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Abstract
We study sentiment analysis task where the001
outcomes are mainly contributed by a few key002
elements of the inputs. Motivated by the two-003
streams hypothesis, we explore processing in-004
put items and their weights separately by devel-005
oping a neural architecture, named TraceNet,006
to address this type of task. It not only learns007
discriminative representations for the target008
task via its encoders, but also traces key el-009
ements at the same time via its locators. In010
TraceNet, both encoders and locators are or-011
ganized in a layer-wise manner, and a smooth-012
ness regularization is employed between adja-013
cent encoder-locator combinations. Moreover,014
a sparsity constraint is enforced on locators015
for tracing purposes and items are proactively016
masked according to the item weights output by017
locators. A major advantage of TraceNet is that018
the outcomes are easier to understand, since019
the most responsible parts of inputs are identi-020
fied. Also, under the guidance of locators, it is021
more robust to attacks due to its focus on key022
elements and the proactive masking training023
strategy. Experimental results show its effec-024
tiveness for sentiment classification. Moreover,025
we provide several case studies to demonstrate026
its robustness and interpretability.027

1 Introduction028

As we all know, in sentiment analysis (SA)029

task (Chen and Qian, 2019; Johnson and Zhang,030

2015; Zhang et al., 2018), its overall sentiment031

always depends to a large extent on a few key el-032

ements of the inputs. For example. Given a short033

movie review “deflated ending aside, there’s much034

to recommend the film” obtained from the SST-5035

dataset (detailel in later Section), the three words036

deflated, much, and recommend have larger impacts037

on the overall sentiment polarity of the review.038

For this type of task, a lesson from attention039

mechanism (Bahdanau et al., 2015; Vaswani et al.,040

2017; Velickovic et al., 2018) is worthy of learn-041

ing, where a weighted sum over all input items is042

computed. Despite its effectiveness, this strategy 043

remains simple and could not fully reveal nor ex- 044

ploit the unique input structure, i.e., the existence of 045

a few key elements. To be specific, the input struc- 046

ture is implicitly modeled, it is unclear whether the 047

structure could enhance the model performance in 048

terms of both prediction effectiveness and, better 049

yet, other promising properties such as evaluation 050

and robustness. Moreover, the importance weights 051

of both attention models are dense, as a result of 052

which the key elements are not directly revealed. 053

To alleviate the above issues and answer the 054

questions, we take one step towards explicitly and 055

separately modeling the input structure. Explic- 056

itly means that we explicitly associate each input 057

item with a weight and update the weight during 058

the training. Separately means that the input items 059

and item weights are processed separately. Our 060

work is motivated by the two-streams hypothe- 061

sis (Goodale et al., 1992), which argues that the 062

neural processing of vision and hearing follows 063

two distinct streams. The ventral stream (a.k.a. 064

“what pathway”) is involved with the object and vi- 065

sual identification and recognition, while the dorsal 066

stream (or, “where pathway”) is involved with pro- 067

cessing the spatial location relative to the viewer 068

and with speech repetition. Such what-and-where 069

decomposition has already shown its usefulness in 070

computer vision (Jacobs et al., 1991; Simonyan and 071

Zisserman, 2014; Wang and Liu, 2018; Zhang et al., 072

2021) and natural language processing (Zhang and 073

Goldwasser, 2019) tasks. We assume that the input 074

structure, i.e., input items and items importance, 075

can be processed by different pathways and then 076

be mutually reinforced. To implement this, we 077

explore a neural architecture TraceNet, what dis- 078

tinguishes TraceNet from previous ones is that it 079

not only learns discriminative representations, but 080

also traces the key input elements at the same time. 081

Central to TraceNet are a set of Encoder-Locator 082

Combinations (ELCs) such that encoders and loca- 083

1



Figure 1: General architecture of TraceNet (hidden size and the number of input items are 2 and 3).

