

000 SPIKINGLLM: SPIKING LARGE LANGUAGE MODELS 001 WITH CAUSAL SPIKING SELF-ATTENTION AND SPIKE- 002 FORM KNOWLEDGE DISTILLATION 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009

010 ABSTRACT 011

012 Spiking Neural Networks (SNNs) offer promising energy-efficient alternatives to
013 large language models (LLMs) due to their event-driven nature and ultra-low
014 power consumption. However, to retain representation capacity, most existing
015 spiking LLM approaches rely on integer activations or softmax, which involve in-
016 tensive floating-point operations and undermine inference efficiency. Moreover,
017 the intrinsic spatial-temporal optimization of spiking networks further increase
018 the direct training cost and difficulty. To address these challenges, we propose
019 **SpikingLLM**, the first fully binary spike-driven spiking LLM framework devel-
020 oped from random initialization, without reliance on floating-point matrix multi-
021 plications or softmax. At the core of SpikingLLM is the **Causal Spiking Self-
022 Attention (CSSA)** mechanism, which replaces conventional softmax with binary
023 spike-based operations and thereby enables autoregressive language modeling in
024 the spiking domain, ensuring low-cost inference. To support cost-efficient train-
025 ing under constrained computational budgets, we further introduce **Spike-Form
026 Knowledge Distillation (SKD)**, a multi-level distillation strategy that aligns ANN
027 teacher and SNN student across embeddings, attention maps, intermediate fea-
028 tures, and output logits. SKD framework allows SpikingLLM to achieve com-
029 petitive performance with ANN counterparts using substantially fewer training
030 tokens (e.g., 1.0B tokens for a 0.125B model and 10.0B tokens for a 1.3B model),
031 resulting in effective training. As a result, SpikingLLM achieves ANN-level per-
032 formance at only **4.16%–5.87%** of the computational cost on natural language
033 generation tasks. Our results highlight the feasibility and effectiveness of fully
034 binary spike-driven LLMs and establish the distillation as a promising pathway
035 for energy-efficient, brain-inspired spiking NLP.

036 1 INTRODUCTION 037

038 Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language
039 processing, powering a wide range of applications from conversational agents to code genera-
040 tion (Brown et al., 2020; Achiam et al., 2023). However, these models typically require extensive
041 computational resources and energy consumption during both training and inference. For example,
042 GPT-3 was trained with 175 billion parameters using hundreds of petaflop/s-days of compute (Brown
043 et al., 2020). In addition, inference also incurs substantial energy costs, as serving a single query can
044 involve billions of operations and significant GPU utilization (Strubell et al., 2020; Schwartz et al.,
045 2020), raising concerns about their scalability and environmental impact (Strubell et al., 2020).

046 Compared with ANN-based LLMs, the human brain achieves superior intelligence with drastically
047 lower energy consumption, operating on just 20 watts to power approximately 86 billion neu-
048 rons (Izhikevich, 2003; Gerstner et al., 2014). Inspired by the brain’s energy-efficient signaling,
049 Spiking Neural Networks (SNNs) (Maass, 1997; Gerstner et al., 2014) communicate through binary
050 spike events, enabling event-driven and low-power computation (Yin et al., 2021; Schuman et al.,
051 2022), making SNNs a promising alternative to traditional ANNs.

052 While recent efforts have shown promising results of SNNs in computer vision tasks (Zhou et al.,
053 2024; Li et al., 2024; Luo et al., 2024), extending SNNs to natural language processing (NLP),

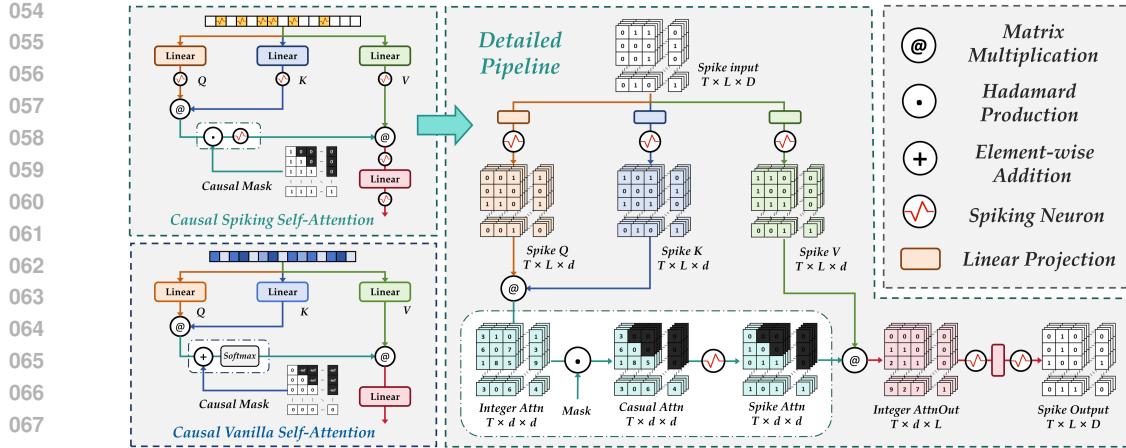


Figure 1: Overview of **Causal Spiking Self-Attention (CSSA)**. Left: Comparison between Vanilla Causal Self-Attention (CSA) (bottom) and CSSA (top). CSA uses softmax and additive masks, while CSSA employs spike-based activation and binary causal masking. Right: Detailed CSSA pipeline, showing spike-form Q, K, V computation, masked integer attention, spiking activation, and spike-based output, enabling fully discrete and energy-efficient attention modeling.

especially LLMs, remains largely underexplored. A central challenge is the design of spiking attention mechanisms. In contrast to vision models, where representations are often bidirectional and spatially local, autoregressive LLMs require **causal attention** to ensure that each token prediction depends only on its preceding context. However, conventional causal attention relies on floating-point matrix multiplications and the softmax operation, both of which are computationally intensive and fundamentally incompatible with spike-based processing. Existing attempts either retain these components (Zhu et al., 2023) or introduce multi-threshold neurons and integer activations (Xing et al., 2024a), which still incur substantial floating-point overhead. Designing a spike-driven causal attention mechanism is therefore critical: it must eliminate softmax while preserving the autoregressive representational capacity of binary spike trains. This challenge directly motivates our **Causal Spiking Self-Attention (CSSA)**, which enables efficient spike-based sequence modeling for spiking LLMs.

Moreover, training spiking LLMs introduces additional difficulties beyond those in vision tasks. The inherent temporal dynamics of SNNs already leads to complex computational graphs and high computational cost during backpropagation. Scaling up the architecture further exacerbates this, making full end-to-end training inefficient or even infeasible. Consequently, prior works mostly resort to ANN-to-SNN conversions (Xing et al., 2024a; Schmidgall et al., 2024). However, such methods typically require large time steps to approximate ANN activations, resulting in high inference cost. Integer-based conversions further scale the operations by $T \times N$, which compromises the potential energy benefits of event-driven spiking computation.

To address these challenges, we propose SpikingLLM, a spike-based large language model built on two key components: a spike-driven attention mechanism (CSSA), schematically depicted in Figure 1, and a multi-level knowledge distillation scheme (SKD), presented in Figure 3. Overall, our contributions can be summarized as follows:

- We propose **SpikingLLM**, the spike-based large language model equipped with a fully spike-driven attention mechanism. Our **CSSA** replaces the vanilla causal self-attention, which relies on floating-point operations and softmax, with a spike-based computation, enabling efficient autoregressive sequence modeling with binary spikes. The overall design follows the OPT-family architecture (Zhang et al., 2022), adapted to the spiking domain.
- We introduce **SKD**, a novel training framework that enables SpikingLLM to be directly trained from random initialization. SKD distills multi-level knowledge covering embeddings, attention maps, intermediate features, and output logits from the teacher model,

108 thereby accelerating convergence, improving training stability, and reducing the amount of
 109 training data required for large-scale spiking LLMs.
 110

111 • With only 10B training tokens, significantly fewer than the 180B tokens used to train OPT-
 112 1.3B, our SKD framework enables SpikingLLM-1.3B to achieve 42.19% zero-shot accu-
 113 racy on common reasoning benchmarks using 4 time steps, approaching the 49.73% of
 114 OPT-1.3B, while consuming just 10.6% of the energy per inference. Remarkably, even at
 115 2 time steps, the model maintains 41.33% accuracy with only 5.88% of the energy cost.
 116

2 RELATED WORK

2.1 SNNs IN DOWNSTREAM TASKS

120 Recent works show SNNs achieving competitive performance in vision tasks with lower computa-
 121 tional consumption. In image classification, advances in surrogate gradients, attention, and adaptive
 122 thresholds have boosted accuracy and efficiency on CIFAR-10/100 and ImageNet (Rathi et al., 2020;
 123 Zhou et al., 2022; 2023; 2024; Li et al., 2024). In object detection, models like SFOD and attention-
 124 based SNNs reduce energy cost while closing the gap with ANNs (Su et al., 2023; Bodden et al.,
 125 2024; Li et al., 2025). For event-based vision, architectures such as 3D-SNN, and MG-SNN effec-
 126 tively handle gesture, motion, and optical flow tasks (Orchard et al., 2015; Lee et al., 2020; Gehrig
 127 et al., 2021).

128 In contrast, the application of SNNs in natural language processing (NLP) is still largely under-
 129 explored, with only a few attempts adapting language models to spike-based computation. For
 130 example, Lv et al. (2023) employs a two-stage distillation strategy to align a pre-trained BERT with
 131 an SNN, but retains many floating-point operations and is limited in scale (up to 109M parameters).
 132 Xing et al. (2024b) proposes a spike-driven language model with bi-directional encoding, yet relies
 133 on floating-point spikes and retains dense floating-point operations, undermining the event-driven
 134 efficiency. Zhu et al. (2023) replaces attention with a linear-complexity Spiking RWKV module, but
 135 still depends on dense floating-point computation and remains modest in size (216M parameters).
 136 Xing et al. (2024a) pushes scaling further by introducing the GIF neuron and OBSpiking frame-
 137 work, enabling model sizes from 7B to 70B. However, this strategy substitutes binary spike trains
 138 with quantized integer signals and retains the softmax operation, thereby losing the advantages of
 139 event-driven computation and fine-grained temporal dynamics. Additionally, despite targeting au-
 140 toregressive large language modeling, the attention mechanism does not incorporate causal masking
 141 adapted to SNN timing constraints.
 142

2.2 KNOWLEDGE DISTILLATION

144 Knowledge distillation is a widely adopted approach for compressing large-scale language models
 145 into smaller, more efficient ones, as demonstrated by models like DistilBERT and TinyBERT (Sanh
 146 et al., 2019; Jiao et al., 2019). In the context of SNNs, early distillation efforts have primarily
 147 targeted small-scale vision tasks, using spike-based student networks guided by soft targets from
 148 ANN teachers (Xu et al., 2023; Qiu et al., 2024; Xu et al., 2024).

149 In contrast, spike-based distillation for language modeling remains underexplored. Existing methods
 150 often overlook the temporal dynamics of SNNs or lack alignment in the spike domain. For example,
 151 SpikeBERT (Lv et al., 2023) maps spike activations into continuous representations via an addi-
 152 tional MLP for teacher-student alignment. However, this introduces extra trainable parameters and
 153 computational overhead, while bypassing the native spike representation, thus limiting the preserva-
 154 tion of spike-driven semantics. To address this, we propose the Spike-Form Knowledge Distillation
 155 framework tailored for SpikingLLMs, featuring spike-attention and spike-feature alignment mod-
 156 ules that enables multi-level knowledge transfer while preserving the discrete and temporal nature
 157 of spiking computation.
 158

3 METHODS

161 We propose SpikingLLM, a spike-based large language model that integrates a spike-native archi-
 162 tectural design with an efficient training paradigm tailored for large-scale SNNs. Specifically, we

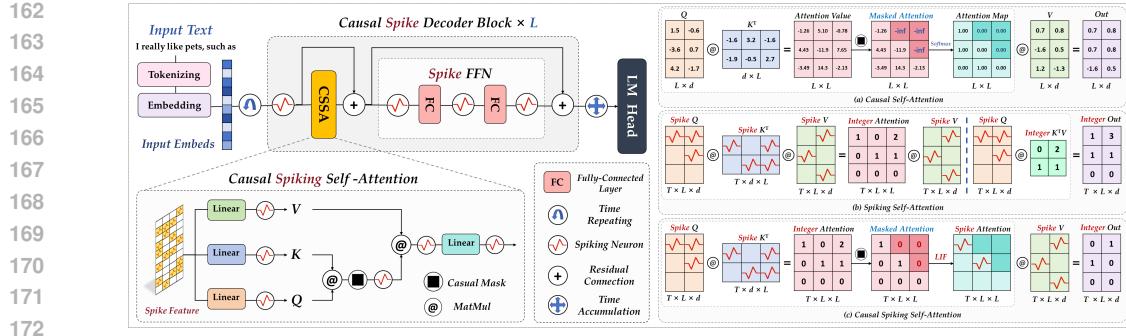


Figure 2: Left depicts the SpikingLLM framework, detailing the operations of the Causal Spiking Self-Attention (CSSA) module and the Spiking Feed-Forward Network (SFFN). Right compares the computational process of vanilla Causal Self-Attention (CSA), Spiking Self-Attention (SSA), and CSSA, where red spikes represent binary values of 1 and all other values are 0.

design a fully spike-driven attention mechanism, Causal Spiking Self-Attention (CSSA), which replaces conventional softmax-based attention with spike-compatible computation, supporting autoregressive sequence modeling using binary spikes. Building upon this architecture, we further develop Spike-Form Knowledge Distillation (SKD), a multi-level distillation framework that enables stable and scalable training from random initialization by transferring rich supervision signals from a frozen ANN teacher to the SNN student. The overall model architecture is shown in Figure 2, and the training strategy is illustrated in Figure 3.

3.1 PROBLEM STATEMENT

We consider the task of autoregressive generation using a decoder-only Large Language Model (LLM). Formally, given a sequence of tokens x_1, x_2, \dots, x_n , the model is trained to predict the next token x_{n+1} conditioned on the previous n tokens. This can be expressed as maximizing the likelihood:

$$P(x_{n+1} | x_1, x_2, \dots, x_n). \quad (1)$$

During the pre-training stage, the ground-truth label for each autoregressive generation step tau is the token x_{tau+1} , and the model is optimized using the standard cross-entropy loss. The goal is to learn a function that maps token sequences to probability distributions over the vocabulary, employing causal (unidirectional) attention under temporal constraints.

3.2 SPIKINGLLM ARCHITECTURE

To enable efficient sequence modeling with SNNs, we propose **SpikingLLM**, which integrates binary spiking neurons with causal attention for softmax-free, energy-efficient computation. Unlike prior works (Zhu et al., 2023; Xing et al., 2024a; Schmidgall et al., 2024), SpikingLLM is fully spike-driven and employs a Hadamard-masked dot product followed by spiking neuron to implement causal attention without softmax. The architecture consists of three main components: (1) Spiking Neuron Modules, (2) Causal Spiking Self-Attention (CSSA), and (3) a Spike Feed-Forward Network (SFFN). The overall design is built upon the OPT-family architecture (Zhang et al., 2022), chosen for its open-source nature, simplicity, and proven effectiveness. The model is further adapted to operate entirely with spiking computations.

