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Abstract

We study sentiment analysis task where the
outcomes are mainly contributed by a few key
elements of the inputs. Motivated by the two-
streams hypothesis, we explore processing in-
put items and their weights separately by devel-
oping a neural architecture, named TraceNet,
to address this type of task. It not only learns
discriminative representations for the target
task via its encoders, but also traces key el-
ements at the same time via its locators. In
TraceNet, both encoders and locators are or-
ganized in a layer-wise manner, and a smooth-
ness regularization is employed between adja-
cent encoder-locator combinations. Moreover,
a sparsity constraint is enforced on locators
for tracing purposes and items are proactively
masked according to the item weights output by
locators. A major advantage of TraceNet is that
the outcomes are easier to understand, since
the most responsible parts of inputs are identi-
fied. Also, under the guidance of locators, it is
more robust to attacks due to its focus on key
elements and the proactive masking training
strategy. Experimental results show its effec-
tiveness for sentiment classification. Moreover,
we provide several case studies to demonstrate
its robustness and interpretability.

1 Introduction

As we all know, in sentiment analysis (SA)
task (Chen and Qian, 2019; Johnson and Zhang,
2015; Zhang et al., 2018), its overall sentiment
always depends to a large extent on a few key el-
ements of the inputs. For example. Given a short
movie review “deflated ending aside, there’s much
to recommend the film” obtained from the SST-5
dataset (detailel in later Section), the three words
deflated, much, and recommend have larger impacts
on the overall sentiment polarity of the review.
For this type of task, a lesson from attention
mechanism (Bahdanau et al., 2015; Vaswani et al.,
2017; Velickovic et al., 2018) is worthy of learn-
ing, where a weighted sum over all input items is

computed. Despite its effectiveness, this strategy
remains simple and could not fully reveal nor ex-
ploit the unique input structure, i.e., the existence of
a few key elements. To be specific, the input struc-
ture is implicitly modeled, it is unclear whether the
structure could enhance the model performance in
terms of both prediction effectiveness and, better
yet, other promising properties such as evaluation
and robustness. Moreover, the importance weights
of both attention models are dense, as a result of
which the key elements are not directly revealed.

To alleviate the above issues and answer the
questions, we take one step towards explicitly and
separately modeling the input structure. Explic-
itly means that we explicitly associate each input
item with a weight and update the weight during
the training. Separately means that the input items
and item weights are processed separately. Our
work is motivated by the two-streams hypothe-
sis (Goodale et al., 1992), which argues that the
neural processing of vision and hearing follows
two distinct streams. The ventral stream (a.k.a.
“what pathway”) is involved with the object and vi-
sual identification and recognition, while the dorsal
stream (or, “where pathway”) is involved with pro-
cessing the spatial location relative to the viewer
and with speech repetition. Such what-and-where
decomposition has already shown its usefulness in
computer vision (Jacobs et al., 1991; Simonyan and
Zisserman, 2014; Wang and Liu, 2018; Zhang et al.,
2021) and natural language processing (Zhang and
Goldwasser, 2019) tasks. We assume that the input
structure, i.e., input items and items importance,
can be processed by different pathways and then
be mutually reinforced. To implement this, we
explore a neural architecture TraceNet, what dis-
tinguishes TraceNet from previous ones is that it
not only learns discriminative representations, but
also traces the key input elements at the same time.

Central to TraceNet are a set of Encoder-Locator
Combinations (ELCs) such that encoders and loca-
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Figure 1: General architecture of TraceNet (hidden size and the number of input items are 2 and 3).

tors are responsible for the “what and where path-
ways” respectively. TraceNet adopts a layer-wise
architecture to organize ELCs, which enables en-
coders and locators to collaborate for mutual rein-
forcement between the two sub-tasks, i.e., repre-
sentation learning and structure revealing. More
specifically, locators utilize the hidden states of en-
coders to estimate item weights more accurately,
and encoders are in turn guided by the item weights
of locators to obtain more discriminative hidden
states. Also, there is a smoothness regularization
between the input item embeddings of adjacent
ELCs. This is to prevent the hidden states from
changing significantly and ensure the stabilization
of learning across layers. For the purpose of trac-
ing, TraceNet further enforces sparsity constraints
with increasing strength on locators. As a result,
locators are taught to identify a small subset of
key elements eventually. In addition, TraceNet em-
ploys a proactive masking strategy, i.e., proactively
masking key elements as indicated by item weights
during training. The strategy prevents TraceNet
from simply learning feature co-adaption and as-
sists it to resist attacks on key elements.