tors are responsible for the “what and where path-084

ways” respectively. TraceNet adopts a layer-wise085

architecture to organize ELCs, which enables en-086

coders and locators to collaborate for mutual rein-087

forcement between the two sub-tasks, i.e., repre-088

sentation learning and structure revealing. More089

specifically, locators utilize the hidden states of en-090

coders to estimate item weights more accurately,091

and encoders are in turn guided by the item weights092

of locators to obtain more discriminative hidden093

states. Also, there is a smoothness regularization094

between the input item embeddings of adjacent095

ELCs. This is to prevent the hidden states from096

changing significantly and ensure the stabilization097

of learning across layers. For the purpose of trac-098

ing, TraceNet further enforces sparsity constraints099

with increasing strength on locators. As a result,100

locators are taught to identify a small subset of101

key elements eventually. In addition, TraceNet em-102

ploys a proactive masking strategy, i.e., proactively103

masking key elements as indicated by item weights104

during training. The strategy prevents TraceNet105

from simply learning feature co-adaption and as-106

sists it to resist attacks on key elements.107

We exploit TraceNet for SA for evaluation. Ex-108

perimental results on both sentence- and document-109

level sentiment classification demonstrate the effec-110

tiveness of TraceNet. Notably, despite the large-111

scale training corpus and many engineering efforts112

for the state-of-the-art pre-trained language models,113

TraceNet built upon XLNet and RoBERTa could114

further increase the classification accuracy over the115

two. Then, we provide a case study by consider-116

ing a total of eight types of attacks, and show that117

TraceNet is more robust to attacks than XLNet, es-118

pecially on hard attacks such as changing word119

orders and dropping information. Moreover, our 120

qualitative analysis verifies that the revealed item 121

weights make the outcomes of TraceNet easier to 122

understand. Finally, we conduct several experi- 123

ments to analyse the parameters sensitivity, e.g., 124

masking probability, number of stacked ELCs and 125

hidden state aggregation in each ELCs. 126

2 Related Work 127

Word embedding methods. GloVe (Pennington 128

et al., 2014) performs on aggregating global word- 129

word co-occurrence statistics from a corpus, it is 130

an unsupervised learning algorithm for obtaining 131

vector representations for words and is publicly 132

available. Deep learning models, e.g., convolu- 133

tional neural networks (CNNs) and recurrent neu- 134

ral networks (RNNs), have already demonstrated 135

their superiority for the task (Cho et al., 2014; Choi 136

et al., 2018; Kim, 2014). Distinct from exploiting 137

the spatial and temporal patterns in texts as done 138

by CNNs and RNNs, TraceNet tackles the prob- 139

lem by considering the special input structure such 140

that the outcome is mainly contributed by a few 141

key elements. Recently, large-scale pre-trained lan- 142

guage models (Devlin et al., 2019; Liu et al., 2019; 143

Yang et al., 2019) have further led to significant 144

performance gains on a broad range of NLP tasks. 145

TraceNet is capable of integrating any such effort 146

through its embedding layer, and its contribution is 147

to further enhance model performance by tracing 148

key input elements. While we have also observed 149

a growing trend in aspect-level sentiment analy- 150

sis (Chen and Qian, 2019; Tang et al., 2019), in this 151

work, we only consider the problem at sentence- 152

level and document-level. 153

Two-stream hypothesis. (Zhang and Gold- 154
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wasser, 2019) also borrows the notation from the155

