instead of using K-nearest neighborhood method, the neighborhood
system in the interpolation layer is constructed by ε-ball, because in equispace scenarios, there will
be multiple points as K-th nearest neighbor at the same time. For point x, its neighbor is defined
according to {

d(x,xi) ≤ ε xi ∈ N (x);

d(x,xi) > ε xi 6∈ N (x).
(10)

For given c defined in Sec. 3.2, we can restrict ε so that Ex∼µ[|N (x)|] < c log(ns).

A.3 PROOF OF THEOREM 3.1.

Our proof is mostly based on Chen & Chen (1995) and Kovachki et al. (2021). For notation simplicity,
in the proof, we directly writeHη(a) asHη as the linear operator.
Lemma A1. Let X be a Banach space, and U ⊆ X a compact set, and K ⊂ X a dense set.
Then, for any ε > 0, there exists a number n ∈ N, and a series of continuous, linear functionals
G1, G2, . . . , Gn ∈ C(U ;R), and elements ϕ1, . . . , ϕn ∈ K, such that

sup
u∈U
||v −

n∑
j=1

Gj(v)ϕj ||X ≤ ε (11)

The proof is given in Lemma 7. in Kovachki et al. (2021), and Theorem 3. and 4. for reference .
Theorem A2. Let D ⊆ Rd be compact domain. Let U be a separable Banach space of real-valued
functions on D, such that C(D,R) ⊆ U is dense. Suppose U = Lp(D;R) for any 1 < p < ∞.
ν is a probability measure supported on U and assume that, Ev∼ν ||v||U < ∞ for any v ∈ U . µ
is a probabilistic measure supported on D, which defines the inner product of Hilbert space U as
< f, g >U=

∫
D
f(x)g(x)dµ(x). Then, there exists a neural network hη : Rd × Rd → R whose

activation functions are of the Tauber-Wiener class, such that

||v −H(v)||U ≤ ε,
whereH(v)(x) =

∫
D
hη(x,y)v(y)dµ(y).

Proof. Since U is a Polish space, we can find a compact set K, such that ν(U \ K) ≤ ε. Therefore,
Lemma A1 can be applied, to find a number n ∈ N, a series of continuous linear functionals
Gj ∈ C(U ;R) and functions ϕj ∈ C(D;R) such that

sup
v∈K
||v −

n∑
j=1

Gj(v)ϕj ||U ≤ ε.

Denote Ĥn(v) =
∑n
j=1Gj(v)ϕj , and let 1 < q < ∞ be the Hölder conjugate of p. Since

U = Lp(D;R), by Reisz Representation Theorem, there exists functions gj ∈ Lq(D;R), such
that Gj(v) =

∫
D
v(x)gj(x)dµ(x) for j = 1, . . . , n and v ∈ Lp(D;R). By density of C(D;R) in

Lq(D;R), we can find functions ψ1, . . . , ψn ∈ C(D;R), such that

sup
j∈{1,...,n}

||ψj − gj ||Lq(D;R) ≤ ε/n.

Then, we define H̃n : Lp(D;R)→ C(D;R) by

H̃n(v) =

n∑
j=1

∫
D

ψj(y)v(y)dµ(y)ϕj(x).

For the universal approximation (density) (Hornik et al., 1989) of neural networks, we can find
a Multi-layer Feedforward network hη : Rd × Rd → R whose activation functions are of the
Tauber-Wiener class, such that

sup
x,y∈D

|hη(x,y)−
n∑
j=1

ψj(y)ϕj(x)| ≤ ε.

14

Under review as a conference paper at ICLR 2023

LetHη(x) =
∫
D
hη(x,y)v(y)dµ(y). Then, there exists a constant C1 > 0, such that

||Ĥn(v)−H(v)||Lp(D;R) ≤ C1(||Ĥn(v)− H̃n(v)||Lp(D;R) + ||H̃n(v)−H(v)||Lp(D;R)).

For the first term, there is a constant C2 > 0, such that

||Ĥn(v)− H̃n(v)||Lp(D;R) ≤ C2

n∑
j=1

||
∫
D

v(y)(gj(y)− ψj(y))dµ(y)ϕj ||Lp(D;R)

≤ C2

n∑
j=1

||v(y)||Lp(D;R)||gj(y)− ψj(y)||Lq(D;R)||ϕj ||Lp(D;R)

≤ C3ε||v(y)||Lp(D;R),

for some C3 > 0. And for the second term,

||H̃n(v)−H(v)||Lp(D;R) = ||
∫
D

v(y)(

n∑
j=1

ψj(y)ϕj(·)− hη(·,y))dµ(y)||Lp(D;R)

≤ |D|ε||v||Lp(D;R),

Therefore, there is a constant C > 0, such that∫
U
||Ĥn(v)− H̃n(v)||Udν(v) ≤ εCEv∼ν ||v||U

. Because of the assumption that Ev∼ν ||v||U <∞, and ε is arbitrary, then

||v −H(v)||U ≤ ||v − Ĥn(v)||U + ||Ĥn(v)−H(v)||U ,
the proof is complete.

