Under review as a conference paper at ICLR 2026

SPIKINGLLM: SPIKING LARGE LANGUAGE MODELS
WITH CAUSAL SPIKING SELF-ATTENTION AND SPIKE-
FORM KNOWLEDGE DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) offer promising energy-efficient alternatives to
large language models (LLMs) due to their event-driven nature and ultra-low
power consumption. However, to retain representation capacity, most existing
spiking LLM approaches rely on integer activations or softmax, which involve in-
tensive floating-point operations and undermine inference efficiency. Moreover,
the intrinsic spatial-temporal optimization of spiking networks further increase
the direct training cost and difficulty. To address these challenges, we propose
SpikingLLM, the first fully binary spike-driven spiking LLM framework devel-
oped from random initialization, without reliance on floating-point matrix multi-
plications or softmax. At the core of SpikingLLM is the Causal Spiking Self-
Attention (CSSA) mechanism, which replaces conventional softmax with binary
spike-based operations and thereby enables autoregressive language modeling in
the spiking domain, ensuring low-cost inference. To support cost-efficient train-
ing under constrained computational budgets, we further introduce Spike-Form
Knowledge Distillation (SKD), a multi-level distillation strategy that aligns ANN
teacher and SNN student across embeddings, attention maps, intermediate fea-
tures, and output logits. SKD framework allows Spikingl.LM to achieve com-
petitive performance with ANN counterparts using substantially fewer training
tokens (e.g., 1.0B tokens for a 0.125B model and 10.0B tokens for a 1.3B model),
resulting in effective training. As a result, SpikingLLM achieves ANN-level per-
formance at only 4.16%—-5.87% of the computational cost on natural language
generation tasks. Our results highlight the feasibility and effectiveness of fully
binary spike-driven LLMs and establish the distillation as a promising pathway
for energy-efficient, brain-inspired spiking NLP.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language
processing, powering a wide range of applications from conversational agents to code genera-
tion (Brown et al.| [2020; |/Achiam et al.| |2023). However, these models typically require extensive
computational resources and energy consumption during both training and inference. For example,
GPT-3 was trained with 175 billion parameters using hundreds of petaflop/s-days of compute (Brown
et al.;|2020). In addition, inference also incurs substantial energy costs, as serving a single query can
involve billions of operations and significant GPU utilization (Strubell et al., [2020; |Schwartz et al.,
2020), raising concerns about their scalability and environmental impact (Strubell et al., [2020).

Compared with ANN-based LLMs, the human brain achieves superior intelligence with drastically
lower energy consumption, operating on just 20 watts to power approximately 86 billion neu-
rons (Izhikevich| |2003; |Gerstner et al) 2014). Inspired by the brain’s energy-efficient signaling,
Spiking Neural Networks (SNNs) (Maass|, [1997; Gerstner et al., 2014)) communicate through binary
spike events, enabling event-driven and low-power computation (Yin et al., |2021; Schuman et al.,
2022)), making SNNs a promising alternative to traditional ANNs.

While recent efforts have shown promising results of SNNs in computer vision tasks (Zhou et al.|
2024; |Li et al. 2024} Luo et al) [2024), extending SNNs to natural language processing (NLP),

Under review as a conference paper at ICLR 2026

: henln)
etailed EEEhI Eﬂ IV'Iut.; ix
oonlo) Multiplication

ipeline

1

I

1

|

@ Hadamard i
Production !

@ Element-wise i
Addition]

I

1

1

I

1

1

I

1

@ Spiking Neuron
() Linear Projection

Spike K
TxLxd

e TTTTTTTTTTTTTTTTTTTT
= — — — {
Bon) GLLD EEEV] -t
:
I
I
1
1

oftmax’
poof -

e —— = i = renniy
Boojol poojol oonLoll ooajol (LD
CausalMask (o121 (4] Integer Attn Nask Casual Attn Spike Attn | Integer AttnOut Spike Output

. . \ Txdxd Txdxd Txdxd / TxdxL TxLxD
Causal Vanilla Self-Attention ax b

Figure 1: Overview of Causal Spiking Self-Attention (CSSA). Left: Comparison between Vanilla
Causal Self-Attention (CSA) (bottom) and CSSA (top). CSA uses softmax and additive masks,
while CSSA employs spike-based activation and binary causal masking. Right: Detailed CSSA
pipeline, showing spike-form Q, K, V computation, masked integer attention, spiking activation,
and spike-based output, enabling fully discrete and energy-efficient attention modeling.

especially LLMs, remains largely underexplored. A central challenge is the design of spiking at-
tention mechanisms. In contrast to vision models, where representations are often bidirectional and
spatially local, autoregressive LLMs require causal attention to ensure that each token prediction
depends only on its preceding context. However, conventional causal attention relies on floating-
point matrix multiplications and the softmax operation, both of which are computationally intensive
and fundamentally incompatible with spike-based processing. Existing attempts either retain these
components (Zhu et al., [2023) or introduce multi-threshold neurons and integer activations (Xing
et al.| 2024a)), which still incur substantial floating-point overhead. Designing a spike-driven causal
attention mechanism is therefore critical: it must eliminate softmax while preserving the autoregres-
sive representational capacity of binary spike trains. This challenge directly motivates our Causal
Spiking Self-Attention (CSSA), which enables efficient spike-based sequence modeling for spiking
LLMs.

Moreover, training spiking LLMs introduces additional difficulties beyond those in vision tasks. The
inherent temporal dynamics of SNNs already leads to complex computational graphs and high com-
putational cost during backpropagation. Scaling up the architecture further exacerbates this, making
full end-to-end training inefficient or even infeasible. Consequently, prior works mostly resort to
ANN-to-SNN conversions (Xing et al.l 2024a; Schmidgall et al., 2024). However, such methods
typically require large time steps to approximate ANN activations, resulting in high inference cost.
Integer-based conversions further scale the operations by 7' x N, which compromises the potential
energy benefits of event-driven spiking computation.

To address these challenges, we propose Spikingl.LM, a spike-based large language model built
on two key components: a spike-driven attention mechanism (CSSA), schematically depicted in
Figure [T} and a multi-level knowledge distillation scheme (SKD), presented in Figure [3] Overall,
our contributions can be summarized as follows:

* We propose SpikingLLLM, the spike-based large language model equipped with a fully
spike-driven attention mechanism. Our CSSA replaces the vanilla causal self-attention,
which relies on floating-point operations and softmax, with a spike-based computation,
enabling efficient autoregressive sequence modeling with binary spikes. The overall design
follows the OPT-family architecture (Zhang et al.,|2022), adapted to the spiking domain.

* We introduce SKD, a novel training framework that enables SpikingLLM to be directly
trained from random initialization. SKD distills multi-level knowledge covering embed-
dings, attention maps, intermediate features, and output logits from the teacher model,

Under review as a conference paper at ICLR 2026

thereby accelerating convergence, improving training stability, and reducing the amount of
training data required for large-scale spiking LL.Ms.

* With only 10B training tokens, significantly fewer than the 180B tokens used to train OPT-
1.3B, our SKD framework enables SpikingLL.M-1.3B to achieve 42.19% zero-shot accu-
racy on common reasoning benchmarks using 4 time steps, approaching the 49.73% of
OPT-1.3B, while consuming just 10.6% of the energy per inference. Remarkably, even at
2 time steps, the model maintains 41.33% accuracy with only 5.88% of the energy cost.

2 RELATED WORK

2.1 SNNSsS IN DOWNSTREAM TASKS

Recent works show SNNs achieving competitive performance in vision tasks with lower computa-
tional consumption. In image classification, advances in surrogate gradients, attention, and adaptive
thresholds have boosted accuracy and efficiency on CIFAR-10/100 and ImageNet (Rathi et al., 2020;
Zhou et al., 20225 2023;|2024; |Li et al.,|2024). In object detection, models like SFOD and attention-
based SNNs reduce energy cost while closing the gap with ANNs (Su et al.| [2023; [Bodden et al.|
2024; [L1 et al., 2025). For event-based vision, architectures such as 3D-SNN, and MG-SNN effec-
tively handle gesture, motion, and optical flow tasks (Orchard et al.| 2015; Lee et al., |2020; |Gehrig
et al.l [2021).

In contrast, the application of SNNs in natural language processing (NLP) is still largely under-
explored, with only a few attempts adapting language models to spike-based computation. For
example, |Lv et al.|(2023) employs a two-stage distillation strategy to align a pre-trained BERT with
an SNN, but retains many floating-point operations and is limited in scale (up to 109M parameters).
Xing et al.| (2024b)) proposes a spike-driven language model with bi-directional encoding, yet relies
on floating-point spikes and retains dense floating-point operations, undermining the event-driven
efficiency. [Zhu et al.|(2023)) replaces attention with a linear-complexity Spiking RWKV module, but
still depends on dense floating-point computation and remains modest in size (216M parameters).
Xing et al.| (2024a)) pushes scaling further by introducing the GIF neuron and OBSpiking frame-
work, enabling model sizes from 7B to 70B. However, this strategy substitutes binary spike trains
with quantized integer signals and retains the softmax operation, thereby losing the advantages of
event-driven computation and fine-grained temporal dynamics. Additionally, despite targeting au-
toregressive large language modeling, the attention mechanism does not incorporate causal masking
adapted to SNN timing constraints.

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation is a widely adopted approach for compressing large-scale language models
into smaller, more efficient ones, as demonstrated by models like DistilBERT and TinyBERT (Sanh
et al., |2019; [Jiao et al) [2019). In the context of SNNs, early distillation efforts have primarily
targeted small-scale vision tasks, using spike-based student networks guided by soft targets from
ANN teachers (Xu et al.,[2023;|Q1u et al., [2024; Xu et al., [2024).

In contrast, spike-based distillation for language modeling remains underexplored. Existing methods
often overlook the temporal dynamics of SNNs or lack alignment in the spike domain. For example,
SpikeBERT (Lv et al., [2023) maps spike activations into continuous representations via an addi-
tional MLP for teacher-student alignment. However, this introduces extra trainable parameters and
computational overhead, while bypassing the native spike representation, thus limiting the preserva-
tion of spike-driven semantics. To address this, we propose the Spike-Form Knowledge Distillation
framework tailored for SpikingLLMs, featuring spike-attention and spike-feature alignment mod-
ules that enables multi-level knowledge transfer while preserving the discrete and temporal nature
of spiking computation.

3 METHODS

We propose SpikingLLM, a spike-based large language model that integrates a spike-native archi-
tectural design with an efficient training paradigm tailored for large-scale SNNs. Specifically, we

Under review as a conference paper at ICLR 2026

Input Text Causal Spike Decoder Block x L

Ireally like pets, such

HEGIFSE

Input Embeds [

-

G

Causal Spiking Self -Attention

[[22)

iiiii

-

[T Bl

=
(@ Marvul

Figure 2: Left depicts the SpikingLL.M framework, detailing the operations of the Causal Spiking
Self-Attention (CSSA) module and the Spiking Feed-Forward Network (SFFN). Right compares the
computational process of vanilla Causal Self-Attention (CSA), Spiking Self-Attention (SSA), and
CSSA, where red spikes represent binary values of 1 and all other values are 0.

design a fully spike-driven attention mechanism, Causal Spiking Self-Attention (CSSA), which re-
places conventional softmax-based attention with spike-compatible computation, supporting autore-
gressive sequence modeling using binary spikes. Building upon this architecture, we further de-
velop Spike-Form Knowledge Distillation (SKD), a multi-level distillation framework that enables
stable and scalable training from random initialization by transferring rich supervision signals from
a frozen ANN teacher to the SNN student. The overall model architecture is shown in Figure[2] and
the training strategy is illustrated in Figure[3]

3.1 PROBLEM STATEMENT

We consider the task of autoregressive generation using a decoder-only Large Language Model
(LLM). Formally, given a sequence of tokens x1,z2,...,Z,, the model is trained to predict the
next token x,,,1 conditioned on the previous n tokens. This can be expressed as maximizing the
likelihood:

P('rn+1 |x17x27'-')xn)' (1)

During the pre-training stage, the ground-truth label for each autoregressive generation step tau
is the token x44,+1, and the model is optimized using the standard cross-entropy loss. The goal
is to learn a function that maps token sequences to probability distributions over the vocabulary,
employing causal (unidirectional) attention under temporal constraints.