3.2.1 SPIKING NEURON MODULES

To explore more expressive yet efficient spiking neurons for language modeling, we design two variants of SpikingLLM. **SpikingLLM-v1** employs the standard Leaky Integrate-and-Fire (LIF) neuron (Wu et al., 2018), implemented via SpikingJelly (Fang et al., 2023), while **SpikingLLM-v2** adopts a ternary spiking neuron inspired by (Xing et al., 2024b), which extends binary spikes $\{0, 1\}$ to ternary values $\{-\alpha, 0, +\alpha\}$ depending on the membrane potential intensity.

216 The LIF neuron emits a spike $S_t \in \{0, 1\}$ when the membrane potential U_t exceeds a threshold
 217 U_{thr} , and resets afterward:
 218

$$219 \quad S_t = \begin{cases} 1, & \text{if } U_t \geq U_{thr}, \\ 220 & 0, \text{ otherwise,} \end{cases} \quad U_t = I_t + \lambda U_{t-1} - S_{t-1} U_{thr}, \quad (2)$$

221 where $I_t = WX_t$ is the input current, and λ controls temporal decay.
 222

223 In contrast, the ternary neuron in SpikingLLM-v2 outputs discrete values scaled by a layer-specific
 224 amplitude $\alpha(t)$:

$$225 \quad s_{\pm}(t) = \begin{cases} -\alpha(t), & \text{if } m(t) < -\alpha(t), \\ 226 & 0, \quad \text{if } |m(t)| \leq \alpha(t), \\ 227 & +\alpha(t), \quad \text{if } m(t) > +\alpha(t), \end{cases} \quad (3)$$

228 with membrane potential updated as:
 229

$$230 \quad v_l(t) = m_l(t)(\alpha(t) - s_l(t)) + v_{\text{reset}} s_l(t). \quad (4)$$

232 While SpikingLLM-v2 captures richer signal representations, it introduces additional computation
 233 and deviates from the strict sparsity and event-driven efficiency of binary SNNs.
 234

235 3.2.2 CAUSAL SPIKING SELF-ATTENTION (CSSA)

236 To enable attention mechanisms in spike-based neural networks while preserving computational ef-
 237 ficiency, we propose the **Causal Spiking Self-Attention (CSSA)** module, presented in Figure 1.
 238 CSSA reformulates the classical self-attention mechanism using spike-based representations, con-
 239 strained by causality and spiking dynamics.
 240

241 Specifically, input spike sequences are first projected into continuous-valued queries, keys, and val-
 242 ues, which are then discretized via LIF or ternary spiking neurons. Spike-based dot products be-
 243 tween queries and keys yield integer-valued attention scores, followed by a causal mask to ensure
 244 autoregressive flow. The masked scores are passed through a spiking activation to produce sparse
 245 attention weights, which are used to compute the weighted sum over value spikes. A final linear
 246 projection and spiking activation generate the output. This design preserves both temporal causality
 247 and spike-driven sparsity. The full procedure is summarized in Appendix A.2.
 248

249 3.2.3 SPIKE FEED-FORWARD NETWORK (SFFN)

250 The **Spike Feed-Forward Network (SFFN)** module follows the standard Transformer FFN struc-
 251 ture but replaces activation functions with spiking neurons. Specifically, we support both the classic
 252 LIF neuron and the ternary spiking neuron introduced in SpikingLLM-v2. The module is defined
 253 as:
 254

$$\mathcal{FC}(x) = \text{SpikeNeuron}(\mathcal{W}x + b), \quad (5)$$

$$255 \quad \text{SFFN}(x) = \mathcal{FC}_2(\mathcal{FC}_1(x)), \quad (6)$$

256 where **SpikeNeuron** represents either a LIF or ternary spiking activation depending on the model
 257 variant. This formulation allows the feedforward block to remain fully spike-driven while supporting
 258 richer information encoding in SpikingLLM-v2.
 259

260 3.3 SPIKE-FORM KNOWLEDGE DISTILLATION

262 To enable effective knowledge transfer from the teacher Artificial Neural Network (ANN) to the
 263 student Spiking Neural Network (SNN), we propose a novel framework called **Spike-Form Knowl-
 264 edge Distillation (SKD)**. It consists of five key components targeting different representational lev-
 265 els as shown in Figure 3. Given the potential structural mismatch between teacher and student (e.g.,
 266 in embedding dimensions, number of layers, or attention heads), we introduce structural alignment
 267 techniques to ensure compatibility, such as linear projections for dimension matching, head-wise
 268 mapping or projection for attention alignment, and layer skipping to bridge differing network depths.
 269

Among various alignments, we focus on **Spike-Attention Alignment** and **Spike-Feature Align-
 269 ment**. The reason is that other alignments (embedding, soft/hard targets) are largely consistent

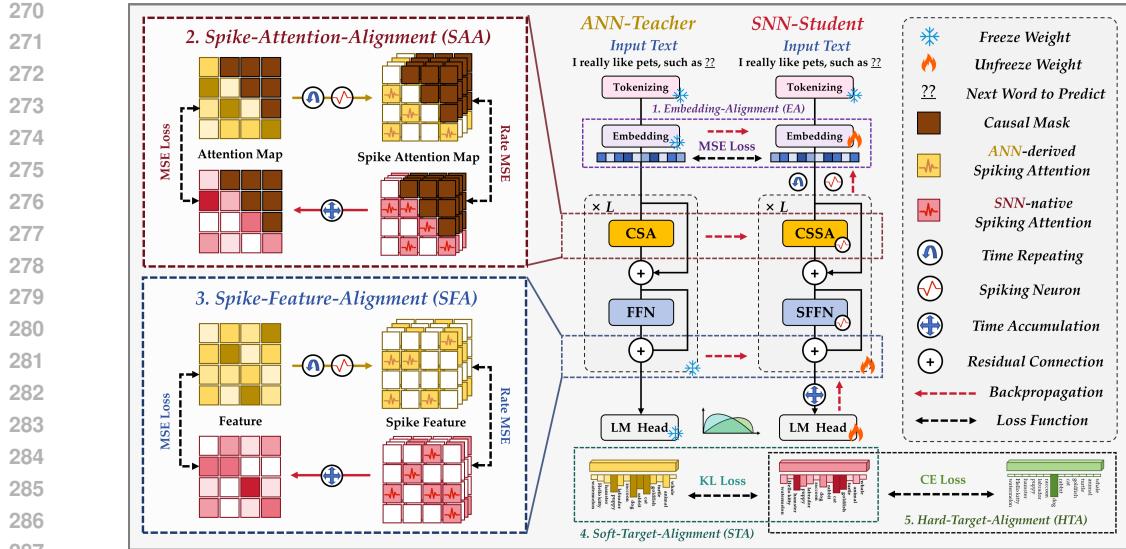


Figure 3: Overview of our **Spike-Form Knowledge Distillation (SKD)** framework. Knowledge is transferred from a frozen ANN teacher to a trainable SNN student via five alignment modules: (1) **Embedding Alignment (EA)**; (2) **Spike-Attention Alignment (SAA)**; (3) **Spike-Feature Alignment (SFA)**; (4) **Soft-Target Alignment (STA)**; and (5) **Hard-Target Alignment (HTA)**. Losses include MSE, CE, and spike-aware temporal strategies. In particular, our proposed *Rate-MSE* loss (equation 9) aligns the attention dynamics between ANN and SNN models over time. Dashed arrows indicate loss paths; spike-related operations are denoted with icons.

between ANNs and SNNs, while these two exhibit substantial differences: ANN representations are floating-point values, whereas SNN representations are discrete spikes (0-1), and they also include a temporal dimension. Detailed formulation and implementation of these alignments are provided in the Appendix A.3.

Spike-Attention Alignment Given the fundamental difference in attention mechanisms, floating-point representations in the ANN versus spike-based representations in the SNN, as well as the additional temporal dimension in the SNN’s attention outputs, which causes dimensional mismatch, we design two alignment strategies to enable effective cross-domain knowledge transfer:

(a) Temporal Replication and Spiking: We replicate the static attention map $A_{\text{ANN}} \in \mathbb{R}^{L \times L}$ across T time steps:

$$\tilde{A}_{\text{ANN}} = \text{Repeat}(A_{\text{ANN}}, T) \in \mathbb{R}^{T \times L \times L}. \quad (7)$$

Each time step is then passed through a spiking neuron:

$$\hat{A}_{\text{spike}}^{\text{ANN}}(t) = \sigma_{\text{spike}}(\tilde{A}_{\text{ANN}}(t)), \quad t = 1, \dots, T. \quad (8)$$

We compute Rate-MSE loss:

$$\mathcal{L}_{\text{attn}}^{\text{RateMSE}} = \text{MSE} \left(\frac{1}{T} \sum_t \hat{A}_{\text{spike}}^{\text{ANN}}(t), \frac{1}{T} \sum_t A_{\text{SNN}}(t) \right). \quad (9)$$

(b) Temporal Fusion and Distribution Matching: Alternatively, we temporally average the SNN spike-attention and match it to the ANN attention using Mean Squared Error (MSE):

$$\bar{A}_{\text{SNN}} = \frac{1}{T} \sum_{t=1}^T A_{\text{SNN}}(t), \quad \mathcal{L}_{\text{attn}}^{\text{MSE}} = \text{MSE}(A_{\text{ANN}}, \bar{A}_{\text{SNN}}). \quad (10)$$

The overall spike-attention alignment loss is:

$$\mathcal{L}_{\text{attn}} = \alpha_1 \mathcal{L}_{\text{attn}}^{\text{RateMSE}} + \alpha_2 \mathcal{L}_{\text{attn}}^{\text{MSE}}. \quad (11)$$

324 **Spike-Feature Alignment** Similarly, intermediate hidden states are aligned using a combination
 325 of rate-based and temporally averaged MSE:
 326

$$\mathcal{L}_{\text{feat}} = \beta_1 \mathcal{L}_{\text{feat}}^{\text{RateMSE}} + \beta_2 \mathcal{L}_{\text{feat}}^{\text{MSE}}, \quad (12)$$

328 with linear projections and skip-layer connections used to handle mismatched dimensions and
 329 depths.
 330

331 **Total Loss** Combining embedding alignment, spike-based alignments, and traditional distillation,
 332 the student SNN is supervised with the overall training objective:
 333

$$\mathcal{L}_{\text{total}} = \lambda_1 \mathcal{L}_{\text{emb}} + \lambda_2 \mathcal{L}_{\text{attn}} + \lambda_3 \mathcal{L}_{\text{feat}} + \lambda_4 \mathcal{L}_{\text{soft}} + \lambda_5 \mathcal{L}_{\text{hard}}. \quad (13)$$

335 4 EXPERIMENTS

336 4.1 TRAINING DETAILS

339 We use **FineWeb-Edu** (Penedo et al., 2024), a high-quality subset of the FineWeb corpus curated
 340 for factual and educational content. A 10B-token portion of the dataset is selected for pretraining.
 341 Notably, our SpikingLLM models achieve competitive performance under strict energy constraints,
 342 despite being trained on orders-of-magnitude fewer tokens (1–10 billion) compared to conventional
 343 ANN counterparts (typically requiring more than 100 Billion tokens), even at reduced parameter
 344 scales (0.125B–1.3B). The detailed training setup are provided in the Appendix A.4.
 345

346 Table 1: Comparison of performance and estimated energy efficiency between SpikingLLM and
 347 conventional ANN baselines on the ACC benchmark. SpikingLLM-v1 adopts classic LIF neurons
 348 (see equation 2) implemented via SpikingJelly, while SpikingLLM-v2 employs ternary-valued spik-
 349 ing neurons with amplitude encoding (see equation 3), following the SpikeLM design. All energy
 350 estimates are calculated under a uniform FP32-based energy model for fair comparison. Time Step
 351 indicates the number of discrete simulation steps used during SNN inference.
 352

Model	Params (B)	Tokens (B)	Spike Form	Time Step	OPS (G)	Firing Rate	Energy (mJ)	Zero - shot Accuracy (%) ↑								
								ARC-e	ARC-c	WG	BQ	PIQA	HS	OBQA	HQA	Avg.
OPT	0.125	180	×	—	125.6	—	125.95	43.6	19.3	52.3	54.6	62.4	32.1	20.2	23.7	38.60
Pythia	0.160	300	×	—	125.7	—	126.01	43.7	19.8	52.8	55.1	62.7	33.6	20.1	24.2	39.00
SpikeGPT	0.046	16.5	Binary	—	3.66	0.174	3.29	32.3	16.2	50.2	45.7	54.6	25.3	15.7	20.6	32.58
SpikeGPT	0.216	16.5	Binary	—	18.3	0.168	16.53	35.2	17.7	50.7	47.3	55.1	27.6	17.3	23.1	34.25
SpikingLLM-v1	0.125	1.0	Binary	2	12.1	0.196	5.24	39.1	18.9	50.3	52.7	56.7	28.1	19.8	22.9	36.05
SpikingLLM-v2	0.125	1.0	Ternary	2	13.7	0.412	10.74	38.5	18.3	51.3	52.3	57.7	29.1	19.2	22.5	36.11
SpikingLLM-v1	0.125	1.0	Binary	4	23.1	0.173	9.43	39.4	19.0	51.2	53.0	57.5	29.2	19.7	23.1	36.50
SpikingLLM-v2	0.125	1.0	Ternary	4	25.8	0.386	19.92	38.9	18.5	51.5	52.9	58.0	28.3	19.2	22.9	36.27
OPT	0.350	180	×	—	360.8	—	197.57	47.5	22.2	55.3	57.2	66.1	40.7	25.7	26.6	42.68
Pythia	0.410	300	×	—	360.9	—	197.71	48.7	24.8	56.8	58.1	66.7	41.6	26.1	26.2	43.63
SpikingLLM-v1	0.350	2.0	Binary	2	43.4	0.182	9.31	41.5	21.7	52.3	55.1	59.7	32.7	21.2	23.8	38.48
SpikingLLM-v2	0.350	2.0	Ternary	2	47.7	0.404	18.61	41.5	21.7	52.4	54.9	59.1	31.6	20.8	23.1	38.14
SpikingLLM-v1	0.350	2.0	Binary	4	84.2	0.178	16.75	42.1	21.4	52.1	56.1	60.5	33.1	21.9	23.5	38.84
SpikingLLM-v2	0.350	2.0	Ternary	4	88.3	0.377	35.35	41.8	21.9	52.8	55.7	60.4	34.0	21.3	23.1	38.87
OPT	1.300	180	×	—	1237.1	—	632.22	57.8	30.4	60.4	60.8	71.7	52.6	33.4	30.7	49.73
Pythia	1.400	300	×	—	1237.4	—	632.48	60.5	31.2	61.3	61.1	71.1	53.6	33.2	31.9	50.49
SpikingLLM-v1	1.300	10.0	Binary	2	66.7	0.192	37.16	45.7	23.5	54.2	56.3	62.3	40.2	24.5	24.0	41.33
SpikingLLM-v2	1.300	10.0	Ternary	2	74.2	0.426	74.32	44.5	23.7	54.2	55.3	62.3	40.4	24.6	23.6	41.08
SpikingLLM-v1	1.300	10.0	Binary	4	131.9	0.184	66.89	46.3	24.3	55.6	56.8	63.4	41.7	25.2	24.3	42.19
SpikingLLM-v2	1.300	10.0	Ternary	4	141.6	0.411	141.21	45.8	24.5	55.6	56.1	63.4	41.3	25.5	24.8	42.12