Corollary A3. DefineHη(v) =
∫
D
hη(x− y,x, a(y))v(y)dµ(y), the interpolation operator can

also approximate v to any precision ε.

Proof. We use a one-layer neural network hη : D × D → R as an example, which is defined as
hη(x,y, a(y) = σ(

∑d
i=1 wx,ix

(i) + wy,iy
(i) + b). We can rewrite it as

hη = σ(

d∑
i=1

wx,i(x
(i) − y(i)) + (wy,i + wx,i)y

(i) +

da∑
j=1

wa,ja
(j)(y) + b),

where wa,j = 0.

Corollary A4. The Theorem A2 and Corollary A3 can be extended for v : D → Rdv , where dv > 1.

Proof. As v = (v(1), v(2), . . . , v(dv)), for each v(j), a single neural network can be used for approxi-
mation. Moreover, in implementation, we make hη fully-connected, to improve the expressivity.

Remark. As
∑

xi∈X v(xi)hη(x−xi,xi, a(xi)) is the unbiased estimation of Ey∼µ(hη(x,y)v(y)),
we use the Equation. (8) for the approximation.

B EXPERIMENTS

B.1 BENCHMARK METHOD DESCRIPTION

Vision Mixers. We provide a framework for vision mixers as PDE solvers, including VIT, MLP-
MIXER, FNET, GFN, FNO, PFNO and our NFS. The intermediate architecture of mixing layers
is shown in Fig. B1. The code of our framework will be released soon. And the resampling and
back-sampling methods are stacked before ‘Equispaced Input’ and ‘Equispaced Output’. In this
way, the description of the Vision Mixers included in our framework can be described by different
modules, as shown in Table. B1. All the trials on Vision Mixers set embedding size as 32, batch
size as 4, layer number of the intermediate equispaced mixing layers as 2. In FNO and PFNO, the
truncated Kmax is set as 16. The patch size of Vision Mixers with patchwise embedding are set as
[4, 2] in 1-d PDEs and [4, 4, 2] in 2-d PDEs. The interpolation layers in NFS are composed of one
layer of feed-forward network whose perceptron unit is equal to 4× embedding size of the model.

15

Under review as a conference paper at ICLR 2023

Token
Mixing

Channel
Mixing

Token
Demixing

Channel
Mixing Norm

Residual
Transform

ActivationEquispaced
Input

Equispaced
Output

Figure B1: The architecture of Vision Mixers.

Table B1: Description of Vison Mixers in the unifying framework module by module.
Modules VIT MLPMIXER FNET GFN FNO PFNO NFS

Resampling Patchwise
Embedding

Patchwise
Embedding

Patchwise
Embedding

Patchwise
Embedding Identity Patchwise

Embedding Interpolation

Token
Mixing Attention MLP Fourier Fourier Fourier Fourier Fourier

Channel
Mixing Linear Linear Linear Elementwise

Product
Low Frequency

MatMultiply
Low Frequency

MatMultiply
Low Frequency

MatMultiply

Token
Demixing Identity Identity Identity Inverse

Fourier
Inverse
Fourier

Inverse
Fourier

Inverse
Fourier

Channel
Mixing Identity Identity Identity Linear Identity Identity Identity

Normalization LayerNorm LayerNorm Complex
LayerNorm LayerNorm Identity LayerNorm LayerNorm

Residual Identity Identity Identity Identity 1x1 Conv 1x1 Conv 1x1 Conv

Activation Gelu Gelu Complex
Gelu Gelu Gelu Gelu Gelu

Back
Sampling

Linear+
Rearrange

Linear+
Rearrange

Linear+
Rearrange

Linear+
Rearrange Identity Linear+

Rearrange Interpolation

DeepONet Variants. Since vanilla DeepONet uses MLP as Branch Net, it cannot be implemented in
such a high-resolution dataset, because for a resolution like the trial (NS ns = 4096, nt = 10, n′t = 10
), DeepONet assigns each data point a weight parameter in a single MLP, leading the MLP’s parameter
number reaches O(n2

sn
2
t) ≈ 409602 in a single Branch Net, which is infeasible in practice. In the

original paper, the spatial point’s number in the experiments is set as 40, far less than in the recent
Neural Operator’s evaluation protocol.

One feasible alternative is to use other architecture to replace the original MLP, thus allowing
DeepONet to handle high-resolution data. For example, CNN and Vit. Therefore, we here conduct
further experiments on the three equations in the context, to evaluate DeepONet-U (using UNet as
the Branch Net) and DeepONet-V (using Vit as the Branch Net) as two variants of vanilla DeepONet
for comparison. Note that the architecture of variants of DeepONet are all limited to equispaced data.

Graph Spatio-Temporal Models. The evaluated graph spatio-temporal neural networks are based
on recurrent neural networks for dynamics modeling, where the spatial dependency is modeled by
graph neural networks. The spatial and temporal modules for AGCRN, DCRNN and GCGRU are
shown in Table. B2. MPPDE used different architecture, with the pushforward trick used for taining,
with rolling equaling 1 and time window equaling to 10 . All the trials on these graph spatio-tempral
models set embedding size as 64, except MPPDE as 128. Batch size is set as 4. When the graph
convolution needs multi-hop message-passing, we set the hop as 2. For MPPDE, the layer number of
GNNs is 6. The embedding dimension in AGCRN is set as 2.

