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Abstract

Stochastic nested optimization, including stochastic bilevel, min-max, and compo-
sitional optimization, is gaining popularity in many machine learning applications.
While the three problems share a nested structure, existing works often treat them
separately, thus developing problem-specific algorithms and analyses. Among
various exciting developments, simple SGD-type updates (potentially on multiple
variables) are still prevalent in solving this class of nested problems, but they are
believed to have a slower convergence rate than non-nested problems. This paper
unifies several SGD-type updates for stochastic nested problems into a single SGD
approach that we term ALternating Stochastic gradient dEscenT (ALSET) method.
By leveraging the hidden smoothness of the problem, this paper presents a tighter
analysis of ALSET for stochastic nested problems. Under the new analysis, to
achieve an ε-stationary point of the nested problem, it requires O(ε−2) samples
in total. Under certain regularity conditions, applying our results to stochastic
compositional, min-max, and reinforcement learning problems either improves or
matches the best-known sample complexity in the respective cases. Our results
explain why simple SGD-type algorithms in stochastic nested problems all work
very well in practice without the need for further modifications.

1 Introduction

Stochastic gradient descent (SGD) methods [1] are prevalent in solving large-scale machine learning
problems. Often, SGD is applied to solve stochastic problems with a relatively simple structure.
Specifically, applying SGD to minimize the function Eξ [f(x; ξ)] over the variable x ∈ Rd, we have
the iterative update xk+1 = xk − α∇f(xk; ξk), where α > 0 is the stepsize and ∇f(xk; ξk) is the
stochastic gradient at the iterate xk and the sample ξk. However, many problems in machine learning
today, such as meta learning, deep learning, hyper-parameter optimization, and reinforcement learning,
go beyond the above simple minimization structure (termed the non-nested problem thereafter).
For example, the objective function may be the compositions of multiple functions, where each
composition may introduce an additional expectation [2]; and, the objective function may depend
on the solution of another optimization problem [3]. In these problems, how to apply SGD and the
efficiency of running SGD are not fully understood.

To answer these questions, in this paper, we consider the following form of stochastic nested
optimization problems, which is a generalization of the non-nested problems, given by

min
x∈Rd

F (x) := Eξ [f (x, y∗(x); ξ)] (upper) (1a)

s.t. y∗(x) = arg min
y∈Rd′

Eφ[g(x, y;φ)] (lower) (1b)

where f and g are differentiable functions; and, ξ and φ are random variables. In the optimization
literature [4–6], the problem (1) is referred to as the stochastic bilevel problem, where the upper-level
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optimization problem depends on the solution of the lower-level optimization over y ∈ Rd′ , denoted
as y∗(x), which depends on the value of upper-level variable x ∈ Rd.

The stochastic bilevel nested problem (1) encompasses two popular formulations with the nested
structure: stochastic min-max problems and stochastic compositional problems. Therefore, results on
the general nested problem (1) will also imply the results in the special cases. For example, if the
lower-level objective g is the negative of the upper-level objective f , i.e., g(x, y;φ) := −f(x, y; ξ),
the stochastic bilevel problem (1) reduces to the stochastic min-max problem

If g(x, y;φ) := −f(x, y; ξ) ⇒ min
x∈Rd

F (x) := max
y∈Rd′

Eξ [f(x, y; ξ)] . (2)

Motivated by applications in zero-sum games, adversarial learning and training GANs, significant
efforts have been recently made for solving the stochastic min-max problem; see e.g., [7–11].

For example, if the upper-level objective f is only a function of y, i.e., f(x, y; ξ) := f(y; ξ), and the
lower-level objective g is a quadratic function of y, i.e., g(x, y;φ) := ‖y − h(x;φ)‖2 with a smooth
function h of x, then the variable y∗(x) admits a closed-form solution, and thus the stochastic bilevel
problem (1) reduces to the stochastic compositional problem [12–14]

If g(x, y;φ) := ‖y − h(x;φ)‖2 ⇒ min
x∈Rd

F (x) := Eξ
[
f
(
Eφ[h(x;φ)]; ξ

)]
. (3)

Stochastic compositional problems in the form of (3) have been studied in the applications in
model-agnostic meta learning and policy evaluation in reinforcement learning; see e.g., [2, 15].

To solve the nested problem (1) by SGD, one natural solution is to apply alternating SGD updates on
x and y based on their stochastic gradients

yk+1 = yk − βkhkg and xk+1 = xk − αkhkf (4)

where hkg is the unbiased stochastic gradient of Eφ[g(xk, yk;φ)] and hkf is the (possibly biased)
stochastic gradient of F (xk); and, βk and αk are the stepsizes. A key challenge of running (4) for the
nested problem is that (stochastic) gradient of the upper-level variable x is prohibitively expensive to
compute. As we will show later, computing an unbiased stochastic gradient of F (x) requires solving
the lower-level problem exactly to obtain y∗(x).