3.2 SPIKINGLLM ARCHITECTURE

To enable efficient sequence modeling with SNNs, we propose SpikinglLLM, which integrates bi-
nary spiking neurons with causal attention for softmax-free, energy-efficient computation. Unlike
prior works (Zhu et al., 2023} |Xing et al.l 2024a; Schmidgall et all 2024), SpikingL.LM is fully
spike-driven and employs a Hadamard-masked dot product followed by spiking neuron to imple-
ment causal attention without softmax. The architecture consists of three main components: (1)
Spiking Neuron Modules, (2) Causal Spiking Self-Attention (CSSA), and (3) a Spike Feed-Forward
Network (SFFN). The overall design is built upon the OPT-family architecture (Zhang et al.||2022),
chosen for its open-source nature, simplicity, and proven effectiveness. The model is further adapted
to operate entirely with spiking computations.

3.2.1 SPIKING NEURON MODULES

To explore more expressive yet efficient spiking neurons for language modeling, we design two
variants of SpikingLLM. SpikingLLM-v1 employs the standard Leaky Integrate-and-Fire (LIF)
neuron (Wu et al.||2018)), implemented via SpikingJelly (Fang et al.,[2023), while SpikingLLM-v2
adopts a ternary spiking neuron inspired by (Xing et al.,[2024b)), which extends binary spikes {0, 1}
to ternary values {—«, 0, +a} depending on the membrane potential intensity.

Under review as a conference paper at ICLR 2026

The LIF neuron emits a spike S; € {0,1} when the membrane potential U, exceeds a threshold
Uy, and resets afterward:

1, ifUp > Uy,
Sy = b= "th Ug =1 + AUi—1 — Se—1Ushyrs 2
0, otherwise,

where I; = W X, is the input current, and A controls temporal decay.

In contrast, the ternary neuron in SpikingLLM-v2 outputs discrete values scaled by a layer-specific
amplitude «(¢):
—a(t), ifm(t) < —aft),
sx(t) =40, if m(t)] < a(t), (3)
+a(t), ifm(t) > +alt),

with membrane potential updated as:

vr(t) = mi(t) (a(t) — s1(t)) + Vresersi(t). 4)

While Spikingl LM-v2 captures richer signal representations, it introduces additional computation
and deviates from the strict sparsity and event-driven efficiency of binary SNNs.

3.2.2 CAUSAL SPIKING SELF-ATTENTION (CSSA)

To enable attention mechanisms in spike-based neural networks while preserving computational ef-
ficiency, we propose the Causal Spiking Self-Attention (CSSA) module, presented in Figure
CSSA reformulates the classical self-attention mechanism using spike-based representations, con-
strained by causality and spiking dynamics.

Specifically, input spike sequences are first projected into continuous-valued queries, keys, and val-
ues, which are then discretized via LIF or ternary spiking neurons. Spike-based dot products be-
tween queries and keys yield integer-valued attention scores, followed by a causal mask to ensure
autoregressive flow. The masked scores are passed through a spiking activation to produce sparse
attention weights, which are used to compute the weighted sum over value spikes. A final linear
projection and spiking activation generate the output. This design preserves both temporal causality
and spike-driven sparsity. The full procedure is summarized in Appendix [A.2]

3.2.3 SPIKE FEED-FORWARD NETWORK (SFFN)

The Spike Feed-Forward Network (SFFN) module follows the standard Transformer FFN struc-
ture but replaces activation functions with spiking neurons. Specifically, we support both the classic
LIF neuron and the ternary spiking neuron introduced in SpikingLLM-v2. The module is defined
as:

FC(z) = SpikeNeuron(Wz + b), (5)

where SpikeNeuron represents either a LIF or ternary spiking activation depending on the model
variant. This formulation allows the feedforward block to remain fully spike-driven while supporting
richer information encoding in SpikingLLM-v2.

3.3 SPIKE-FORM KNOWLEDGE DISTILLATION

To enable effective knowledge transfer from the teacher Artificial Neural Network (ANN) to the
student Spiking Neural Network (SNN), we propose a novel framework called Spike-Form Knowl-
edge Distillation (SKD). It consists of five key components targeting different representational lev-
els as shown in Figure[3] Given the potential structural mismatch between teacher and student (e.g.,
in embedding dimensions, number of layers, or attention heads), we introduce structural alignment
techniques to ensure compatibility, such as linear projections for dimension matching, head-wise
mapping or projection for attention alignment, and layer skipping to bridge differing network depths.

Among various alignments, we focus on Spike-Attention Alignment and Spike-Feature Align-
ment. The reason is that other alignments (embedding, soft/hard targets) are largely consistent

Under review as a conference paper at ICLR 2026

. . . ANN-Teacher SNN-Student T e \
2. Spike-Attention-Alignment (SAA) Input Text Input Text Pk Freeze Weight '
D Ireally like pets, such as 22 Ireally like pets, such as 22 L) Unfreeze Weight
| ®O— E1 22 NextWord to Predict |
;"D.DI n H 1. Embedding-Alignment (EA) - — ext Wordto kre =
! i
g i DDD- A) A) i g Embedding M-S-E-L:ss Embedding}, i . Causa_lM:fs
& | Attention Map Spike Attention Map | 2 R «-————> e eem | ANN-derived
E E D... e @ @ ¥ ! Spiking Attention
1] '
= .. _@— v - XL <L F— : SNN-native
DEE %‘ : E?B s : @% v E Spiking Attention
- i : 3 i E @ Time Re i
S et peating
3. Spike-Feature-Alignment (SFA) : : P @ Spiking Neuron
(e . o
(Tl ! ; O @ Time Accumulation 3
D.DD —@'@—’ s 1 : _______ Y _,Ki TN v ;) E : @ Residual Connection i
] , 3 2 iy on |
21 DD.D T :Z" G[n H) oo Backpropagation ;
S . 12 - H g !
=1 Feature Spike Feature | LM Head m LM Head | <====> Loss Function
S mans = ¢ I
-l] : [—] =
Tm T W .
DDDD 5. Hard-Target-Alignment (HTA)

4. Soft-Target-Alignment (STA)

Figure 3: Overview of our Spike-Form Knowledge Distillation (SKD) framework. Knowledge
is transferred from a frozen ANN teacher to a trainable SNN student via five alignment modules:
(1) Embedding Alignment (EA); (2) Spike-Attention Alignment (SAA); F (3) Spike-Feature
Alignment (SFA); (4) Soft-Target Alignment (STA); and (5) Hard-Target Alignment (HTA).
Losses include MSE, CE, and spike-aware temporal strategies. In particular, our proposed Rate-
MSE loss (equation [) aligns the attention dynamics between ANN and SNN models over time.
Dashed arrows indicate loss paths; spike-related operations are denoted with icons.

between ANNs and SNNs, while these two exhibit substantial differences: ANN representations are
floating-point values, whereas SNN representations are discrete spikes (0-1), and they also include
a temporal dimension. Detailed formulation and implementation of these alignments are provided

in the Appendix [A.3]

Spike-Attention Alignment Given the fundamental difference in attention mechanisms, floating-
point representations in the ANN versus spike-based representations in the SNN, as well as the
additional temporal dimension in the SNN’s attention outputs, which causes dimensional mismatch,
we design two alignment strategies to enable effective cross-domain knowledge transfer:

(a) Temporal Replication and Spiking: We replicate the static attention map Axny € RY* across
T time steps: y
AANN = Repeat(AANN, T) € RTXLXL. (7)

Each time step is then passed through a spiking neuron:
ABN() = ogike(Aann(t), t=1,...,T. (8)

We compute Rate-MSE loss:
1 . 1
e s (15 ARN0 3 T o)) o
t t

(b) Temporal Fusion and Distribution Matching: Alternatively, we temporally average the SNN
spike-attention and match it to the ANN attention using Mean Squared Error (MSE):

T

_ 1 _

Asnn = T E Asnn(t), LMSE = MSE(Aann, Asnn).- (10)
=1

The overall spike-attention alignment loss is:

RateMSE MSE
[.:atm = Oqﬁatm + O[2£atm . (1 1)

Under review as a conference paper at ICLR 2026

Spike-Feature Alignment Similarly, intermediate hidden states are aligned using a combination
of rate-based and temporally averaged MSE:

Lrea = B1LRaF + B Lty (12)

with linear projections and skip-layer connections used to handle mismatched dimensions and
depths.

Total Loss Combining embedding alignment, spike-based alignments, and traditional distillation,
the student SNN is supervised with the overall training objective:

Etotal =)\1 £emb +)\2L‘attn +)\BLfeat +)\4£soft +)\SLhard~ (13)

4 EXPERIMENTS

4.1 TRAINING DETAILS

We use FineWeb-Edu (Penedo et al., [2024)), a high-quality subset of the FineWeb corpus curated
for factual and educational content. A 10B-token portion of the dataset is selected for pretraining.
Notably, our Spikingl.LLM models achieve competitive performance under strict energy constraints,
despite being trained on orders-of-magnitude fewer tokens (1-10 billion) compared to conventional
ANN counterparts (typically requiring more than 100 Billion tokens), even at reduced parameter
scales (0.125B-1.3B). The detailed training setup are provided in the Appendix

Table 1: Comparison of performance and estimated energy efficiency between SpikingLLM and
conventional ANN baselines on the ACC benchmark. SpikingLL.M-v1 adopts classic LIF neurons
(see equation[2) implemented via SpikingJelly, while SpikingLLM-v2 employs ternary-valued spik-
ing neurons with amplitude encoding (see equation [3), following the SpikeLM design. All energy
estimates are calculated under a uniform FP32-based energy model for fair comparison. Time Step
indicates the number of discrete simulation steps used during SNN inference.

Model Params Tokens Spike Time OPs Firing Energy Zero - shot Accuracy (%) 1
(B) (B) Form Step (G) Rate (mJ) |ARC-e ARC-c WG BQ PIQA HS OBQA HQA Avg.

