
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPIKINGLLM: SPIKING LARGE LANGUAGE MODELS
WITH CAUSAL SPIKING SELF-ATTENTION AND SPIKE-
FORM KNOWLEDGE DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) offer promising energy-efficient alternatives to
large language models (LLMs) due to their event-driven nature and ultra-low
power consumption. However, to retain representation capacity, most existing
spiking LLM approaches rely on integer activations or softmax, which involve in-
tensive floating-point operations and undermine inference efficiency. Moreover,
the intrinsic spatial-temporal optimization of spiking networks further increase
the direct training cost and difficulty. To address these challenges, we propose
SpikingLLM, the first fully binary spike-driven spiking LLM framework devel-
oped from random initialization, without reliance on floating-point matrix multi-
plications or softmax. At the core of SpikingLLM is the Causal Spiking Self-
Attention (CSSA) mechanism, which replaces conventional softmax with binary
spike-based operations and thereby enables autoregressive language modeling in
the spiking domain, ensuring low-cost inference. To support cost-efficient train-
ing under constrained computational budgets, we further introduce Spike-Form
Knowledge Distillation (SKD), a multi-level distillation strategy that aligns ANN
teacher and SNN student across embeddings, attention maps, intermediate fea-
tures, and output logits. SKD framework allows SpikingLLM to achieve com-
petitive performance with ANN counterparts using substantially fewer training
tokens (e.g., 1.0B tokens for a 0.125B model and 10.0B tokens for a 1.3B model),
resulting in effective training. As a result, SpikingLLM achieves ANN-level per-
formance at only 4.16%–5.87% of the computational cost on natural language
generation tasks. Our results highlight the feasibility and effectiveness of fully
binary spike-driven LLMs and establish the distillation as a promising pathway
for energy-efficient, brain-inspired spiking NLP.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language
processing, powering a wide range of applications from conversational agents to code genera-
tion (Brown et al., 2020; Achiam et al., 2023). However, these models typically require extensive
computational resources and energy consumption during both training and inference. For example,
GPT-3 was trained with 175 billion parameters using hundreds of petaflop/s-days of compute (Brown
et al., 2020). In addition, inference also incurs substantial energy costs, as serving a single query can
involve billions of operations and significant GPU utilization (Strubell et al., 2020; Schwartz et al.,
2020), raising concerns about their scalability and environmental impact (Strubell et al., 2020).

Compared with ANN-based LLMs, the human brain achieves superior intelligence with drastically
lower energy consumption, operating on just 20 watts to power approximately 86 billion neu-
rons (Izhikevich, 2003; Gerstner et al., 2014). Inspired by the brain’s energy-efficient signaling,
Spiking Neural Networks (SNNs) (Maass, 1997; Gerstner et al., 2014) communicate through binary
spike events, enabling event-driven and low-power computation (Yin et al., 2021; Schuman et al.,
2022), making SNNs a promising alternative to traditional ANNs.

While recent efforts have shown promising results of SNNs in computer vision tasks (Zhou et al.,
2024; Li et al., 2024; Luo et al., 2024), extending SNNs to natural language processing (NLP),

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of Causal Spiking Self-Attention (CSSA). Left: Comparison between Vanilla
Causal Self-Attention (CSA) (bottom) and CSSA (top). CSA uses softmax and additive masks,
while CSSA employs spike-based activation and binary causal masking. Right: Detailed CSSA
pipeline, showing spike-form Q, K, V computation, masked integer attention, spiking activation,
and spike-based output, enabling fully discrete and energy-efficient attention modeling.

especially LLMs, remains largely underexplored. A central challenge is the design of spiking at-
tention mechanisms. In contrast to vision models, where representations are often bidirectional and
spatially local, autoregressive LLMs require causal attention to ensure that each token prediction
depends only on its preceding context. However, conventional causal attention relies on floating-
point matrix multiplications and the softmax operation, both of which are computationally intensive
and fundamentally incompatible with spike-based processing. Existing attempts either retain these
components (Zhu et al., 2023) or introduce multi-threshold neurons and integer activations (Xing
et al., 2024a), which still incur substantial floating-point overhead. Designing a spike-driven causal
attention mechanism is therefore critical: it must eliminate softmax while preserving the autoregres-
sive representational capacity of binary spike trains. This challenge directly motivates our Causal
Spiking Self-Attention (CSSA), which enables efficient spike-based sequence modeling for spiking
LLMs.

Moreover, training spiking LLMs introduces additional difficulties beyond those in vision tasks. The
inherent temporal dynamics of SNNs already leads to complex computational graphs and high com-
putational cost during backpropagation. Scaling up the architecture further exacerbates this, making
full end-to-end training inefficient or even infeasible. Consequently, prior works mostly resort to
ANN-to-SNN conversions (Xing et al., 2024a; Schmidgall et al., 2024). However, such methods
typically require large time steps to approximate ANN activations, resulting in high inference cost.
Integer-based conversions further scale the operations by T ×N , which compromises the potential
energy benefits of event-driven spiking computation.