We exploit TraceNet for SA for evaluation. Ex-
perimental results on both sentence- and document-
level sentiment classification demonstrate the effec-
tiveness of TraceNet. Notably, despite the large-
scale training corpus and many engineering efforts
for the state-of-the-art pre-trained language models,
TraceNet built upon XLNet and RoBERTa could
further increase the classification accuracy over the
two. Then, we provide a case study by consider-
ing a total of eight types of attacks, and show that
TraceNet is more robust to attacks than XLNet, es-
pecially on hard attacks such as changing word

orders and dropping information. Moreover, our
qualitative analysis verifies that the revealed item
weights make the outcomes of TraceNet easier to
understand. Finally, we conduct several experi-
ments to analyse the parameters sensitivity, e.g.,
masking probability, number of stacked ELCs and
hidden state aggregation in each ELCs.

2 Related Work

Word embedding methods. GloVe (Pennington
et al., 2014) performs on aggregating global word-
word co-occurrence statistics from a corpus, it is
an unsupervised learning algorithm for obtaining
vector representations for words and is publicly
available. Deep learning models, e.g., convolu-
tional neural networks (CNNSs) and recurrent neu-
ral networks (RNNs), have already demonstrated
their superiority for the task (Cho et al., 2014; Choi
et al., 2018; Kim, 2014). Distinct from exploiting
the spatial and temporal patterns in texts as done
by CNNs and RNNs, TraceNet tackles the prob-
lem by considering the special input structure such
that the outcome is mainly contributed by a few
key elements. Recently, large-scale pre-trained lan-
guage models (Devlin et al., 2019; Liu et al., 2019;
Yang et al., 2019) have further led to significant
performance gains on a broad range of NLP tasks.
TraceNet is capable of integrating any such effort
through its embedding layer, and its contribution is
to further enhance model performance by tracing
key input elements. While we have also observed
a growing trend in aspect-level sentiment analy-
sis (Chen and Qian, 2019; Tang et al., 2019), in this
work, we only consider the problem at sentence-
level and document-level.

Two-stream hypothesis. (Zhang and Gold-



wasser, 2019) also borrows the notation from the
two-stream hypothesis, where the segmentation tag-
ging task is considered as a “where”-task (i.e., the
location of entities), and the sentiment recogni-
tion as the “what”-task. The difference between
TraceNet and (Zhang and Goldwasser, 2019) is
that we separately treat the input items and item
weights as “what” and “where”, while the latter
considers segmentation tagging and sentiment clas-
sification and “where” and “what”. Since there are
very different settings and evaluation datasets are
adopted, we do not include it as our baseline.

3 Proposed Model

3.1 General Architecture

As mentioned earlier, we consider SA task whose
input can be represented as a set of items, and the
corresponding outcome is mainly contributed by a
few key items. The proposed model is illustrated
in Fig. 1. TraceNet first transforms the item-based
input into continuous vector representation in its
embedding layer. The core of TraceNet is a set of
encoder-locator combinations (ELCs) organized
layer-by-layer, as shown in the vertical-middle part
of Fig. 1. Each ELC behaves as a basic functional
unit of TraceNet, which jointly learns task-specific
representation and reveals input structure. There
is a smoothness regularization between the input
item embeddings of adjacent ELCs. This is to pre-
vent the hidden states from changing significantly
and ensure the stabilization of learning across lay-
ers. TraceNet further places a sparsity constraint
on the vector to derive sparse item weights. More
specifically, it increases the strength of sparsity
constraints on locators layer-by-layer, as shown by
the varying colors of the sparsity components in
Fig. 1. Since it is generally more challenging to
identify key elements at the very beginning, the
weaker sparsity constraint allows locators to select
more key items for better error tolerance. Then
the proactive masking strategy masks some input
items (i.e., setting the corresponding embeddings to
zero) during training to boost model performance.
As we describe the masking process as “proactive”,
it differs from traditional random masking like in
BERT (Devlin et al., 2019) in the way that the prob-
ability of each item to be masked is given by its
item weight. At the top of TraceNet is a discrimi-
nator D built to derive the corresponding outcome
of every given input with respect to the task.