An accurate stochastic gradient hkf can be obtained in roughly three ways. One way is to run SGD
updates on yk multiple times before updating xk, which yields a double-loop algorithm. To guarantee
convergence, it typically requires either the increasing number of lower-level y-update or the growing
number of batch size to estimate hkg ; see e.g., [16, 17]. The second way is to update yk in a timescale
faster than that of xk so that xk is relatively static with respect to yk; i.e., limk→∞ αk/βk = 0; see
e.g., [18]. The third way is to modify the direction hkg of yk by incorporating additional correction
term, which adds extra computation burden; see e.g., [19]. At a high level, these modifications either
deviate from the lightweight implementation of SGD or sacrifice the sample complexity of SGD.

To this end, the main goal of this paper is to study the efficiency of running the vanilla alternating
SGD (4) for the nested problem (1) and its implications on the special problem classes (2)-(3).

1.1 Main results

This paper analyzes a unifying algorithm for the stochastic bilevel problems that runs SGD on each
variable alternatingly. We provide sample complexity that matches the complexity of SGD for
single-level stochastic problems. Our results explain why SGD-type algorithms in stochastic bilevel,
min-max, and compositional problems work very well in practice without modifications, including
correction, increasing batch size, and two-timescale stepsizes.

In the context of existing methods, our contributions can be summarized as follows.

C1) We connect three different classes of stochastic nested optimization problems (stochastic
compositional, min-max, and bilevel optimization), and unify three popular SGD-type up-
dates for the respective problems into a single SGD-type method. We call it the ALternating
Stochastic gradient dEscenT (ALSET) method.
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ALSET BSA TTSA stocBiO STABLE SUSTAIN/RSVRB
batch size O(1) O(1) O(1) O(ε−1) O(1) O(1)
y-update SGD O(ε−1) SGD steps SGD SGD correction momentum

samples in ξ
samples in φ

O(κ5ε−2)

Õ(κ9ε−2)

O(κ6ε−2)

Õ(κ9ε−3)
O(κpε−

5
2 )

Õ(κpε−
5
2 )

O(κ5ε−2)

Õ(κ9ε−2)
O(κpε−2)
O(κpε−2)

O(κpε−
3
2 )

Õ(κpε−
3
2 )

Table 1: Sample complexity of stochastic bilevel algorithms (BSA in [16], TTSA in [18], stocBiO in
[17], STABLE in [19], SUSTAIN in [25], RSVRB in [26]) to achieve an ε-stationary point of F (x);
the notation Õ( · ) hides the terms of log ε−1; the notation κp denotes a polynomial function of κ
since the dependence on κ is not explicit in [18, 19, 25, 26].

C2) Under the same assumptions made in most of the previous work, we discover that the
solution of the lower-level problem is smooth – a property that is overlooked by the previous
analyses. By leveraging the hidden smoothness, we present a tighter analysis of ALSET for
the stochastic bilevel problems. Under the new analysis, to achieve an ε-stationary point
of the nested problem, ALSET requires O(ε−2) samples in total, rather than the O(ε−5/2)
sample complexity in the existing literature.

C3) We further customize the analysis to the two special cases – the compositional and min-max
problems, and establish the improved sample complexity relative to that in the literature.
We apply a new analysis to the celebrated actor-critic method for reinforcement learning
problems. Under some regularity conditions, we show that, to achieve an ε-stationary point,
the single-loop actor-critic method requires O(ε−2) samples with i.i.d. sampling, which
improves the best-known result of O(ε−5/2) in the literature.

1.2 Other related works

To put our work in context, we review prior art that we group in the following three categories.

Stochastic bilevel optimization. We can trace the study of bilevel optimization to the 1950s [20].
Many recent efforts have been made to solve the bilevel problems. One successful approach is to
reformulate the bilevel problem as a single-level problem by replacing the lower-level problem by its
optimality conditions [4, 5]. Recently, gradient-based methods for bilevel optimization have gained
popularity. They iteratively approximate the (stochastic) gradient of the upper-level problem either
in a forward or backward manner [21, 3, 22, 23]. Recent work has also studied the case where the
lower-level problem does not have a unique solution [24].

The non-asymptotic analysis of bilevel optimization algorithms has been recently studied in some pi-
oneering works, e.g., [16, 18, 17], just to name a few. In both [16, 17], bilevel stochastic optimization
algorithms have been developed that run in a double-loop manner. To achieve an ε-stationary point,
they only need the sample complexitiesO(ε−3) andO(ε−2), respectively, comparable to that of SGD
for the single-level case. Recently, a single-loop two-timescale stochastic approximation algorithm
has been developed in [18] for the bilevel problem (1). Due to the nature of the two-timescale update,
it incurs the sub-optimal sample complexity O(ε−5/2). A single-loop single-timescale stochastic
bilevel optimization method has been recently developed in [19]. While the method can achieve
the sample complexity O(ε−2), the resultant update on y needs extra matrix projection, which can
be costly. Very recently, the momentum-based acceleration has been incorporated into both the x-
and y-updates in [25, 26] and also in [27] after our submission to the conference, where the new
algorithms therein enjoy an improved sample complexity O(ε−3/2). However, these results cannot
imply the O(ε−2) sample complexity of the alternating SGD update (4), and are orthogonal to our
results. A comparison of our results with prior work can be found in Table 1.