two-stream hypothesis, where the segmentation tag-156

ging task is considered as a “where”-task (i.e., the157

location of entities), and the sentiment recogni-158

tion as the “what”-task. The difference between159

TraceNet and (Zhang and Goldwasser, 2019) is160

that we separately treat the input items and item161

weights as “what” and “where”, while the latter162

considers segmentation tagging and sentiment clas-163

sification and “where” and “what”. Since there are164

very different settings and evaluation datasets are165

adopted, we do not include it as our baseline.166

3 Proposed Model167

3.1 General Architecture168

As mentioned earlier, we consider SA task whose169

input can be represented as a set of items, and the170

corresponding outcome is mainly contributed by a171

few key items. The proposed model is illustrated172

in Fig. 1. TraceNet first transforms the item-based173

input into continuous vector representation in its174

embedding layer. The core of TraceNet is a set of175

encoder-locator combinations (ELCs) organized176

layer-by-layer, as shown in the vertical-middle part177

of Fig. 1. Each ELC behaves as a basic functional178

unit of TraceNet, which jointly learns task-specific179

representation and reveals input structure. There180

is a smoothness regularization between the input181

item embeddings of adjacent ELCs. This is to pre-182

vent the hidden states from changing significantly183

and ensure the stabilization of learning across lay-184

ers. TraceNet further places a sparsity constraint185

on the vector to derive sparse item weights. More186

specifically, it increases the strength of sparsity187

constraints on locators layer-by-layer, as shown by188

the varying colors of the sparsity components in189

Fig. 1. Since it is generally more challenging to190

identify key elements at the very beginning, the191

weaker sparsity constraint allows locators to select192

more key items for better error tolerance. Then193

the proactive masking strategy masks some input194

items (i.e., setting the corresponding embeddings to195

zero) during training to boost model performance.196

As we describe the masking process as “proactive”,197

it differs from traditional random masking like in198

BERT (Devlin et al., 2019) in the way that the prob-199

ability of each item to be masked is given by its200

item weight. At the top of TraceNet is a discrimi-201

nator D built to derive the corresponding outcome202

of every given input with respect to the task.203

3.2 Input & Embedding Layer 204

For sentiment analysis, the input can be unified as 205

a sequence of words S = [w1, w2, . . . , wn]. The 206

embedding layer could be any pre-trained language 207

models among which BERT (Devlin et al., 2019), 208

XLNet (Yang et al., 2019), and RoBERTa (Liu 209

et al., 2019) are the most effective and popular. 210

As such, each word wi ∈ S is transformed into a 211

continuous vector representation xi ∈ Rd′ , d′ rep- 212

resent the dimension of embeddings. By stacking 213

these word vectors, we also have the corresponding 214

word embedding matrix X ∈ Rn×d′ . 215

3.3 ELC & Sparsity Constraint 216

For the k-th ELC (k < 1), given the masked Ck−1 217
and lk−1, the encoder essentially derives the hid- 218

den state hk ∈ Rd by summing over rows/words 219
in Ck−1 such that those more important are given 220
higher weights. d is the dimension of vector repre- 221
sentations. To achieve this, it first computes a query 222
vector qk = l⊺k−1Ck−1, which encodes key items in 223

the current ELC based on the (sparse) item weights 224
in lk−1. Thus, the query vector qk could determine 225
which words the encoder should pay more atten- 226
tion to. The hidden state hk is then outputted by 227
an attention layer, given qk as query and rows in 228
Ck−1 as keys/values. Formally, the unnormalized 229
attention weights are given by: 230

a(qk, c
k−1
i ) = v⊺

k tanh(W
att,q
k qk + Watt,c

k ck−1
i + battk ),

(1) 231

where ck−1
i is the i-th row of Ck−1. Again, 232

Watt,q
k ∈ Rd×d, Watt,c

k ∈ Rd×d, vk ∈ Rd and 233

battk ∈ Rd are learnable parameters in the k-th 234

ELC. Finally, hidden state hk is computed by: 235

hk =
∑
i

exp(a(qk, c
k−1
i ))∑

j exp(a(qk, c
k−1
j ))

ck−1
i . (2) 236

As for the locator to update item weights, it 237

first obtains the dense item weight vector l′k = 238

Ckhk ∈ Rn based on the masked Ck and new 239

hidden state hk. We adopt the sparsemax acti- 240

vation (Martins and Astudillo, 2016) to provide 241

sparsity for l′k. More specifically, sparsemax(l′k) 242

returns the euclidean projection of l′k on the proba- 243

bility simplex of the n-dimensional space. By this 244

definition, the sparsity strength of sparsemax is not 245

controllable. On the other hand, the activation of 246

sparsemax depends ultimately on the absolute dif- 247

ference between the values in l′k. Intuitively, the 248

lower the absolute difference is, the less sparse the 249

activation is. We thus turn to linearly scaling l′k 250
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Figure 2: Implementation of a single ELC of TraceNet (n = 3, d′ = d = 2 and we omit the bias vectors for
computing Ck−1 and Ck).