Table B2: Description of different graph spatio-temporal models
Methods Spatial module Temporal module

GCGRU Seo et al. (2016) Cheb Conv Defferrard et al. (2017) GRU
DCRNN Li et al. (2018) Diff Conv Atwood & Towsley (2016) GRU
AGCRN Bai et al. (2020) Node Similarity Bai et al. (2020) GRU

16

Under review as a conference paper at ICLR 2023

B.2 DATA GENERATION

Burgers’ Equation. The initial condition u0(x) is generated according to u0 ∼ N(0.625(−∆ +
25I)−2) with periodic boundary conditions. ν is set as 0.01. x ∈ [0, 1] and t ∈ [0, 1]. The spatial
resolution is 1024, and time resolution is 200. The dataset generation follows FNO’s protocol, which
can be downloaded from its source code on official Github.

KdV Equation. The equation is written as

∂tu(x, t) + 3∂xu
2(x, t) + ∂3

xu(x, t) = 0, (12)

where x ∈ [0, 1]. The initial condition u0(x) is calculated as

u(x, 0) =

K∑
i=1

0.5ci cos(0.5
√
ci + bix− ai)

where ci ∼ N(0, σi), and ai, bi > 0. The spatial resolution is 1024. The dataset is generated by
scipy package, with fftpack.diff used as pesudo-differential method and odeint used as
forward Euler method.

Darcy Flow. The equation is written as

−∇(a(x)∇u(x)) = f(x) x ∈ (0, 1)2

u(x) = 0 x ∈ ∂[0, 1]2
(13)

The original resolution is 256× 256. a(x) is generated by Gaussian random field, and we directly
establish the operator to learn the mapping of a to u.

NS Equation. Our generation of NS Equation is based on FNO’s Appendix. A.3.3, with the forcing
is kept fixed. The original spatial resolution is 128× 128, and time resolution is 200.

B.3 COMPLETE RESULTS ON MODEL COMPARISON

Here we give complete results on the four Equations. Table. B3 give the performance comparison on
Darcy flow of both equispaced and non-equispaced scenarios. Table. B4 and B5 gives performance
comparison in equispaced scenarios on the other three time-dependent problems. Table. B6 and
B7 gives performance comparison in non-equispaced scenarios on the other three time-dependent
problems. In all the tasks except Darcy Flow, the depth of layer is set as 2, and kmax = 16 in both
NFS and FNO. However, we find in Darcy Flow, kmax should be set much larger, or the loss will
not decrease. In the reported results, kmax = 32, 64, 128 in Darcy Flow.

Table B3: Performance comparison on Darcy Flow.
MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Darcy Flow
(r = 64)

Darcy Flow
(r = 128)

Darcy Flow
(r = 256)

VIT 0.5073±0.0411 0.8468±0.0432 0.9865±0.0002 1.6195±0.0007 1.1078±0.0021 1.8444±0.0023

MLPMIXER 0.4970±0.0021 0.8228±0.0034 0.8909±0.0099 1.4221±0.0118 0.9125±0.0024 1.6459±0.0032

GFN 0.4739±0.0016 0.8345±0.0019 0.8659±0.0046 1.4237±0.0071 0.9618±0.0124 1.6139±0.0128

FNO 0.4289±0.0051 0.7740±0.0046 0.7086±0.0045 0.1324±0.0019 0.9075±0.0051 1.4940±0.0046

NFS 0.1497±0.0005 0.1962±0.0007 0.2254±0.0007 0.7245±0.0009 0.4216±0.0033 0.8578±0.0041

Darcy Flow
(ns = 1024)

Darcy Flow
(ns = 4096)

Darcy Flow
(ns = 16384)

DCRNN 1.8146±0.0060 2.6352±0.0029 1.7629±0.0003 2.5760±0.0001 OOM OOM
AGCRN 1.6938±0.0001 2.4440±0.0001 1.7336±0.0001 2.4167±0.0001 OOM OOM
GCGRU 1.7633±0.0001 2.5696±0.0001 1.7403±0.0001 2.5363±0.0001 OOM OOM
MPPDE 0.6673±0.0009 0.9290±0.0012 0.5608±0.0053 0.8424±0.0051 0.6384±0.0005 0.8748±0.0005

NFS 0.1727±0.0047 0.2311±0.0066 0.1430±0.0007 0.1914±0.0014 0.2379±0.0007 0.3489±0.0009

NFS fails to model the non-equispaced Burgers’ Equation when nt is set as 1, in which the perfor-
mance is far from it can achieve in equispaced scenarios. Such problem will be our future work.

17

Under review as a conference paper at ICLR 2023

Table B4: Performance comparison with Vision Mixer benchmarks on different equations (nt = 1).
Validation loss on Burgers’(nt = 1) of VIT, GFN, and FNO does not converge. The results show
that the early-stopping occurs in the begining of training.