Stochastic min-max optimization. In the context of min-max problems, the alternating version of
the stochastic gradient descent ascent (GDA) method can be viewed as the alternating SGD updates
(4) for the special nested problem (2). To mitigate the cycling behavior of GDA for convex-concave
min-max problems, several variants have been developed by incorporating the idea of optimism;
see e.g., [7, 8, 11, 29]. The analysis of stochastic GDA in the nonconvex-strongly concave setting
is closely related to this paper; e.g., [9, 10, 30, 28]. Specifically, for stochastic GDA (SGDA), the
O(ε−2) sample complexity has been established in [28] under an increasing batch size O(ε−1). As
highlighted in [28], how to achieve the O(ε−2) sample complexity under an O(1) constant batch size
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remains open. The reduction of our results to the min-max setting will provide an answer to this open
question. In the same setting, accelerated GDA algorithms have been developed in [31–33]. Going
beyond the one-side concave settings, algorithms and their convergence analysis have been studied
for nonconvex-nonconcave min-max problems with certain benign structure; see e.g., [8, 34–36]. A
comparison of our results with prior work can be found in Table 2.

Stochastic compositional optimization. Stochastic compositional gradient algorithms developed
in [12, 37] can be viewed as the alternating SGD updates (4) for the special compositional problem
(3). However, to ensure convergence, the algorithms [12, 37] use two sequences of variables being
updated in two different time scales, and thus the complexity of [12] and [37] is worse thanO(ε−2) of
SGD for the non-compositional case. While most of existing algorithms rely on either two-timescale
updates, the single-timescale single-loop approaches have been recently developed in [14, 38, 39],
which achieve the sample complexity O(ε−2), same as SGD for the non-nested problems. However,
the algorithms proposed therein are not the vanilla alternating SGD update in the sense of (4). Other
related compositional algorithms also include [40–42]. A comparison can be found in Table 3.

Organization. The basic background of bilevel optimization is reviewed, and the tighter analysis
of the unifying ALSET method is presented in Section 2. The reduction of the main results to the
special stochastic nested problems is provided in Section 3, and its applications to the actor-critic
method are discussed in Section 4, followed by the conclusions in Section 5.

2 Improved Analysis of Alternating Stochastic Gradient Method

In this section, we will first provide background of bilevel problems and then introduce ALSET for
stochastic nested problems.

2.1 Preliminaries

We use ‖ · ‖ to denote the `2 norm for vectors and Frobenius norm for matrices. For convenience, we
define the deterministic functions as g(x, y) := Eφ[g(x, y;φ)] and f(x, y) := Eξ[f(x, y; ξ)].

We also define∇2
yyg
(
x, y
)

as the Hessian matrix of g with respect to y and define ∇2
xyg
(
x, y
)

as

∇2
xyg
(
x, y
)

:=

 ∂2

∂x1∂y1
g
(
x, y
)
· · · ∂2

∂x1∂yd′
g
(
x, y
)

· · ·
∂2

∂xd∂y1
g
(
x, y
)
· · · ∂2

∂xd∂yd′
g
(
x, y
)
 .

We make the following assumptions, which are common in the bilevel optimization literature [16–
18, 26].

Assumption 1 (Lipschitz continuity). Assume that f,∇f,∇g,∇2g are respectively `f,0,
`f,1, `g,1, `g,2-Lipschitz continuous; that is, for z1 := [x1; y1], z2 := [x2; y2], we have ‖f(x1, y1)−
f(x2, y2)‖ ≤ `f,0‖z1 − z2‖, ‖∇f(x1, y1) − ∇f(x2, y2)‖ ≤ `f,1‖z1 − z2‖, ‖∇g(x1, y1) −
∇g(x2, y2)‖ ≤ `g,1‖z1 − z2‖, ‖∇2g(x1, y1)−∇2g(x2, y2)‖ ≤ `g,2‖z1 − z2‖.
Assumption 2 (Strong convexity of g in y). For any fixed x, g(x, y) is µg-strongly convex in y.

Assumptions 1 and 2 together ensure that the first- and second-order derivations of f(x, y), g(x, y),
as well as the solution mapping y∗(x), are well-behaved. Define the condition number κ := `g,1/µg .
Assumption 3 (Stochastic derivatives). The stochastic derivatives ∇f(x, y; ξ), ∇g(x, y;φ),
∇2g(x, y, φ) are unbiased estimators of ∇f(x, y), ∇g(x, y), ∇2g(x, y), respectively; and their
variances are bounded by σ2

f , σ
2
g,1, σ2

g,2, respectively.

ALSET SGDA SMD
batch size O(1) O(ε−1) /
y-update SGD SGD subproblem
samples O(κ3ε−2) O(κ3ε−2) O(κ3ε−2)

Table 2: Sample complexity of stochastic min-
max algorithms (BSA in [16], GDA in [28], SMD
in [9]) to achieve an ε-stationary point of F (x).