OPT 0.125 180 X — 1256 — 12595 43.6 193 523 54.6 624 32.1 202 23.7 38.60
Pythia 0.160 300 X — 12577 — 126.01| 43.7 19.8 528 55.1 62.7 33.6 20.1 242 39.00
SpikeGPT 0.046 165 Binary — 3.66 0.174 329 | 323 162 502 457 546 253 157 20.6 32.58
SpikeGPT 0.216 165 Binary — 183 0.168 16.53 | 352 17.7 50.7 473 551 27.6 173 23.1 3425
SpikingLLM-v1 | 0.125 1.0 Binary 2 12.1 0.196 524 | 391 189 503 527 56.7 28.1 19.8 229 36.05
SpikingLLM-v2 | 0.125 1.0 Ternary 2 137 0412 10.74 | 385 183 513 523 57.7 29.1 192 225 36.11
SpikingLLM-v1 | 0.125 1.0 Binary 4 23.1 0.173 9.43 | 394 190 512 53.0 57.5 292 19.7 23.1 36.50
SpikingLLM-v2 | 0.125 1.0 Ternary 4 258 0.386 19.92 | 389 185 51.5 529 58.0 283 192 229 36.27
OPT 0.350 180 X — 3608 — 197.57| 475 222 553 572 66.1 40.7 257 26.6 42.68
Pythia 0.410 300 X — 3609 — 197.71| 48.7 248 56.8 58.1 66.7 41.6 26.1 262 43.63
SpikingLLM-v1 | 0.350 2.0 Binary 2 434 0182 9.31 | 415 21.7 523 551 59.7 327 212 238 3848
SpikingLLM-v2 | 0.350 2.0 Ternary 2 477 0404 18.61 | 415 21.7 524 549 59.1 31.6 208 23.1 38.14
SpikingLLM-v1 | 0.350 2.0 Binary 4 842 0.178 1675 | 42.1 21.4 52.1 56.1 60.5 33.1 21.9 235 38.84
SpikingLLM-v2 | 0.350 2.0 Ternary 4 883 0.377 3535 | 41.8 219 528 557 604 34.0 213 23.1 38.87
OPT 1.300 180 X — 12371 — 63222 578 304 604 60.8 71.7 52.6 334 30.7 49.73
Pythia 1.400 300 X — 12374 — 63248| 605 312 613 61.1 71.1 536 332 319 5049
SpikingLLM-v1 | 1.300 10.0 Binary 2 66.7 0.192 37.16 | 457 235 542 563 623 402 245 240 4133
SpikingLLM-v2 | 1.300 10.0 Ternary 2 742 0426 7432 | 445 237 542 553 623 404 246 23.6 41.08
SpikingLLM-v1 | 1.300 10.0 Binary 4 1319 0.184 66.89 | 463 243 556 56.8 63.4 41.7 252 243 42.19
SpikingLLM-v2 | 1.300 10.0 Ternary 4 141.6 0.411 141.21| 458 245 55.6 56.1 634 413 255 24.8 4212

4.2 MODEL EVALUATION

We evaluate models using zero-shot accuracy on diverse commonsense reasoning and QA bench-
marks, including ARC-Easy (ARC-e), ARC-Challenge (ARC-c) (Clark et al.l 2018)), Winogrande
(WG) (Sakaguchi et al.| [2021), BoolQ (BQ) (Clark et al.| 2019), PIQA (Bisk et al.l 2020), Hel-
laSwag (HS) (Zellers et al., [2019), OpenBookQA (OBQA) (Mihaylov et al.| [2018), and HeadQA
(HQA) (Vilares & Gomez-Rodriguez, [2019), measuring the generalization and reasoning abilities

Under review as a conference paper at ICLR 2026

without task-specific finetuning. As shown in Table[I] SpikingLLM achieves 82.60-94.56% of the
zero-shot accuracy of counterpart ANN models at the same scale, despite using significantly fewer
operations and training tokens. For example, SpikingLL.M-v1 (1.3B, 10B tokens, 4 steps) reaches
42.19% accuracy versus 49.73% for OPT-1.3B, consuming only 10.6% of the energy per inference.
For fair comparison with existing spiking LLMs, we focus onZhu et al.|(2023)), a decoder-only SNN
trained from scratch and architecturally comparable. We don’t directly compare with |Xing et al.
(2024b)) or [Lv et al.{(2023), which are not decoder-only and target different downstream tasks. And
since |Xing et al.[(2024a)) is derived via quantization and spiking conversion from pretrained ANN
LLMs, we defer detailed comparisons with such quantization-based approaches to Appendix

4.3 ENERGY CONSUMPTION

To assess the efficiency of SNNs, we first measure the firing rate, defined as the average proportion
of active spikes, where lower rates indicate higher sparsity and greater energy efficiency. Based on
the firing rate, we then estimate the theoretical energy consumption during inference by simulating
a 45nm neuromorphic chip, following Horowitz| (2014); [Kundu et al.| (2021a); [Yin et al.| (2021);
Kim & Pandal (2021). Energy estimates are based on the total number of spike operations (SOPs),
compared against floating-point operations (FLOPs) in baseline ANN models. Detailed computa-
tion steps are provided in Appendix [A.6] The Table] reports the per-sample energy consumption,
firing rates, and zero-shot accuracy across benchmarks. Our results show that: SpikingLL.M-v1 con-
sistently consumes an order of magnitude less energy than ANN baselines (e.g., 9.43 mJ vs. 126.01
mJ at 125M) while achieving over 93% of the accuracy. Across parameter scales (0.125B—1.3B),
SpikingLLM maintains competitive performance at only 4.16%—5.87% of the computational cost.
Moreover, increasing time steps slightly improves performance (36.05% — 36.50% at 125M) with
moderate energy overhead. SpikingLLM-v2 offers slightly higher accuracy at increased energy,
providing a flexible trade-off for application constraints. These findings validate the viability of
SNN-based LLMs for energy-constrained environments, such as edge devices and neuromorphic
accelerators.

4.4 ABLATION STUDY

We conduct a series of ablation experiments on the SpikingLLM-v1 model with 125M parameters
to evaluate the contributions of key components and training factors. Specifically, we investigate: (1)
the role of spike-driven modules, (2) the impact of varying simulation time steps, (3) the influence
of training token volume, and (4) the effectiveness of our multi-level distillation alignment strategy.

Spike-driven Modules We first examine the effect of spike-driven modules by replacing CSSA
and SFFN with their ANN counterparts. As shown in Figure fa] the fully spike-driven design
(CSSA+SFFEN) achieves 36.05% accuracy with only 5.24 mJ energy. Replacing either module
slightly improves accuracy (up to 36.57%) but increases energy consumption by more than 10x.
Using ANN attention and FFN together yields 37.10% accuracy at the cost of 24 x higher energy.
These results highlight that CSSA and SFFN are essential for preserving the energy-efficiency ad-
vantage of Spikingl.LM.

Distillation Alignment Strategy We assess each alignment component by progressively adding
it to the base HTA model. As shown in Figure @b STA yields the largest individual gain (+1.11%),
while EA offers a smaller effect (+0.33%)., suggesting limited standalone benefit of energy align-
ment at this stage. Higher-level constraints such as SFA and SAA further improve performance
(+0.63% and +0.38%). When combining STA with EA or SFA, the improvements increase more
significantly, indicating complementary effects. Combining multiple objectives produces stronger
gains, and the full set (STA, EA, SFA, SAA) achieves the best accuracy (36.25%, +1.68%). These
results highlight the complementary benefits of hierarchical alignment for effective knowledge trans-
fer from ANN teachers to spiking students.

Time Steps We further study the effect of varying simulation time steps (1-8). As shown in
Figure more time steps improve accuracy by refining temporal resolution, but gains saturate
beyond 4 steps while energy cost rises sharply. Firing rates gradually decline with longer steps,

Under review as a conference paper at ICLR 2026

g

8

1
B Avg. Accuracy (%) 125.95 —— Avg. Accuracy (%)
- E Consumption (m}
nergy umption (m)) 120 N\\L

35.68% 35.20% 34.95% 34.90%

35.82% 35.70%
SFA

o [
olzlzl

HTA| |HTA| |HTA| |HTA

36.05 36.46

H
8

36.25%
36.14% 36.00%

0 + HTA| |HTA| |HTA
CSSA + SFFN CSA + SFFN CSSA + FFN CSA + FFN 30

Module Combinations Alignment Objective Combinations

Avg. Accuracy (%)
Energy Consumption (mj)
Avg. Accuracy (%)
o g

3457%

L d
X

(a) Effect of spike-driven modules. (b) Effect of alignment objectives.

—e— Avg. Accuracy (%)
[Energy Consumption (mj) 37.0
=3 Firing Rate (%) =0~ Avg. Accuracy (%)

~{1~ Firing Rate (%) 36.33 36.40

22

21

20.6

20

Energy (m)) / Avg. Accuracy (%)
Avg. Accuracy (%)
&
S
1
Firing Rate (%)

0102 05 10 15 20
Token Amount (B)

(c) Effect of varying time steps. (d) Effect of training data volume.

Figure 4: Visualization of ablation experiments.

indicating increased sparsity. Overall, 2—4 steps provide a good trade-off between efficiency and
performance, while more steps yield marginal accuracy gains at higher energy cost.

Training Token Volume Finally, we evaluate the impact of training data size by varying tokens
from 0.1B to 2.0B. As shown in Figure 4d} accuracy improves consistently with more data, with the
largest gains in the low-data regime (0.1B — 0.5B) and saturation beyond 1.0B tokens. Performance
rises from 33.67% to 36.40%, reaching 94.3% of the teacher’s accuracy (38.60%). Interestingly, the
firing rate gradually decreases as training data increases, suggesting that larger training dataset not
only improves performance but also enhances temporal sparsity, likely due to more structured repre-
sentations. These results demonstrate the data efficiency of our training framework, enabling near-
saturated performance with relatively few tokens. Further details on firing and activation patterns

are visualized in the Appendix [A-§]

5 CONCLUSION

We introduce SpikingLLLM, the fully binary spike-driven LLLM trained from random initialization.
Its Causal Spiking Self-Attention (CSSA) enables softmax-free, spike-based autoregressive mod-
eling, reducing computational cost by over 10x compared to ANNs. A multi-level Spike-Form
Knowledge Distillation (SKD) framework further improves performance by aligning representa-
tions across multiple levels. SpikingL.LM achieves competitive accuracy with fewer training tokens
and lower energy, demonstrating a promising pathway for energy-efficient, brain-inspired NLP.

Limitations: While Spikingl.LM significantly reduces computational cost, its accuracy still lags
behind large-scale ANN LLMs on some benchmarks, and training larger models requires careful
tuning of time steps and distillation schedules. Future work could explore improved spike-based ar-
chitectures and more effective distillation strategies to further close the gap with ANN performance.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT.

All experiments in this work are conducted on publicly available datasets without involving private
or sensitive information. The proposed methods are intended purely for academic research, and any
deployment should carefully consider potential ethical risks such as bias or misuse.

REPRODUCIBILITY STATEMENT.

The experimental results in this paper are reproducible. We describe the model architecture and
training process details in the main text and appendix. We will release the source code after review.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Lennard Bodden, Duc Bach Ha, Franziska Schwaiger, Lars Kreuzberg, and Sven Behnke. Spiking
centernet: A distillation-boosted spiking neural network for object detection. In 2024 Interna-
tional Joint Conference on Neural Networks, pp. 1-9. IEEE, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Wei Fang, Yanqgi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
Huihui Zhou, Guogqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
infrastructure platform for spike-based intelligence. Science Advances, 9(40):eadi1480, 2023.

Mathias Gehrig, Willem Aarents, Daniel Gehrig, and Davide Scaramuzza. Dsec: A stereo event
camera dataset for driving scenarios. IEEE Robotics and Automation Letters, 6(3):4947-4954,
2021.

Waulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press, 2014.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
international solid-state circuits conference digest of technical papers, pp. 10-14. IEEE, 2014.

Yifan Hu, Yujie Wu, Lei Deng, and Guoqi Li. Advancing residual learning towards powerful deep
spiking neural networks. arXiv preprint arXiv:2112.08954, 7:7, 2021.

Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions on neural networks,
14(6):1569-1572, 2003.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.

Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351,
2019.

10

Under review as a conference paper at ICLR 2026

Ayush Kaushal, Tejas Vaidhya, Arnab Kumar Mondal, Tejas Pandey, Aaryan Bhagat, and Irina Rish.
Spectra: Surprising effectiveness of pretraining ternary language models at scale. arXiv preprint
arXiv:2407.12327, 2024.

Youngeun Kim and Priyadarshini Panda. Optimizing deeper spiking neural networks for dynamic
vision sensing. Neural Networks, 144:686—698, 2021.

Souvik Kundu, Gourav Datta, Massoud Pedram, and Peter A Beerel. Spike-thrift: Towards energy-
efficient deep spiking neural networks by limiting spiking activity via attention-guided compres-
sion. In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp.
3953-3962, 2021a.

Souvik Kundu, Massoud Pedram, and Peter A Beerel. Hire-snn: Harnessing the inherent robustness
of energy-efficient deep spiking neural networks by training with crafted input noise. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 5209-5218, 2021b.

Chankyu Lee, Adarsh Kumar Kosta, Alex Zihao Zhu, Kenneth Chaney, Kostas Daniilidis, and
Kaushik Roy. Spike-flownet: event-based optical flow estimation with energy-efficient hybrid
neural networks. In European conference on computer vision, pp. 366-382. Springer, 2020.