3.2 Input & Embedding Layer

For sentiment analysis, the input can be unified as
a sequence of words S = [w1, wa,...,wy,]. The
embedding layer could be any pre-trained language
models among which BERT (Devlin et al., 2019),
XLNet (Yang et al., 2019), and RoBERTa (Liu
et al., 2019) are the most effective and popular.
As such, each word w; € S is transformed into a
continuous vector representation x; € RY, d' rep-
resent the dimension of embeddings. By stacking
these word vectors, we also have the corresponding
word embedding matrix X € R"*¢".

3.3 ELC & Sparsity Constraint

For the k-th ELC (k < 1), given the masked Cj_1
and l;,_,, the encoder essentially derives the hid-
den state h;, € R? by summing over rows/words
in C;_1 such that those more important are given
higher weights. d is the dimension of vector repre-
sentations. To achieve this, it first computes a query
vector q = l;_lck_l, which encodes key items in
the current ELC based on the (sparse) item weights
in l,_1. Thus, the query vector g could determine
which words the encoder should pay more atten-
tion to. The hidden state hy, is then outputted by
an attention layer, given g as query and rows in
Cj—1 as keys/values. Formally, the unnormalized
attention weights are given by:

a(ge, €k 1) = o] tanh (W g, + Wi ek~ 4 b,

1)

where cf_l is the ¢-th row of Ci_q1. Again,

Whe e Rixd Withe ¢ RIxd 4 € R? and

bt € R? are learnable parameters in the k-th
ELC. Finally, hidden state hj, is computed by:
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As for the locator to update item weights, it
first obtains the dense item weight vector I} =
Cih;, € R" based on the masked Cj and new
hidden state h;. We adopt the sparsemax acti-
vation (Martins and Astudillo, 2016) to provide
sparsity for I}.. More specifically, sparsemax(l})
returns the euclidean projection of Ij. on the proba-
bility simplex of the n-dimensional space. By this
definition, the sparsity strength of sparsemax is not
controllable. On the other hand, the activation of
sparsemax depends ultimately on the absolute dif-
ference between the values in .. Intuitively, the
lower the absolute difference is, the less sparse the
activation is. We thus turn to linearly scaling 1},
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Figure 2: Implementation of a single ELC of TraceNet (n = 3, d’ = d = 2 and we omit the bias vectors for

computing Ci_1 and Cy,).
before computing sparsemax:
L-1
I}, = sparsemax(co(— Z wi+wi) 1), 3)
j=k

where L is the number of layers in TraceNet,
o(x) =1/(1 +exp(—z)) € (0,1) is the sigmoid
function, and w; € R (1 < j < L) are learnable
parameters. As can be easily verified, the linearly
scaling weights increase with the increment of k,
resulting in the increasing strength of sparsity.

3.4 Smoothness Regularization

After performing the proper transformation, the
word embedding matrix X is fed into encoders
and locators repetitively for further learning. To
obtain layer-wise smoothness, we adopt the adja-
cent weight tying approach (Madotto et al., 2018;
Sukhbaatar et al., 2015). Recall that each ELC re-
quires two distinct transformed word embedding
matrices that are used by the inside encoder and
locator, respectively. The main idea of adjacent
weight tying is to let every two adjacent ELCs share
one transformed word embedding matrix. For-
mally, the k-th ELC (k > 1) only requires a newly-
transformed matrix C, = XW}, + by, € R"*% (the
solid arrow from X to Cj in Fig. 2) and re-uses
Ci_1 = XW;_1 + by_1 € R from the pre-
vious ELC (the dashed arrow from X to C;_; in
Fig. 2). Here Wy, € R >4 and by, € R are learn-
able parameters in the k-th ELC. As for the first
ELC, two transformed word embedding matrices
are still required.

3.5 Proactive Masking

Before the core computation in the k-th ELC, Cj,_4
and Cy, are further pre-processed by masking with a
fixed probability. Take Cy_; as an example. With a
pre-defined probability P, s, Cr—1 will be masked.

We perform independent Bernoulli experiments for
each row of Cj_; and the success rate of each ex-
periment is equal to the corresponding item weight
inly_1 € R” (I;_; is an input to the k-th ELC).
Afterward, all rows that pass the Bernoulli exper-
iments will be replaced with zero. Note that this
step is only turned on during training. Figure 2
also illustrates an example of proactive masking.
Assume vector l,_; = [0.5,0,0.5]T and Py,,s = 1.
Thus, both C;_; and C; are to be masked. For
Cj_1, it turns out only the first row passes the ex-
periment, resulting in the first row being replaced
with zero. Similarly, the last row of Cj, passes the
experiment and we show the masked Cy, in Fig. 2.