ALSET SCGD NASA
batch size O(1) O(1) O(1)
y-update SGD SGD correction
samples O(ε−2) O(ε−4) O(ε−2)

Table 3: Sample complexity of stochastic compo-
sitional algorithms (SCGD in [12], NASA in [14])
to achieve an ε-stationary point of F (x).
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Assumptions 2 and 3 together imply that the second moments are bounded by
Eξ[‖∇f(x, y; ξ)‖2] ≤ `2f,0 + σ2

f := C2
f (5a)

Eφ[‖∇2g(x, y;φ)‖2] ≤ `2g,1 + σ2
g,2 := C2

g . (5b)

Assumption 3 is the counterpart of the unbiasedness and bounded variance assumption in the single-
level stochastic optimization. In addition, the bounded moments in Assumption 3 ensure the Lipschitz
continuity of the upper-level gradient∇F (x).

We first highlight the inherent challenge of directly applying the alternating SGD method to the
bilevel problem (1). To illustrate this point, we derive the gradient of the upper-level function F (x)
in the next proposition; see the proof in the supplementary document.
Proposition 1. Under Assumptions 1–3, we have the gradients

∇F (x) = ∇xf(x, y∗(x))−∇2
xyg(x, y∗(x))

[
∇2
yyg(x, y∗(x))

]−1∇yf(x, y∗(x)). (6)

Furthermore, ∇F (x) and y∗(x) are Lipschitz continuous with constants LF , Ly , respectively.

Notice that obtaining an unbiased stochastic estimate of ∇F (x) and applying SGD on x face two
main difficulties: i) the gradient∇F (x) at x depends on the minimizer of the lower-level problem
y∗(x); ii) even if y∗(x) is known, it is hard to apply the stochastic approximation to obtain an
unbiased estimate of∇F (x) since ∇F (x) is nonlinear in∇2

yyg(x, y∗(x)).

Similar to some existing stochastic bilevel algorithms [16, 18, 17], we evaluate∇F (x) on a certain
vector y in place of y∗(x). Replacing the y∗(x) in definition (6) by y, we define

∇xf
(
x, y
)

:= ∇xf
(
x, y
)
−∇2

xyg
(
x, y
) [
∇2
yyg
(
x, y
)]−1∇yf(x, y). (7)

And to reduce the bias in (7), we estimate
[
∇2
yyg
(
x, y
)]−1

via

[
∇2
yyg
(
x, y
)]−1 ≈ [ N

`g,1

N ′∏
n=1

(
I − 1

`g,1
∇2
yyg(x, y;φ(n))

)]
(8)

where N ′ is drawn from {1, 2, . . . , N} uniformly at random and {φ(1), . . . , φ(N ′)} are i.i.d. samples.
It has been shown in [16] that using (8), the estimation bias of

[
∇2
yyg
(
x, y
)]−1

exponentially
decreases with the number of samples N .

2.2 Main results: Tighter analysis of ALSET

Algorithm 1 ALSET for the stochastic bilevel problem (1)

1: initialize: x0, y0, stepsizes {αk, βk}.
2: for k = 0, 1, . . . ,K − 1 do
3: for t = 0, 1, . . . , T − 1 do
4: update yk,t+1 = yk,t − βkhk,tg . set yk,0 = yk

5: end for
6: update xk+1 = xk − αkhkf . set yk+1 = yk,T

7: end for

In this subsection, we first describe
the general ALSET algorithm for the
stochastic bilevel problem, and then
present its new convergence result.

This algorithm is very simple to im-
plement. At each iteration k, ALSET
alternates between the stochastic gra-
dient update on yk and that on xk. Al-
though it is possible that T = 1, for
generality, we run T steps of SGD on
the lower-level variable yk before updating upper-level variable xk. With αk and βk denoting the
stepsizes of xk and yk that decrease at the same rate as SGD, the ALSET update is

yk,t+1 = yk,t− βkhk,tg , t = 0, . . . , T with yk,0 := yk; yk+1 := yk,T (9a)

xk+1 = xk−αkhkf (9b)

where the update direction of y is the stochastic gradient hk,tg := ∇yg(xk, yk,t;φk,t); and, with the
Hessian inverse estimator (8), the update direction of x is the slightly biased gradient

hkf :=∇xf(xk, yk+1; ξk)

−∇2
xyg(xk, y;φk(0))

[ N
`g,1

N ′∏
n=1

(
I − 1

`g,1
∇2
yyg(xk, yk+1;φk(n))

)]
∇yf(xk, yk+1; ξk). (10)
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The alternating update (9) serves as a template for running SGD on stochastic nested problems.
As we will show in the subsequent sections, we can generate stochastic algorithms for min-max,
compositional, and even reinforcement learning problems following (9) as a template, but they differ
in the particular forms of the stochastic gradients hkg , h

k
f for the specific upper- and lower-level

objective functions. See Algorithm 1 for a summary of ALSET for the bilevel problem.