before computing sparsemax:251

lk = sparsemax(σ(−
L−1∑
j=k

w2
j + w2

L) · l′k), (3)252

where L is the number of layers in TraceNet,253

σ(x) = 1/(1 + exp(−x)) ∈ (0, 1) is the sigmoid254

function, and wj ∈ R (1 ≤ j ≤ L) are learnable255

parameters. As can be easily verified, the linearly256

scaling weights increase with the increment of k,257

resulting in the increasing strength of sparsity.258

3.4 Smoothness Regularization259

After performing the proper transformation, the260

word embedding matrix X is fed into encoders261

and locators repetitively for further learning. To262

obtain layer-wise smoothness, we adopt the adja-263

cent weight tying approach (Madotto et al., 2018;264

Sukhbaatar et al., 2015). Recall that each ELC re-265

quires two distinct transformed word embedding266

matrices that are used by the inside encoder and267

locator, respectively. The main idea of adjacent268

weight tying is to let every two adjacent ELCs share269

one transformed word embedding matrix. For-270

mally, the k-th ELC (k > 1) only requires a newly-271

transformed matrix Ck = XWk + bk ∈ Rn×d (the272

solid arrow from X to Ck in Fig. 2) and re-uses273

Ck−1 = XWk−1 + bk−1 ∈ Rn×d from the pre-274

vious ELC (the dashed arrow from X to Ck−1 in275

Fig. 2). Here Wk ∈ Rd′×d and bk ∈ Rd are learn-276

able parameters in the k-th ELC. As for the first277

ELC, two transformed word embedding matrices278

are still required.279

3.5 Proactive Masking280

Before the core computation in the k-th ELC, Ck−1281

and Ck are further pre-processed by masking with a282

fixed probability. Take Ck−1 as an example. With a283

pre-defined probability Pmsk, Ck−1 will be masked.284

We perform independent Bernoulli experiments for 285

each row of Ck−1 and the success rate of each ex- 286

periment is equal to the corresponding item weight 287

in lk−1 ∈ Rn (lk−1 is an input to the k-th ELC). 288

Afterward, all rows that pass the Bernoulli exper- 289

iments will be replaced with zero. Note that this 290

step is only turned on during training. Figure 2 291

also illustrates an example of proactive masking. 292

Assume vector lk−1 = [0.5, 0, 0.5]⊺ and Pmsk = 1. 293

Thus, both Ck−1 and Ck are to be masked. For 294

Ck−1, it turns out only the first row passes the ex- 295

periment, resulting in the first row being replaced 296

with zero. Similarly, the last row of Ck passes the 297

experiment and we show the masked Ck in Fig. 2. 298

3.6 Discriminator 299

We simply adopt a single layer feedforward neural 300
network given the mean of all hidden states to build 301
the discriminator: 302

D([w1, w2, . . . , wn]) = softmax((
1

k

∑
k

hk)Wdis + bdis).

(4) 303

Here, D([w1, w2, . . . , wn]) is the predictive sen- 304

timent class of the input. Assuming the number 305

of classes being C, we have learnable parameters 306

Wdis ∈ Rd×C and bdis ∈ RC . 307

4 Experiments 308

4.1 Experimental Setting 309

Datasets. We chose two datasets (SST-5 and 310

YELP-5) to evaluate our TraceNet. 311

• SST-5 (Stanford Sentiment Tree- 312

bank) (Socher et al., 2013) is a sentence-level 313

sentiment classification with five sentiment 314

classes (i.e., very negative, negative, neutral, 315

positive, very positive). We adopted the 316

provided data split, resulting in 8,544, 1,101, 317

and 2,210 sentences in the training, validation, 318
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SST-5

CNN-rand 39.46 LSTM 45.04 BERT 51.99 TraceNet−-X 54.86
CNN-static 44.32 BiLSTM 45.18 XLNet 55.20 TraceNet-X 55.55
CNN-nostat 44.62 GT-LSTM 40.70 RoBERTa 56.49 TraceNet−-R 56.59
CNN-mulch 43.54 TraceNet-G 46.33 TraceNet-R 57.34

YELP-5

CNN-rand 56.38 LSTM 57.14 BERT 63.42 TraceNet−-X 66.89
CNN-static 56.30 BiLSTM 55.32 XLNet 66.75 TraceNet-X 67.23
CNN-nostat 57.24 GT-LSTM 53.38 RoBERTa 67.66 TraceNet−-R 66.92
CNN-mulch 57.14 TraceNet-G 58.68 TraceNet-R 67.70

Table 1: Overall accuracy (%) of sentiment classification.