3.6 Discriminator

We simply adopt a single layer feedforward neural
network given the mean of all hidden states to build
the discriminator:

D([w1,wa,...,wy]) = softmax((% Z hy )W 4 %)y,
k

@
Here, D([w1,wa, ..., wy]) is the predictive sen-
timent class of the input. Assuming the number
of classes being C', we have learnable parameters
Wdis e Rd4xC and b%s c RC.

4 Experiments

4.1 Experimental Setting

Datasets. We chose two datasets (SST-5 and
YELP-5) to evaluate our TraceNet.

e SST-5 (Stanford Sentiment Tree-
bank) (Socher et al., 2013) is a sentence-level
sentiment classification with five sentiment
classes (i.e., very negative, negative, neutral,
positive, very positive). We adopted the
provided data split, resulting in 8,544, 1,101,
and 2,210 sentences in the training, validation,



CNN-rand 39.46 LSTM 45.04 BERT 51.99 TraceNet™-X 54.86

SST-5 CNN-static  44.32 BiLSTM 45.18 XLNet 5520  TraceNet-X  55.55
CNN-nostat  44.62 GT-LSTM  40.70 | RoBERTa 56.49 TraceNet™-R 56.59
CNN-mulch  43.54 TraceNet-G  46.33 TraceNet-R 57.34

CNN-rand 56.38 LSTM 57.14 BERT 6342 TraceNet -X 66.89

YELP-5 CNN-static  56.30 BiLSTM 55.32 XLNet 66.75 TraceNet-X 67.23
CNN-nostat  57.24  GT-LSTM  53.38 | RoBERTa 67.66 TraceNet™-R 66.92
CNN-mulch  57.14 TraceNet-G  58.68 TraceNet-R 67.70

Table 1: Overall accuracy (%) of sentiment classification.

and test sets, respectively. The average length
of sentences is 18 words.

* YELP-5 is a document-level review corpus re-
leased in the Yelp Dataset Challenge 2015. It
has five sentiment classes and the full dataset
contains approximately 700,000 documents
with an average length of 155 tokens. Due
to GPU resource limitation, we only tested
on a random 5% sample of the data, resulting
in 32,500, 2,500, and 2,500 documents for
training, validation, and test, respectively.

Metric. We adopted the classification accuracy
(AcC) to evaluate performance, which is the frac-
tion of accurately classified test instances over all
test instances.

Baselines. We compared TraceNet with three
types of baselines and one simplified variant.

¢ CNN-rand, CNN-static, CNN-nostat, and
CNN-mulch are originally proposed in (Kim,
2014). They only differ in word vectors.

¢ LSTM, BIiLSTM, and GT-LSTM are RNN-
based baselines. We followed the implementa-
tion in (Cho et al., 2014) for Long Short-Term
Memory (LSTM) and bidirectional LSTM
(BiLSTM). Gumble Tree LSTM (Choi et al.,
2018) (GT-LSTM) is a tree-structured LSTM
which further composes task-specific tree
structures.

¢ BERT (Devlin et al., 2019), XLNet (Yang
et al., 2019), and RoBERTa (Liu et al., 2019)
are the state-of-the-art pre-trained language
models. TraceNet-G, TraceNet-X, TraceNet-
R represent that the output of GloVe, XLNet
and RoBERTa are treated as the input of
TraceNet, respectively.

Implementation details. We used the official
implementation of all baselines provided by au-
thors. Pre-trained word vectors for CNN and

RNN baselines were obtained from GloVe (Pen-
nington et al., 2014). We started with the hyper-
parameters recommended in the original papers and
finetuned them on the validation set. Since BERT,
XLNet, and RoBERTa were sensitive to batch
size, learning rate, and maximum length of words
on the small SST-5 data, we performed a grid
search over {16,32,64}, {2e—5,3e—b5,5e—5},
and {64, 128, 256 } for the three parameters, respec-
tively. Please refer to the supplementary material
for the concrete parameters. Code will be publicly
available when the paper is accepted.

4.2 Main Results

In the first set of tests, we evaluate the overall per-
formance of all approaches for sentiment classifi-
cation. All tests were repeated five times. The aver-
age results are reported in Table 1, where the letters
after TraceNet and TraceNet™ indicate the differ-
ent embedding methods, i.e., GloVe (G), XLNet (X),
and RoBERTa (R).