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Vision Mixers Burgers’
(r = 512, n′t = 10)

Burgers’
(r = 512, n′t = 40)

Burgers’
(r = 1024, n′t = 20)

VIT 201.6539±0.5284 231.9138±0.8403 183.6696±0.3015 210.6237±0.6767 195.5858±0.7706 224.4712±1.2472

MLPMIXER 201.6547±0.0671 231.9163±0.0263 183.6535±0.0599 210.6160±0.0305 195.5960±0.0240 224.4791±0.0132

GFN 201.6557±0.9513 231.9122±0.9535 183.6674±0.4893 210.6165±0.4831 195.5918±0.0471 224.4736±0.0681

FNO 201.6527±1.1415 231.9119±1.6747 183.6696±0.3015 210.6299±0.4983 195.5902±0.9304 224.4723±0.9230

NFS 0.1806±0.0005 0.2669±0.0010 0.3570±0.0008 0.5340±0.0009 0.4344±0.0014 0.6092±0.0017

KdV
(r = 512, n′t = 10)

KdV
(r = 512, n′t = 40)

KdV
(r = 1024, n′t = 20)

VIT 0.2808±0.0006 0.3938±0.0009 0.3428±0.0012 0.6832±0.0016 0.3066±0.0003 0.5461±0.0003

MLPMIXER 0.2732±0.0054 0.4259±0.0088 0.3336±0.0045 0.5923±0.0081 0.2872±0.0005 0.5235±0.0006

GFN 0.2587±0.0032 0.3490±0.0056 0.3086±0.0223 0.5952±0.0338 0.2011±0.0074 0.3464±0.0063

FNO 0.2619±0.0069 0.3849±0.0107 0.5608±0.0053 0.8424±0.0051 0.3925±0.0079 0.4623±0.0087

NFS 0.2514±0.0008 0.3776±0.00011 0.4522±0.0013 0.6290±0.0022 0.2254±0.0007 0.0745±0.0010

NS
(r = 64, n′t = 10)

NS
(r = 64, n′t = 40)

NS
(r = 128, n′t = 20)

VIT 9.3797±0.0421 12.9291±0.0703 22.8565±0.0935 29.1130±0.1428 15.7398±0.0757 20.6927±0.0664

MLPMIXER 7.5246±0.0080 10.4762±0.0096 15.8632±0.0375 20.1522±0.0604 14.9360±0.0305 19.3268±0.0635

GFN 3.5524±0.0057 4.7071±0.0088 10.2250±0.0331 13.0451±0.0704 6.3976±0.00345 8.2685±0.297

FNO 3.3425±0.0007 5.2566±0.0008 8.9857±0.0010 14.0171±0.0023 4.4627±0.0004 6.3047±0.0004

NFS 1.7425±0.0017 2.2847±0.0022 4.7882±0.0066 6.1508±0.0042 2.6988±0.0005 3.5121±0.0006

Table B5: Performance comparison with Vision Mixer benchmarks on different equations (nt = 10).
MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Vision Mixers Burgers’
(r = 512, n′t = 10)

Burgers’
(r = 512, n′t = 40)

Burgers’
(r = 1024, n′t = 20)

VIT 0.5042±0.0114 0.7667±0.0225 2.4269±0.0288 3.7728±0.0431 1.5327±0.0314 2.4093±0.0408

MLPMIXER 0.1973±0.0070 0.2600±0.0097 0.4210±0.0084 0.5844±0.0101 0.3303±0.0077 0.4473±0.0086

GFN 0.2383±0.0082 0.3066±0.0114 0.4187±0.0079 0.5407±0.0090 0.3500±0.0062 0.4489±0.0081

FNO 0.0978±0.0019 0.1287±0.0023 0.1815±0.0009 0.2410±0.0011 0.1430±0.0009 0.1871±0.0010

NFS 0.0958±0.0015 0.1347±0.0022 0.1708±0.0006 0.2351±0.0009 0.1474±0.0026 0.1957±0.0034

KdV
(r = 512, n′t = 10)

KdV
(r = 512, n′t = 40)

KdV
(r = 1024, n′t = 20)

VIT 0.2066±0.0027 0.3525±0.0049 0.2376±0.0022 0.5521±0.0036 0.1897±0.0003 0.3725±0.0009

MLPMIXER 0.2152±0.0023 0.3686±0.0039 0.2497±0.0017 0.5400±0.0029 0.2062±0.0007 0.4429±0.0012

GFN 0.1530±0.0004 0.2607±0.0006 0.2691±0.0007 0.5451±0.0014 0.1984±0.0002 0.3869±0.0003

FNO 0.3230±0.0035 1.1105±0.0061 0.9605±0.0024 2.7500±0.0055 0.5929±0.0020 1.6473±0.0033

NFS 0.0678±0.0002 0.1214±0.0003 0.2709±0.0009 0.5122±0.0013 0.1576±0.0003 0.3114±0.0005

NS
(r = 64, n′t = 10)

NS
(r = 64, n′t = 40)

NS
(r = 128, n′t = 20)