372 4.2 MODEL EVALUATION

373 We evaluate models using zero-shot accuracy on diverse commonsense reasoning and QA benchmarks,
 374 including ARC-Easy (ARC-e), ARC-Challenge (ARC-c) (Clark et al., 2018), Winogrande
 375 (WG) (Sakaguchi et al., 2021), BoolQ (BQ) (Clark et al., 2019), PIQA (Bisk et al., 2020), HellaSwag
 376 (HS) (Zellers et al., 2019), OpenBookQA (OBQA) (Mihaylov et al., 2018), and HeadQA
 377 (HQA) (Vilares & Gómez-Rodríguez, 2019), measuring the generalization and reasoning abilities

378 without task-specific finetuning. As shown in Table 1, SpikingLLM achieves 82.60–94.56% of the
 379 zero-shot accuracy of counterpart ANN models at the same scale, despite using significantly fewer
 380 operations and training tokens. For example, SpikingLLM-v1 (1.3B, 10B tokens, 4 steps) reaches
 381 42.19% accuracy versus 49.73% for OPT-1.3B, consuming only 10.6% of the energy per inference.
 382 For fair comparison with existing spiking LLMs, we focus on Zhu et al. (2023), a decoder-only SNN
 383 trained from scratch and architecturally comparable. We don’t directly compare with Xing et al.
 384 (2024b) or Lv et al. (2023), which are not decoder-only and target different downstream tasks. And
 385 since Xing et al. (2024a) is derived via quantization and spiking conversion from pretrained ANN
 386 LLMs, we defer detailed comparisons with such quantization-based approaches to Appendix A.7.
 387

388 4.3 ENERGY CONSUMPTION

390 To assess the efficiency of SNNs, we first measure the firing rate, defined as the average proportion
 391 of active spikes, where lower rates indicate higher sparsity and greater energy efficiency. Based on
 392 the firing rate, we then estimate the theoretical energy consumption during inference by simulating
 393 a 45nm neuromorphic chip, following Horowitz (2014); Kundu et al. (2021a); Yin et al. (2021);
 394 Kim & Panda (2021). Energy estimates are based on the total number of spike operations (SOPs),
 395 compared against floating-point operations (FLOPs) in baseline ANN models. Detailed computa-
 396 tion steps are provided in Appendix A.6. The Table 1 reports the per-sample energy consumption,
 397 firing rates, and zero-shot accuracy across benchmarks. Our results show that: SpikingLLM-v1 con-
 398 sistsently consumes an order of magnitude less energy than ANN baselines (e.g., 9.43 mJ vs. 126.01
 399 mJ at 125M) while achieving over 93% of the accuracy. Across parameter scales (0.125B–1.3B),
 400 SpikingLLM maintains competitive performance at only **4.16%–5.87%** of the computational cost.
 401 Moreover, increasing time steps slightly improves performance (36.05% → 36.50% at 125M) with
 402 moderate energy overhead. SpikingLLM-v2 offers slightly higher accuracy at increased energy,
 403 providing a flexible trade-off for application constraints. These findings validate the viability of
 404 SNN-based LLMs for energy-constrained environments, such as edge devices and neuromorphic
 405 accelerators.

406 4.4 ABLATION STUDY

407 We conduct a series of ablation experiments on the **SpikingLLM-v1** model with 125M parameters
 408 to evaluate the contributions of key components and training factors. Specifically, we investigate: (1)
 409 the role of spike-driven modules, (2) the impact of varying simulation time steps, (3) the influence
 410 of training token volume, and (4) the effectiveness of our multi-level distillation alignment strategy.
 411

412 **Spike-driven Modules** We first examine the effect of spike-driven modules by replacing CSSA
 413 and SFFN with their ANN counterparts. As shown in Figure 4a, the fully spike-driven design
 414 (CSSA+SFFN) achieves 36.05% accuracy with only 5.24 mJ energy. Replacing either module
 415 slightly improves accuracy (up to 36.57%) but increases energy consumption by more than 10×.
 416 Using ANN attention and FFN together yields 37.10% accuracy at the cost of 24× higher energy.
 417 These results highlight that CSSA and SFFN are essential for preserving the energy-efficiency ad-
 418 vantage of SpikingLLM.
 419

420 **Distillation Alignment Strategy** We assess each alignment component by progressively adding
 421 it to the base HTA model. As shown in Figure 4b, STA yields the largest individual gain (+1.11%),
 422 while EA offers a smaller effect (+0.33%), suggesting limited standalone benefit of energy align-
 423 ment at this stage. Higher-level constraints such as SFA and SAA further improve performance
 424 (+0.63% and +0.38%). When combining STA with EA or SFA, the improvements increase more
 425 significantly, indicating complementary effects. Combining multiple objectives produces stronger
 426 gains, and the full set (STA, EA, SFA, SAA) achieves the best accuracy (36.25%, +1.68%). These
 427 results highlight the complementary benefits of hierarchical alignment for effective knowledge trans-
 428 fer from ANN teachers to spiking students.

429 **Time Steps** We further study the effect of varying simulation time steps (1–8). As shown in
 430 Figure 4c, more time steps improve accuracy by refining temporal resolution, but gains saturate
 431 beyond 4 steps while energy cost rises sharply. Firing rates gradually decline with longer steps,

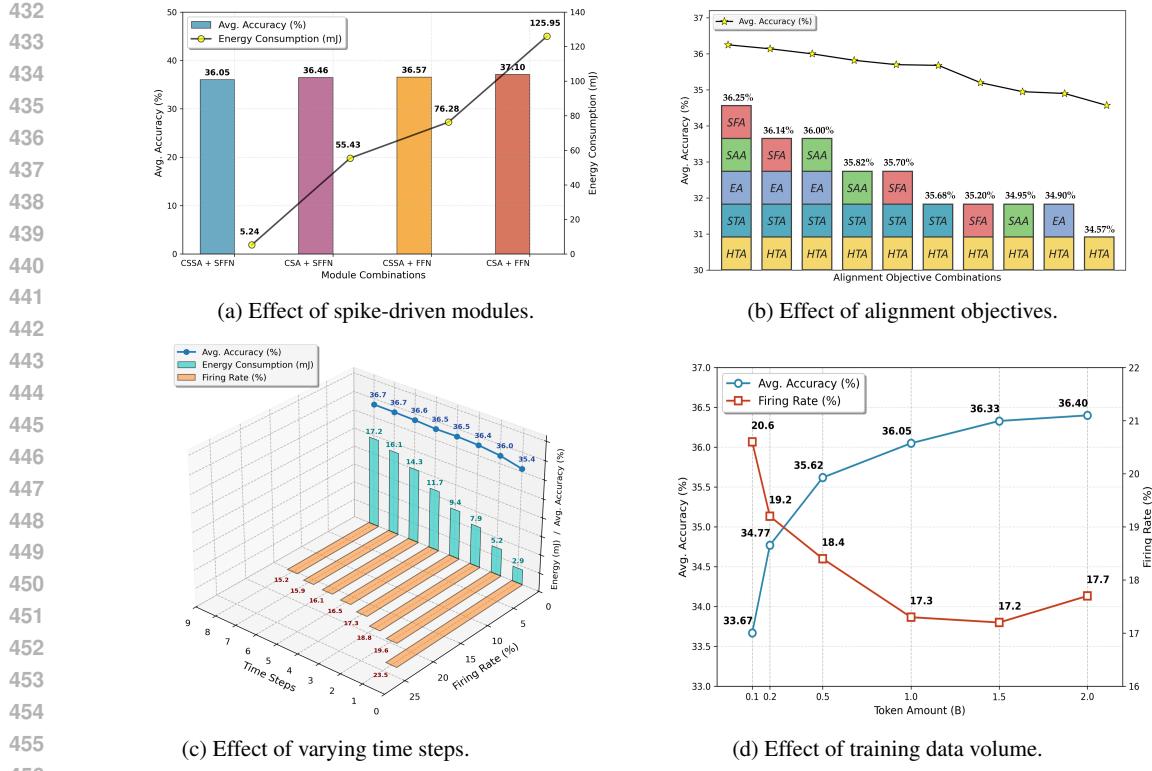


Figure 4: Visualization of ablation experiments.

indicating increased sparsity. Overall, 2–4 steps provide a good trade-off between efficiency and performance, while more steps yield marginal accuracy gains at higher energy cost.

Training Token Volume Finally, we evaluate the impact of training data size by varying tokens from 0.1B to 2.0B. As shown in Figure 4d, accuracy improves consistently with more data, with the largest gains in the low-data regime (0.1B → 0.5B) and saturation beyond 1.0B tokens. Performance rises from 33.67% to 36.40%, reaching 94.3% of the teacher’s accuracy (38.60%). Interestingly, the firing rate gradually decreases as training data increases, suggesting that larger training dataset not only improves performance but also enhances temporal sparsity, likely due to more structured representations. These results demonstrate the data efficiency of our training framework, enabling near-saturated performance with relatively few tokens. Further details on firing and activation patterns are visualized in the Appendix A.8.

5 CONCLUSION

We introduce **SpikingLLM**, the fully binary spike-driven LLM trained from random initialization. Its **Causal Spiking Self-Attention (CSSA)** enables softmax-free, spike-based autoregressive modeling, reducing computational cost by over 10× compared to ANNs. A multi-level **Spike-Form Knowledge Distillation (SKD)** framework further improves performance by aligning representations across multiple levels. SpikingLLM achieves competitive accuracy with fewer training tokens and lower energy, demonstrating a promising pathway for energy-efficient, brain-inspired NLP.

Limitations: While SpikingLLM significantly reduces computational cost, its accuracy still lags behind large-scale ANN LLMs on some benchmarks, and training larger models requires careful tuning of time steps and distillation schedules. Future work could explore improved spike-based architectures and more effective distillation strategies to further close the gap with ANN performance.

486 ETHICS STATEMENT.
487488 All experiments in this work are conducted on publicly available datasets without involving private
489 or sensitive information. The proposed methods are intended purely for academic research, and any
490 deployment should carefully consider potential ethical risks such as bias or misuse.
491492 REPRODUCIBILITY STATEMENT.
493494 The experimental results in this paper are reproducible. We describe the model architecture and
495 training process details in the main text and appendix. We will release the source code after review.
496497 REFERENCES
498500 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
501 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
502 report. *arXiv preprint arXiv:2303.08774*, 2023.503 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
504 monsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
505 volume 34, pp. 7432–7439, 2020.506 Lennard Bodden, Duc Bach Ha, Franziska Schwaiger, Lars Kreuzberg, and Sven Behnke. Spiking
507 centernet: A distillation-boosted spiking neural network for object detection. In *2024 Interna-
508 tional Joint Conference on Neural Networks*, pp. 1–9. IEEE, 2024.510 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
511 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
512 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.513 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
514 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint
515 arXiv:1905.10044*, 2019.517 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
518 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
519 *arXiv preprint arXiv:1803.05457*, 2018.520 Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
521 Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
522 infrastructure platform for spike-based intelligence. *Science Advances*, 9(40):ead1480, 2023.524 Mathias Gehrig, Willem Aarents, Daniel Gehrig, and Davide Scaramuzza. Dsec: A stereo event
525 camera dataset for driving scenarios. *IEEE Robotics and Automation Letters*, 6(3):4947–4954,
526 2021.527 Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. *Neuronal dynamics: From
528 single neurons to networks and models of cognition*. Cambridge University Press, 2014.530 Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In *2014 IEEE
531 international solid-state circuits conference digest of technical papers*, pp. 10–14. IEEE, 2014.533 Yifan Hu, Yujie Wu, Lei Deng, and Guoqi Li. Advancing residual learning towards powerful deep
534 spiking neural networks. *arXiv preprint arXiv:2112.08954*, 7:7, 2021.535 Eugene M Izhikevich. Simple model of spiking neurons. *IEEE Transactions on neural networks*,
536 14(6):1569–1572, 2003.538 Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
539 Tinybert: Distilling bert for natural language understanding. *arXiv preprint arXiv:1909.10351*,
2019.

540 Ayush Kaushal, Tejas Vaidhya, Arnab Kumar Mondal, Tejas Pandey, Aaryan Bhagat, and Irina Rish.
 541 Spectra: Surprising effectiveness of pretraining ternary language models at scale. *arXiv preprint*
 542 *arXiv:2407.12327*, 2024.

543 Youngeun Kim and Priyadarshini Panda. Optimizing deeper spiking neural networks for dynamic
 544 vision sensing. *Neural Networks*, 144:686–698, 2021.

545 Souvik Kundu, Gourav Datta, Massoud Pedram, and Peter A Beerel. Spike-thrift: Towards energy-
 546 efficient deep spiking neural networks by limiting spiking activity via attention-guided compres-
 547 sion. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp.
 548 3953–3962, 2021a.

549 Souvik Kundu, Massoud Pedram, and Peter A Beerel. Hire-snn: Harnessing the inherent robustness
 550 of energy-efficient deep spiking neural networks by training with crafted input noise. In *Proceed-
 551 ings of the IEEE/CVF international conference on computer vision*, pp. 5209–5218, 2021b.

552 Chankyu Lee, Adarsh Kumar Kosta, Alex Zihao Zhu, Kenneth Chaney, Kostas Daniilidis, and
 553 Kaushik Roy. Spike-flownet: event-based optical flow estimation with energy-efficient hybrid
 554 neural networks. In *European conference on computer vision*, pp. 366–382. Springer, 2020.

555 Yudong Li, Yunlin Lei, and Xu Yang. Spikeformer: Training high-performance spiking neural
 556 network with transformer. *Neurocomputing*, 574:127279, 2024.

557 Ziqi Li, Tao Gao, Yisheng An, Ting Chen, Jing Zhang, Yuanbo Wen, Mengkun Liu, and Qianxi
 558 Zhang. Brain-inspired spiking neural networks for energy-efficient object detection. In *Proceed-
 559 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pp.
 560 3552–3562, 2025.

561 Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and spike-driven
 562 inference spiking neural network for high-performance and energy-efficient object detection. In
 563 *European Conference on Computer Vision*, pp. 253–272. Springer, 2024.

564 Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zixuan Ling, Cenyuan Zhang, Xiaoqing Zheng,
 565 and Xuanjing Huang. Spikebert: A language spikformer learned from bert with knowledge dis-
 566 tillation. *arXiv preprint arXiv:2308.15122*, 2023.

567 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
 568 *Neural networks*, 10(9):1659–1671, 1997.

569 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 570 electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*,
 571 2018.

572 Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image
 573 datasets to spiking neuromorphic datasets using saccades. *Frontiers in neuroscience*, 9:437, 2015.

574 Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
 575 Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
 576 at scale. *Advances in Neural Information Processing Systems*, 37:30811–30849, 2024.