Yudong Li, Yunlin Lei, and Xu Yang. Spikeformer: Training high-performance spiking neural
network with transformer. Neurocomputing, 574:127279, 2024.

Ziqi Li, Tao Gao, Yisheng An, Ting Chen, Jing Zhang, Yuanbo Wen, Mengkun Liu, and Qianxi
Zhang. Brain-inspired spiking neural networks for energy-efficient object detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp.
3552-3562, 2025.

Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and spike-driven
inference spiking neural network for high-performance and energy-efficient object detection. In
European Conference on Computer Vision, pp. 253-272. Springer, 2024.

Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zixuan Ling, Cenyuan Zhang, Xiaoqing Zheng,
and Xuanjing Huang. Spikebert: A language spikformer learned from bert with knowledge dis-
tillation. arXiv preprint arXiv:2308.15122, 2023.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659-1671, 1997.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image
datasets to spiking neuromorphic datasets using saccades. Frontiers in neuroscience, 9:437, 2015.

Guilherme Penedo, Hynek Kydlicek, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. Advances in Neural Information Processing Systems, 37:30811-30849, 2024.

Haonan Qiu, Munan Ning, Zeyin Song, Wei Fang, Yanqi Chen, Tao Sun, Zhengyu Ma, Li Yuan, and
Yonghong Tian. Self-architectural knowledge distillation for spiking neural networks. Neural
Networks, 178:106475, 2024.

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation. In
International Conference on Learning Representations, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

11

Under review as a conference paper at ICLR 2026

Samuel Schmidgall, Rojin Ziaei, Jascha Achterberg, Louis Kirsch, S Hajiseyedrazi, and Jason
Eshraghian. Brain-inspired learning in artificial neural networks: a review. APL Machine Learn-
ing, 2(2), 2024.

Catherine D Schuman, Shruti R Kulkarni, Maryam Parsa, J Parker Mitchell, Prasanna Date, and Bill
Kay. Opportunities for neuromorphic computing algorithms and applications. Nature Computa-
tional Science, 2(1):10-19, 2022.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. Communications of the
ACM, 63(12):54-63, 2020.

Wengqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 13693-13696, 2020.

Qiaoyi Su, Yuhong Chou, Yifan Hu, Jianing Li, Shijie Mei, Ziyang Zhang, and Guoqi Li. Deep
directly-trained spiking neural networks for object detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

David Vilares and Carlos Gémez-Rodriguez. Head-qa: A healthcare dataset for complex reasoning.
arXiv preprint arXiv:1906.04701, 2019.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
models. arXiv preprint arXiv:2310.11453, 2023.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Xingrun Xing, Boyan Gao, Zheng Liu, David A Clifton, Shitao Xiao, Wanpeng Zhang, Li Du,
Zheng Zhang, Guoqi Li, and Jiajun Zhang. Spikellm: Scaling up spiking neural network to
large language models via saliency-based spiking. In The Thirteenth International Conference on
Learning Representations, 2024a.

Xingrun Xing, Zheng Zhang, Ziyi Ni, Shitao Xiao, Yiming Ju, Siqi Fan, Yequan Wang, Jiajun
Zhang, and Guoqi Li. Spikelm: Towards general spike-driven language modeling via elastic
bi-spiking mechanisms. arXiv preprint arXiv:2406.03287, 2024b.

Qi Xu, Yaxin Li, Jiangrong Shen, Jian K Liu, Huajin Tang, and Gang Pan. Constructing deep spiking
neural networks from artificial neural networks with knowledge distillation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7886-7895, 2023.

Qi Xu, Yaxin Li, Xuanye Fang, Jiangrong Shen, Qiang Zhang, and Gang Pan. Reversing structural
pattern learning with biologically inspired knowledge distillation for spiking neural networks. In
Proceedings of the 32nd ACM International Conference on Multimedia, pp. 3431-3439, 2024.

Man Yao, Huanhuan Gao, Guangshe Zhao, Dingheng Wang, Yihan Lin, Zhaoxu Yang, and Guogqi Li.
Temporal-wise attention spiking neural networks for event streams classification. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 10221-10230, 2021.

Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate and efficient time-domain classi-
fication with adaptive spiking recurrent neural networks. Nature Machine Intelligence, 3(10):
905-913, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

12

Under review as a conference paper at ICLR 2026

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Zhengyu Ma, Han Zhang, Huihui Zhou, and Yonghong
Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural net-
work. arXiv preprint arXiv:2304.11954, 2023.

Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan,
Zhengyu Ma, Huihui Zhou, and Yonghong Tian. Qkformer: Hierarchical spiking transformer
using gk attention. Advances in Neural Information Processing Systems, 37:13074—13098, 2024.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. arXiv preprint
arXiv:2209.15425, 2022.

Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. Spikegpt: Generative pre-trained
language model with spiking neural networks. arXiv preprint arXiv:2302.13939, 2023.

13

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE OF LLMSs

In this work, we used Large Language Models (LLMs) in a limited and auxiliary capacity. Specifi-
cally, LLMs were employed for retrieval and discovery of related literature on Spiking Neural Net-
works (SNNs), neuromorphic computing, and energy-efficient large language models. This assisted
us in identifying relevant prior work and ensuring broader coverage of existing approaches. Impor-
tantly, LLMs were not involved in designing algorithms, implementing models, or analyzing experi-
mental results. All methodological innovations, including the Causal Spiking Self-Attention (CSSA)
and Spike-Form Knowledge Distillation (SKD), were independently conceived, implemented, and
validated by the authors. Thus, the role of LLMs was restricted to accelerating literature exploration,
without influencing the scientific contributions of this paper.

A.2 ALGORITHM PROCEDURE OF CSSA

Algorithm 1 Causal Spiking Self-Attention (CSSA)
Input: Spike-based input X

Qutput: Spiking attention output

: // Step 1: Input Projection (F'P < Spike Q F'P)
g, k,v < Linearg x v (X)

// Step 2: Spiking Neuron Encoding (Spike < F'P)
spike, < SpikingN eurong(q)

spike,, <— SpikingNeurong (k)

spike, < SpikingNeurony (v)

/] Step 3: Attention (Integer <— Spike @ Spike)
attn_int <— spike q@spikef

// Step 4: Causal Masking and Spiking
causal_mask < causal_mask © attn_mask

. attn_causal < causal_mask ® attn_int

. spikegirn < SpikingNeuron gy, (attn_causal)
: // Step 5: Summation (Integer + Spike Q Spike)
: attn_out < spikeatm@spikef

o spikeattn_out < SPikingNeuron ounou (attn_out)
. // Step 6: Output Projection (F'P < Spike Q F'P)
: fp_out «+— Linear,y (spikeqttn_out)

. // Step 7: Spiking (Spike < FP)

. spike_out < SpikingNeurono,:(fp_out)

. return spike_out

PN RN

[T S S e S Sy

A.3 DETAILED DESIGN OF SKD

We present Spike-Form Knowledge Distillation (SKD), a framework that distills a frozen ANN
teacher into a trainable SNN student. Distillation proceeds through five aligned losses: Embedding
Alignment (EA), Soft-Target Alignment (STA), and Hard-Target Alignment (HTA) reuse standard
MSE/CE because continuous vectors are already compatible; Spike-Attention Alignment (SAA)
and Spike-Feature Alignment (SFA) introduce spike-aware temporal losses to bridge the unique
continuous-to-binary and spatial-to-temporal gap that only these two representations expose.

A.3.1 EMBEDDING ALIGNMENT

We align the output distributions from the embedding layers of the teacher and student networks
using Mean Squared Error (MSE) loss:

Lemp = MSE(PANN pSNN) (14)

emb < emb

14

Under review as a conference paper at ICLR 2026

This alignment ensures consistent semantic representations at the input level, easing the optimiza-
tion burden and improving representation consistency across modalities. A linear transformation is
applied if the embedding dimensions are not directly compatible.

A.3.2 SPIKE-ATTENTION ALIGNMENT

Given the fundamental difference in attention mechanisms—floating-point representations in the
ANN versus spike-based representations in the SNN—as well as the additional temporal dimen-
sion in the SNN’s attention outputs, which causes dimensional mismatch, we design two alignment
strategies to enable effective cross-domain knowledge transfer:

(a) Temporal Replication and Spiking: We replicate the static attention map Axny € REXE

across 1" time steps:
Axnn = Repeat(Aany, T) € RT*EXL, (15)

Each time step is then passed through a spiking neuron:

ABN() = opice(Aann(t), t=1,...,T. (16)

We compute Rate-MSE loss:
1 A 1
£ = st (15RO 1 5). an

(b) Temporal Fusion and Distribution Matching: Alternatively, we temporally average the SNN
spike-attention and match it to the ANN attention using Mean Squared Error (MSE):

T

_ 1 _

Asnn = = g Asan(t), LMSE = MSE(Aann, Asnn)- (18)
T

The overall spike-attention alignment loss is:

RateMSE MSE
Lo = alﬁat?ne + OQ‘Cattn . (19)

A.3.3 SPIKE-FEATURE ALIGNMENT

To align intermediate hidden states, we apply the same transformation strategies to the feature maps:

ACfeat = 61 EF;:‘?MSE + ﬁ? Elf\gaS[Ea (20)

where each component is computed similarly to the attention alignment, but on the feature tensors
Hann and Hgnyn. And linear projections are inserted if the hidden dimensions differ. Skip-layer
connections are used if the number of layers does not match.

A.3.4 SOFT TARGET ALIGNMENT

We apply soft-label distillation using the teacher and student logits:

Los = KL (logitsANN H logitSSNN> 7 o

T T

where 7 is a temperature hyperparameter to soften the logits.

A.3.5 HARD TARGET ALIGNMENT

We also include the traditional cross-entropy loss with the ground truth:

Lnara = CE(logitsgyy, ¥)- (22)

15

Under review as a conference paper at ICLR 2026

A.3.6 ToOTAL LoOSS

The final training objective combines all loss terms:
Etolal =\ Eemb + >\2['atm + >\3['feat + /\4£soft + /\5£hard~ (23)

Each); balances the contribution of its corresponding component.

A.4 TRAINING DETAILS

Table 2: Summary of training hyperparameters and configurations used for SpikingLLLM, including
optimization settings, distillation parameters, and hardware specifications.

Hyperparameter Value

Teacher ANN model OPT-family

Student SNN model SpikinglLLM
Tokenizer / Vocabulary Aligned with OPT
Batch size 16

Gradient accumulation steps 16

Effective batch size 256

Optimizer Adam

Learning rate 5% 107*
Scheduler Cosine decay
Warm-up ratio 0.2

Gradient clipping threshold 0.7

Temperature 7 (for SKD) 2.0

Distillation weights (A1 to As) 0.2,0.1,0.1,0.3, 0.3
Inference time steps (17) 2 and 4

Hardware NVIDIA RTX 4090 (24GB)

Training Paradigm The training of SpikingLLM follows a teacher—student paradigm, where the
teacher model is a pre-trained open-source ANN-based large language model from the OPT family,
and the student is our spike-based SpikingLL.M. To ensure consistency between the teacher and
student models, we align both the vocabulary and tokenizer with those used in OPT.

Optimization Setup All experiments are conducted using a batch size of 16 and a gradient accu-
mulation factor of 16, effectively yielding a total batch size of 256 tokens. The optimizer used is
Adam, with a learning rate set to 5 x 10~%. A cosine learning rate scheduler with a warm-up ratio
of 0.2 is employed to stabilize early training. Gradient clipping is applied with a threshold of 0.7
to avoid exploding gradients in the early training phases, which can be particularly pronounced in
spiking models. And all models are trained on NVIDIA 4090 GPUs with 24GB memory.

Spike-Form Knowledge Distillation For spike-form knowledge distillation (SKD), we adopt a
temperature of 7 = 2.0 in the soft targets from the teacher model. The overall loss is computed as a
weighted combination of multiple alignment objectives defined in Method Section. The correspond-
ing loss weights are: A\; = 0.2, A\ = 0.1, A3 = 0.1, Ay = 0.3, and A5 = 0.3.