VIT 3.9609±0.0101 6.0575±0.0250 12.3433±0.0342 16.5238±0.0415 9.3010±0.0234 14.0027±0.0380

MLPMIXER 3.1530±0.0049 4.4339±0.0067 7.9291±0.0038 10.4149±0.0066 7.7410±0.0037 10.1934±0.0082

GFN 1.7396±0.0016 2.3551±0.0028 5.4464±0.0023 7.2130±0.0032 3.1261±0.0026 4.1691±0.0047

FNO 2.4076±0.0017 3.2861±0.0024 7.6979±0.0035 10.6401±0.0056 3.7001±0.0034 5.0047±0.0072

NFS 0.8636±0.0008 1.2264±0.0011 3.1122±0.0020 4.1950±0.0037 1.8406±0.0003 2.5620±0.0005

18

Under review as a conference paper at ICLR 2023

Table B6: Performance comparison with graph spatio-temporal benchmarks (nt = 1).
Graph Spatio-

Temporal
Models

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Burgers’
(ns = 512, n′t = 10)

Burgers’
(ns = 256, n′t = 20)

Burgers’
(ns = 512, n′t = 40)

DCRNN 277.8393±0.0082 346.1716±0.0088 292.1712±0.0280 368.1883±0.0204 298.4096±0.0137 373.0938±0.0186

AGCRN 289.9780±0.0001 360.9834±0.0001 272.6697±0.3404 340.1351±0.5435 305.4976±0.2120 376.0804±0.2385

GCGRU 288.4507±0.0246 361.1175±0.0512 294.9075±0.0005 367.4703±0.0004 291.0365±0.0265 365.1668±0.0827

MPPDE 24.4997±0.0014 34.5123±0.0017 25.4357±0.0002 31.7015±0.0002 25.3311±0.0004 33.7808±0.0005

NFS 16.1860±0.0016 28.1504±0.0021 21.1634±0.0018 33.8976±0.0018 26.0818±0.0001 44.7962±0.0003

KdV
(ns = 512, n′t = 10)

KdV
(ns = 256, n′t = 20)

KdV
(r = 512, n′t = 40)

DCRNN 1.6855±0.0001 3.0875±0.0001 3.1267±0.0001 4.8662±0.0001 5.7387±0.0001 8.3752±0.0001

AGCRN 4.0753±0.0001 6.8943±0.0001 5.4107±0.0001 9.2333±0.0001 8.4438±0.0001 13.8677±0.0001

GCGRU 1.6554±0.0001 2.6839±0.0001 3.0677±0.0001 4.6557±0.0001 5.8745±0.0001 9.4528±0.0001

MPPDE 1.5452±0.0001 2.6774±0.0001 2.9929±0.0007 5.4582±0.0010 3.0101±0.0001 4.9946±0.0001

NFS 0.0816±0.0012 0.1512±0.0022 0.1576±0.0007 0.3114±0.0018 0.3210±0.0021 0.6873±0.0049

NS
(ns = 4096, n′t = 10)

NS
(ns = 1024, n′t = 20)

NS
(ns = 4096, n′t = 40)

DCRNN 30.6756±0.0001 41.7815±0.0001 52.1290±0.0138 69.7019±0.0032 88.3382±0.0864 119.5021±0.0055

AGCRN OOM OOM 59.9393±0.0001 79.0434±0.0001 OOM OOM
GCGRU 28.8537±0.0019 40.1215±0.0008 49.9352±0.0028 67.5623±0.0014 85.9303±0.0731 117.9925±0.0172

MPPDE 8.9810±0.0014 12.1595±0.0022 20.7453±0.0008 32.1098±0.0018 54.2387±0.0006 90.0190±0.0007

NFS 2.1992±0.0021 2.8280±0.0033 3.9178±0.0054 5.0182±0.0080 4.7865±0.0042 6.1384±0.0069

Table B7: Performance comparison with graph spatio-temporal benchmarks (nt = 10).
Graph Spatio-

Temporal
Models

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Burgers’
(ns = 512, n′t = 10)

Burgers’
(ns = 256, n′t = 20)

Burgers’
(ns = 512, n′t = 40)

DCRNN 2.6122±0.0014 3.8435±0.0019 4.6126±0.0015 6.8853±0.0033 8.5880±0.0020 12.7394±0.0037

AGCRN 4.6667±0.0001 6.2791±0.0001 10.4900±0.0009 13.9810±0.0022 15.6143±0.0002 21.0937±0.0001

GCGRU 1.6643±0.0002 2.5074±0.0003 3.1400±0.0010 4.8008±0.0019 5.7653±0.0021 8.9335±0.0028

MPPDE 1.1271±0.0004 1.8838±0.0007 2.4554±0.0003 4.4315±0.0006 4.1213±0.0006 6.1980±0.0009

NFS 0.1085±0.0016 0.1504±0.0021 0.1634±0.0018 0.2328±0.0018 0.1983±0.0001 0.2775±0.0003

KdV
(ns = 512, n′t = 10)

KdV
(ns = 256, n′t = 20)

KdV
(r = 512, n′t = 40)