and test sets, respectively. The average length319

of sentences is 18 words.320

• YELP-5 is a document-level review corpus re-321

leased in the Yelp Dataset Challenge 2015. It322

has five sentiment classes and the full dataset323

contains approximately 700,000 documents324

with an average length of 155 tokens. Due325

to GPU resource limitation, we only tested326

on a random 5% sample of the data, resulting327

in 32,500, 2,500, and 2,500 documents for328

training, validation, and test, respectively.329

Metric. We adopted the classification accuracy330

(ACC) to evaluate performance, which is the frac-331

tion of accurately classified test instances over all332

test instances.333

Baselines. We compared TraceNet with three334

types of baselines and one simplified variant.335

• CNN-rand, CNN-static, CNN-nostat, and336

CNN-mulch are originally proposed in (Kim,337

2014). They only differ in word vectors.338

• LSTM, BiLSTM, and GT-LSTM are RNN-339

based baselines. We followed the implementa-340

tion in (Cho et al., 2014) for Long Short-Term341

Memory (LSTM) and bidirectional LSTM342

(BiLSTM). Gumble Tree LSTM (Choi et al.,343

2018) (GT-LSTM) is a tree-structured LSTM344

which further composes task-specific tree345

structures.346

• BERT (Devlin et al., 2019), XLNet (Yang347

et al., 2019), and RoBERTa (Liu et al., 2019)348

are the state-of-the-art pre-trained language349

models. TraceNet-G, TraceNet-X, TraceNet-350

R represent that the output of GloVe, XLNet351

and RoBERTa are treated as the input of352

TraceNet, respectively.353

Implementation details. We used the official354

implementation of all baselines provided by au-355

thors. Pre-trained word vectors for CNN and356

RNN baselines were obtained from GloVe (Pen- 357

nington et al., 2014). We started with the hyper- 358

parameters recommended in the original papers and 359

finetuned them on the validation set. Since BERT, 360

XLNet, and RoBERTa were sensitive to batch 361

size, learning rate, and maximum length of words 362

on the small SST-5 data, we performed a grid 363

search over {16, 32, 64}, {2e−5, 3e−5, 5e−5}, 364

and {64, 128, 256} for the three parameters, respec- 365

tively. Please refer to the supplementary material 366

for the concrete parameters. Code will be publicly 367

available when the paper is accepted. 368

4.2 Main Results 369

In the first set of tests, we evaluate the overall per- 370

formance of all approaches for sentiment classifi- 371

cation. All tests were repeated five times. The aver- 372

age results are reported in Table 1, where the letters 373

after TraceNet and TraceNet− indicate the differ- 374

ent embedding methods, i.e.,GloVe (G), XLNet (X), 375

and RoBERTa (R). 376

We first compare TraceNet-G with other CNN 377

and LSTM baselines. Except for CNN-rand, these 378

approaches all exploit GloVe for initializing word 379

embeddings and, therefore, can ensure a fair com- 380

parison. According to our tests, CNN and LSTM 381

are generally comparable in terms of sentiment clas- 382

sification. By explicitly revealing the input struc- 383

ture, TraceNet-G obtains more promising results, 384

which outperforms all approaches on the sentence- 385

level SST-5 data. On the document-level YELP-5 386

dataset, we find that LSTMs are better than CNNs 387

and TraceNet-G is the best among its counterparts. 388

The recent large-scale pre-trained language mod- 389

els significantly increase ACC compared with the 390

aforementioned approaches. We also observe a 391

consistent trend in their performance, such that 392

RoBERTa is the best, followed by XLNet and 393

BERT. Built upon these efforts, TraceNet is able 394

to further enhance the performance. Notably, it re- 395

fines the results of XLNet on both datasets. Finally, 396

by comparing TraceNet with TraceNet−, we find 397
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Attack (a) XLNet (b) TraceNet−-X (c) TraceNet-X (c)-(a) (c)-(b)
None 55.20 54.86 55.55 0.35 0.69

Replacement (cosine) 52.01 51.83 52.82* 0.81 0.99
Replacement (SWN) 51.11 51.46 52.34** 1.23 0.88

Insertion 47.69 48.30 48.13 0.44 -0.17
Shuffle 41.69 43.61 43.95** 2.25 0.33

Deletion 41.89 43.19 43.73** 1.85 0.54
Reversing 41.67 42.99 43.39 1.72 0.40

Replacement (random) 37.94 39.28 39.06* 1.12 -0.22
Concatenation 36.56 35.93 38.96 2.40 3.03