Inference Time Steps To study the trade-off between accuracy and energy efficiency, Spik-
ingL.LM is trained with varying numbers of inference time steps, specifically T’ = 2 and T' = 4. A
higher number of steps improves temporal resolution and accuracy at the cost of increased energy
consumption, enabling flexible deployment depending on the application constraints.

Training Data Selection The subset of training data used in our experiments was drawn
from the fineweb-edu dataset (Penedo et al.) [2024), specifically the 10BT sample ac-
cessible at https://huggingface.co/datasets/HuggingFaceFW/fineweb—edu/
tree/main/sample/10BT. Since our claim of using a lower training token volume is a core
contribution, it is crucial to detail how the data was sampled to ensure reproducibility. This subset
was selected directly from the publicly available sample without additional filtering or preprocess-
ing, providing other researchers with a clear and reproducible training set.

16

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu/tree/main/sample/10BT
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu/tree/main/sample/10BT

Under review as a conference paper at ICLR 2026

A.5 SURROGATE GRADIENT

Training spiking neural networks (SNNs) presents a significant challenge due to the non-
differentiable nature of spike generation functions, such as the Heaviside step function used in
the spiking neuron model. To enable end-to-end optimization with backpropagation, we adopt a
surrogate gradient approach introduced by Fang et al. (2020).

Specifically, the discrete spiking activation S is approximated by a continuous and differentiable
function using an arctangent-based surrogate:

1 1
~ — arctan (EaU) + -, 24)
T 2 2

where U is the membrane potential and « is a tunable hyperparameter controlling the sharpness
of the transition. In our experiments, we set « = 2 by default, balancing gradient magnitude and
smoothness.

Taking the derivative of Equation equation [24]yields the surrogate gradient used during backpropa-
gation:

08 1

i —_—- (25)

U 2 14 (Zal)
This surrogate formulation enables stable and effective gradient-based optimization for Spik-
ingLLM. It allows error signals to be backpropagated through spike-generating layers without re-
quiring exact gradients, thus making the training pipeline compatible with standard deep learning
frameworks.

A.6 THEORETICAL SYNAPTIC OPERATION AND ENERGY CONSUMPTION CALCULATION

The theoretical energy consumption of SpikingLLM is estimated by first calculating the synaptic
operations (SOPs). For each block or layer [, we have:

SOPs(l) = f,.(I) x T x FLOPs(1), (26)

where [indexes a block in SpikingLLM, f.(l) is the average firing rate of the input spike train to
block [(measured as spikes per neuron per time step), and 7" is the simulation time steps of the
spiking neuron. FLOPs(!) denotes the number of multiply-and-accumulate (MAC) operations of
block [in the equivalent ANN. SOPs(1) thus represents the spike-based accumulate (AC) operations
performed in the SNN.

Following Horowitz| (2014}, we assume the energy per operation on a 45 nm process as

EMAC = 4.6];)]7 EAC =0.9 pJ.

For ANNS, the theoretical energy consumption of a block b is

Powerann (b) = Envac x FLOPs(b). 27

For SNNss, the theoretical energy consumption of block b is

POWEI'SNN(b) = EAC X SOPS(b) (28)

According to ((Horowitz, [2014; [Kundu et al.l 2021ajb; Hu et al.| [2021} |Yin et al., 2021} |[Kim &
Pandal [2021} [Yao et al.,|2021)), the total energy consumption of SpikingLLM can be decomposed
into three parts: (1) the embedding stage, which is executed with dense MAC operations, (2) the L
stacked transformer blocks, each of which is spiking and therefore counted using AC operations, and
(3) the language-model head (LM-head) that maps hidden states to vocabulary logits (dense MACs).
We write:

Espiking.im = Emac - (FLOPS gmpeq + FLOPS | p.head)

L
+ Exc Y (SOPessa(l) + SOPsin(1)) (29)
=1

17

Under review as a conference paper at ICLR 2026

where FLOPS gppeq and FLOPS [v.head denote the MAC operations of the embedding stage and the
output projection to vocabulary logits, respectively; SOPcssa (1) and SOPsprn (1) represent the spike-
accumulate operations of the Spiking Causal Self-Attention and Spiking Feed-Forward Network
modules in block I; Eyvac and Eac are the energy costs per MAC and AC operation; L is the number
of transformer blocks; and f, and T" denote the average firing rate and the number of simulation time
steps.

A.7 COMPARISON WITH SPIKELLM

Table 3: Comparison of SpikingLLLM and SpikeLLM across different model scales, neuron/spike
formats, and time steps. Avg. Acc. reports zero-shot accuracy (%), and SNN/ANN Ratio shows the
performance of spiking models relative to their ANN counterparts.

Model Params (B) Tokens (B) Spike Form Time Step Avg. Acc.(%) T liﬂj)/?‘;j)N 4
SpikingLLM-v1 0.125 1.0 Binary 2 36.05 93.39
SpikingLLM-v2 0.125 1.0 Ternary 2 36.11 93.55
SpikingLLM-v1 0.125 1.0 Binary 4 36.50 94.56
SpikingLLM-v2 0.125 1.0 Ternary 4 36.27 93.96
SpikingLLM-v1 0.350 2.0 Binary 2 38.48 90.16
SpikingLLM-v2 0.350 2.0 Ternary 2 38.14 89.36
SpikingLLM-v1 0.350 2.0 Binary 4 38.84 91.00
SpikingLLM-v2 0.350 2.0 Ternary 4 38.87 91.07
SpikingLLM-v1 1.300 10.0 Binary 2 41.33 83.11
SpikingLLM-v2 1.300 10.0 Ternary 2 41.08 82.60
SpikingLLM-v1 1.300 10.0 Binary 4 42.19 84.84
SpikingLL.M-v2 1.300 10.0 Ternary 4 42.12 84.70
SpikeLLM 7.000 — Integer (W2A16) 2 49.92 78.17
SpikeLLM 7.000 — Integer (W2AS) 4 41.77 65.41
SpikeLLM 13.00 — Integer (W2A16) 2 53.76 81.34
SpikeLLM 13.00 — Integer (W2AS8) 4 50.12 75.78
SpikeLLM 70.00 — Integer (W2A16) 2 60.47 82.55

Table |3| compares SpikingLLM with SpikeLLM across different model scales, quantization meth-
ods, spike forms, and simulation time steps. Overall, SpikingLL.M achieves competitive zero-shot
accuracy with smaller models and lower-precision spike forms. Notably, the SNN/ANN ratio of
SpikingLLLM is consistently higher (82-95%) than that of SpikeLLM, indicating that our spike-
based models retain more of the original ANN performance. This improvement is largely attributed
to our multi-level knowledge distillation framework, which effectively transfers information from
ANN teachers to spiking students. These results not only highlight the efficiency and effectiveness
of our approach but also provide a promising pathway for further improving SNN-LLMs through
advanced distillation strategies.

18

Under review as a conference paper at ICLR 2026

A.8 FIRING VISUALIZATION

Spiking Rate Heatmap

model.decoder.in_if
layers.0.self_attn.q_if
layers.0.self_attn.k_lif
layers.0.self_attn.v_lif
layers.0.self_attn.attn_lif
layers.0.self_attn.out_lif
layers.0.fc_lifl
layers.0.fc_lif2

layers. 1.self_attn.q_if
layers.Lself_attn.k_if
layers.1.self_attn.v_if
layers. 1.self_attn.attn_if
layers. 1.self_attn.out_lif
layers.1.fc_lifl
layers.1.fc_lif2
layers.2.self_attn.q_if
layers.2.self_attn.k_lif
layers.2.self_attn.v_if
layers.2.self_attn.attn_if
layers.2.self_attn.out_lif
layers.2.fc_lifl
layers.2.fc_lif2
layers.3.self_attn.q_lif
layers.3.self_attn.k_lif
layers.3.self_attn.v_lif
layers.3.self_attn.attn_lif
layers.3.self_attn.out_if
layers.3.fc_lif1
layers.3.fc_lif2
layers.4.self_attn.q_lif
layers.4.self_attn.k_lif
layers.4.self_attn.v_lif
layers.4.self_attn.attn_lif
layers.4.self_attn.out_lif
layers.4.fc_lif1
layers.4.fc_lif2
layers.5.self_attn.q_lif
layers.S.self_attn.k_lif
E layers.5.self_attn.v_lif
> layers.5.self_attn.attn_lif
S layers.5.self_attn.out_lif
layers.5.fc_lifl
layers.5.fc_lif2
layers.6.self_attn.q_lif
layers.6.self_attn.k_if
layers.6.self_attn.v_if
layers.6.self_attn.out_lif
layers.6.fc_lifl
layers.6.fc_lif2

layers. .self_attn.q_if
layers.7.self_attn.k_lif
layers.7.self_attn.v_lif
layers.7.self_attn.out_if
layers.7.fc_lifl
layers.7.fc_lif2
layers.8.self_attn.q_if
layers.8.self_attn.k_lif
layers 8.self_attn.v_if
layers.8.self_attn.out_lif
layers.8.fc_lifl
layers.8.fc_lif2
layers.9.self_attn.q_lif
layers.9.self_attn.k_if
layers.9.self_attn.v_lif
layers.9.self_attn.out_if
layers.9.fc_lifl
layers.9.fc_lif2
layers.10.self_attn.q_lif
layers.10.self_attn.k_lif
layers.10.self_attn.v_lif
layers.10.self_attn.out_lif
layers.10.fc_lifl
layers.10.fc_lif2
layers.11.self_attn.q_lif
layers. 11.self_attn.k_if
layers.11.self_attn.v_lif
layers. 11.self_attn.out_lif
layers.11.fc_lifl
layers.11.fc_lif2

r0.25

Spike Rate

Time Step

Figure 5: At T = 2, the firing activity is relatively concentrated in a few specific layers, as indi-
cated by localized high-intensity regions in the heatmap. This suggests that, under limited temporal
resolution, only a subset of layers become highly active, likely those responsible for early-stage
processing and critical feature extraction. The rest of the network remains relatively quiescent, re-
flecting a sparse activation pattern constrained by the short integration window.

19

Under review as a conference paper at ICLR 2026

model.decoder.n_lif
layers.0.self_attn.q_lif
layers.0.self_attn.k_lif
layers.0.self_attn._lif
layers.0.self_attn.attn_if
layers.0.self_attn.out_lif
layers.0.fc_lifL
layers.0.fc_lif2
layers.Lself_attn.q_lif
layers.Lself_attn.k_lif
layers.Lself_attn._lif
layers.Lself_attn.attn_lif
layers.Lself_attn.out_lif
layers.1.fc_lifl

layers. Lfc_lif2
layers.2.self_attn.q_lif
layers.2.self_attn.k_lif
layers.2.self_attn.u_lif
layers.2.self_attn.attn_lif
layers.2.self_attn.out_if
layers.2.fc_lifL
layers.2.fc_iif2
layers.3.self_attn.q_lif
layers.3.self_attn.k_lif
layers.3.self_attn.v_if
layers.3.self_attn.attn_if
layers.3.self_attn.out_lif
layers.3.fc_lifL
layers.3.fc_lif2
layers.4.self_attn.q_lif
layers.4.self_attn.k_lit
layers.4.self_attn._lif
layers.4.self_attn.attn_if
layers.4.self_attn.out_lif
layers.4.fc_lifl
layers.4.fc_lif2
layers.5.self_attn.q_if
layers.5.self_attn.k_lif
‘0_.) layers.5.self_attn.v_lif
> layers.5.self_attn.attn_if
S layers.5.self_attn.out_lif
layers.5.fc_lifl
layers.5.fc_lif2
layers.6.self_attn.q_lif

it

layers.6.fc_lifl
layers.6.fc_lif2

layers.7 self_attn.q_lif
layers.7 self_attn.k_Iif
layers.7.self_attn.v_if
layers.7 self_attn.out_lif
layers.7.fc_lifL
layers.7.fc_lif2
layers.8.self_attn.q_lif
layers.8.self_attn.k_Iif
layers.8.self_attn.v_lif
layers.8.self_attn.out_Iif
layers.8.fc_lifl
layers.8.fc_lif2
layers.9.self_attn.q_if
layers.9.self_attnk_lif
layers..self_attn.v_if
layers.9.self_attn.out_lif
layers.9.fc_lifL
layers.9.fc_lif2
layers.10.self_attn.q_lif
layers.10.self_attn k_if
layers.10.self_attn.v_if
layers.10.self_attn.out lif
layers.10.fc_lif1
layers.10.fc_lif2
layers.11.self attn.q_lif
layers.11.self_attn k_if
layers.11.self_attn.v_lif
layers.11.self_attn.out_lif
layers.11.fc_lif1
layers.11.fc_lif2

Spiking Rate Heatmap

T1
Time Step

r0.25

Spike Rate

Figure 6: With the increase to three time steps, the regions of elevated firing rate begin to extend
across more layers. This indicates that more layers participate in the computation as temporal res-
olution improves, enabling broader propagation of information. The increased coverage reflects a
more distributed spiking pattern, suggesting enhanced temporal integration and coordination among

layers.