DCRNN 2.3196±0.0001 4.1634±0.0001 3.4503±0.0005 5.7450±0.0003 4.9286±0.0010 8.3912±0.0008

AGCRN 3.9350±0.0001 6.1166±0.0001 5.6631±0.0001 8.1191±0.0001 8.2893±0.0002 11.5684±0.0003

GCGRU 1.6643±0.0001 2.5074±0.0001 3.4205±0.0001 5.6873±0.0001 2.5032±0.0002 5.4515±0.0003

MPPDE 1.4967±0.0003 2.6309±0.0002 2.9708±0.0027 5.3811±0.0050 2.4293±0.0006 4.9310±0.0005

NFS 0.0816±0.0012 0.1512±0.0022 0.1576±0.0007 0.3114±0.0018 0.3210±0.0021 0.6873±0.0049

NS
(ns = 4096, n′t = 10)

NS
(ns = 1024, n′t = 20)

NS
(ns = 4096, n′t = 40)

DCRNN 8.7025±0.0003 12.5238±0.0002 27.1069±0.0024 39.1259±0.0031 59.6602±0.0177 88.2946±0.0146

AGCRN OOM OOM 42.4197±0.0006 60.5375±0.0008 OOM OOM
GCGRU 6.3570±0.0001 9.7306±0.0002 21.3537±0.0026 32.9674±0.0033 57.2493±0.0085 84.1847±0.0106

MPPDE 5.4353±0.0041 7.8838±0.0037 17.5902±0.0013 25.9372±0.0016 42.3057±0.0066 76.3374±0.0069

NFS 0.9335±0.0011 1.3254±0.0012 1.8239±0.0012 2.5291±0.0008 3.2768±0.0026 4.3988±0.0009

19

Under review as a conference paper at ICLR 2023

B.4 MORE VISUALIZATION

Here we provide more visualization results on the three equations. See Fig. B2, Fig. B3 and Fig. B4.

0

10

20

30

40

t

0.00 0.25 0.50 0.75 1.00
x

0

10

20

30

40

t

0.00 0.25 0.50 0.75 1.00
x

0.00 0.25 0.50 0.75 1.00
x

0.00 0.25 0.50 0.75 1.00
x

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Ground Truth

Prediction

Figure B2: Visualization on equispaced Burgers’ equation.

0

10

20

30

40

t

0.00 0.25 0.50 0.75 1.00
x

0

10

20

30

40

t

0.00 0.25 0.50 0.75 1.00
x

0.00 0.25 0.50 0.75 1.00
x

0.00 0.25 0.50 0.75 1.00
x

0.3

0.2

0.1

0.0

0.1

0.2

Ground Truth

Prediction

Figure B3: Visualization on equispaced KdV equation.

20

Under review as a conference paper at ICLR 2023

Figure B4: Visualization on non-equispaced NS equation: The training mesh (ns = 4096 in upper-
left) is different from the meshes in inference process (n′s = 8192 in upper-right, n′s = 12288 in
lower-left and n′s = 16384 in lower-right).

21

Under review as a conference paper at ICLR 2023

B.5 MESH-INVARIANT EVALUATION

Table B8: Mesh-invariant performance of NFS on Burgers’ and KdV equations (nt = 10).
MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Burgers’
(ns = 512, nt = 10, n′t = 40)

KdV
(ns = 512, nt = 10, n′t = 40)

X 0.1983±0.0001 0.2775±0.0002 0.3210±0.0021 0.6873±0.0049

n′s = 1.3ns 0.2371±0.0034 0.3143±0.0041 0.3769±0.0030 0.7805±0.0077

n′s = 1.7ns 0.2898±0.0113 0.3742±0.0102 0.4084±0.0072 0.8419±0.0174

n′s = 2.0ns 0.3052±0.0098 0.4180±0.0100 0.4111±0.0042 0.8471±0.0074

Table B9: Performance of NFS with its variants of NS equations (nt = 10) on unseen meshes.
MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Flex + LN NS
(ns = 4096, n′t = 10)

NS
(ns = 1024, n′t = 20)

NS
(ns = 4096, n′t = 40)

X 0.9335±0.0011 1.3254±0.0012 1.8239±0.0012 2.5291±0.0008 3.2768±0.0026 4.3988±0.0009

n′s = 2ns 0.9731±0.0034 1.5042±0.0057 2.3530±0.0051 3.3320±0.0074 3.5439±0.0085 4.7904±0.0168

n′s = 3ns 1.1071±0.0021 1.5716±0.0038 2.5179±0.0089 3.5477±0.0125 3.6584±0.0180 4.8858±0.0246

n′s = 4ns 1.1015±0.0000 1.5627±0.0000 2.5919±0.0064 3.6526±0.0071 3.6608±0.0000 4.9521±0.0000

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Gaus + LN NS
(ns = 4096, n′t = 10)

NS
(ns = 1024, n′t = 20)

NS
(ns = 4096, n′t = 40)

X 1.6341±0.0034 2.1992±0.0042 2.1976 ±0.0065 3.0219±0.0090 3.6422±0.0026 5.0097±0.0039

n′s = 2ns 2.8589±0.0062 4.0562±0.0126 3.7465±0.0041 5.1308±0.0097 3.9092±0.0041 5.2402±0.0075

n′s = 3ns 3.4513±0.0168 4.5199±0.0377 5.7712±0.0123 5.7137±0.0199 4.2102±0.0082 5.5057±0.0138

n′s = 4ns 3.4357±0.0000 4.7382±0.0000 5.5990±0.0066 5.5958±0.0049 4.2628±0.0000 5.7679±0.0000