577 Haonan Qiu, Munan Ning, Zeyin Song, Wei Fang, Yanqi Chen, Tao Sun, Zhengyu Ma, Li Yuan, and
 578 Yonghong Tian. Self-architectural knowledge distillation for spiking neural networks. *Neural
 579 Networks*, 178:106475, 2024.

580 Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
 581 spiking neural networks with hybrid conversion and spike timing dependent backpropagation. In
 582 *International Conference on Learning Representations*, 2020.

583 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 584 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

585 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
 586 bert: smaller, faster, cheaper and lighter. *arXiv preprint arXiv:1910.01108*, 2019.

594 Samuel Schmidgall, Rojin Ziae, Jascha Achterberg, Louis Kirsch, S Hajiseyedrazi, and Jason
 595 Eshraghian. Brain-inspired learning in artificial neural networks: a review. *APL Machine Learning*,
 596 2(2), 2024.

597 Catherine D Schuman, Shruti R Kulkarni, Maryam Parsa, J Parker Mitchell, Prasanna Date, and Bill
 598 Kay. Opportunities for neuromorphic computing algorithms and applications. *Nature Computational Science*,
 599 2(1):10–19, 2022.

600 Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. *Communications of the ACM*,
 601 63(12):54–63, 2020.

602 Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
 603 Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
 604 large language models. *arXiv preprint arXiv:2308.13137*, 2023.

605 Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
 606 modern deep learning research. In *Proceedings of the AAAI conference on artificial intelligence*,
 607 volume 34, pp. 13693–13696, 2020.

608 Qiaoyi Su, Yuhong Chou, Yifan Hu, Jianing Li, Shijie Mei, Ziyang Zhang, and Guoqi Li. Deep
 609 directly-trained spiking neural networks for object detection. In *Proceedings of the IEEE/CVF
 610 International Conference on Computer Vision*, 2023.

611 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 612 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 613 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

614 David Vilares and Carlos Gómez-Rodríguez. Head-qa: A healthcare dataset for complex reasoning.
 615 *arXiv preprint arXiv:1906.04701*, 2019.

616 Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
 617 Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
 618 models. *arXiv preprint arXiv:2310.11453*, 2023.

619 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
 620 training high-performance spiking neural networks. *Frontiers in neuroscience*, 12:331, 2018.

621 Xingrun Xing, Boyan Gao, Zheng Liu, David A Clifton, Shitao Xiao, Wanpeng Zhang, Li Du,
 622 Zheng Zhang, Guoqi Li, and Jiajun Zhang. Spikellm: Scaling up spiking neural network to
 623 large language models via saliency-based spiking. In *The Thirteenth International Conference on
 624 Learning Representations*, 2024a.

625 Xingrun Xing, Zheng Zhang, Ziyi Ni, Shitao Xiao, Yiming Ju, Siqi Fan, Yequan Wang, Jiajun
 626 Zhang, and Guoqi Li. Spikelm: Towards general spike-driven language modeling via elastic
 627 bi-spiking mechanisms. *arXiv preprint arXiv:2406.03287*, 2024b.

628 Qi Xu, Yixin Li, Jiangrong Shen, Jian K Liu, Huajin Tang, and Gang Pan. Constructing deep spiking
 629 neural networks from artificial neural networks with knowledge distillation. In *Proceedings of the
 630 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7886–7895, 2023.

631 Qi Xu, Yixin Li, Xuanye Fang, Jiangrong Shen, Qiang Zhang, and Gang Pan. Reversing structural
 632 pattern learning with biologically inspired knowledge distillation for spiking neural networks. In
 633 *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 3431–3439, 2024.

634 Man Yao, Huanhuan Gao, Guangshe Zhao, Dingheng Wang, Yihan Lin, Zhaoxu Yang, and Guoqi Li.
 635 Temporal-wise attention spiking neural networks for event streams classification. In *Proceedings
 636 of the IEEE/CVF international conference on computer vision*, pp. 10221–10230, 2021.

637 Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate and efficient time-domain classi-
 638 fication with adaptive spiking recurrent neural networks. *Nature Machine Intelligence*, 3(10):
 639 905–913, 2021.

640 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 641 chine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

648 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
649 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
650 language models. *arXiv preprint arXiv:2205.01068*, 2022.

651

652 Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Zhengyu Ma, Han Zhang, Huihui Zhou, and Yonghong
653 Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural net-
654 work. *arXiv preprint arXiv:2304.11954*, 2023.

655 Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan,
656 Zhengyu Ma, Huihui Zhou, and Yonghong Tian. Qkformer: Hierarchical spiking transformer
657 using qk attention. *Advances in Neural Information Processing Systems*, 37:13074–13098, 2024.

658

659 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
660 Li Yuan. Spikformer: When spiking neural network meets transformer. *arXiv preprint
arXiv:2209.15425*, 2022.

661

662 Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. Spikegpt: Generative pre-trained
663 language model with spiking neural networks. *arXiv preprint arXiv:2302.13939*, 2023.

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**
703704 **A.1 USE OF LLMs**
705706 In this work, we used Large Language Models (LLMs) in a limited and auxiliary capacity. Specifi-
707 cally, LLMs were employed for retrieval and discovery of related literature on Spiking Neural Net-
708 works (SNNs), neuromorphic computing, and energy-efficient large language models. This assisted
709 us in identifying relevant prior work and ensuring broader coverage of existing approaches. Impor-
710 tantly, LLMs were not involved in designing algorithms, implementing models, or analyzing experi-
711 mental results. All methodological innovations, including the Causal Spiking Self-Attention (CSSA)
712 and Spike-Form Knowledge Distillation (SKD), were independently conceived, implemented, and
713 validated by the authors. Thus, the role of LLMs was restricted to accelerating literature exploration,
714 without influencing the scientific contributions of this paper.
715716 **A.2 ALGORITHM PROCEDURE OF CSSA**
717718 **Algorithm 1** Causal Spiking Self-Attention (CSSA)719 **Input:** Spike-based input X 720 **Output:** Spiking attention output721 1: // **Step 1: Input Projection** ($FP \leftarrow Spike @ FP$)
722 2: $q, k, v \leftarrow \text{Linear}_{Q, K, V}(X)$
723 3: // **Step 2: Spiking Neuron Encoding** ($Spike \leftarrow FP$)
724 4: $\text{spike}_q \leftarrow \text{SpikingNeuron}_Q(q)$
725 5: $\text{spike}_k \leftarrow \text{SpikingNeuron}_K(k)$
726 6: $\text{spike}_v \leftarrow \text{SpikingNeuron}_V(v)$
727 7: // **Step 3: Attention** ($\text{Integer} \leftarrow Spike @ Spike$)
728 8: $\text{attn_int} \leftarrow \text{spike}_q @ \text{spike}_k^T$
729 9: // **Step 4: Causal Masking and Spiking**
730 10: $\text{causal_mask} \leftarrow \text{causal_mask} \odot \text{attn_mask}$
731 11: $\text{attn_causal} \leftarrow \text{causal_mask} \odot \text{attn_int}$
732 12: $\text{spike}_{\text{attn}} \leftarrow \text{SpikingNeuron}_{\text{Attn}}(\text{attn_causal})$
733 13: // **Step 5: Summation** ($\text{Integer} \leftarrow Spike @ Spike$)
734 14: $\text{attn_out} \leftarrow \text{spike}_{\text{attn}} @ \text{spike}_v^T$
735 15: $\text{spike}_{\text{attn_out}} \leftarrow \text{SpikingNeuron}_{\text{AttnOut}}(\text{attn_out})$
736 16: // **Step 6: Output Projection** ($FP \leftarrow Spike @ FP$)
737 17: $\text{fp_out} \leftarrow \text{Linear}_{\text{out}}(\text{spike}_{\text{attn_out}})$
738 18: // **Step 7: Spiking** ($Spike \leftarrow FP$)
739 19: $\text{spike_out} \leftarrow \text{SpikingNeuron}_{\text{Out}}(\text{fp_out})$
740 20: **return** spike_out 741
742 **A.3 DETAILED DESIGN OF SKD**
743744 We present Spike-Form Knowledge Distillation (SKD), a framework that distills a frozen ANN
745 teacher into a trainable SNN student. Distillation proceeds through five aligned losses: Embedding
746 Alignment (EA), Soft-Target Alignment (STA), and Hard-Target Alignment (HTA) reuse standard
747 MSE/CE because continuous vectors are already compatible; Spike-Attention Alignment (SAA)
748 and Spike-Feature Alignment (SFA) introduce spike-aware temporal losses to bridge the unique
749 continuous-to-binary and spatial-to-temporal gap that only these two representations expose.
750751 **A.3.1 EMBEDDING ALIGNMENT**
752753 We align the output distributions from the embedding layers of the teacher and student networks
754 using Mean Squared Error (MSE) loss:
755

$$\mathcal{L}_{\text{emb}} = \text{MSE}(P_{\text{emb}}^{\text{ANN}}, P_{\text{emb}}^{\text{SNN}}). \quad (14)$$

This alignment ensures consistent semantic representations at the input level, easing the optimization burden and improving representation consistency across modalities. A linear transformation is applied if the embedding dimensions are not directly compatible.

A.3.2 SPIKE-ATTENTION ALIGNMENT

Given the fundamental difference in attention mechanisms—floating-point representations in the ANN versus spike-based representations in the SNN—as well as the additional temporal dimension in the SNN’s attention outputs, which causes dimensional mismatch, we design two alignment strategies to enable effective cross-domain knowledge transfer:

(a) Temporal Replication and Spiking: We replicate the static attention map $A_{\text{ANN}} \in \mathbb{R}^{L \times L}$ across T time steps:

$$\tilde{A}_{\text{ANN}} = \text{Repeat}(A_{\text{ANN}}, T) \in \mathbb{R}^{T \times L \times L}. \quad (15)$$

Each time step is then passed through a spiking neuron:

$$\hat{A}_{\text{spike}}^{\text{ANN}}(t) = \sigma_{\text{spike}}(\tilde{A}_{\text{ANN}}(t)), \quad t = 1, \dots, T. \quad (16)$$

We compute Rate-MSE loss:

$$\mathcal{L}_{\text{attn}}^{\text{RateMSE}} = \text{MSE} \left(\frac{1}{T} \sum_t \hat{A}_{\text{spike}}^{\text{ANN}}(t), \frac{1}{T} \sum_t A_{\text{SNN}}(t) \right). \quad (17)$$

(b) Temporal Fusion and Distribution Matching: Alternatively, we temporally average the SNN spike-attention and match it to the ANN attention using Mean Squared Error (MSE):

$$\bar{A}_{\text{SNN}} = \frac{1}{T} \sum_{t=1}^T A_{\text{SNN}}(t), \quad \mathcal{L}_{\text{attn}}^{\text{MSE}} = \text{MSE}(A_{\text{ANN}}, \bar{A}_{\text{SNN}}). \quad (18)$$

The overall spike-attention alignment loss is:

$$\mathcal{L}_{\text{attn}} = \alpha_1 \mathcal{L}_{\text{attn}}^{\text{RateMSE}} + \alpha_2 \mathcal{L}_{\text{attn}}^{\text{MSE}}. \quad (19)$$

A.3.3 SPIKE-FEATURE ALIGNMENT

To align intermediate hidden states, we apply the same transformation strategies to the feature maps:

$$\mathcal{L}_{\text{feat}} = \beta_1 \mathcal{L}_{\text{feat}}^{\text{RateMSE}} + \beta_2 \mathcal{L}_{\text{feat}}^{\text{MSE}}, \quad (20)$$

where each component is computed similarly to the attention alignment, but on the feature tensors H_{ANN} and H_{SNN} . And linear projections are inserted if the hidden dimensions differ. Skip-layer connections are used if the number of layers does not match.

A.3.4 SOFT TARGET ALIGNMENT

We apply soft-label distillation using the teacher and student logits:

$$\mathcal{L}_{\text{soft}} = \text{KL} \left(\frac{\text{logits}_{\text{ANN}}}{\tau} \parallel \frac{\text{logits}_{\text{SNN}}}{\tau} \right), \quad (21)$$

where τ is a temperature hyperparameter to soften the logits.

A.3.5 HARD TARGET ALIGNMENT

We also include the traditional cross-entropy loss with the ground truth:

$$\mathcal{L}_{\text{hard}} = \text{CE}(\text{logits}_{\text{SNN}}, y). \quad (22)$$

810 A.3.6 TOTAL LOSS
811

812 The final training objective combines all loss terms:

813
$$\mathcal{L}_{\text{total}} = \lambda_1 \mathcal{L}_{\text{emb}} + \lambda_2 \mathcal{L}_{\text{attn}} + \lambda_3 \mathcal{L}_{\text{feat}} + \lambda_4 \mathcal{L}_{\text{soft}} + \lambda_5 \mathcal{L}_{\text{hard}}. \quad (23)$$

814

815 Each λ_i balances the contribution of its corresponding component.816 817 A.4 TRAINING DETAILS
818819 Table 2: Summary of training hyperparameters and configurations used for SpikingLLM, including
820 optimization settings, distillation parameters, and hardware specifications.

822 Hyperparameter	823 Value
823 Teacher ANN model	OPT-family
824 Student SNN model	SpikingLLM
825 Tokenizer / Vocabulary	Aligned with OPT
826 Batch size	16
827 Gradient accumulation steps	16
828 Effective batch size	256
829 Optimizer	Adam
830 Learning rate	5×10^{-4}
831 Scheduler	Cosine decay
832 Warm-up ratio	0.2
833 Gradient clipping threshold	0.7
834 Temperature τ (for SKD)	2.0
835 Distillation weights (λ_1 to λ_5)	0.2, 0.1, 0.1, 0.3, 0.3
836 Inference time steps (T)	2 and 4
837 Hardware	NVIDIA RTX 4090 (24GB)

838 **Training Paradigm** The training of **SpikingLLM** follows a teacher–student paradigm, where the
839 teacher model is a pre-trained open-source ANN-based large language model from the OPT family,
840 and the student is our spike-based SpikingLLM. To ensure consistency between the teacher and
841 student models, we align both the vocabulary and tokenizer with those used in OPT.842 **Optimization Setup** All experiments are conducted using a batch size of 16 and a gradient accu-
843 mulation factor of 16, effectively yielding a total batch size of 256 tokens. The optimizer used is
844 Adam, with a learning rate set to 5×10^{-4} . A cosine learning rate scheduler with a warm-up ratio
845 of 0.2 is employed to stabilize early training. Gradient clipping is applied with a threshold of 0.7
846 to avoid exploding gradients in the early training phases, which can be particularly pronounced in
847 spiking models. And all models are trained on NVIDIA 4090 GPUs with 24GB memory.848 **Spike-Form Knowledge Distillation** For spike-form knowledge distillation (SKD), we adopt a
849 temperature of $\tau = 2.0$ in the soft targets from the teacher model. The overall loss is computed as a
850 weighted combination of multiple alignment objectives defined in Method Section. The correspond-
851 ing loss weights are: $\lambda_1 = 0.2$, $\lambda_2 = 0.1$, $\lambda_3 = 0.1$, $\lambda_4 = 0.3$, and $\lambda_5 = 0.3$.852 **Inference Time Steps** To study the trade-off between accuracy and energy efficiency, Spik-
853 ingLLM is trained with varying numbers of inference time steps, specifically $T = 2$ and $T = 4$. A
854 higher number of steps improves temporal resolution and accuracy at the cost of increased energy
855 consumption, enabling flexible deployment depending on the application constraints.856 **Training Data Selection** The subset of training data used in our experiments was drawn
857 from the fineweb-edu dataset (Penedo et al., 2024), specifically the 10BT sample ac-
858 cessible at <https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu/tree/main/sample/10BT>. Since our claim of using a lower training token volume is a core
859 contribution, it is crucial to detail how the data was sampled to ensure reproducibility. This subset
860 was selected directly from the publicly available sample without additional filtering or preprocess-
861 ing, providing other researchers with a clear and reproducible training set.