We first compare TraceNet-G with other CNN
and LSTM baselines. Except for CNN-rand, these
approaches all exploit GloVe for initializing word
embeddings and, therefore, can ensure a fair com-
parison. According to our tests, CNN and LSTM
are generally comparable in terms of sentiment clas-
sification. By explicitly revealing the input struc-
ture, TraceNet-G obtains more promising results,
which outperforms all approaches on the sentence-
level SST-5 data. On the document-level YELP-5
dataset, we find that LSTMs are better than CNNs
and TraceNet-G is the best among its counterparts.

The recent large-scale pre-trained language mod-
els significantly increase ACC compared with the
aforementioned approaches. We also observe a
consistent trend in their performance, such that
RoBERTa is the best, followed by XLNet and
BERT. Built upon these efforts, TraceNet is able
to further enhance the performance. Notably, it re-
fines the results of XLNet on both datasets. Finally,
by comparing TraceNet with TraceNet™, we find



Attack (a) XLNet  (b) TraceNet™-X  (c) TraceNet-X | (c)-(a) (c)-(b)
None 55.20 54.86 55.55 0.35 0.69
Replacement (cosine) 52.01 51.83 52.82% 0.81 0.99
Replacement (SWN) 51.11 51.46 52.34%* 1.23 0.88
Insertion 47.69 48.30 48.13 0.44 -0.17
Shuffle 41.69 43.61 43.95%* 2.25 0.33
Deletion 41.89 43.19 43.73%* 1.85 0.54
Reversing 41.67 42.99 43.39 1.72 0.40
Replacement (random) 37.94 39.28 39.06%* 1.12 -0.22
Concatenation 36.56 35.93 38.96 2.40 3.03

*/*%: significantly outperform XLNet at the 0.05/0.01 level, t-test

Table 2: Accuracy (%) of sentiment classification under attacks on SST-5.

that the proactive masking strategy consistently has
a positive impact. All the above results verify the
effectiveness of TraceNet.

4.3 Analysis Under Attacks

In the second set of tests, we evaluate the robust-
ness of TraceNet under attacks. Here we only
experiment on SST-5 as the sentiment polarities
of sentences are easier to be influenced given its
shorter average length. We also only consider
XLNet as the embedding method for TraceNet
since RoOBERTa (named from Robustly optimized
BERT approach) has been augmented with a lot of
robust designs including training the model longer,
with bigger batches over more data, training on
longer sequences, etc.!

We consider eight types of attacks. More specif-
ically, Reversing and Concatenation are deter-
ministic attacks such that the former reverses the
word orders and the latter concatenates all words
in a sentence into one (it will be sliced by XLNet
later). The rest are stochastic attacks. The ma-
nipulation of Shuffle is clear by its name. For
Insertion, Deletion, and Replacement (random),
we correspondingly modify one-third of words in
a sentence and the new words (if needed) are uni-
formly sampled following the negative sampling
method in word2vec (Mikolov et al., 2013). Fi-
nally, for (a) Replacement (cosine) and (b) Re-
placement (SWN), we replace one-third of words
in a sentence with (a) their closest terms evaluated
by cosine similarity between GloVe vectors and (b)
alternative terms within the same sentiment groups
in SentiWordNet (Baccianella et al., 2010). We
trained models on the original training data and
computed ACC on the attacked test data. The re-
sults are reported in Table 2 where the numbers
for stochastic attacks are the average results of ten

' As such, we admit that TraceNet does not exhibit obvi-
ously better robustness compared with RoBERTa.

independent runs on different attacked test sets.

The results are arranged in the ascending order
of the strength of attacks, as evaluated by the Acc
of TraceNet. Replacement (cosine) and Replace-
ment (SWN) are weaker than the other attacks
since the semantics or sentiment polarities of terms
are not substantially changed. The following is
Insertion which only introduces noises. Changing
word orders (Shuffle and Reversing) and dropping
information (Deletion) almost tie in terms of attack
strength. Finally, the hardest attacks are Replace-
ment (random) and Concatenation which both
remove original information and introduce noises.
Note that the above conclusions should be taken
under our attack setting.