*/**: significantly outperform XLNet at the 0.05/0.01 level, t-test

Table 2: Accuracy (%) of sentiment classification under attacks on SST-5.

that the proactive masking strategy consistently has398

a positive impact. All the above results verify the399

effectiveness of TraceNet.400

4.3 Analysis Under Attacks401

In the second set of tests, we evaluate the robust-402

ness of TraceNet under attacks. Here we only403

experiment on SST-5 as the sentiment polarities404

of sentences are easier to be influenced given its405

shorter average length. We also only consider406

XLNet as the embedding method for TraceNet407

since RoBERTa (named from Robustly optimized408

BERT approach) has been augmented with a lot of409

robust designs including training the model longer,410

with bigger batches over more data, training on411

longer sequences, etc.1412

We consider eight types of attacks. More specif-413

ically, Reversing and Concatenation are deter-414

ministic attacks such that the former reverses the415

word orders and the latter concatenates all words416

in a sentence into one (it will be sliced by XLNet417

later). The rest are stochastic attacks. The ma-418

nipulation of Shuffle is clear by its name. For419

Insertion, Deletion, and Replacement (random),420

we correspondingly modify one-third of words in421

a sentence and the new words (if needed) are uni-422

formly sampled following the negative sampling423

method in word2vec (Mikolov et al., 2013). Fi-424

nally, for (a) Replacement (cosine) and (b) Re-425

placement (SWN), we replace one-third of words426

in a sentence with (a) their closest terms evaluated427

by cosine similarity between GloVe vectors and (b)428

alternative terms within the same sentiment groups429

in SentiWordNet (Baccianella et al., 2010). We430

trained models on the original training data and431

computed ACC on the attacked test data. The re-432

sults are reported in Table 2 where the numbers433

for stochastic attacks are the average results of ten434

1As such, we admit that TraceNet does not exhibit obvi-
ously better robustness compared with RoBERTa.

independent runs on different attacked test sets. 435

The results are arranged in the ascending order 436

of the strength of attacks, as evaluated by the ACC 437

of TraceNet. Replacement (cosine) and Replace- 438

ment (SWN) are weaker than the other attacks 439

since the semantics or sentiment polarities of terms 440

are not substantially changed. The following is 441

Insertion which only introduces noises. Changing 442

word orders (Shuffle and Reversing) and dropping 443

information (Deletion) almost tie in terms of attack 444

strength. Finally, the hardest attacks are Replace- 445

ment (random) and Concatenation which both 446

remove original information and introduce noises. 447

Note that the above conclusions should be taken 448

under our attack setting. 449

Under all attacks, TraceNet is consistently bet- 450

ter than XLNet, further verifying the effectiveness 451

of explicitly revealing the input structure. More im- 452

portantly, the absolute improvement of TraceNet 453

over XLNet is higher than on original data (i.e., 454

0.35%), which indicates that TraceNet is generally 455

more robust than XLNet under attacks. Since the 456

ACC decreases under attacks, the relative improve- 457

ment is indeed more prominent. Notably, TraceNet 458

is good at dealing with harder attacks such as chang- 459

ing word orders and dropping information. 460

Finally, comparing TraceNet with TraceNet−, 461

we can conclude that proactive masking boosts 462

model performance in general under attacks. It is 463

especially effective for Concatenation which will 464

drop much information after re-slicing by XLNet. 465

However, proactive masking could also lead to neg- 466

ative impacts under Insertion and Replacement 467

(random) since it is not optimized for dealing with 468

inserted noises. 469

4.4 Qualitative Analysis of Item Weights 470

We present a qualitative study on item weights esti- 471

mated in different ELC layer, shown in Fig. 3. The 472

two displayed movie reviews are retrieved from 473
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Figure 3: Illustration of item weights identified by TraceNet
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Figure 4: Impacts of masking probability Pmsk.