864 A.5 SURROGATE GRADIENT
865866 Training spiking neural networks (SNNs) presents a significant challenge due to the non-
867 differentiable nature of spike generation functions, such as the Heaviside step function used in
868 the spiking neuron model. To enable end-to-end optimization with backpropagation, we adopt a
869 surrogate gradient approach introduced by Fang et al. (2020).870 Specifically, the discrete spiking activation S is approximated by a continuous and differentiable
871 function using an arctangent-based surrogate:

872
$$873 S \approx \frac{1}{\pi} \arctan\left(\frac{\pi}{2}\alpha U\right) + \frac{1}{2}, \quad (24)$$

874

875 where U is the membrane potential and α is a tunable hyperparameter controlling the sharpness
876 of the transition. In our experiments, we set $\alpha = 2$ by default, balancing gradient magnitude and
877 smoothness.878 Taking the derivative of Equation equation 24 yields the surrogate gradient used during backpropa-
879 gation:

880
$$881 \frac{\partial S}{\partial U} = \frac{\alpha}{2} \cdot \frac{1}{1 + \left(\frac{\pi}{2}\alpha U\right)^2}. \quad (25)$$

882

883 This surrogate formulation enables stable and effective gradient-based optimization for Spik-
884 ingLLM. It allows error signals to be backpropagated through spike-generating layers without re-
885quiring exact gradients, thus making the training pipeline compatible with standard deep learning
886 frameworks.887 A.6 THEORETICAL SYNAPTIC OPERATION AND ENERGY CONSUMPTION CALCULATION
888889 The theoretical energy consumption of *SpikingLLM* is estimated by first calculating the synaptic
890 operations (SOPs). For each block or layer l , we have:

891
$$892 \text{SOPs}(l) = f_r(l) \times T \times \text{FLOPs}(l), \quad (26)$$

893 where l indexes a block in *SpikingLLM*, $f_r(l)$ is the average firing rate of the input spike train to
894 block l (measured as spikes per neuron per time step), and T is the simulation time steps of the
895 spiking neuron. $\text{FLOPs}(l)$ denotes the number of multiply-and-accumulate (MAC) operations of
896 block l in the equivalent ANN. $\text{SOPs}(l)$ thus represents the spike-based accumulate (AC) operations
897 performed in the SNN.

898 Following Horowitz (2014), we assume the energy per operation on a 45 nm process as

899
$$900 E_{\text{MAC}} = 4.6 \text{ pJ}, \quad E_{\text{AC}} = 0.9 \text{ pJ}.$$

901 For ANNs, the theoretical energy consumption of a block b is

902
$$903 \text{Power}_{\text{ANN}}(b) = E_{\text{MAC}} \times \text{FLOPs}(b). \quad (27)$$

905 For SNNs, the theoretical energy consumption of block b is

906
$$907 \text{Power}_{\text{SNN}}(b) = E_{\text{AC}} \times \text{SOPs}(b). \quad (28)$$

908 According to ((Horowitz, 2014; Kundu et al., 2021a;b; Hu et al., 2021; Yin et al., 2021; Kim &
909 Panda, 2021; Yao et al., 2021)), the total energy consumption of *SpikingLLM* can be decomposed
910 into three parts: (1) the embedding stage, which is executed with dense MAC operations, (2) the L
911 stacked transformer blocks, each of which is spiking and therefore counted using AC operations, and
912 (3) the language-model head (LM-head) that maps hidden states to vocabulary logits (dense MACs).
913 We write:

914
$$915 E_{\text{SpikingLLM}} = E_{\text{MAC}} \cdot (\text{FLOPs}_{\text{Embed}} + \text{FLOPs}_{\text{LM-head}}) \\ 916 + E_{\text{AC}} \cdot \sum_{l=1}^L (\text{SOP}_{\text{CSSA}}(l) + \text{SOP}_{\text{SFFN}}(l)) \quad (29)$$

917

918 where $\text{FLOPs}_{\text{Embed}}$ and $\text{FLOPs}_{\text{LM-head}}$ denote the MAC operations of the embedding stage and the
 919 output projection to vocabulary logits, respectively; $\text{SOP}_{\text{CSSA}}(l)$ and $\text{SOP}_{\text{SFFN}}(l)$ represent the spike-
 920 accumulate operations of the Spiking Causal Self-Attention and Spiking Feed-Forward Network
 921 modules in block l ; E_{MAC} and E_{AC} are the energy costs per MAC and AC operation; L is the number
 922 of transformer blocks; and f_r and T denote the average firing rate and the number of simulation time
 923 steps.

924

925

A.7 COMPARISON WITH SPIKELLM

926

927

Table 3: Comparison of SpikingLLM and SpikeLLM across different model scales, neuron/spike
 928 formats, and time steps. Avg. Acc. reports zero-shot accuracy (%), and SNN/ANN Ratio shows the
 929 performance of spiking models relative to their ANN counterparts.

930

Model	Params (B)	Tokens (B)	Spike Form	Time Step	Avg. Acc. (%) ↑	SNN/ANN Ratio (%) ↑
SpikingLLM-v1	0.125	1.0	Binary	2	36.05	93.39
SpikingLLM-v2	0.125	1.0	Ternary	2	36.11	93.55
SpikingLLM-v1	0.125	1.0	Binary	4	36.50	94.56
SpikingLLM-v2	0.125	1.0	Ternary	4	36.27	93.96
SpikingLLM-v1	0.350	2.0	Binary	2	38.48	90.16
SpikingLLM-v2	0.350	2.0	Ternary	2	38.14	89.36
SpikingLLM-v1	0.350	2.0	Binary	4	38.84	91.00
SpikingLLM-v2	0.350	2.0	Ternary	4	38.87	91.07
SpikingLLM-v1	1.300	10.0	Binary	2	41.33	83.11
SpikingLLM-v2	1.300	10.0	Ternary	2	41.08	82.60
SpikingLLM-v1	1.300	10.0	Binary	4	42.19	84.84
SpikingLLM-v2	1.300	10.0	Ternary	4	42.12	84.70
SpikeLLM	7.000	—	Integer (W2A16)	2	49.92	78.17
SpikeLLM	7.000	—	Integer (W2A8)	4	41.77	65.41
SpikeLLM	13.00	—	Integer (W2A16)	2	53.76	81.34
SpikeLLM	13.00	—	Integer (W2A8)	4	50.12	75.78
SpikeLLM	70.00	—	Integer (W2A16)	2	60.47	82.55

950

951 Table 3 compares SpikingLLM with SpikeLLM across different model scales, quantization methods,
 952 spike forms, and simulation time steps. Overall, SpikingLLM achieves competitive zero-shot
 953 accuracy with smaller models and lower-precision spike forms. Notably, the SNN/ANN ratio of
 954 SpikingLLM is consistently higher (82–95%) than that of SpikeLLM, indicating that our spike-
 955 based models retain more of the original ANN performance. This improvement is largely attributed
 956 to our multi-level knowledge distillation framework, which effectively transfers information from
 957 ANN teachers to spiking students. These results not only highlight the efficiency and effectiveness
 958 of our approach but also provide a promising pathway for further improving SNN-LLMs through
 959 advanced distillation strategies.

960

961

962

963

964

965

966

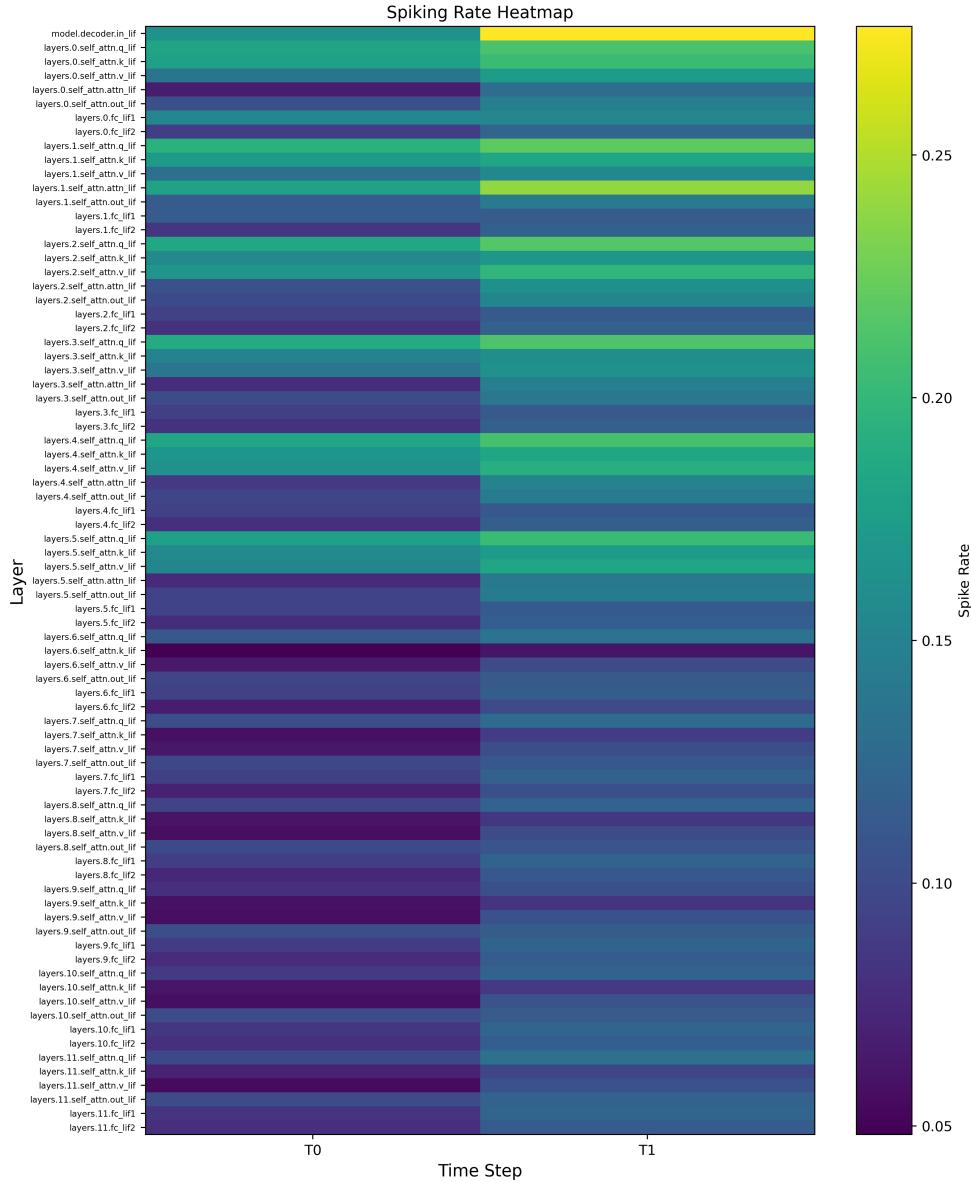
967

968

969

970

971

972 A.8 FIRING VISUALIZATION
973
974
975
976
977
978
979
980
981
982
983

1021 Figure 5: At $T = 2$, the firing activity is relatively concentrated in a few specific layers, as indicated by localized high-intensity regions in the heatmap. This suggests that, under limited temporal
1022 resolution, only a subset of layers become highly active, likely those responsible for early-stage
1023 processing and critical feature extraction. The rest of the network remains relatively quiescent, re-
1024 flecting a sparse activation pattern constrained by the short integration window.
1025

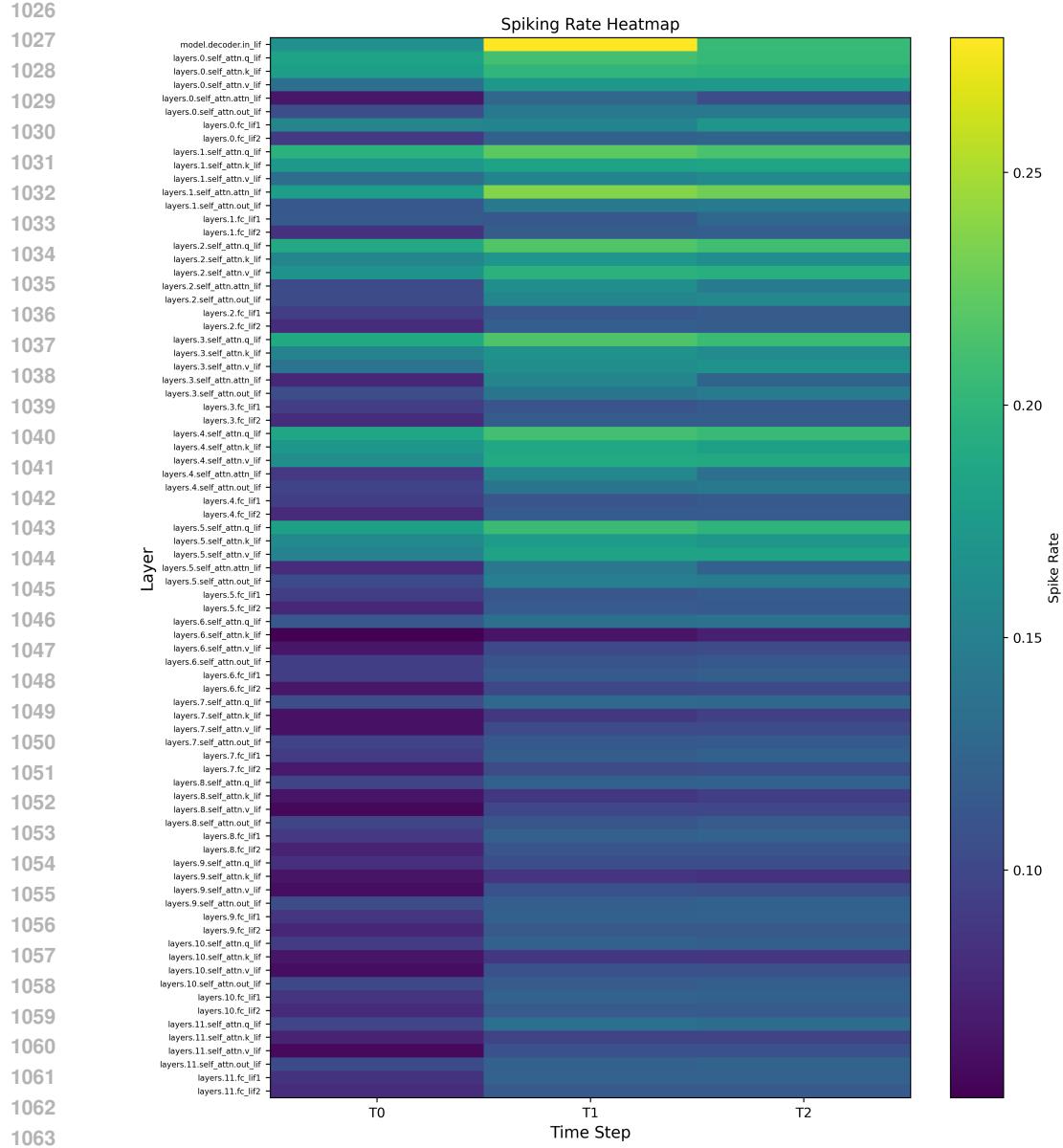


Figure 6: With the increase to three time steps, the regions of elevated firing rate begin to extend across more layers. This indicates that more layers participate in the computation as temporal resolution improves, enabling broader propagation of information. The increased coverage reflects a more distributed spiking pattern, suggesting enhanced temporal integration and coordination among layers.