20

Under review as a conference paper at ICLR 2026

Spiking Rate Heatmap

model.decoder.n_lif
layers.0.self_attn.q_lif
layers.0.self_attn.k_lif
layers.0.self_attn._lif
layers.0.self_attn.attn_if
layers.0.self_attn.out_lif
layers.0.fc_lifL
layers.0.fc_lif2
layers.Lself_attn.q_lif
layers.Lself_attn.k_lif
layers.Lself_attn._lif
layers.Lself_attn.attn_lif
layers.Lself_attn.out_lif
layers.1.fc_lifl

layers. Lfc_lif2
layers.2.self_attn.q_lif
layers.2.self_attn.k_lif
layers.2.self_attn.u_lif
layers.2.self_attn.attn_lif
layers.2.self_attn.out_if
layers.2.fc_lifL
layers.2.fc_iif2
layers.3.self_attn.q_lif
layers.3.self_attn.k_lif
layers.3.self_attn.v_if
layers.3.self_attn.attn_if
layers.3.self_attn.out_lif
layers.3.fc_lifL
layers.3.fc_lif2
layers.4.self_attn.q_lif
layers.4.self_attn.k_lit
layers.4.self_attn._lif
layers.4.self_attn.attn_if
layers.4.self_attn.out_lif
layers.4.fc_lifl
layers.4.fc_lif2
layers.5.self_attn.q_if
layers.5.self_attn.k_lif

‘0_.) layers.5.self_attn.v_lif
> layers.5.self_attn.attn_if
©
-

r0.25

layers.5.self_attn.out_lif
layers.5.fc_lifl
layers.5.fc_lif2
layers.6.self_attn.q_lif
layers.6.self_attn.k_lif
layers.6.self_attn.v_iif
layers.6.self_attn.out_Iif
layers.6.fc_lifl
layers.6.fc_lif2

layers.7 self_attn.q_lif
layers.7 self_attn.k_Iif
layers.7.self_attn.v_if
layers.7 self_attn.out_lif
layers.7.fc_lifL
layers.7.fc_lif2
layers.8.self_attn.q_lif
layers.8.self_attn.k_Iif
layers.8.self_attn.v_lif
layers.8.self_attn.out_Iif
layers.8.fc_lifl
layers.8.fc_lif2
layers.9.self_attn.q_if
layers.9.self_attnk_lif
layers..self_attn.v_if
layers.9.self_attn.out_lif
layers.9.fc_lifL
layers.9.fc_lif2
layers.10.self_attn.q_lif
layers.10.self_attn k_if
layers.10.self_attn.v_if
layers.10.self_attn.out lif
layers.10.fc_lif1
layers.10.fc_lif2
layers.11.self attn.q_lif
layers.11.self_attn k_if
layers.11.self_attn.v_lif
layers.11.self_attn.out_lif
layers.11.fc_lif1
layers.11.fc_lif2

Spike Rate

T0 T1 T2 T3
Time Step

Figure 7: At T = 4, the firing activity becomes even more widespread, engaging a significant
portion of the network. A greater number of layers exhibit moderate to high firing rates, which
may reflect more comprehensive information processing and deeper hierarchical interactions. The
broader engagement suggests that intermediate temporal budgets allow for more expressive internal
representations.

21

Under review as a conference paper at ICLR 2026

Spiking Rate Heatmap

model.decoder.in_lif
layers.0.self_attn.q_lif
layers.0.self_attn.k_Iif
layers.0.self_attn.v_lif
layers.0.self_attn.attn_if
layers.0.self_attn.out_if
layers.0.fc_lifl
layers.0.fc_lif2
layers.1.self_attn.q_lif
layers.1.self_attn.k_Iif
layers.1.self_attn.v_iif
layers.1.self_attn.attn_if
layers.1.self_attn.out_lif
layers.1.fc_lifl
layers.1.fc_lif2
layers.2.self_attn.q_lif
layers.2.self_attn.k_Iif
layers.2.self_attn.v_iif
layers.2.self_attn.attn_if
layers.2.self_attn.out |
layers.2.fc_i
layers.2.fc_i
layers.3.self_attn.q_lif
layers 3 self_attn.k_Iif
layers.3.self_attn.v_lif
layers.3.self_attn.attn_lif
layers.3.self_attn.out_|
layers.3.fc_i
layers.3.fc_i
layers.4.self_attn.q_lif
layers.4.self_attn.k |
layers.4.self_attn.v_lif
layers.4.self_attn.attn_if
layers.4 self_attn.out |
layers.4.fc_i
layers.4.fc_lif2
layers.5.self_attn.q_lif
layers.5.self_attn.k_lif
layers.5.self_attn.v_if
layers.5.self_attn.attn_if
layers.5.self_attn.out_lif
layers.5.fc_lifl
layers.5.fc_lif2
layers.6.self_attn.q_lif
layers.6.self_attn.k_lif
layers.6.self_attn.v_iif
layers.6.self_attn.out_Iif
layers.6.fc_lifl
layers.6.fc_lif2
layers.7 self_attn.q_lif
layers.7 self_attn.k_Iif
layers.7.self_attn.v_if
layers.7 self_attn.out_lif
layers.7.fc_i
layers.7.fc_i
layers.8.self_attn.q_lif
layers.8.self_attn.k_Iif
layers.8.self_attn.v_lif
layers.8.self_attn.out_|
layers.8.fc_i
layers.8.fc_i
layers.9.self_attn.q_if
layers.9.self_attn.k_|
layers..self_attn.v_if
layers.9.self_attn.out_lif
layers.9.fc_lifL
layers.9.fc_lif2
layers.10.self_attn.q_if
layers.10.self_attn k_if
layers.10.self_attn.v_if
layers.10.self_attn.out |
layers. 10.fc_li

r0.30

Layer
Spike Rate

layers.10.fc_lif2

layers. 11.self_attn.q_if
layers.11.self_attn.k_if
layers.11.self_attn.v_if
layers.11.self_attn.out_if
layers.11.fc_lif1
layers.11.fc_lif2

T0 T1 T2 T3 T4 T5 T6 T7
Time Step

Figure 8: When the number of time steps is increased to T = 8, the firing distribution becomes
relatively uniform across most layers. While some layers still exhibit elevated activity, the overall
pattern is more homogeneous, indicating that nearly all layers participate in the computation to
some extent. This may reflect a fully temporally saturated regime, where the network is capable of
leveraging extended integration windows for more complex and nuanced feature extraction.

To investigate the temporal dynamics of spiking activity in SpikingLLM-v1, we visualize the firing
rate distributions across layers under varying numbers of inference time steps: 7' = 2, T' = 3,
T = 4, and T = 8. The firing rate heatmaps are constructed such that the vertical axis corresponds
to different model layers, the horizontal axis represents discrete time steps, and the color intensity
encodes the normalized firing rate ranging from low (purple) to high (yellow) (see Figures FHg).

Overall, the progression of firing rate distributions across increasing time steps reveals a transition
from sparse and localized activation to distributed and pervasive spiking. This dynamic suggests that
SpikingLLM-v1 adapts its computational strategy based on the temporal budget: utilizing minimal
resources under constrained settings (e.g., 7' = 2) and expanding activation as more time steps

22

Under review as a conference paper at ICLR 2026

become available. These results highlight the temporal adaptability of spiking neural architectures
and their potential for scalable, energy-aware language processing.

Timestep 0 Timestep 1

Layer 0

200 400 600 800 1000

o

200 400 600 800

=
o
IS)
o
o

Layer 3

o

200 400 600 800

=
o
o
o
o
N
=3
o
N
o
o
o
=3
S)
®
=3
o

1000

Layer 7

o

200 400 600 800

—
o
o
)
o
N
=3
S)
N
o
S)
o
=3
S)
=3
=3
S

1000

Layer 11

200 400 600 800 1000 0 200 400 600 800 1000

Token Position Token Position

0

Figure 9: This figure presents the spiking activity across token positions for four representative
layers (Layer O, Layer 3, Layer 7, and Layer 11) at an early inference time step. The firing patterns
are relatively sparse and uniformly distributed, particularly in the lower layers. This reflects the
initial stage of neuronal processing, where the model begins encoding input signals with limited
temporal context. Notably, deeper layers such as Layer 11 exhibit subdued activation, suggesting
that higher-level abstractions have not yet emerged.

In addition to the layer-wise temporal spiking visualization, we further examine the firing patterns
of SpikingLLM-v1 at the level of individual token positions. A new set of visualizations (see
Figures PHI2) illustrates the spiking activity across different token positions for selected layers
(specifically, Layer 0, Layer 3, Layer 7, and Layer 11) under varying inference time steps. In these
heatmaps, the vertical axis corresponds to token positions, the horizontal axis denotes discrete time
steps, and the color intensity indicates the firing magnitude, with lighter colors representing stronger
activity and darker regions indicating lower activation.

These token-level firing visualizations provide a more granular perspective on the internal compu-
tation dynamics of SpikingLLM-v1. The evolution of spiking activity across time steps reveals a
clear progression: from diffuse and uniform firing in early layers and time steps, toward increas-
ingly selective and structured activation in deeper layers as more time is allocated. This suggests
a hierarchical processing mechanism wherein early layers operate in a temporally shallow regime,
broadly encoding input stimuli, while deeper layers gradually accumulate temporal context to per-
form more abstract and task-specific computations. Overall, the model exhibits both spatial and
temporal specialization, underscoring the potential of spiking neural architectures for dynamic and
efficient information processing.

Under review as a conference paper at ICLR 2026

Timestep 0 Timestep 1 Timestep 2

400 600 400 600 1000 400 600
Token Position Token Position Token Position

Figure 10: At T = 3, the firing distributions become slightly more structured across token positions
and layers. While lower layers maintain broadly distributed activity, deeper layers begin to display
early signs of selective activation. Compared to 7' = 2, this figure reveals the onset of temporal
refinement, indicating that additional time steps allow the model to initiate more context-sensitive
computation, particularly in the upper layers.

Figure 11: With four time steps, the model exhibits more pronounced spatiotemporal differentiation
in firing behavior. Activity becomes more variable across token positions, and certain regions in
deeper layers start to display concentrated firing. This suggests that the network is engaging in
increasingly specialized processing, distributing its computation more selectively based on both
input semantics and accumulated temporal evidence.

24

Under review as a conference paper at ICLR 2026

Figure 12: By T = 8, the firing patterns exhibit substantial temporal evolution and structural com-
plexity. Deeper layers, in particular, show heightened and more focused activation for specific token
regions, reflecting refined internal representations. This level of activity suggests that the model has
transitioned into a more stable and semantically rich encoding phase. The marked increase in firing
diversity and intensity across layers highlights the model’s capacity to utilize extended temporal
windows for deeper contextual integration and task-specific computation.