To address these challenges, we propose SpikingLLM, a spike-based large language model built
on two key components: a spike-driven attention mechanism (CSSA), schematically depicted in
Figure 1, and a multi-level knowledge distillation scheme (SKD), presented in Figure 3. Overall,
our contributions can be summarized as follows:

• We propose SpikingLLM, the spike-based large language model equipped with a fully
spike-driven attention mechanism. Our CSSA replaces the vanilla causal self-attention,
which relies on floating-point operations and softmax, with a spike-based computation,
enabling efficient autoregressive sequence modeling with binary spikes. The overall design
follows the OPT-family architecture (Zhang et al., 2022), adapted to the spiking domain.

• We introduce SKD, a novel training framework that enables SpikingLLM to be directly
trained from random initialization. SKD distills multi-level knowledge covering embed-
dings, attention maps, intermediate features, and output logits from the teacher model,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

thereby accelerating convergence, improving training stability, and reducing the amount of
training data required for large-scale spiking LLMs.

• With only 10B training tokens, significantly fewer than the 180B tokens used to train OPT-
1.3B, our SKD framework enables SpikingLLM-1.3B to achieve 42.19% zero-shot accu-
racy on common reasoning benchmarks using 4 time steps, approaching the 49.73% of
OPT-1.3B, while consuming just 10.6% of the energy per inference. Remarkably, even at
2 time steps, the model maintains 41.33% accuracy with only 5.88% of the energy cost.

2 RELATED WORK

2.1 SNNS IN DOWNSTREAM TASKS

Recent works show SNNs achieving competitive performance in vision tasks with lower computa-
tional consumption. In image classification, advances in surrogate gradients, attention, and adaptive
thresholds have boosted accuracy and efficiency on CIFAR-10/100 and ImageNet (Rathi et al., 2020;
Zhou et al., 2022; 2023; 2024; Li et al., 2024). In object detection, models like SFOD and attention-
based SNNs reduce energy cost while closing the gap with ANNs (Su et al., 2023; Bodden et al.,
2024; Li et al., 2025). For event-based vision, architectures such as 3D-SNN, and MG-SNN effec-
tively handle gesture, motion, and optical flow tasks (Orchard et al., 2015; Lee et al., 2020; Gehrig
et al., 2021).

In contrast, the application of SNNs in natural language processing (NLP) is still largely under-
explored, with only a few attempts adapting language models to spike-based computation. For
example, Lv et al. (2023) employs a two-stage distillation strategy to align a pre-trained BERT with
an SNN, but retains many floating-point operations and is limited in scale (up to 109M parameters).
Xing et al. (2024b) proposes a spike-driven language model with bi-directional encoding, yet relies
on floating-point spikes and retains dense floating-point operations, undermining the event-driven
efficiency. Zhu et al. (2023) replaces attention with a linear-complexity Spiking RWKV module, but
still depends on dense floating-point computation and remains modest in size (216M parameters).
Xing et al. (2024a) pushes scaling further by introducing the GIF neuron and OBSpiking frame-
work, enabling model sizes from 7B to 70B. However, this strategy substitutes binary spike trains
with quantized integer signals and retains the softmax operation, thereby losing the advantages of
event-driven computation and fine-grained temporal dynamics. Additionally, despite targeting au-
toregressive large language modeling, the attention mechanism does not incorporate causal masking
adapted to SNN timing constraints.

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation is a widely adopted approach for compressing large-scale language models
into smaller, more efficient ones, as demonstrated by models like DistilBERT and TinyBERT (Sanh
et al., 2019; Jiao et al., 2019). In the context of SNNs, early distillation efforts have primarily
targeted small-scale vision tasks, using spike-based student networks guided by soft targets from
ANN teachers (Xu et al., 2023; Qiu et al., 2024; Xu et al., 2024).

In contrast, spike-based distillation for language modeling remains underexplored. Existing methods
often overlook the temporal dynamics of SNNs or lack alignment in the spike domain. For example,
SpikeBERT (Lv et al., 2023) maps spike activations into continuous representations via an addi-
tional MLP for teacher-student alignment. However, this introduces extra trainable parameters and
computational overhead, while bypassing the native spike representation, thus limiting the preserva-
tion of spike-driven semantics. To address this, we propose the Spike-Form Knowledge Distillation
framework tailored for SpikingLLMs, featuring spike-attention and spike-feature alignment mod-
ules that enables multi-level knowledge transfer while preserving the discrete and temporal nature
of spiking computation.