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

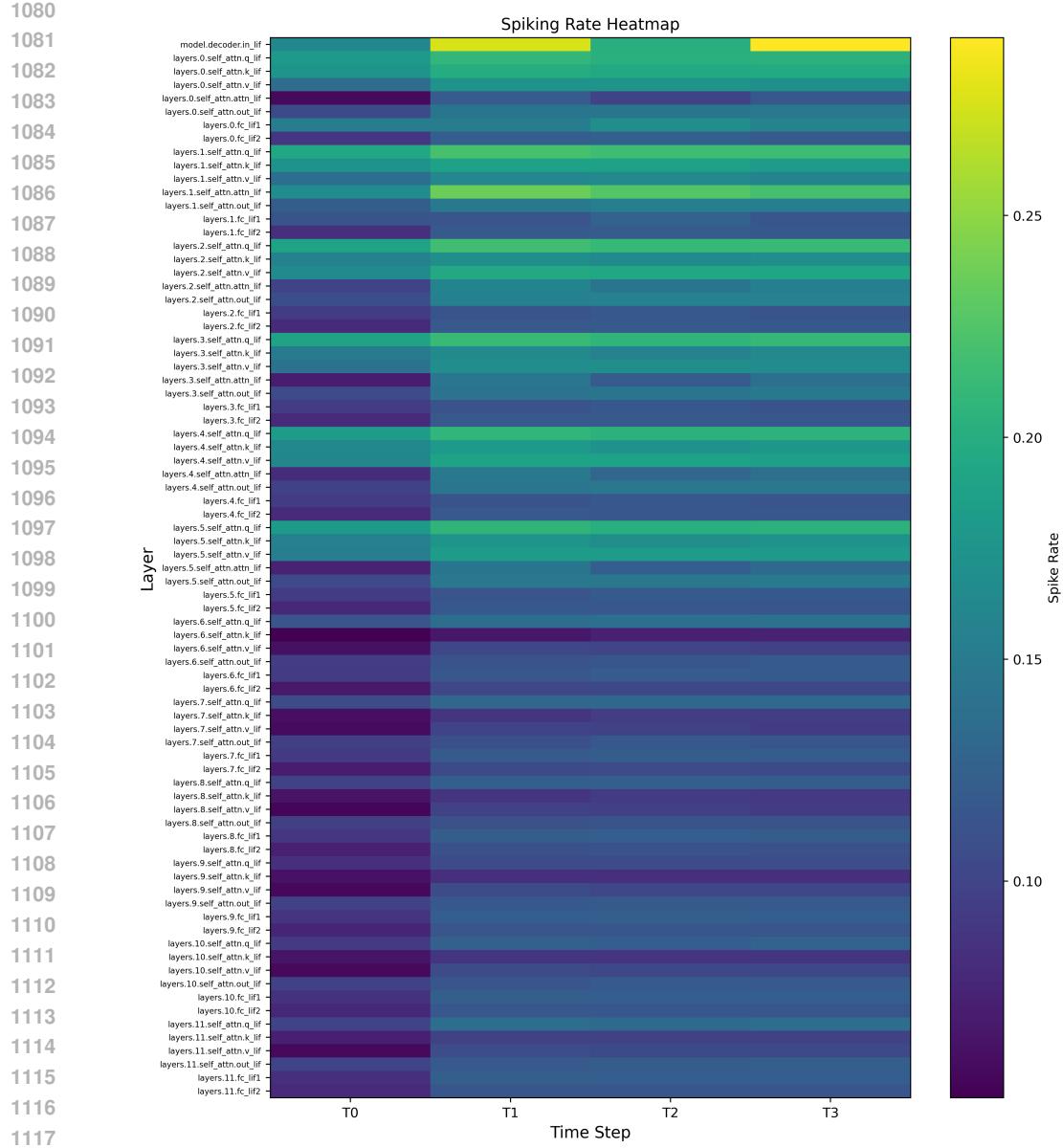


Figure 7: At $T = 4$, the firing activity becomes even more widespread, engaging a significant portion of the network. A greater number of layers exhibit moderate to high firing rates, which may reflect more comprehensive information processing and deeper hierarchical interactions. The broader engagement suggests that intermediate temporal budgets allow for more expressive internal representations.

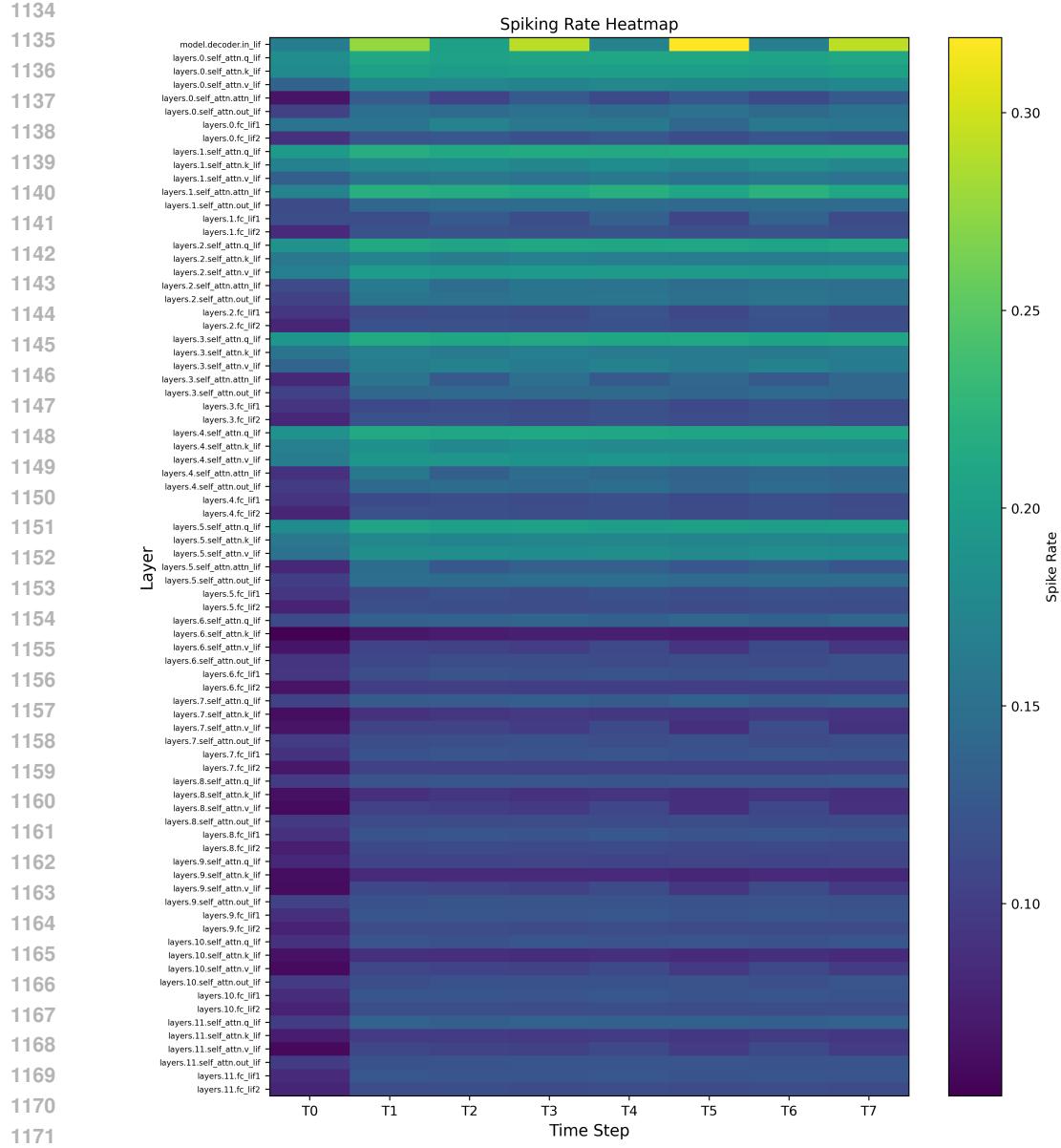
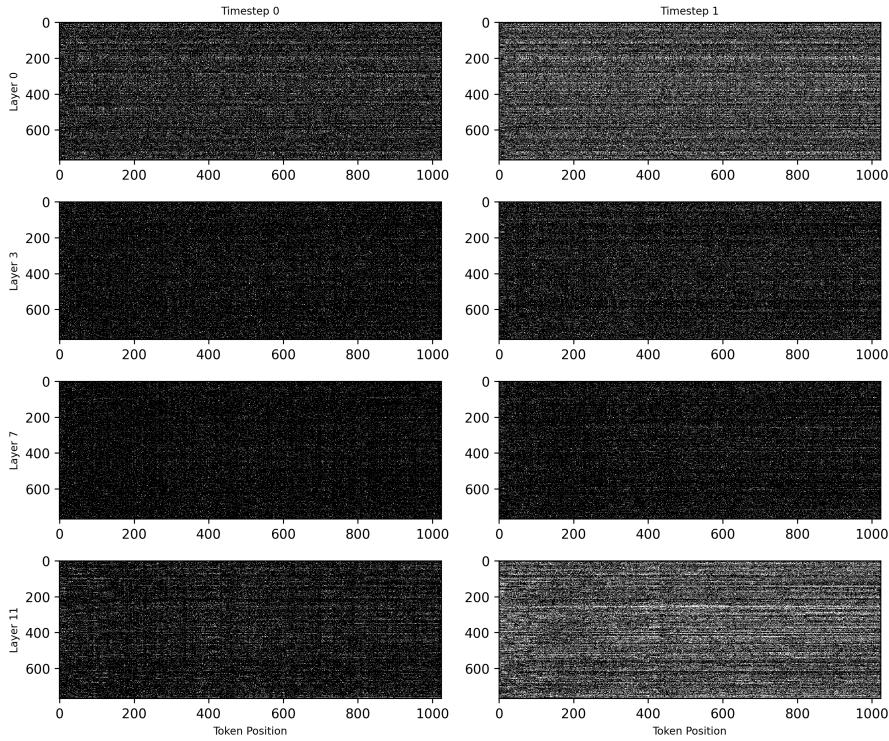


Figure 8: When the number of time steps is increased to $T = 8$, the firing distribution becomes relatively uniform across most layers. While some layers still exhibit elevated activity, the overall pattern is more homogeneous, indicating that nearly all layers participate in the computation to some extent. This may reflect a fully temporally saturated regime, where the network is capable of leveraging extended integration windows for more complex and nuanced feature extraction.

To investigate the temporal dynamics of spiking activity in **SpikingLLM-v1**, we visualize the firing rate distributions across layers under varying numbers of inference time steps: $T = 2$, $T = 3$, $T = 4$, and $T = 8$. The firing rate heatmaps are constructed such that the vertical axis corresponds to different model layers, the horizontal axis represents discrete time steps, and the color intensity encodes the normalized firing rate ranging from low (purple) to high (yellow) (see Figures 5–8).

Overall, the progression of firing rate distributions across increasing time steps reveals a transition from sparse and localized activation to distributed and pervasive spiking. This dynamic suggests that **SpikingLLM-v1** adapts its computational strategy based on the temporal budget: utilizing minimal resources under constrained settings (e.g., $T = 2$) and expanding activation as more time steps

1188
 1189 become available. These results highlight the temporal adaptability of spiking neural architectures
 1190 and their potential for scalable, energy-aware language processing.
 1191
 1192
 1193



1217
 1218 Figure 9: This figure presents the spiking activity across token positions for four representative
 1219 layers (Layer 0, Layer 3, Layer 7, and Layer 11) at an early inference time step. The firing patterns
 1220 are relatively sparse and uniformly distributed, particularly in the lower layers. This reflects the
 1221 initial stage of neuronal processing, where the model begins encoding input signals with limited
 1222 temporal context. Notably, deeper layers such as Layer 11 exhibit subdued activation, suggesting
 1223 that higher-level abstractions have not yet emerged.
 1224
 1225
 1226
 1227

1228 In addition to the layer-wise temporal spiking visualization, we further examine the firing patterns
 1229 of **SpikingLLM-v1** at the level of individual token positions. A new set of visualizations (see
 1230 Figures 9–12) illustrates the spiking activity across different token positions for selected layers
 1231 (specifically, Layer 0, Layer 3, Layer 7, and Layer 11) under varying inference time steps. In these
 1232 heatmaps, the vertical axis corresponds to token positions, the horizontal axis denotes discrete time
 1233 steps, and the color intensity indicates the firing magnitude, with lighter colors representing stronger
 1234 activity and darker regions indicating lower activation.
 1235

1236 These token-level firing visualizations provide a more granular perspective on the internal computa-
 1237 tion dynamics of **SpikingLLM-v1**. The evolution of spiking activity across time steps reveals a
 1238 clear progression: from diffuse and uniform firing in early layers and time steps, toward increas-
 1239 ingly selective and structured activation in deeper layers as more time is allocated. This suggests
 1240 a hierarchical processing mechanism wherein early layers operate in a temporally shallow regime,
 1241 broadly encoding input stimuli, while deeper layers gradually accumulate temporal context to per-
 1242 form more abstract and task-specific computations. Overall, the model exhibits both spatial and
 1243 temporal specialization, underscoring the potential of spiking neural architectures for dynamic and
 1244 efficient information processing.