Comparison between ALSET with existing works. Readers who are familiar with recent develop-
ments on stochastic optimization for bilevel problems may readily recognize the similarities between
the general ALSET update (1) that we will analyze and the SGD-based updates in BSA [16], TTSA
[18] and stocBiO [17]. However, the update (1) is different from BSA in that the number of y-update,
denoted as T , is a constant in (1) that does not grow with the accuracy ε−1; the update (1) is different
from stocBiO in that the stochastic gradient hk,tg used in the y-update (9a) is obtained by a fixed batch
size that does not depend on the accuracy ε−1; and, the update (1) is different from TTSA in that the
stepsizes αk and βk in (9) decrease at the same timescale.

We next present the convergence result of ALSET.
Theorem 1 (Bilevel problems). Suppose Assumptions 1–3 hold. Define the constants as

ᾱ1 =
1

2LF + 4LfLy +
2LfLyx
Lyη

, ᾱ2 =
16Tµg`g,1

(µg + `g,1)2(8LfLy + 2ηLyxC̃2
f ᾱ1)

(11)

where η > 0 is a control constant that will be specified in each special case to achieve the best sample
complexity. With α > 0 being a control constant that will be specified later, choose the stepsizes as

αk = min

{
ᾱ1, ᾱ2,

α√
K

}
and βk =

8LfLy + 2ηLyxC̃
2
f ᾱ1

4Tµg
αk. (12)

For any T ≥ 1 and N = O(logK), the iterates {xk, yk} generated by Algorithm 1 satisfy

1

K

K∑
k=1

E
[∥∥∥∇F (xk)

∥∥∥2] = O
( 1√

K

)
and E

[∥∥∥yK− y∗(xK)
∥∥∥2] = O

( 1√
K

)
(13)

where y∗(xK) is the minimizer of the lower-level problem in (1b).
Proposition 2. Under the same assumptions and the choice of parameters of Theorem 1, with
κ :=

`g,1
µg

being the condition number, select α = Θ(κ−5/2), T = Θ(κ4), η = O(κ) in (12), and then

1

K

K−1∑
k=0

E[‖∇F (xk)‖2] = O

(
κ3

K
+

κ
5
2

√
K

)
. (14)

Discussion of Theorem 1. To achieve ε-stationary point, we needK = O(κ5ε−2), and the number of
evaluations of hkf , h

k,t
g are O(κ5ε−2) and O(κ9ε−2), respectively. Therefore, the sample complexity

is on the same order of SGD’s sample complexity for the single-level nonconvex problems [43], and
improves the state-of-the-art single-loop TTSA’s sample complexity O(ε−5/2) [18]. Compared to
[17], ALSET achieves the same sample complexity in terms of both ε and κ, without using a growing
batch size. Importantly, we obtain this tighter bound without introducing additional assumptions.

2.3 Proof sketch

In this subsection, we highlight the key steps of the proof towards Theorem 1, and highlight the
differences between our analysis and the existing ones.

For simplicity, we define the following Lyapunov function as Vk :=F (xk) +
Lf
Ly
‖yk − y∗(xk)‖2.

We first quantify the difference between two Lyapunov functions as

Vk+1 − Vk =F (xk+1)− F (xk)

Lemma 1

+
Lf
Ly

(‖yk+1 − y∗(xk+1)‖2 − ‖yk − y∗(xk)‖2

Lemma 3

). (15)

The difference in (15) consists of two difference terms: the first term quantifies the descent of the
overall objective functions; the second term characterizes the descent of the lower-level errors.

We will first analyze the descent of the upper-level objective in the next lemma.
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Lemma 1 (Descent of upper level). Suppose Assumptions 1–3 hold. Define h̄kf := E[hkf |xk, yk+1]

and ‖h̄kf −∇f(xk, yk+1)‖ ≤ bk. The sequence of xk generated by Algorithm 1 satisfies

E[F (xk+1)]− E[F (xk)] ≤− αk

2
E[‖∇F (xk)‖2]−

(
αk

2
− LFα

2
k

2

)
E[‖h̄k

f‖2]

+ L2
fαkE[‖yk+1 − y∗(xk)‖2] + αkb

2
k +

LFα
2
k

2
σ̃2
f (16)

where constants Lf , LF , σ2
f are defined in Lemma 4 of the supplementary document.

Lemma 1 implies that the descent of the upper-level objective functions depends on the error of the
lower-level variable yk. We will next analyze the error of the lower-level variable, which is the key
step to improving the existing results.

Before we analyze the error of yk, we introduce a lemma that characterizes the smoothness of y∗(x)
and the bounded moments of hkf . The smoothness and the bounded moments have not been explored
by previous analysis such as [16–18], and they play an essential role in our improved analysis of yk.
Lemma 2 (Smoothness and boundedness). Under Assumptions 1 and 2, we have

‖∇y∗(x1)−∇y∗(x2)‖ ≤ Lyx‖x1 − x2‖; E[‖hkf‖2|xk, yk+1] ≤ C̃2
f (17)

where Lyx and C̃2
f depend on the constants defined in Assumptions 1-2.