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Flex +��LN NS
(ns = 4096, n′t = 10)

NS
(ns = 1024, n′t = 20)

NS
(ns = 4096, n′t = 40)

X 1.2138±0.0030 1.7293±0.0047 2.5119±0.0036 3.4923±0.0058 4.2083±0.0037 5.6761±0.0092

n′s = 2ns 1.4882±0.0146 2.1681±0.0300 7.0203±0.0203 10.6096±0.0345 5.8975±0.0060 8.7704±0.0189

n′s = 3ns 1.6384±0.0088 2.4130±0.0169 7.9177±0.0059 11.9825±0.0118 6.6622±0.0063 9.5874±0.0131

n′s = 4ns 1.6975±0.0000 2.5008±0.0000 7.1962±0.0101 10.8860±0.0098 6.6951±0.0000 9.6334±0.0000

The mesh-invariant evaluation on Burgers’ and KDV Equations of NFS are given in Table. B8.
In Table. B8, when the spatial resolution is just 512, inference performance on unseen meshes
deteriorates. This result also validate our conclusion (2) in the third paragraph in Sec. 4.

Besides, we give a full evaluation on mesh-invairance of NFS in NS equation, with its variants as a
detailed results corresponding to Table. B9.

22

Under review as a conference paper at ICLR 2023

B.6 NEIGHBORHOOD SIZE’S EFFECTS

The effects of mean neighborhood size on the predictive performance on Burgers’ (ns =
512, nt = 10, n′t = 40) and KDV (ns = 512, nt = 10, n′t = 40) are shown in Fig. B5.

2.3 3.2 4.1 5.0 5.6 6.0
log(Mean Neighborhood Number)

0.15

0.18

0.21

M
A

E

0.2398

MAE of PFNO
MAE of NFS

0.20

0.23

0.26

R
M

SE

0.3130

RMSE of PFNO
RMSE of NFS

(a) Burgers’ (ns = 512, n′
t = 40).

2.3 3.2 4.1 5.0 5.6 6.0
log(Mean Neighborhood Number)

0.10

0.15

0.20

0.25

0.30

0.35

M
A

E

0.4869

MAE of PFNO
MAE of NFS

0.25

0.30

0.35

0.40

0.45

0.50

0.55

R
M

SE

0.8577

RMSE of PFNO
RMSE of NFS

(b) KdV (ns = 512, n′
t = 40).

Figure B5: The change of MAE and RMSE of NFS with the increase of neighborhood size on
Burgers’ (ns = 512, nt = 10, n′t = 40) and KdV (ns = 512, nt = 10, n′t = 40). PFNO is the
baseline.

B.7 INTERPOLATION WITH OTHER VISION MIXERS

We conduct experiments on non-equispaced NS equations with the combination of our interpolation
layers and other Vision Mixers to figure out if they can achieve camparable performance.

Table B10: Performance of different Vision Mixers combined with the interpolation layers in non-
equispaced scenarios on NS equations (nt = 10).

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

VIT NS
(ns = 4096, n′t = 10)

NS
(ns = 1024, n′t = 20)

NS
(ns = 4096, n′t = 40)

X OOM OOM OOM OOM OOM OOM

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

MLPMIXER
NS

(ns = 4096, n′t = 10)
NS

(ns = 1024, n′t = 20)
NS

(ns = 4096, n′t = 40)

X 6.1854±0.0012 8.1556±0.0018 9.4593±0.0028 12.1316±0.0022 10.1862±0.0045 13.1548±0.0051

n′s = 2ns 8.1573±0.0126 11.2258±0.0147 12.0706±0.0132 14.9460±0.0159 10.6003±0.0127 13.6872±0.0238

n′s = 3ns 8.1952±0.0088 11.3840±0.0171 14.9910±0.0094 17.8415±0.0110 10.5633±0.0140 13.6394±0.0147

n′s = 4ns 8.7773±0.0000 11.3313±0.0000 14.9517±0.0125 17.7857±0.0199 10.5414±0.0000 13.6106±0.0000

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

GFN NS
(ns = 4096, n′t = 10)

NS
(ns = 1024, n′t = 20)

NS
(ns = 4096, n′t = 40)

X 12.2373±0.0091 16.2902±0.0133 10.2768±0.0084 13.7852±0.0078 14.7765±0.0055 19.4872±0.0106

n′s = 2ns 13.7752±0.0164 18.3108±0.0181 17.7216±0.0225 24.1397±0.0371 15.9083±0.0235 21.0041±0.0256

n′s = 3ns 13.7054±0.0122 18.2192±0.0184 17.8238±0.0112 24.2783±0.0196 15.8986±0.0156 20.9943±0.0158

n′s = 4ns 13.7140±0.0000 18.2271±0.0000 17.8207±0.0105 24.2833±0.0141 15.8736±0.0000 20.9772±0.0000

23

Under review as a conference paper at ICLR 2023

B.8 COMPLEXITY COMPARISON

We here first give Table. B11 to show the complexity of time and memory of all the evaluated methods
on NS (r = 64, nt = 10, n′t = 40).