Under all attacks, TraceNet is consistently bet-
ter than XLNet, further verifying the effectiveness
of explicitly revealing the input structure. More im-
portantly, the absolute improvement of TraceNet
over XLNet is higher than on original data (i.e.,
0.35%), which indicates that TraceNet is generally
more robust than XLNet under attacks. Since the
Acc decreases under attacks, the relative improve-
ment is indeed more prominent. Notably, TraceNet
is good at dealing with harder attacks such as chang-
ing word orders and dropping information.

Finally, comparing TraceNet with TraceNet™,
we can conclude that proactive masking boosts
model performance in general under attacks. It is
especially effective for Concatenation which will
drop much information after re-slicing by XLNet.
However, proactive masking could also lead to neg-
ative impacts under Insertion and Replacement
(random) since it is not optimized for dealing with
inserted noises.

4.4 Qualitative Analysis of Item Weights

We present a qualitative study on item weights esti-
mated in different ELC layer, shown in Fig. 3. The
two displayed movie reviews are retrieved from
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Figure 3: Illustration of item weights identified by TraceNet
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Figure 4: Impacts of masking probability P, .

the training set of SST-5, and their ground-truth
sentiment labels are positive and very-positive, re-
spectively. After training, TraceNet could produce
accurate labels for both. In the left case, the key
elements identified are deflated, there’s much, and
recommend, which make sense for the prediction
result. Also note that it remains difficult to find sen-
timent words at the beginning. However, the multi-
layer architecture enables TraceNet to eventually
refine key elements, e.g., deflated is identified at the
second layer and recommend is emphasized finally.
Similarly, TraceNet successfully finds the two key
words dark and funny for the right example after
learning layer-by-layer. To conclude, these item
weights generally make the outcomes of TraceNet
easier to understand.

4.5 Analysis on Parameter Sensitivity

4.5.1 Impacts of masking probability P,

To evaluate the impacts of P, s, we varied P,k
from O to 1 and computed the classification ac-

curacy of both TraceNet-X and TraceNet-R. We
omitted TraceNet-G since its effectiveness is not
comparable to TraceNet-X and TraceNet-R. Each
P,,s1. was tested 3 times with different seed, and the
averaged value is reported in Fig. 4. It turns out that
TraceNet is quite sensitive to parameter P, s, pos-
sibly due to the randomness in choosing sentences
to mask and choosing masked key items. However,
compared with turning off proactive masking (i.e.,
P51, = 0), our training strategy remains effective
within a certain range of P, e.g., [0.3,0.5] on
SST-5 and [0.05,0.4] on YELP-5.

4.5.2 Impacts of the number L of layers (i.e.,
ELCs)

To evaluate the impacts of L, we varied L from
1 to 6 and computed the AcC of both TraceNet-
X and TraceNet-R on the two datasets. Note that
the discriminator combines all the hidden states to
derive the final classification results. The results
are reported in Fig. 5.
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Figure 5: Impacts of the number L of layers (i.e., ELCs) on SST-5.

On the YELP-5 data, using more layers is gen-
erally more effective, while the impacts of L are
quite gentle. On the other hand, the impacts of L
are more complex on the SST-5 data. When L < 3,
the ACC of TraceNet increases with the increment
of L in general, indicating that TraceNet benefits
from its multi-layer organization which enables to
learn the input structure for multiple times. Further
increase L will lead to the decrease of ACC due
to over-fitting. Overall, L = 3 is a good choice
for TraceNet, and this conclusion holds for the two
variants of TraceNet.

4.5.3 Impacts of hidden state aggregation

To evaluate the impacts of hidden state aggregation,
we computed the AcC of both TraceNet-X and
TraceNet-R using single hidden states and all the
three hidden states on the two datasets. The results
are reported in Fig. 6.
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Figure 6: Impacts of hidden state aggregation.

For the case of using single hidden states, the
best ACC is obtained by the third and second hid-
den states on the SST-5 and YELP-5 data, respec-
tively. This is because of their different characteris-
tics of short and long text, i.e., the input structure of

short sentences is harder to reveal given the limited
information than long documents. Moreover, com-
bining hidden states from all layers is consistently
better than using single hidden states alone. We
guess that combining hidden states enables the dis-
criminator to directly supervise each layer in terms
of revealing the input structure, which enhances
the effectiveness.