Building upon Lemma 2, we establish the progress of the lower-level update.
Lemma 3 (Error of lower level). Suppose that Assumptions 1–3 hold, and yk+1 is generated by
running iteration (9) given xk. If we choose βk ≤ 2

µg+`g,1
, then yk+1 satisfies

E[‖yk+1− y∗(xk)‖2] ≤ (1− µgβk)TE[‖yk − y∗(xk)‖2] + Tβ2
kσ

2
g,1 (18a)

E[‖yk+1 − y∗(xk+1)‖2] ≤
(

1 + 4LfLyαk +
ηLyxC̃

2
f

2
α2
k

)
E[‖yk+1− y∗(xk)‖2]

+
(
L2
y +

Ly
4Lfαk

+
Lyx
2η

)
α2
kE[‖h̄kf‖2] +

(
L2
y +

Lyx
2η

)
α2
kσ̃

2
f (18b)

where η > 0 is a fixed constant that will be chosen to obtain the tighter complexity bound.

The improved analysis of the lower-level problem. Next we explain where we can obtain improved
analysis. Plugging (18a) into (18b), and selecting stepsizes αk, βk properly, we can show that

E[‖yk+1 − y∗(xk+1)‖2] ≤ (1− δ1)E[‖yk − y∗(xk)‖2] + δ2E[‖h̄kf‖2] + δ3Tσ
2
g,1 + δ4σ̃

2
f (19)

where the constants are δ1 ∈ [0, 1), δ2 = O(αk), δ3 = O(β2
k), δ4 = O(α2

k). As we will show in
our supplementary material, the term E[‖h̄kf‖2] will be canceled when combined with (16) in our
analysis. Hence, choosing αk = O(k−1/2) and βk = O(k−1/2) makes the variance terms in (19)
decrease at the same O(k−1/2) rate as the vanilla SGD for stochastic non-nested problems.

As a comparison, the progress of the lower-level problem in [18, 17] can be summarized as

E[‖yk+1 − y∗(xk+1)‖2] ≤ (1− δ1)E[‖yk − y∗(xk)‖2] + δ5σ
2 (20)

where σ2 is some variance term, and the constant is δ5 = O(β2
k + α2

k/βk) or O(1/Bk) with Bk
being the batch size at iteration k. To balance the two terms in δ5 = O(β2

k + α2
k/βk), two timescales

of stepsizes limk→∞ αk/βk = 0 are needed, which will make the variance term of the y-update in
(20) and that of the x-update in (16) decrease at two different rates, slower than that of SGD; and to
reduce δ5 = O(1/Bk), a growing batch size Bk = O(k) is needed for the y-update.

3 Applications to Stochastic Min-Max and Compositional Problems
Building upon the general results for the bilevel problems in Section 2, this section will identify
special features of the stochastic min-max and stochastic compositional problems, and customize the
general results to yield state-of-the-art convergence results for two special nested problems.
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3.1 Stochastic min-max problems

We first apply our results to the stochastic min-max problem (2). In this special case, the lower-level
function is g(x, y;φ) = −f(x, y; ξ), and the bilevel gradient in (6) reduces to

∇F (x) := ∇xf
(
x, y∗(x)

)
+∇xy∗(x)>∇yf

(
x, y∗(x)

)
= ∇xf

(
x, y∗(x)

)
(21)

where the second equality follows from the optimality condition of the lower-level problem, i.e.,
∇yf(x, y∗(x)) = 0. Similar to Section 2, we again approximate ∇F (x) on a certain vector y in
place of y∗(x). Therefore, the alternating stochastic gradients for this special case are given by

hk,tg = −∇yf(xk, yk,t; ξk,t1 ) and hkf = ∇xf(xk, yk+1; ξk2 ). (22)

Plugging the stochastic gradient into the general update (9), we summarize the update in Algorithm 2.
When the number of y-update is T = 1, the ALSET algorithm reduces to the SGDA method in [28].
Proposition 3 (Min-max problems). Choose the same choice of parameters as those in Theorem 1,
and follow the same assumption as those in Theorem 1 except that f(·, y) is only Lipchitz over x ∈ Rd
but not that f(x, ·) is Lipschitz continuous over y ∈ Rd′ . If we select α = Θ(κ−1), T = Θ(κ), η = 1
in (12), the iterates generated by Algorithm 2 satisfy

1

K

K−1∑
k=0

E
[∥∥∥∇F (xk)

∥∥∥2] = O
(
κ2

K
+

κ√
K

)
. (23)

Algorithm 2 ALSET for the min-max problem (2)

1: initialize: x0, y0, stepsizes {αk, βk}.
2: for k = 0, 1, . . . ,K − 1 do
3: set yk,0 = yk

4: for t = 0, 1, . . . , T − 1 do
5: update yk,t+1 = yk,t−βk∇yf(xk, yk,t; ξk,t1 )
6: end for
7: set yk+1 = yk,T

8: update xk+1 = xk − αk∇xf(xk, yk+1; ξk2 )
9: end for

Proposition 3 implies that for the min-
max problem, the convergence rate
of ALSET to the stationary point of
F (x) := maxy∈Rd′ Eξ [f(x, y; ξ)] is
O(K−1/2). To achieve ε-stationary
point, we need K = O(κ2ε−2). And
the number of gradient evaluations for
hkf , h

k,t
g are O(κ2ε−2) and O(κ3ε−2),

respectively. Comparing with the results
in [28], we achieve the same sample com-
plexity without an increasing batch size
O(ε−1), and improve their sample com-
plexityO(ε−5/2) under a fixed batch size.
However, it is also worth mentioning that compared with [28], our analysis requires the additional
Lipschitz continuity assumption of f(·, y) over x ∈ Rd, which inherits from the analysis for the
general bilevel problem. Therefore, our result complements, rather than improves, the analysis in
[28]. We view our contribution in min-max problems as a supplementary of existing results.