A.9 WEIGHT VISUALIZATION

In this subsection, we analyze the weight distributions of Artificial Neural Networks (ANNs) and
Spiking Neural Networks (SNNs) across different layers and components. The weight visualization
provides valuable insights into the fundamental differences between these two types of neural net-
works and highlights the unique characteristics of SNNs. The weight distributions of ANNs and
SNNs exhibit distinct patterns across various layers and components (g_proj, k_proj, v_.proj,
out_proj, fcl, fc2).

Layer 0-q_proj i Layer 0k proj Layer 0-v_proj) Layer 0 - out_proj Layer0- fe1 Layer0- fc2

| o - - -] -
s s [o | sw | o s | 0] s s

tm ':‘JQ_T._J'L,ﬁﬁ “: G0 015 010 -5 000 ol o1, 'z Te o4 52 oo o1 os oo o8 “::vu T oe J‘L 02 o as ‘ 100 075 050 J‘l

Layer 4-q_pro Layer 4 -k proj Layer 4 -v_pro] Layer 4 - out_proj Layera- fe1 Layera- fe2

- | © - - - |] - | -
s | s [S sw | s s

Layer8-q_pro Layer 8- k_proj Layer 8- v_proj Layer 8 - out_proj Layer 8- fcl Layers - fc2

- o - | o - - | o] - | -
s | sw | . sw | | s s

Layer 11 - q_proj Layer 11 -k proj Layer 11 -v_proj Layer 11 - out_proj Layer 11 - fe1 Layer 11 - fe2

-] - | o - = |] -] -
s | ® s | s [2 S| s | # s

G»JK,L‘(, 0 ”’ Ta JT‘L‘ o Hj 35 o4 0y 02 Av 0 T % J»“‘L"Tkn)‘ 0% 075 H:‘ o0 075 05 '/“(‘illu'u 0% 07 100 “ To s Jﬁg o

Figure 13: Weight distribution comparison between Artificial Neural Networks (ANNs) and Spiking
Neural Networks (SNNs). ANNS typically exhibit a more concentrated weight distribution around
zero, especially in early layers (e.g., Layer 0). In deeper layers (e.g., Layer 11), their weight distri-
bution becomes slightly more spread out but remains relatively compact, indicating tightly clustered
weights that contribute to stability and ease of training. In contrast, SNNs show a broader and more
dispersed weight distribution, with weights less tightly clustered around zero. This broader spread
is particularly notable in deeper layers (e.g., Layer 11), reflecting the dynamic and diverse weight
updates characteristic of their spiking nature.

25

Under review as a conference paper at ICLR 2026

Our approach differs from traditional ANN-to-SNN conversion methods in that we do not passively
fit SNN weights to match those of ANNs. Instead, we actively capture and adapt to the unique char-
acteristics of SNNs. This active adaptation is crucial for leveraging the full potential of SNNs, which
operate on spiking dynamics rather than continuous activation values. By focusing on the inherent
properties of SNNs, such as their broader weight distribution and dynamic spiking behavior, our
method ensures that the network is optimized for spiking neural computation. This approach allows
SNNs to maintain their distinct advantages, such as energy efficiency and biological plausibility,
while still achieving high performance.

In summary, the weight visualization clearly demonstrates the differences between ANNs and SNNs.
Our method capitalizes on these differences by actively adapting to the unique characteristics of
SNNs, rather than forcing them to conform to the weight and activation patterns of ANNs. This
approach is essential for developing effective and efficient SNNss that can fully leverage their spiking
dynamics.

A.10 OUTLIER ANALYSIS OF WEIGHT DISTRIBUTIONS

To further investigate the differences between Artificial Neural Networks (ANNs) and Spiking Neu-
ral Networks (SNNs), we analyze the number of outliers in the weight distributions across various
layers and components. Outliers are defined as weights that significantly deviate from the mean,
potentially indicating instability or over-parameterization in specific components.

A.10.1 TOTAL NUMBER OF OUTLIERS

As summarized in Table[d] ANNs exhibit significantly more outliers, with over three times as many
compared to SNNs across all evaluated layers.

Table 4: Total number of weight outliers across all layers and components.

Model Total Outliers

ANN 18,663
SNN 5,834

A.10.2 LAYER-WISE COMPARISON

To gain deeper insights, we present a detailed layer-wise and component-wise comparison in Table[5]
showing the number of outliers for both models. ANNSs exhibit a significantly higher number
of outliers, especially in deeper fully connected layers (fc1, £c2), which may be due to larger
weight magnitudes and higher variance. While SNNs show fewer outliers overall, reflecting their
more compact and tightly regulated weight distributions. Interestingly, in some components (e.g.,
g-pro’j, k_proj at Layer 7), SNNs have more outliers than ANNs. This suggests local spikes in
weight variability, possibly due to the intrinsic dynamics of spiking updates. The standard deviation
of weights (not shown here) is consistently lower in SNNs, reinforcing the observation that they
operate within a narrower, more stable range. These findings highlight a fundamental difference
in the behavior of ANNs and SNNs: while ANNs may rely on larger weight magnitudes and are
more prone to extreme values, SNNs exhibit smoother, biologically plausible weight distributions
that reduce the risk of instability.

26

Under review as a conference paper at ICLR 2026

Table 5: Comparison of weight statistics between ANN and SNN across various layers and compo-

nents.

Layer Component Model Mean Std Max Min Num_Outliers
0 q-proj ANN -3.15E-05 7.87E-02 0.77 -0.80 596
0 q-proj SNN 1.30E-04 1.14E-02 0.06 -0.06 6
0 k_proj ANN 6.12E-05 7.26E-02 0.77 -0.70 1154
0 k_proj SNN -3.36E-05 1.10E-02 0.06 -0.06 24
0 V_proj ANN -1.55E-05 1.28E-02 0.17 -0.19 163
0 V_proj SNN 297E-05 1.31E-02 0.08 -0.08 34
0 out_proj ANN -8.64E-06 1.30E-02 0.78 -0.62 702
0 out_proj SNN -2.16E-04 1.58E-02 0.12 -0.11 73
0 fcl ANN -3.17E-03 293E-02 0.56 -1.00 5657
0 fcl SNN 4.58E-04 1.16E-02 0.06 -0.06 2
0 fc2 ANN -1.23E-05 2.62E-02 1.00 -1.00 716
0 fc2 SNN 2.74E-04 1.24E-02 0.06 -0.11 189
3 q-proj ANN -293E-04 6.02E-02 0.56 -0.48 105
3 q-proj SNN 1.98E-04 1.15E-02 0.07 -0.10 57
3 k_proj ANN 1.19E-04 6.16E-02 045 -0.46 116
3 k_proj SNN 1.34E-04 1.10E-02 0.10 -0.10 199
3 V_proj ANN 1.71E-05 2.06E-02 0.23 -0.27 60
3 V_proj SNN -2.36E-04 1.39E-02 0.09 -0.09 63
3 out_proj ANN 238E-06 1.74E-02 0.50 -0.36 183
3 out_proj SNN -2.75E-04 1.48E-02 0.10 -0.10 79
3 fcl ANN -1.81E-03 249E-02 0.86 -0.73 2045
3 fcl SNN 2.39E-05 1.30E-02 0.07 -0.08 38
3 fc2 ANN -2.44E-06 2.67E-02 0.64 -1.06 2053
3 fc2 SNN 487E-05 1.30E-02 0.08 -0.10 137
7 q-proj ANN -1.80E-04 5.98E-02 0.53 -0.54 147
7 q-proj SNN -4.13E-04 1.10E-02 0.13 -0.13 1484
7 k_proj ANN -2.34E-05 6.03E-02 0.74 -0.68 185
7 k_proj SNN 5.25E-04 1.35E-02 0.17 -0.19 1004
7 V_proj ANN 1.22E-05 2.02E-02 0.13 -0.14 20
7 V_proj SNN -2.11E-04 1.35E-02 0.12 -0.12 207
7 out_proj ANN 1.25E-05 1.76E-02 0.19 -0.19 93
7 out_proj SNN -191E-04 2.03E-02 0.19 -0.17 609
7 fcl ANN -440E-03 2.73E-02 0.59 -0.59 315
7 fcl SNN 6.75E-05 1.30E-02 0.15 -0.13 224
7 fc2 ANN -3.44E-05 3.00E-02 0.38 -1.00 1315
7 fc2 SNN -8.44E-05 1.24E-02 0.10 -0.12 204
11 q-proj ANN -2.52E-04 S5.57E-02 0.50 -0.49 153
11 q-proj SNN -1.89E-04 1.19E-02 0.15 -0.12 181
11 k_proj ANN 530E-05 5.44E-02 0.53 -0.53 366
11 k_proj SNN 298E-04 1.17E-02 0.19 -0.11 225
11 V_proj ANN 4.60E-05 295E-02 0.20 -0.50 68
11 V_proj SNN -5.92E-05 1.35E-02 0.24 -0.19 268
11 out_proj ANN -2.00E-05 3.15E-02 0.89 -0.88 478
11 out_proj SNN -1.07E-05 1.96E-02 0.19 -0.16 325
11 fcl ANN 487E-03 2.82E-02 092 -1.04 473
11 fcl SNN -4.00E-05 1.37E-02 0.07 -0.09 52
11 fc2 ANN 3.81E-05 3.23E-02 1.56 -1.23 1500
11 fc2 SNN 2.15E-05 1.50E-02 0.12 -0.11 150

27

Under review as a conference paper at ICLR 2026

A.11 EXTENDING CSSA TO LLAMA ARCHITECTURE

To demonstrate the versatility of our proposed CSSA (Causal Spiking Self-Attention) mechanism,
we extend its application beyond the original OPT-based SpikingLLLM architecture. Specifically,
we implement CSSA on the Llama architecture (Touvron et al.} [2023), training two new models:
SpikingLLM-v1-Llama with 165M and 1.2B parameters. This expansion validates that CSSA is
designed fundamentally for spike-based language modeling, independent of specific architectural
choices.

Table 6: Performance comparison of SpikingLLM models across different architectures and
timesteps.

Params Time Zero-shot Accuracy (%) 1
(B) Step |ARC-e ARC-c WG BQ PIQA HS OBQA HQA Avg.

SpikingLLM-v1-OPT | 0.125 T=2| 39.1 189 503 52.7 56.7 28.1 19.8 229 36.05
SpikingLLM-v1-OPT | 0.125 T=4| 394 19.0 512 53.0 57.5 292 19.7 23.1 36.50
SpikingLLM-v1-Llama| 0.165 T=2| 39.3 19.2 513 52.8 56.8 283 203 232 36.40

Model

SpikingLLM-v1-Llama| 0.165 T=4| 39.6 19.6 51.7 532 573 295 20.7 23.7 3691
SpikingLLM-v1-OPT | 1.300 T=2| 457 235 542 563 623 402 245 240 41.33
SpikingLLM-v1-OPT | 1.300 T=4| 463 243 556 56.8 63.4 41.7 252 243 42.19
SpikingLLM-v1-Llama| 1.200 T=2| 458 239 547 56.1 63.0 40.6 247 24.1 41.61
SpikingLLM-v1-Llama| 1.200 T=4 | 46.5 244 559 56.6 63.6 41.8 254 244 4233

The results show consistent performance improvements when increasing timesteps from T=2 to
T=4 across all model variants. Notably, the Llama-based models achieve comparable or slightly
better results than their OPT-based counterparts, particularly in the 1.2B parameter range where
SpikingLLM-Llama (T=4) reaches an average accuracy of 42.33%. This demonstrates that CSSA
effectively captures spiking dynamics across different transformer architectures while maintaining
competitive language modeling capabilities.

A.12 COMPARISON WITH QUANTIZED ANNS

To contextualize our contributions, it is crucial to distinguish Spiking Neural Networks (SNNs) from
quantized Artificial Neural Networks (ANNs), a common point of comparison. Quantized ANNs
achieve efficiency through spatial discretization, converting continuous floating-point weights or
activations into low-bit, fixed-point formats (e.g., 2-bit, 4-bit). While this approach facilitates model
compression and acceleration, the underlying computation remains fundamentally dependent on
dense Multiply-Accumulate (MAC) operations. Although 1-bit networks eliminate MACs, they are
notoriously difficult to train effectively.