5 Conclusion

In this paper, we proposed TraceNet to tackle senti-
ment analysis task such that the outcome is mainly
contributed by a few key elements of the input. The
idea behind TraceNet, which originates from the
two-streams hypothesis, is to learn discriminative
representations and reveal input structure simulta-
neously. To do this, TraceNet stacks several en-
coders and locators layer-by-layer, with increasing-
strength sparsity constraints on locators for trac-
ing key elements. Smoothness regularization is
enforced on adjacent encoder-locator layer to en-
sure the stabilization of learning across layers. In
addition, a proactive masking strategy is further
incorporated into TraceNet for robustness. We ap-
plied TraceNet for sentence- and document-level
sentiment analysis. The experiments demonstrated
the effectiveness of TraceNet. Moreover, consider-
ing a total of eight types of attacks, we verified the
better robustness of TraceNet in general. Finally,
our qualitative analysis of item weights showed the
advantage of TraceNet in terms interpretability.



References

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining.
In Proceedings of the International Conference on
Language Resources and Evaluation, LREC.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR.

Zhuang Chen and Tieyun Qian. 2019. Transfer cap-
sule network for aspect level sentiment classification.
In Proceedings of the 57th Conference of the Asso-
ciation for Computational Linguistics, ACL, pages
547-556.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Giilgehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP, pages 1724—
1734.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2018.
Learning to compose task-specific tree structures. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), pages 5094—
5101.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
Jor Computational Linguistics: Human Language

Technologies, NAACL-HLT, pages 4171-4186.

Melvyn A Goodale, A David Milner, et al. 1992. Sep-
arate visual pathways for perception and action.
Trends Neurosci., 15(1):20-5.

Robert A Jacobs, Michael I Jordan, and Andrew G Barto.
1991. Task decomposition through competition in
a modular connectionist architecture: The what and

where vision tasks. Cognitive science, 15(2):219—
250.

Rie Johnson and Tong Zhang. 2015. Effective use of
word order for text categorization with convolutional
neural networks. In NAACL HLT 2015, The 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 103—112.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP, pages 1746—1751.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,

Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Andrea Madotto, Chien-Sheng Wu, and Pascale Fung.
2018. Mem?2seq: Effectively incorporating knowl-
edge bases into end-to-end task-oriented dialog sys-
tems. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, ACL,
pages 1468-1478.

André F. T. Martins and Ramén Ferndndez Astudillo.
2016. From softmax to sparsemax: A sparse model
of attention and multi-label classification. In Pro-
ceedings of the 33nd International Conference on
Machine Learning, ICML, volume 48, pages 1614—
1623.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Advances in Neural Information Pro-
cessing Systems 26, pages 3111-3119.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP, pages 1532—-1543.

Karen Simonyan and Andrew Zisserman. 2014. Two-
stream convolutional networks for action recognition
in videos. arXiv preprint arXiv:1406.2199.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
EMNLP, pages 1631-1642.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances in

neural information processing systems, pages 2440—
2448.

Jialong Tang, Ziyao Lu, Jinsong Su, Yubin Ge, Lin-
feng Song, Le Sun, and Jiebo Luo. 2019. Progressive
self-supervised attention learning for aspect-level sen-
timent analysis. In Proceedings of the 57th Confer-
ence of the Association for Computational Linguis-
tics, ACL, pages 557-566.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph attention networks. In 6th International
Conference on Learning Representations, ICLR.



Jiangliu Wang and Yunhui Liu. 2018. Kinematics fea-
tures for 3d action recognition using two-stream cnn.
In 2018 13th World Congress on Intelligent Control
and Automation (WCICA), pages 1731-1736.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in Neural Infor-
mation Processing Systems 32, pages 5754-5764.

Lei Zhang, Shuai Wang, and Bing Liu. 2018. Deep
learning for sentiment analysis: A survey. Wiley
Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 8(4):e1253.

Ning Zhang, Jingen Liu, Ke Wang, Dan Zeng, and
Tao Mei. 2021. Robust visual object tracking with
two-stream residual convolutional networks. In 2020
25th International Conference on Pattern Recogni-
tion (ICPR), pages 4123-4130. IEEE.

Xiao Zhang and Dan Goldwasser. 2019. Sentiment tag-
ging with partial labels using modular architectures.
In Proceedings of the 57th Conference of the Asso-
ciation for Computational Linguistics, ACL, pages
579-590.

A Example Appendix
Appendix A: Experimental Details

We first present more experimental details for re-
produce purpose.