3.2 Stochastic compositional problems

In this section, we apply our results to the stochastic compositional problem (3). In this special
case, the upper-level function is f(x, y; ξ) := f(y; ξ), and the lower-level function is g(x, y;φ) =
‖y − h(x;φ)‖2, and the bilevel gradient in (6) reduces to

∇F (x) : = ∇xf
(
x, y∗(x)

)
−∇2

xyg(x, y∗(x))
[
∇2
yyg(x, y∗(x))

]−1∇yf(x, y∗(x))

= ∇h(x;φ)>∇yf(y∗(x)) (24)

where we use the fact that ∇2
yyg(x, y;φ) = Id′×d′ ,∇2

xyg(x, y;φ) = −∇h(x;φ)>. Similar to
Section 2, we again evaluate ∇F (x) on a certain vector y in place of y∗(x). Therefore, by choosing
T = 1, the alternating stochastic gradients hkf , h

k,t
g for this special case are much simpler, given by

hk,tg = hkg = yk − h(xk;φk) and hkf = ∇h(xk;φk)∇f(yk+1; ξk). (25)

Plugging the stochastic gradient into the general update (9), we summarize the update in Algorithm 3.
When T = 1, the ALSET algorithm reduces to SCGD proposed in [12].

In the supplementary document, we have verified that the standard assumptions of stochastic compo-
sitional optimization in [12, 37, 14, 41, 38] are sufficient for Assumptions 1–3 to hold.
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Proposition 4 (Compositional problems). Under the same assumptions and the parameters as those
in Theorem 1, if we select T = 1, α = 1, η = 1

Lyx
in (12), the iterates of Algorithm 3 satisfy

1

K

K∑
k=1

E
[∥∥∥∇F (xk)

∥∥∥2] = O
( 1√

K

)
. (26) Algorithm 3 ALSET for the compositional problem (3)

1: initialize: x0, y0, stepsizes {αk, βk}.
2: for k = 0, 1, . . . ,K − 1 do
3: update yk+1 = yk − βk(yk − h(xk;φk))
4: update xk+1 = xk−αk∇f(yk+1; ξk)∇h(xk;φk)
5: end for

Since each iteration of ALSET only uses
O(1) samples (see Algorithm 3), Propo-
sition 4 implies that the sample complex-
ity to achieve an ε-stationary point of (3)
is O(ε−2). Comparing with the results
of the SCGD method in [12], our result improves the sample complexity O(ε−4) under a fixed batch
size. Importantly, our analysis does not introduce additional assumption compared to [12].

4 Applications to Actor-Critic Methods

In this section, we apply our tighter analysis to the actor-critic (AC) method with linear value function
approximation [44], which can be viewed as a special case of the stochastic bilevel algorithm [45, 46].

Consider a Markov decision process described byM = {S,A,P, R, γ}, where S is the state space,
A is the action space, P(s′|s, a) is the probability of transitioning to s′ ∈ S given state s ∈ S and
action a ∈ A, and R(s, a, s′) is the reward associated with (s, a, s′), and γ ∈ [0, 1) is a discount
factor. For a policy πθ, define the value function Vπθ (s) that satisfies the Bellman equation [47]

Vπθ (s) = Ea∼πθ(·|s), s′∼P(·|s,a) [r(s, a, s′) + γVπθ (s
′)] . (27)

Given the state feature mapping φ(·) : S −→ Rdy , we approximate the value function linearly as
Vπθ (s) ≈ V̂y(s) := φ(s)>y, where y ∈ Rdy is the critic parameter. The task of finding the best y
such that Vπθ (s) ≈ V̂y(s) is usually addressed by TD learning [48].

Defining the stationary distribution induced by the policy parameter θk as µθk and the kth transition
as ξk := (sk, ak, sk+1), which is sampled from sk ∼ µθk , a ∼ πθk , sk+1 ∼ P , the TD-error is

δ̂(ξk, yk) := r(sk, ak, sk+1) + γφ(sk+1)>yk − φ(sk)>yk (28)

and the critic gradient hg(ξk, yk) := δ̂(ξk, yk)∇V̂yk(sk). We update the parameter y via

yk+1 = ΠRy

(
yk + βkhg(ξk, yk)

)
, (29)

where βk is the critic stepsize, and ΠRy is the projection to control the norm of the gradient. A
pre-defined constant Ry will be specified in the supplementary document.