the training set of SST-5, and their ground-truth474

sentiment labels are positive and very-positive, re-475

spectively. After training, TraceNet could produce476

accurate labels for both. In the left case, the key477

elements identified are deflated, there’s much, and478

recommend, which make sense for the prediction479

result. Also note that it remains difficult to find sen-480

timent words at the beginning. However, the multi-481

layer architecture enables TraceNet to eventually482

refine key elements, e.g., deflated is identified at the483

second layer and recommend is emphasized finally.484

Similarly, TraceNet successfully finds the two key485

words dark and funny for the right example after486

learning layer-by-layer. To conclude, these item487

weights generally make the outcomes of TraceNet488

easier to understand.489

4.5 Analysis on Parameter Sensitivity490

4.5.1 Impacts of masking probability Pmsk491

To evaluate the impacts of Pmsk, we varied Pmsk492

from 0 to 1 and computed the classification ac-493

curacy of both TraceNet-X and TraceNet-R. We 494

omitted TraceNet-G since its effectiveness is not 495

comparable to TraceNet-X and TraceNet-R. Each 496

Pmsk was tested 3 times with different seed, and the 497

averaged value is reported in Fig. 4. It turns out that 498

TraceNet is quite sensitive to parameter Pmsk, pos- 499

sibly due to the randomness in choosing sentences 500

to mask and choosing masked key items. However, 501

compared with turning off proactive masking (i.e., 502

Pmsk = 0), our training strategy remains effective 503

within a certain range of Pmsk, e.g., [0.3, 0.5] on 504

SST-5 and [0.05, 0.4] on YELP-5. 505

4.5.2 Impacts of the number L of layers (i.e., 506

ELCs) 507

To evaluate the impacts of L, we varied L from 508

1 to 6 and computed the ACC of both TraceNet- 509

X and TraceNet-R on the two datasets. Note that 510

the discriminator combines all the hidden states to 511

derive the final classification results. The results 512

are reported in Fig. 5. 513
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Figure 5: Impacts of the number L of layers (i.e., ELCs) on SST-5.

On the YELP-5 data, using more layers is gen-514

erally more effective, while the impacts of L are515

quite gentle. On the other hand, the impacts of L516

are more complex on the SST-5 data. When L ≤ 3,517

the ACC of TraceNet increases with the increment518

of L in general, indicating that TraceNet benefits519

from its multi-layer organization which enables to520

learn the input structure for multiple times. Further521

increase L will lead to the decrease of ACC due522

to over-fitting. Overall, L = 3 is a good choice523

for TraceNet, and this conclusion holds for the two524

variants of TraceNet.525

4.5.3 Impacts of hidden state aggregation526

To evaluate the impacts of hidden state aggregation,527

we computed the ACC of both TraceNet-X and528

TraceNet-R using single hidden states and all the529

three hidden states on the two datasets. The results530

are reported in Fig. 6.531
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Figure 6: Impacts of hidden state aggregation.

For the case of using single hidden states, the532

best ACC is obtained by the third and second hid-533

den states on the SST-5 and YELP-5 data, respec-534

tively. This is because of their different characteris-535

tics of short and long text, i.e., the input structure of536

short sentences is harder to reveal given the limited 537

information than long documents. Moreover, com- 538

bining hidden states from all layers is consistently 539

better than using single hidden states alone. We 540

guess that combining hidden states enables the dis- 541

criminator to directly supervise each layer in terms 542

of revealing the input structure, which enhances 543

the effectiveness. 544

5 Conclusion 545

In this paper, we proposed TraceNet to tackle senti- 546

ment analysis task such that the outcome is mainly 547

contributed by a few key elements of the input. The 548

idea behind TraceNet, which originates from the 549

two-streams hypothesis, is to learn discriminative 550

representations and reveal input structure simulta- 551

neously. To do this, TraceNet stacks several en- 552

coders and locators layer-by-layer, with increasing- 553

strength sparsity constraints on locators for trac- 554

ing key elements. Smoothness regularization is 555

enforced on adjacent encoder-locator layer to en- 556

sure the stabilization of learning across layers. In 557

addition, a proactive masking strategy is further 558

incorporated into TraceNet for robustness. We ap- 559

plied TraceNet for sentence- and document-level 560

sentiment analysis. The experiments demonstrated 561

the effectiveness of TraceNet. Moreover, consider- 562

ing a total of eight types of attacks, we verified the 563

better robustness of TraceNet in general. Finally, 564

our qualitative analysis of item weights showed the 565

advantage of TraceNet in terms interpretability. 566
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A Example Appendix699