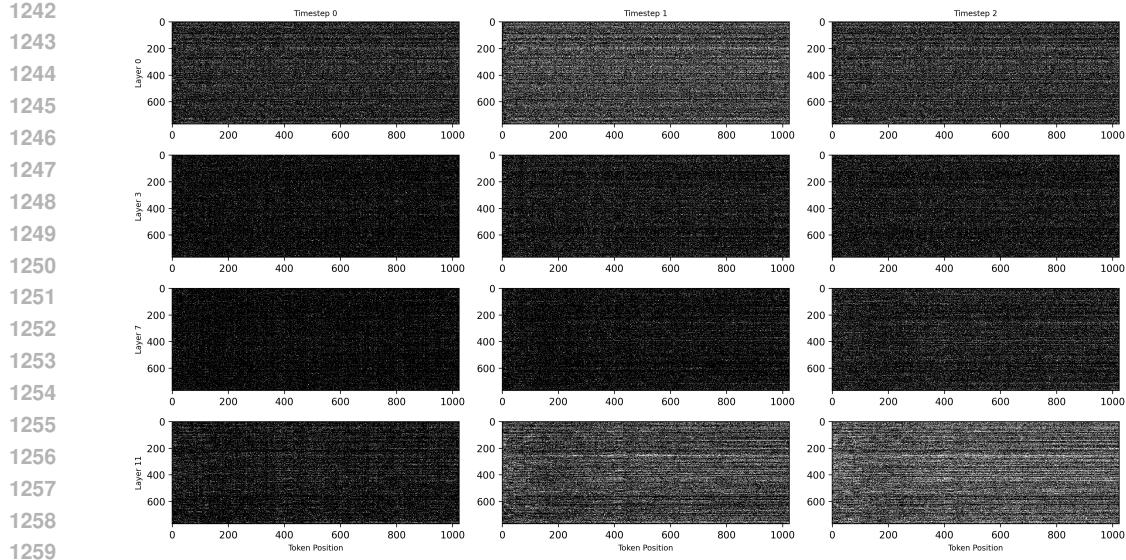


Figure 10: At $T = 3$, the firing distributions become slightly more structured across token positions and layers. While lower layers maintain broadly distributed activity, deeper layers begin to display early signs of selective activation. Compared to $T = 2$, this figure reveals the onset of temporal refinement, indicating that additional time steps allow the model to initiate more context-sensitive computation, particularly in the upper layers.

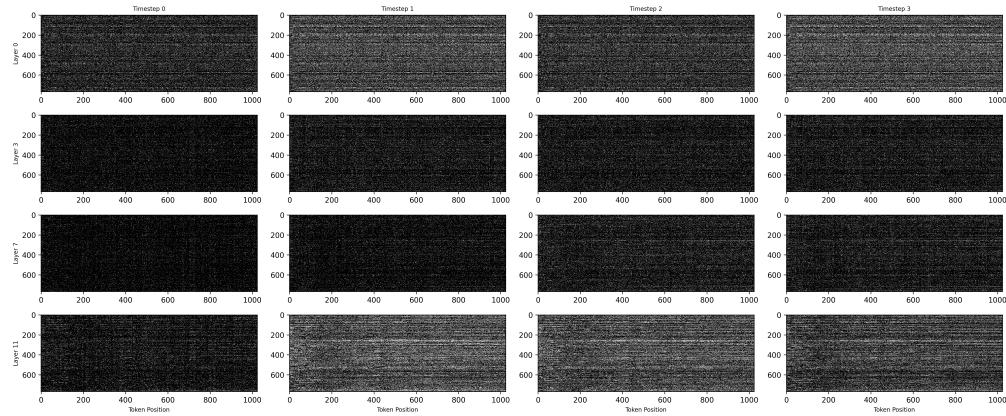


Figure 11: With four time steps, the model exhibits more pronounced spatiotemporal differentiation in firing behavior. Activity becomes more variable across token positions, and certain regions in deeper layers start to display concentrated firing. This suggests that the network is engaging in increasingly specialized processing, distributing its computation more selectively based on both input semantics and accumulated temporal evidence.

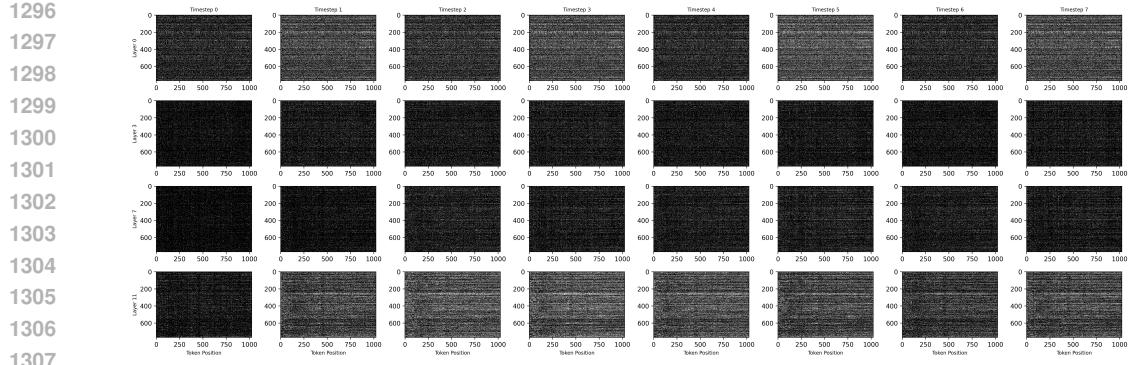


Figure 12: By $T = 8$, the firing patterns exhibit substantial temporal evolution and structural complexity. Deeper layers, in particular, show heightened and more focused activation for specific token regions, reflecting refined internal representations. This level of activity suggests that the model has transitioned into a more stable and semantically rich encoding phase. The marked increase in firing diversity and intensity across layers highlights the model’s capacity to utilize extended temporal windows for deeper contextual integration and task-specific computation.

A.9 WEIGHT VISUALIZATION

In this subsection, we analyze the weight distributions of Artificial Neural Networks (ANNs) and Spiking Neural Networks (SNNs) across different layers and components. The weight visualization provides valuable insights into the fundamental differences between these two types of neural networks and highlights the unique characteristics of SNNs. The weight distributions of ANNs and SNNs exhibit distinct patterns across various layers and components (q_proj, k_proj, v_proj, out_proj, fc1, fc2).

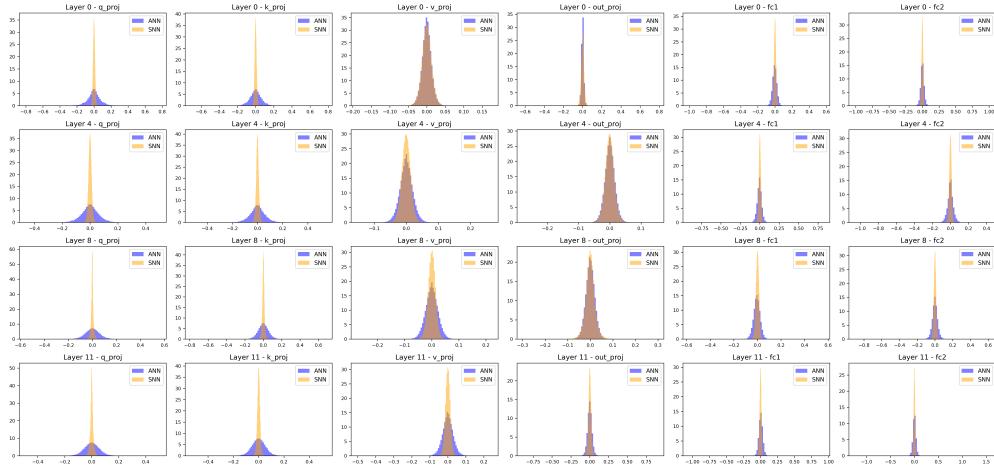


Figure 13: Weight distribution comparison between Artificial Neural Networks (ANNs) and Spiking Neural Networks (SNNs). ANNs typically exhibit a more concentrated weight distribution around zero, especially in early layers (e.g., Layer 0). In deeper layers (e.g., Layer 11), their weight distribution becomes slightly more spread out but remains relatively compact, indicating tightly clustered weights that contribute to stability and ease of training. In contrast, SNNs show a broader and more dispersed weight distribution, with weights less tightly clustered around zero. This broader spread is particularly notable in deeper layers (e.g., Layer 11), reflecting the dynamic and diverse weight updates characteristic of their spiking nature.

1350 Our approach differs from traditional ANN-to-SNN conversion methods in that we do not passively
 1351 fit SNN weights to match those of ANNs. Instead, we actively capture and adapt to the unique char-
 1352 acteristics of SNNs. This active adaptation is crucial for leveraging the full potential of SNNs, which
 1353 operate on spiking dynamics rather than continuous activation values. By focusing on the inherent
 1354 properties of SNNs, such as their broader weight distribution and dynamic spiking behavior, our
 1355 method ensures that the network is optimized for spiking neural computation. This approach allows
 1356 SNNs to maintain their distinct advantages, such as energy efficiency and biological plausibility,
 1357 while still achieving high performance.

1358 In summary, the weight visualization clearly demonstrates the differences between ANNs and SNNs.
 1359 Our method capitalizes on these differences by actively adapting to the unique characteristics of
 1360 SNNs, rather than forcing them to conform to the weight and activation patterns of ANNs. This
 1361 approach is essential for developing effective and efficient SNNs that can fully leverage their spiking
 1362 dynamics.

1363

1364

1365

1366 A.10 OUTLIER ANALYSIS OF WEIGHT DISTRIBUTIONS

1367

1368 To further investigate the differences between Artificial Neural Networks (ANNs) and Spiking Neu-
 1369 ral Networks (SNNs), we analyze the number of outliers in the weight distributions across various
 1370 layers and components. Outliers are defined as weights that significantly deviate from the mean,
 1371 potentially indicating instability or over-parameterization in specific components.

1372

1373

1374

1375 A.10.1 TOTAL NUMBER OF OUTLIERS

1376

1377 As summarized in Table 4, ANNs exhibit significantly more outliers, with over three times as many
 1378 compared to SNNs across all evaluated layers.

1379

1380

1381

1382 Table 4: Total number of weight outliers across all layers and components.

1383

1384 Model	1385 Total Outliers
1386 ANN	18,663
1387 SNN	5,834

1388

1389

1390

1391 A.10.2 LAYER-WISE COMPARISON

1392

1393 To gain deeper insights, we present a detailed layer-wise and component-wise comparison in Table 5,
 1394 showing the number of outliers for both models. **ANNs exhibit a significantly higher number**
 1395 **of outliers**, especially in deeper fully connected layers (fc1, fc2), which may be due to larger
 1396 weight magnitudes and higher variance. While **SNNs show fewer outliers overall**, reflecting their
 1397 more compact and tightly regulated weight distributions. Interestingly, in some components (e.g.,
 1398 q_proj, k_proj at Layer 7), SNNs have more outliers than ANNs. This suggests local spikes in
 1399 weight variability, possibly due to the intrinsic dynamics of spiking updates. The standard deviation
 1400 of weights (not shown here) is consistently lower in SNNs, reinforcing the observation that they
 1401 operate within a narrower, more stable range. These findings highlight a fundamental difference
 1402 in the behavior of ANNs and SNNs: while ANNs may rely on larger weight magnitudes and are
 1403 more prone to extreme values, SNNs exhibit smoother, biologically plausible weight distributions
 that reduce the risk of instability.

1404
 1405 Table 5: Comparison of weight statistics between ANN and SNN across various layers and compo-
 1406 nents.

1407 1408	Layer	Component	Model	Mean	Std	Max	Min	Num_Outliers
1409	0	q_proj	ANN	-3.15E-05	7.87E-02	0.77	-0.80	596
1410	0	q_proj	SNN	1.30E-04	1.14E-02	0.06	-0.06	6
1411	0	k_proj	ANN	6.12E-05	7.26E-02	0.77	-0.70	1154
1412	0	k_proj	SNN	-3.36E-05	1.10E-02	0.06	-0.06	24
1413	0	v_proj	ANN	-1.55E-05	1.28E-02	0.17	-0.19	163
1414	0	v_proj	SNN	2.97E-05	1.31E-02	0.08	-0.08	34
1415	0	out_proj	ANN	-8.64E-06	1.30E-02	0.78	-0.62	702
1416	0	out_proj	SNN	-2.16E-04	1.58E-02	0.12	-0.11	73
1417	0	fc1	ANN	-3.17E-03	2.93E-02	0.56	-1.00	5657
1418	0	fc1	SNN	4.58E-04	1.16E-02	0.06	-0.06	2
1419	0	fc2	ANN	-1.23E-05	2.62E-02	1.00	-1.00	716
1420	0	fc2	SNN	2.74E-04	1.24E-02	0.06	-0.11	189
1421	3	q_proj	ANN	-2.93E-04	6.02E-02	0.56	-0.48	105
1422	3	q_proj	SNN	1.98E-04	1.15E-02	0.07	-0.10	57
1423	3	k_proj	ANN	1.19E-04	6.16E-02	0.45	-0.46	116
1424	3	k_proj	SNN	1.34E-04	1.10E-02	0.10	-0.10	199
1425	3	v_proj	ANN	1.71E-05	2.06E-02	0.23	-0.27	60
1426	3	v_proj	SNN	-2.36E-04	1.39E-02	0.09	-0.09	63
1427	3	out_proj	ANN	2.38E-06	1.74E-02	0.50	-0.36	183
1428	3	out_proj	SNN	-2.75E-04	1.48E-02	0.10	-0.10	79
1429	3	fc1	ANN	-1.81E-03	2.49E-02	0.86	-0.73	2045
1430	3	fc1	SNN	2.39E-05	1.30E-02	0.07	-0.08	38
1431	3	fc2	ANN	-2.44E-06	2.67E-02	0.64	-1.06	2053
1432	3	fc2	SNN	4.87E-05	1.30E-02	0.08	-0.10	137
1433	7	q_proj	ANN	-1.80E-04	5.98E-02	0.53	-0.54	147
1434	7	q_proj	SNN	-4.13E-04	1.10E-02	0.13	-0.13	1484
1435	7	k_proj	ANN	-2.34E-05	6.03E-02	0.74	-0.68	185
1436	7	k_proj	SNN	5.25E-04	1.35E-02	0.17	-0.19	1004
1437	7	v_proj	ANN	1.22E-05	2.02E-02	0.13	-0.14	20
1438	7	v_proj	SNN	-2.11E-04	1.35E-02	0.12	-0.12	207
1439	7	out_proj	ANN	1.25E-05	1.76E-02	0.19	-0.19	93
1440	7	out_proj	SNN	-1.91E-04	2.03E-02	0.19	-0.17	609
1441	7	fc1	ANN	-4.40E-03	2.73E-02	0.59	-0.59	315
1442	7	fc1	SNN	6.75E-05	1.30E-02	0.15	-0.13	224
1443	7	fc2	ANN	-3.44E-05	3.00E-02	0.38	-1.00	1315
1444	7	fc2	SNN	-8.44E-05	1.24E-02	0.10	-0.12	204
1445	11	q_proj	ANN	-2.52E-04	5.57E-02	0.50	-0.49	153
1446	11	q_proj	SNN	-1.89E-04	1.19E-02	0.15	-0.12	181
1447	11	k_proj	ANN	5.30E-05	5.44E-02	0.53	-0.53	366
1448	11	k_proj	SNN	2.98E-04	1.17E-02	0.19	-0.11	225
1449	11	v_proj	ANN	4.60E-05	2.95E-02	0.20	-0.50	68
1450	11	v_proj	SNN	-5.92E-05	1.35E-02	0.24	-0.19	268
1451	11	out_proj	ANN	-2.00E-05	3.15E-02	0.89	-0.88	478
1452	11	out_proj	SNN	-1.07E-05	1.96E-02	0.19	-0.16	325
1453	11	fc1	ANN	4.87E-03	2.82E-02	0.92	-1.04	473
1454	11	fc1	SNN	-4.00E-05	1.37E-02	0.07	-0.09	52
1455	11	fc2	ANN	3.81E-05	3.23E-02	1.56	-1.23	1500
1456	11	fc2	SNN	2.15E-05	1.50E-02	0.12	-0.11	150

1455
 1456
 1457

1458
1459

A.11 EXTENDING CSSA TO LLAMA ARCHITECTURE

1460
1461
1462
1463
1464
1465

To demonstrate the versatility of our proposed CSSA (Causal Spiking Self-Attention) mechanism, we extend its application beyond the original OPT-based SpikingLLM architecture. Specifically, we implement CSSA on the Llama architecture (Touvron et al., 2023), training two new models: SpikingLLM-v1-Llama with 165M and 1.2B parameters. This expansion validates that CSSA is designed fundamentally for spike-based language modeling, independent of specific architectural choices.