The goal of policy optimization is to solve maxθ∈Rd F (θ) with F (θ) := Es∼η[Vπθ (s)], where η is
the initial distribution. Leveraging the value function approximation and the policy gradient theorem
[49], we have the policy gradient hf (ξ, θ, y) := δ̂(ξ, y)ψθ(s, a), which gives the policy update

θk+1 = θk + αkhf (ξ′k, θk, yk+1), (30)
where αk is the stepsize and ψθ(s, a) := ∇ log πθ(a|s). Note that the sample ξ′k := (s′k, a

′
k, s
′
k+1)

used in (30) is independent from ξk in (29). Specifically, ξ′k is sampled from s′k ∼ dθk , a
′
k ∼

πθk , s
′
k+1 ∼ P with dθk being the discounted state action visitation measure under θk.

The alternating AC update (29)-(30) is a special case of ALSET, where the critic update is the
lower-level update, and the actor update is the upper-level update.

Due to space limitation, we will directly present the results of the alternating AC next, and defer pre-
sentation of the proof and the corresponding assumptions, which are the counterparts of Assumptions
1–3 in the context of AC, to the supplementary document.
Theorem 2 (Actor-critic). Under the some regularity conditions that are specified in the supplemen-
tary document, selecting step size αk = α = O( 1√

K
), βk = β = O( 1√

K
), it holds

1

K

K∑
k=1

E
[
‖∇F (θk)‖2

]
=O

(
1√
K

)
+ εapp (31)

where εapp, defined in the supplementary document, captures the richness of the linear function class.
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Both sides of Theorem 2. As an application of our tighter analysis, Theorem 2 establishes for the
first time that the sample complexity of the single-loop alternating actor-critic method is O(ε−2). On
the positive side, this new result improves the previous complexity O(ε−5/2) for the single-loop AC
[50], and O(ε−2 log ε−1) for the nested-loop AC [51], and matches O(ε−2) for AC with an exact
critic oracle [52]. In addition to using two independent samples, one limitation of our result is that
inheriting from the analysis for the general bilevel case, our analysis of AC requires the smoothness
of the critic fixed-point y∗(θ). As shown in the supplementary document, this implicitly requires
the additional bounded and Lipschitz continuity assumption on the stationary distribution µθ. The
removal of this assumption and the extension to Markovian sampling are left for future research.

5 Preliminary Experiments

To validate our new theoretical results, we have conducted the simple experiment using the risk-
averse portfolio management task on a benchmark dataset - 100 Book-to-Market. This is a typical
application of stochastic compositional optimization (3) that is used in [40, 41]. We compared the
popular two-timescale SCGD approach [12] with our single-timescale ALSET approach.

Iter k ln k SCGD ALSET ALSET-const
10 2.30 5.32 5.31 5.63
100 4.61 3.78 3.49 3.63
200 5.30 3.40 2.94 3.06
400 5.99 3.04 2.40 2.55

1000 6.91 2.57 1.65 2.06

Table 4: Comparison of ln( 1
K

∑K
k=1 ‖∇F (xk)‖2) among

the two-timescale and single-timescale algorithms.

We use the same initialization of x0, y0 for
both SCGD and ALSET, and tune the step-
sizes αk, βk by following the suggested or-
der in the original SCGD paper and then
using a grid search for the multiplicative
constant c, that is

SCGD: αk = c k−3/4, βk = c k−1/2;
ALSET: αk = c k−1/2, βk = c k−1/2.

The constant c is chosen from the searching
grid {10−3, 5×10−4, 10−4} and is optimized for each algorithm in terms of ergodic average gradient
norm versus the number of iterations. In Table 4, we report the logarithmic value of the average
gradient norm performance of SCGD, ALSET with both the above decreasing stepsizes and ALSET-
const with the constant stepsizes (replacing k with K = 1000). Since SCGD and ALSET use the
same number of samples and gradient evaluations per iteration, we report the progress in terms of
iterations. By calculating the decay rate, we can observe that the empirical convergence rate of
ALSET is no worse than the theoretical rate O(k−1/2), and ALSET outperforms SCGD thanks to its
single-timescale stepsizes. We will pursue more comprehensive experiments in our future work.

6 Conclusions

This paper unifies several SGD-type updates for stochastic nested problems into a single nested SGD
approach that we term ALternating Stochastic gradient dEscenT (ALSET) method. ALSET runs
in the single-timescale and uses a fixed batch size. This paper presents a tighter analysis for using
ALSET to solve stochastic nested problems. Under the new analysis, to achieve an ε-stationary point
of the nested problem, ALSET requires O(ε−2) samples in total. As a by-product, this general result
also improves the existing sample complexity of the min-max and compositional cases. It matches
the sample complexity of SGD for single-level stochastic problems. Applying our analysis to an
alternating version of the actor-critic algorithm also yields a state-of-the-art sample complexity.

Potential limitations of our results include additional assumptions in the min-max and actor-critic
cases, which inherit from the assumptions of general bilevel problems. Nevertheless, our work
can also lead to promising future research in understanding the theoretical performance of many
successful empirical nested optimization algorithms. To this end, our future work consists of relaxing
the regularity conditions needed to achieve our theoretical results and Possible extensions include
applying our the tighter analysis in this paper to the existing two-timescale Hessian-free bilevel
optimization algorithms and decentralized stochastic nested optimization algorithms.
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