Public SST-5%2 and YELP-5° datasets are
choosed to evaluate our TraceNet architecture. We
adopted a third-party implementation* for CNN-
rand, CNN-static, CNN-nostat, CNN-mulch,
LSTM, and BiLSTM. The source code of GT-
LSTM had been released” by its authors. We imple-
mented BERT, XLNet, RoBERTa and TraceNet
based on Hugging Face library®. All hyper-
parameters of these approaches are summarized
in Table 1. Finally, when initializing word embed-
ding with pretrained vectors, glove.840B.300d’ is
adopted. Words not in the pretrained vectors vocab-
ulary are initialized randomly. We have attached
the code and data in the supplementary material.

All our tests were performed on Tesla V100
GPUs with 32GB memory. Model selection was

https://nlp.stanford.edu/sentiment/

*http://goo.gl/JyCnZqg

*nttps://github.com/andyweizhao/
capsule_text_classification

Shttps://github.com/jihunchoi/
unsupervised-treelstm

®https://github.com/huggingface/
transformers

"nttps://nlp.stanford.edu/projects/
glove/
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performed according to the performance on the val-
idation set such that the CNN- and LSTM-based
baselines were trained for a maximum of 20 epochs
and the rest approaches for a maximum of 10
epochs.


https://doi.org/10.1109/WCICA.2018.8630333
https://doi.org/10.1109/WCICA.2018.8630333
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https://nlp.stanford.edu/sentiment/
http://goo.gl/JyCnZq
https://github.com/andyweizhao/capsule_text_classification
https://github.com/andyweizhao/capsule_text_classification
https://github.com/jihunchoi/unsupervised-treelstm
https://github.com/jihunchoi/unsupervised-treelstm
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

Algorithm

SST-5

YELP-5

kernel size: {2,3,4,5}

kernel size: {2,3,4,5}

CNN-rand filter number (per kernel size): 300 filter number (per kernel size): 300
CNN-static Ly weight: 0.01 Ly weight: 0.01
CNN-nostat | batch size: 50 batch size: 50
CNN-mulch learning rate: 0.001 learning rate: 0.001
sequence length: 49 sequence length: 256
hidden state size: 100 hidden state size: 100 and 50, respectively
Lo weight: 0.01 Lo weight: 0.01
LSTM batch size: 50 batch size: 50
BiLSTM learning rate: 0.001 learning rate: 0.001
sequence length: 49 sequence length: 256
dropout: 0.5 dropout: 0.5
hidden state size: 300 hidden state size: 300
batch size: 64 batch size: 16
GT-LSTM learning rate: 1.0, halved every two epochs | learning rate: 1.0, halved every two epochs
sequence length: 49 sequence length: 256
dropout: 0.5 dropout: 0.5.
hidden state size: 768 hidden state size: 768
model type: base-cased, base and base, resp. | model type: base-cased, base and base, resp.
BERT weight decay: 0.1, 0.1, and 0.0, resp. weight decay: 0.1, 0.1 and 0.0, resp.
Adam epsilon: 1e-8, 1e-8, and le-6, resp. Adam epsilon: 1e-8, 1e-8, and le-6, resp.
XLNet L o
RoBERTa batch size: 32, 16, and 16, resp. batch size: 64
learning rate: Se-5, 2e-5, and 2e-5, resp. learning rate: Se-5, 2e-5, and 2e-5, resp.
sequence length: 128, 64, and 128, resp. sequence length: 256
dropout 0.1 dropout: 0.1
hld.den state sllze: 50, 128, and 512, resp. hidden state size: 500, 512, and 768, resp.
weight decay: 0.2, 0.1, and 0.0, respectively . . .
L weight decay: 0.2, 0.1, and 0.1, respectively
Adam epsilon: 1e-8, 1e-8, and le-6, resp. S
o . Adam epsilon: 1e-8
batch size: 64, 16, and 16, respectively o
TraceNet-G . batch size: 64
learning rate: le-3, 2e-5, and 2e-5, resp. . ]
TraceNet-X sequence lenath: 49. 64. and 128. respec- learning rate: le-3, 2e-5, and 2e-5, resp.
TraceNet-R sed gt 42, 6%, - resp sequence length: 256

tively

dropout: 0.2, 0.3, and 0.1, respectively
Pr.sx: 0.05, 0.2 and 0.3, respectively
number L of layers: 3

dropout: 0.2, 0.1, and 0.1, respectively.
Prosk: 0.05, 0.05 and 1.0, respectively
number L of layers: 3

Table 3: Hyper-parameters setting. (49 refers to the maximum sentence length of SST-5.)
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