Table B11: comparison on complexity of the evaluated methods
Type Methods Time/Epoch Peak Memory Parameter Number

Graph Spatio-
Temporal Model

GCGRU 6′18′′ 8660MB 74945
DCRNN 9′38′′ 11120MB 148673
AGCRN OOM OOM OOM
MPPDE 10′54′′ 23333MB 622161

Vision Mixer

VIT 3′14′′ 32166MB 773217
MLPMIXER 1′12′′ 4421MB 79749953
GFN 48′′ 3296MB 1361729
FNO 27′′ 3748MB 6299425
PFNO 43′′ 3380MB 9742145
NFS 2′02′′ 31938MB 37891937

Table B12: Detailed complexity of NFS
Interpolation on Resampled Points

Neighbor Searching Kernel Calculation Weighted Summation
3522MB 3102MB 6884MB

Interpolation back on Original Points

Neighbor Searching Kernel Calculation Weighted Summation
2506MB 2754MB 6884MB

It demonstrates that our method has comparable efficiency to Vision Mixers. For the graph spatial-
temporal models, they suffer from the recurrent network structures and thus are extremely time-
consuming while the parameter number is small, limiting their flexibility.

Time. However, once we compare the used time in PFNO and NFS, we will find that the inter-
polation layers are considerably time-consuming. Another module that cost time complexity is the
normalization layer, as the original FNO does not include Layer-Norm in its architecture, but it is
stacked in PFNO. Theoretically, PFNO handles down-sampled grids in a low resolution, because
of the patchwise embedding. However, it takes more time than FNO. Therefore, we conclude that
the time complexity brought from Layer-Norm is very significant, but it is affordable because of the
performance improvements.

Memory. Besides, the operation of searching for each spatial point’s neighborhood and calculating
weighted summation in Eq. (9) and Eq. (10) are very memory-consuming. We test it on the same
experiment, and give the memory usage of different models in forward process, as shown in Table. B12.
The memory cost in backward process is 6902MB.

C EMPIRICAL OBSERVATION FOR THEOREM 3.1

In Sec. 3.2, Theorem 3.1 is proved to assure the expressivity of NFS. However, no further evidence
gives the assurance of the convergence of the kernel interpolation. Here we conduct empirical study
to give some clues.

We conduct experiments on NS equation with ns = 4096, nt = 10, n′t = 40. In a single trial, NFS is
trained with fixed meshes. We repeated the trials 10 times with different meshes, and then give the

24

Under review as a conference paper at ICLR 2023

one-v.s.-all deviations of the representation states calculated by

Diff =
1

90

10∑
i 6=j,i,j=1

1

ms, n′t
|| |Hi −Hj |
|Hi|+ |Hj |

||1,

where Hi is the representation states of the shape [
√
ms,
√
ms, n

′
t], and | · | is the element-wise

absolute value, and || · ||1 is the 1-norm of the matrix. If the Diff is small in the beginning and end, it
can be inferred that the interpolation kernel function converges to a similar mapping since the final
predictions are close to ground truth in these experiments, and the inputs are sampled from the same
instance of PDEs. We give the Diff before the first FNO and after the final of FNO layers in Table. C1.
The small values indicate that the trained model usually has similar representation states. Figure. C1
and C2 give visualizations of representation states obtained by one instance of NS equation in two
different trials. It indicates that the differences are getting smaller during the training.

Table C1: The defined Diff calculated by different epochs.
Epoch Diffbegin Diffend

0 0.0676 0.0978
500 0.0102 0.0353

(a) Representation states at the beginning of FNO layers in two trials of Epoch 0

(b) Representation states at the beginning of FNO layers in two trials of Epoch 500

Figure C1: Visualization on different representation states at the beginning of FNO layers.

25

Under review as a conference paper at ICLR 2023

(a) Representation states in the end of FNO layers in two trials of Epoch 0

(b) Representation states in the end of FNO layers in two trials of Epoch 500

Figure C2: Visualization on different representation states in the end of FNO layers.

As a result, we present the one-v.s.-all differences of different epochs in the training process, to
validate the convergence, as shown in Figure. C3.

0 100 200 300 400 500
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

D
iff

Diffbegin

Diffend

Figure C3: Convergence of Diff.

26

	Introduction
	Background and Related Work
	Problem Statement
	Discrete Fourier Transform
	Fourier Neural Operator
	Vision Mixer and Graph Spatio-Temporal Model
	Motivation

	Proposed Method
	Non-equispaced Fourier Transform
	Non-equispaced Fourier Neural PDE Solver
	Further Discussion

	Experiments
	Experiemntal Setup
	Numerical Experiments
	Architecture Analysis
	Non-equispaced Vision Mixers
	Complexity comparison

	Methods
	Notation
	Graph construction
	Proof of Theorem 3.1.

	Experiments
	Benchmark Method Description
	Data Generation
	Complete Results on Model Comparison
	More Visualization
	Mesh-invariant Evaluation
	Neighborhood Size's Effects
	Interpolation with Other Vision Mixers
	Complexity Comparison

	Empirical observation for Theorem 3.1