In stark contrast, SNNs leverage temporal sparse encoding via binary spikes. A spike (1) or its ab-
sence (0) at a given timestep encodes information, enabling event-driven and asynchronous compu-
tation. This paradigm allows for substantial energy savings on neuromorphic hardware by exploiting
sparsity, a benefit difficult for quantized ANNSs to replicate (Horowitz, 2014). Our work harnesses
this inherent property of SNNs to significantly reduce inference energy while preserving language
generation capabilities.

We provide a direct performance comparison between our 1.3B/1.2B Spikingl.LM models and state-
of-the-art quantization methods in Table[7} While quantized ANNs like [Shao et al (2023)), [Kaushal
et al| 2024)), and [Wang et al.| (2023) may exhibit a marginal edge in accuracy, we emphasize that
these represent fundamentally different methodological paradigms.

Therefore, the primary contribution of our work is not to surpass quantization methods in accuracy,
but to pioneer and validate a new, energy-efficient pathway for large language models. Our signif-
icance is threefold: (1) We introduce the first train-from-scratch binary-spike-based LLM; (2) We
propose the Continuous Spiking Self-Attention (CSSA) mechanism to enable effective causal mod-
eling in SNNs; and (3) We demonstrate the fundamental feasibility of SNN-LLMs, filling a critical

28

Under review as a conference paper at ICLR 2026

gap in the field and establishing a foundation for future research into scalable, energy-conscious
language models.

Table 7: Performance comparison of SpikingLLM with quantized LLMs.

Model Params Zero-shot Accuracy (%) 1

(B) |ARC-e ARC-c WG BQ PIQA HS OBQA HQA Avg.
SpikingLLM-v1 (T=2) 1.3 45.7 235 542 563 623 402 245 24.0 41.33
SpikingLLM-v1 (T=4) 1.3 46.3 243 55.6 56.8 63.4 41.7 252 243 42.19

SpikingLLM-v1-Llama (T=2)| 1.2 458 239 547 56.1 63.0 40.6 2477 24.1 41.61
SpikinglLI. M-v1-Llama (T=4)| 1.2 46.5 244 559 566 63.6 41.8 254 244 4233

BitNet (1.58-bit) 1.3 487 241 56.8 574 642 40.6 246 249 42.66
SmoothQuant (W4A4) 1.3 443 235 542 556 623 40.0 239 232 40.88
OmniQuant (W4A4) 1.3 49.7 255 58.1 583 66.0 41.7 262 257 43.90
TriLM (1.58-bit) 1.1 46.2 239 555 565 64.1 392 247 245 41.83
TriLM (1.58-bit) 1.5 49.1 252 573 572 645 41.1 256 253 43.16

A.13 EFFECT OF TRAINING SCALE AND CONVERSATIONAL ABILITY

To validate the scalability of our SpikingLLM, we conducted experiments to assess the impact of in-
creased training data. Our initial 1B and 10B token training runs were conducted under constrained
GPU resources, primarily serving as a proof-of-concept. To further probe the potential of our model,
we scaled the training for the 125M and 1.3B models to 5B and 25B tokens, respectively. While
this scale is still modest compared to standard pre-training regimens, the use of knowledge distilla-
tion from a teacher model allows the student Spikingl.LM to learn more effectively, mitigating the
extensive data requirements typically associated with training from scratch.

Table 8: Performance of SpikingLLLM with varying training token counts.

Params Tokens Zero-shot Accuracy (%) 1
(B) (B) |ARC-e ARC-c WG BQ PIQA HS OBQA HQA Awvg.

SpikingLILM-v1 (T=2) | 0.125 1.0 39.1 189 503 527 56.7 28.1 198 229 36.05
SpikingLLM-v1 (T=2)| 0.125 5.0 41.4 19.2 514 534 582 30.2 199 231 37.10

SpikingLLM-v1 (T=2)| 1.300 10.0 45.7 235 542 563 623 402 245 240 4133
SpikingLLM-v1 (T=2)| 1.300 25.0 48.3 264 578 58.6 65.1 449 273 267 44.39

Model

As shown in Table 8] increasing the training tokens yields significant performance gains. The aver-
age accuracy of the 125M model improved by 1.05% when trained on 5B tokens compared to 1B
tokens. More impressively, the 1.3B model’s average accuracy increased by 3.06% when scaling
from 10B to 25B tokens. These results demonstrate that SpikingL.LM is not merely a small-scale
proof-of-concept but a model architecture that responds positively and effectively to increased train-
ing data, suggesting strong potential for further scaling.

To further investigate the training dynamics, we plot the training loss curves for our models. Fig-
ure [T4]illustrates the loss progression for the 1.3B model trained on both 10B and 25B tokens. The
curves exhibit a smooth and consistent downward trend, indicating that our training process is sta-
ble and converges effectively. Notably, the model trained on 25B tokens continues to decrease its
loss to a lower final value, corroborating the quantitative performance gains observed in Table [§]
This stable convergence behavior across different training scales demonstrates the robustness of our
proposed SpikingLLLM architecture and the effectiveness of the CSSA mechanism in facilitating the
optimization of spike-based language models.

Beyond quantitative metrics, we qualitatively evaluated the conversational abilities of our
SpikingLLM-1.3B model trained with 10B and 25B tokens. Table [J] presents sample responses
to a set of prompts. The 10B model exhibits basic conversational skills and can maintain a simple

29

Under review as a conference paper at ICLR 2026

SNN Training Loss Curves (All Components)

Loss (raw) = = Teacher Loss (smoothed)
104 = Loss (smoothed) Inter Loss (raw)
Distill Loss (raw) = = |nter Loss (smoothed)
== = Distill Loss (smoothed) Embedding Loss (raw)
Student Loss (raw) = = Embedding Loss (smoothed)
81 == Student Loss (smoothed) Attention Loss (raw)
Teacher Loss (raw) — = Attention Loss (smoothed)
[}
=l
g 6
n
w
o
-
11
4)
I
1 Py TRy S e
24
_
01— T - . + -
0 5 10 15 20 25

Training Tokens (B)

Figure 14: Training loss curves for the SpikingLL.M-1.3B model, comparing the 10B and 25B token
training regimes. The smooth downward trend confirms stable convergence.

dialogue. However, it fails to answer factual questions correctly, likely due to a lack of exposure
to that specific knowledge during its limited training. In contrast, the 25B model provides more
accurate and detailed responses, correctly answering the factual question about the U.S. capital
and generating more coherent and contextually relevant text. This qualitative improvement aligns
with the quantitative gains, underscoring the importance of training scale for developing the factual
knowledge and reasoning capabilities of spiking language models.

Table 9: Comparison of conversational abilities for SpikingLL.M-v1-1.3B trained on different token
counts.

Prompt SpikingLLM-v1 (10B Tokens) SpikingLLM-v1 (25B Tokens)

Hi there! How are Hi! How are you? I'm doing well. I'm doing great! I'm just tired as hell.

you doing today? How about you? I went to bed at 11pm last night, and
now I'm up at 4am. I have a class to-
morrow morning at 7:30, so I have to
get up and go to class.

Where is the capital of ~ 1t’s in the middle of the country. Washington, D.C.

the United States?

How about the cat? I think it’s a good idea to have a catin I have a cat and he doesn’t like the
the house. camera. I’ll send you a picture when

he is in the mood.

A.14 ANALYSIS OF LONG-CONTEXT DEPENDENCY AND SPARSITY

In the Continuous Spiking Self-Attention (CSSA) mechanism, information propagation relies on
spike-triggered updates of the attention state. Consequently, a higher sparsity level—achieved by
increasing the firing threshold or reducing the number of timesteps—can theoretically weaken the
transmission of long-range signals, potentially impairing the model’s ability to model long-distance
dependencies.

To empirically evaluate this, we conducted a sliding-window evaluation on the WikiText-2 dataset.
We compared our SpikingLL.M-1.3B (T=4) and SpikingLL.M-Llama-1.2B (T=4) models with vary-
ing firing thresholds against the full-precision OPT-1.3B and Llama-3.2-1.2B baselines. The models
were tested with context lengths of 512, 1024, 2048, 4096, and 8192 tokens, and the performance

30

Under review as a conference paper at ICLR 2026

was measured using Perplexity (PPL). For reference, the maximum supported context length for
OPT-1.3B is 2048. The results are presented in Table[I0]

Table 10: Perplexity (PPL) on WikiText-2 with varying context lengths and firing thresholds. The
firing rate (sparsity) is shown in parentheses.

Context Length

Model ‘ Params Threshold ‘ 512 1024 2048 4096 8192
OPT 1.3B - 16.26 13.58 11.13 - -
Llama-3.2 1.2B 12.93 10.96 9.76 9.02 8.54

0.70 36.72 (0.184) 32.49 (0.183) 29.34 (0.181)
SpikingLLM-v1 1.3B 0.85 39.75 (0.177) 36.30 (0.175) 32.18 (0.174)

1.00 43.17 (0.163) 39.88 (0.162) 34.62 (0.160)

0.70 33.53(0.198) 29.82(0.195) 27.59 (0.194) 25.32(0.192) 23.77 (0.190)
SpikingLLM-v1-Llama | 1.2B 0.85 37.14 (0.186) 33.37 (0.185) 31.26 (0.185) 28.89(0.183) 25.42(0.181)

1.00 40.88 (0.174) 37.25(0.172) 34.08 (0.171) 30.76 (0.171) 27.19 (0.168)

The results lead to several key observations. First, as the sparsity increases (i.e., the threshold rises
from 0.70 to 1.00), the PPL performance degrades across all context lengths. This confirms our
intuition that higher sparsity can impede the flow of information. However, the magnitude of this
degradation is moderate, suggesting that increasing sparsity within a certain range does not cause a
catastrophic collapse in long-context dependency handling.

And more intriguingly, for a fixed threshold, the PPL consistently decreases as the context length
increases. For instance, the SpikingLLM-v1-Llama model with a threshold of 0.70 improves from
a PPL of 33.53 at 512 tokens to 23.77 at 8192 tokens. This indicates that the natural increase in
sparsity caused by longer sequences has a negligible negative impact on the model’s capability. The
model retains its ability to extract global information from longer contexts.

Finally, we acknowledge that the current design of CSSA lacks specialized mechanisms for handling
extremely long contexts. We are actively working to address this limitation through future research
directions, such as adaptive spike scheduling and the integration of long-term memory neurons.
We believe these are engineering frontier challenges rather than fundamental obstacles and can be
progressively overcome in future work.

31

	Introduction
	Related Work
	SNNs in Downstream Tasks
	Knowledge Distillation

	Methods
	Problem Statement
	SpikingLLM Architecture
	Spiking Neuron Modules
	Causal Spiking Self-Attention (CSSA)
	Spike Feed-Forward Network (SFFN)

	Spike-Form Knowledge Distillation

	Experiments
	Training Details
	Model Evaluation
	Energy Consumption
	Ablation Study

	Conclusion
	Appendix
	Use of LLMs
	Algorithm Procedure of CSSA
	Detailed design of SKD
	Embedding Alignment
	Spike-Attention Alignment
	Spike-Feature Alignment
	Soft Target Alignment
	Hard Target Alignment
	Total Loss

	Training Details
	Surrogate Gradient
	Theoretical Synaptic Operation and Energy Consumption Calculation
	Comparison with SpikeLLM
	Firing Visualization
	Weight Visualization
	Outlier Analysis of Weight Distributions
	Total Number of Outliers
	Layer-wise Comparison

	Extending CSSA to Llama Architecture
	Comparison with Quantized ANNs
	Effect of Training Scale and Conversational Ability
	Analysis of Long-Context Dependency and Sparsity