Appendix A: Experimental Details700

We first present more experimental details for re-701

produce purpose.702

Public SST-52 and YELP-53 datasets are703

choosed to evaluate our TraceNet architecture. We704

adopted a third-party implementation4 for CNN-705

rand, CNN-static, CNN-nostat, CNN-mulch,706

LSTM, and BiLSTM. The source code of GT-707

LSTM had been released5 by its authors. We imple-708

mented BERT, XLNet, RoBERTa and TraceNet709

based on Hugging Face library6. All hyper-710

parameters of these approaches are summarized711

in Table 1. Finally, when initializing word embed-712

ding with pretrained vectors, glove.840B.300d7 is713

adopted. Words not in the pretrained vectors vocab-714

ulary are initialized randomly. We have attached715

the code and data in the supplementary material.716

All our tests were performed on Tesla V100717

GPUs with 32GB memory. Model selection was718

2https://nlp.stanford.edu/sentiment/
3http://goo.gl/JyCnZq
4https://github.com/andyweizhao/

capsule_text_classification
5https://github.com/jihunchoi/

unsupervised-treelstm
6https://github.com/huggingface/

transformers
7https://nlp.stanford.edu/projects/

glove/

performed according to the performance on the val- 719

idation set such that the CNN- and LSTM-based 720

baselines were trained for a maximum of 20 epochs 721

and the rest approaches for a maximum of 10 722

epochs. 723
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Algorithm SST-5 YELP-5

CNN-rand
CNN-static
CNN-nostat
CNN-mulch

kernel size: {2,3,4,5}
filter number (per kernel size): 300
L2 weight: 0.01
batch size: 50
learning rate: 0.001
sequence length: 49

kernel size: {2,3,4,5}
filter number (per kernel size): 300
L2 weight: 0.01
batch size: 50
learning rate: 0.001
sequence length: 256

LSTM
BiLSTM

hidden state size: 100
L2 weight: 0.01
batch size: 50
learning rate: 0.001
sequence length: 49
dropout: 0.5

hidden state size: 100 and 50, respectively
L2 weight: 0.01
batch size: 50
learning rate: 0.001
sequence length: 256
dropout: 0.5

GT-LSTM

hidden state size: 300
batch size: 64
learning rate: 1.0, halved every two epochs
sequence length: 49
dropout: 0.5

hidden state size: 300
batch size: 16
learning rate: 1.0, halved every two epochs
sequence length: 256
dropout: 0.5.

BERT
XLNet
RoBERTa

hidden state size: 768
model type: base-cased, base and base, resp.
weight decay: 0.1, 0.1, and 0.0, resp.
Adam epsilon: 1e-8, 1e-8, and 1e-6, resp.
batch size: 32, 16, and 16, resp.
learning rate: 5e-5, 2e-5, and 2e-5, resp.
sequence length: 128, 64, and 128, resp.
dropout 0.1

hidden state size: 768
model type: base-cased, base and base, resp.
weight decay: 0.1, 0.1 and 0.0, resp.
Adam epsilon: 1e-8, 1e-8, and 1e-6, resp.
batch size: 64
learning rate: 5e-5, 2e-5, and 2e-5, resp.
sequence length: 256
dropout: 0.1

TraceNet-G
TraceNet-X
TraceNet-R

hidden state size: 50, 128, and 512, resp.
weight decay: 0.2, 0.1, and 0.0, respectively
Adam epsilon: 1e-8, 1e-8, and 1e-6, resp.
batch size: 64, 16, and 16, respectively
learning rate: 1e-3, 2e-5, and 2e-5, resp.
sequence length: 49, 64, and 128, respec-
tively
dropout: 0.2, 0.3, and 0.1, respectively
Pmsk: 0.05, 0.2 and 0.3, respectively
number L of layers: 3

hidden state size: 500, 512, and 768, resp.
weight decay: 0.2, 0.1, and 0.1, respectively
Adam epsilon: 1e-8
batch size: 64
learning rate: 1e-3, 2e-5, and 2e-5, resp.
sequence length: 256
dropout: 0.2, 0.1, and 0.1, respectively.
Pmsk: 0.05, 0.05 and 1.0, respectively
number L of layers: 3

Table 3: Hyper-parameters setting. (49 refers to the maximum sentence length of SST-5.)
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