1466
1467
1468
1469

Table 6: Performance comparison of SpikingLLM models across different architectures and timesteps.

1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480

Model	Params (B)	Time Step	Zero-shot Accuracy (%) ↑								
			ARC-e	ARC-c	WG	BQ	PIQA	HS	OBQA	HQA	Avg.
SpikingLLM-v1-OPT	0.125	T=2	39.1	18.9	50.3	52.7	56.7	28.1	19.8	22.9	36.05
SpikingLLM-v1-OPT	0.125	T=4	39.4	19.0	51.2	53.0	57.5	29.2	19.7	23.1	36.50
SpikingLLM-v1-Llama	0.165	T=2	39.3	19.2	51.3	52.8	56.8	28.3	20.3	23.2	36.40
SpikingLLM-v1-Llama	0.165	T=4	39.6	19.6	51.7	53.2	57.3	29.5	20.7	23.7	36.91
SpikingLLM-v1-OPT	1.300	T=2	45.7	23.5	54.2	56.3	62.3	40.2	24.5	24.0	41.33
SpikingLLM-v1-OPT	1.300	T=4	46.3	24.3	55.6	56.8	63.4	41.7	25.2	24.3	42.19
SpikingLLM-v1-Llama	1.200	T=2	45.8	23.9	54.7	56.1	63.0	40.6	24.7	24.1	41.61
SpikingLLM-v1-Llama	1.200	T=4	46.5	24.4	55.9	56.6	63.6	41.8	25.4	24.4	42.33

1481
1482
1483
1484
1485
1486
1487

The results show consistent performance improvements when increasing timesteps from T=2 to T=4 across all model variants. Notably, the Llama-based models achieve comparable or slightly better results than their OPT-based counterparts, particularly in the 1.2B parameter range where SpikingLLM-Llama (T=4) reaches an average accuracy of 42.33%. This demonstrates that CSSA effectively captures spiking dynamics across different transformer architectures while maintaining competitive language modeling capabilities.

1488
1489
1490

A.12 COMPARISON WITH QUANTIZED ANNS

1491
1492
1493
1494
1495
1496
1497

To contextualize our contributions, it is crucial to distinguish Spiking Neural Networks (SNNs) from quantized Artificial Neural Networks (ANNs), a common point of comparison. Quantized ANNs achieve efficiency through **spatial discretization**, converting continuous floating-point weights or activations into low-bit, fixed-point formats (e.g., 2-bit, 4-bit). While this approach facilitates model compression and acceleration, the underlying computation remains fundamentally dependent on dense Multiply-Accumulate (MAC) operations. Although 1-bit networks eliminate MACs, they are notoriously difficult to train effectively.

1498
1499
1500
1501
1502
1503

In stark contrast, SNNs leverage **temporal sparse encoding** via binary spikes. A spike (1) or its absence (0) at a given timestep encodes information, enabling event-driven and asynchronous computation. This paradigm allows for substantial energy savings on neuromorphic hardware by exploiting sparsity, a benefit difficult for quantized ANNs to replicate (Horowitz, 2014). Our work harnesses this inherent property of SNNs to significantly reduce inference energy while preserving language generation capabilities.

1504
1505
1506
1507

We provide a direct performance comparison between our 1.3B/1.2B SpikingLLM models and state-of-the-art quantization methods in Table 7. While quantized ANNs like Shao et al. (2023), Kaushal et al. (2024), and Wang et al. (2023) may exhibit a marginal edge in accuracy, we emphasize that these represent fundamentally different methodological paradigms.

1508
1509
1510
1511

Therefore, the primary contribution of our work is not to surpass quantization methods in accuracy, but to pioneer and validate a new, energy-efficient pathway for large language models. Our significance is threefold: (1) We introduce the first train-from-scratch binary-spiking-based LLM; (2) We propose the Continuous Spiking Self-Attention (CSSA) mechanism to enable effective causal modeling in SNNs; and (3) We demonstrate the fundamental feasibility of SNN-LLMs, filling a critical

1512 gap in the field and establishing a foundation for future research into scalable, energy-conscious
 1513 language models.

1515
1516 Table 7: Performance comparison of SpikingLLM with quantized LLMs.
1517

Model	Params (B)	Zero-shot Accuracy (%) ↑								
		ARC-e	ARC-c	WG	BQ	PIQA	HS	OBQA	HQA	Avg.
SpikingLLM-v1 (T=2)	1.3	45.7	23.5	54.2	56.3	62.3	40.2	24.5	24.0	41.33
SpikingLLM-v1 (T=4)	1.3	46.3	24.3	55.6	56.8	63.4	41.7	25.2	24.3	42.19
SpikingLLM-v1-Llama (T=2)	1.2	45.8	23.9	54.7	56.1	63.0	40.6	24.7	24.1	41.61
SpikingLLM-v1-Llama (T=4)	1.2	46.5	24.4	55.9	56.6	63.6	41.8	25.4	24.4	42.33
BitNet (1.58-bit)	1.3	48.7	24.1	56.8	57.4	64.2	40.6	24.6	24.9	42.66
SmoothQuant (W4A4)	1.3	44.3	23.5	54.2	55.6	62.3	40.0	23.9	23.2	40.88
OmniQuant (W4A4)	1.3	49.7	25.5	58.1	58.3	66.0	41.7	26.2	25.7	43.90
TriLM (1.58-bit)	1.1	46.2	23.9	55.5	56.5	64.1	39.2	24.7	24.5	41.83
TriLM (1.58-bit)	1.5	49.1	25.2	57.3	57.2	64.5	41.1	25.6	25.3	43.16

1529
1530 A.13 EFFECT OF TRAINING SCALE AND CONVERSATIONAL ABILITY
1531

1532 To validate the scalability of our SpikingLLM, we conducted experiments to assess the impact of in-
 1533 creased training data. Our initial 1B and 10B token training runs were conducted under constrained
 1534 GPU resources, primarily serving as a proof-of-concept. To further probe the potential of our model,
 1535 we scaled the training for the 125M and 1.3B models to 5B and 25B tokens, respectively. While
 1536 this scale is still modest compared to standard pre-training regimens, the use of knowledge distilla-
 1537 tion from a teacher model allows the student SpikingLLM to learn more effectively, mitigating the
 1538 extensive data requirements typically associated with training from scratch.
1539

1540 Table 8: Performance of SpikingLLM with varying training token counts.
1541

Model	Params (B)	Tokens (B)	Zero-shot Accuracy (%) ↑								
			ARC-e	ARC-c	WG	BQ	PIQA	HS	OBQA	HQA	Avg.
SpikingLLM-v1 (T=2)	0.125	1.0	39.1	18.9	50.3	52.7	56.7	28.1	19.8	22.9	36.05
SpikingLLM-v1 (T=2)	0.125	5.0	41.4	19.2	51.4	53.4	58.2	30.2	19.9	23.1	37.10
SpikingLLM-v1 (T=2)	1.300	10.0	45.7	23.5	54.2	56.3	62.3	40.2	24.5	24.0	41.33
SpikingLLM-v1 (T=2)	1.300	25.0	48.3	26.4	57.8	58.6	65.1	44.9	27.3	26.7	44.39

1550 As shown in Table 8, increasing the training tokens yields significant performance gains. The aver-
 1551 age accuracy of the 125M model improved by 1.05% when trained on 5B tokens compared to 1B
 1552 tokens. More impressively, the 1.3B model’s average accuracy increased by 3.06% when scaling
 1553 from 10B to 25B tokens. These results demonstrate that SpikingLLM is not merely a small-scale
 1554 proof-of-concept but a model architecture that responds positively and effectively to increased train-
 1555 ing data, suggesting strong potential for further scaling.

1556 To further investigate the training dynamics, we plot the training loss curves for our models. Fig-
 1557 ure 14 illustrates the loss progression for the 1.3B model trained on both 10B and 25B tokens. The
 1558 curves exhibit a smooth and consistent downward trend, indicating that our training process is sta-
 1559 ble and converges effectively. Notably, the model trained on 25B tokens continues to decrease its
 1560 loss to a lower final value, corroborating the quantitative performance gains observed in Table 8.
 1561 This stable convergence behavior across different training scales demonstrates the robustness of our
 1562 proposed SpikingLLM architecture and the effectiveness of the CSSA mechanism in facilitating the
 1563 optimization of spike-based language models.

1564 Beyond quantitative metrics, we qualitatively evaluated the conversational abilities of our
 1565 SpikingLLM-1.3B model trained with 10B and 25B tokens. Table 9 presents sample responses
 to a set of prompts. The 10B model exhibits basic conversational skills and can maintain a simple

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

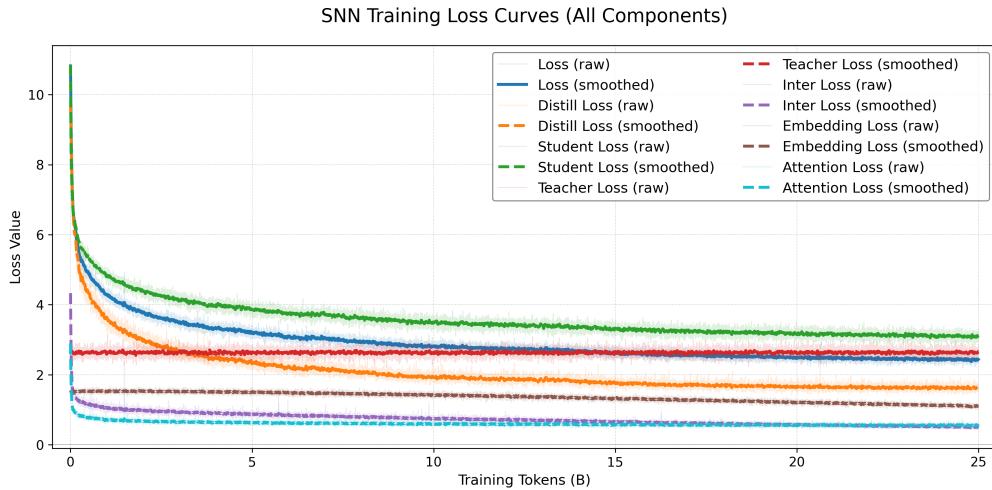


Figure 14: Training loss curves for the SpikingLLM-1.3B model, comparing the 10B and 25B token training regimes. The smooth downward trend confirms stable convergence.

dialogue. However, it fails to answer factual questions correctly, likely due to a lack of exposure to that specific knowledge during its limited training. In contrast, the 25B model provides more accurate and detailed responses, correctly answering the factual question about the U.S. capital and generating more coherent and contextually relevant text. This qualitative improvement aligns with the quantitative gains, underscoring the importance of training scale for developing the factual knowledge and reasoning capabilities of spiking language models.

Table 9: Comparison of conversational abilities for SpikingLLM-v1-1.3B trained on different token counts.

Prompt	SpikingLLM-v1 (10B Tokens)	SpikingLLM-v1 (25B Tokens)
<i>Hi there! How are you doing today?</i>	Hi! How are you? I'm doing well. How about you?	I'm doing great! I'm just tired as hell. I went to bed at 11pm last night, and now I'm up at 4am. I have a class tomorrow morning at 7:30, so I have to get up and go to class.
<i>Where is the capital of the United States?</i>	It's in the middle of the country.	Washington, D.C.
<i>How about the cat?</i>	I think it's a good idea to have a cat in the house.	I have a cat and he doesn't like the camera. I'll send you a picture when he is in the mood.

A.14 ANALYSIS OF LONG-CONTEXT DEPENDENCY AND SPARSITY

In the Continuous Spiking Self-Attention (CSSA) mechanism, information propagation relies on spike-triggered updates of the attention state. Consequently, a higher sparsity level—achieved by increasing the firing threshold or reducing the number of timesteps—can theoretically weaken the transmission of long-range signals, potentially impairing the model’s ability to model long-distance dependencies.

To empirically evaluate this, we conducted a sliding-window evaluation on the WikiText-2 dataset. We compared our SpikingLLM-1.3B (T=4) and SpikingLLM-Llama-1.2B (T=4) models with varying firing thresholds against the full-precision OPT-1.3B and Llama-3.2-1.2B baselines. The models were tested with context lengths of 512, 1024, 2048, 4096, and 8192 tokens, and the performance

1620 was measured using Perplexity (PPL). For reference, the maximum supported context length for
 1621 OPT-1.3B is 2048. The results are presented in Table 10.
 1622

1623 Table 10: Perplexity (PPL) on WikiText-2 with varying context lengths and firing thresholds. The
 1624 firing rate (sparsity) is shown in parentheses.
 1625

Model	Params	Threshold	Context Length			
			512	1024	2048	4096
OPT	1.3B	-	16.26	13.58	11.13	-
Llama-3.2	1.2B	-	12.93	10.96	9.76	9.02
SpikingLLM-v1	1.3B	0.70	36.72 (0.184)	32.49 (0.183)	29.34 (0.181)	-
		0.85	39.75 (0.177)	36.30 (0.175)	32.18 (0.174)	-
		1.00	43.17 (0.163)	39.88 (0.162)	34.62 (0.160)	-
SpikingLLM-v1-Llama	1.2B	0.70	33.53 (0.198)	29.82 (0.195)	27.59 (0.194)	25.32 (0.192)
		0.85	37.14 (0.186)	33.37 (0.185)	31.26 (0.185)	28.89 (0.183)
		1.00	40.88 (0.174)	37.25 (0.172)	34.08 (0.171)	30.76 (0.171)
						27.19 (0.168)

1636 The results lead to several key observations. First, as the sparsity increases (i.e., the threshold rises
 1637 from 0.70 to 1.00), the PPL performance degrades across all context lengths. This confirms our
 1638 intuition that higher sparsity can impede the flow of information. However, the magnitude of this
 1639 degradation is moderate, suggesting that increasing sparsity within a certain range does not cause a
 1640 catastrophic collapse in long-context dependency handling.

1641 And more intriguingly, for a fixed threshold, the PPL consistently decreases as the context length
 1642 increases. For instance, the SpikingLLM-v1-Llama model with a threshold of 0.70 improves from
 1643 a PPL of 33.53 at 512 tokens to 23.77 at 8192 tokens. This indicates that the natural increase in
 1644 sparsity caused by longer sequences has a negligible negative impact on the model’s capability. The
 1645 model retains its ability to extract global information from longer contexts.

1646 Finally, we acknowledge that the current design of CSSA lacks specialized mechanisms for handling
 1647 extremely long contexts. We are actively working to address this limitation through future research
 1648 directions, such as adaptive spike scheduling and the integration of long-term memory neurons.
 1649 We believe these are engineering frontier challenges rather than fundamental obstacles and can be
 1650 progressively overcome in future work.

1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673