3 METHODS

We propose SpikingLLM, a spike-based large language model that integrates a spike-native archi-
tectural design with an efficient training paradigm tailored for large-scale SNNs. Specifically, we

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Left depicts the SpikingLLM framework, detailing the operations of the Causal Spiking
Self-Attention (CSSA) module and the Spiking Feed-Forward Network (SFFN). Right compares the
computational process of vanilla Causal Self-Attention (CSA), Spiking Self-Attention (SSA), and
CSSA, where red spikes represent binary values of 1 and all other values are 0.

design a fully spike-driven attention mechanism, Causal Spiking Self-Attention (CSSA), which re-
places conventional softmax-based attention with spike-compatible computation, supporting autore-
gressive sequence modeling using binary spikes. Building upon this architecture, we further de-
velop Spike-Form Knowledge Distillation (SKD), a multi-level distillation framework that enables
stable and scalable training from random initialization by transferring rich supervision signals from
a frozen ANN teacher to the SNN student. The overall model architecture is shown in Figure 2, and
the training strategy is illustrated in Figure 3.

3.1 PROBLEM STATEMENT

We consider the task of autoregressive generation using a decoder-only Large Language Model
(LLM). Formally, given a sequence of tokens x1, x2, . . . , xn, the model is trained to predict the
next token xn+1 conditioned on the previous n tokens. This can be expressed as maximizing the
likelihood:

P (xn+1 | x1, x2, . . . , xn). (1)

During the pre-training stage, the ground-truth label for each autoregressive generation step tau
is the token xtau+1, and the model is optimized using the standard cross-entropy loss. The goal
is to learn a function that maps token sequences to probability distributions over the vocabulary,
employing causal (unidirectional) attention under temporal constraints.

3.2 SPIKINGLLM ARCHITECTURE

To enable efficient sequence modeling with SNNs, we propose SpikingLLM, which integrates bi-
nary spiking neurons with causal attention for softmax-free, energy-efficient computation. Unlike
prior works (Zhu et al., 2023; Xing et al., 2024a; Schmidgall et al., 2024), SpikingLLM is fully
spike-driven and employs a Hadamard-masked dot product followed by spiking neuron to imple-
ment causal attention without softmax. The architecture consists of three main components: (1)
Spiking Neuron Modules, (2) Causal Spiking Self-Attention (CSSA), and (3) a Spike Feed-Forward
Network (SFFN). The overall design is built upon the OPT-family architecture (Zhang et al., 2022),
chosen for its open-source nature, simplicity, and proven effectiveness. The model is further adapted
to operate entirely with spiking computations.

3.2.1 SPIKING NEURON MODULES

To explore more expressive yet efficient spiking neurons for language modeling, we design two
variants of SpikingLLM. SpikingLLM-v1 employs the standard Leaky Integrate-and-Fire (LIF)
neuron (Wu et al., 2018), implemented via SpikingJelly (Fang et al., 2023), while SpikingLLM-v2
adopts a ternary spiking neuron inspired by (Xing et al., 2024b), which extends binary spikes {0, 1}
to ternary values {−α, 0,+α} depending on the membrane potential intensity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The LIF neuron emits a spike St ∈ {0, 1} when the membrane potential Ut exceeds a threshold
Uthr, and resets afterward:

St =

{
1, if Ut ≥ Uthr,

0, otherwise,
Ut = It + λUt−1 − St−1Uthr, (2)

where It = WXt is the input current, and λ controls temporal decay.

In contrast, the ternary neuron in SpikingLLM-v2 outputs discrete values scaled by a layer-specific
amplitude α(t):

s±(t) =


−α(t), if m(t) < −α(t),
0, if |m(t)| ≤ α(t),

+α(t), if m(t) > +α(t),

(3)

with membrane potential updated as:

vl(t) = ml(t)(α(t)− sl(t)) + vresetsl(t). (4)

While SpikingLLM-v2 captures richer signal representations, it introduces additional computation
and deviates from the strict sparsity and event-driven efficiency of binary SNNs.

3.2.2 CAUSAL SPIKING SELF-ATTENTION (CSSA)

To enable attention mechanisms in spike-based neural networks while preserving computational ef-
ficiency, we propose the Causal Spiking Self-Attention (CSSA) module, presented in Figure 1.
CSSA reformulates the classical self-attention mechanism using spike-based representations, con-
strained by causality and spiking dynamics.

Specifically, input spike sequences are first projected into continuous-valued queries, keys, and val-
ues, which are then discretized via LIF or ternary spiking neurons. Spike-based dot products be-
tween queries and keys yield integer-valued attention scores, followed by a causal mask to ensure
autoregressive flow. The masked scores are passed through a spiking activation to produce sparse
attention weights, which are used to compute the weighted sum over value spikes. A final linear
projection and spiking activation generate the output. This design preserves both temporal causality
and spike-driven sparsity. The full procedure is summarized in Appendix A.2.

3.2.3 SPIKE FEED-FORWARD NETWORK (SFFN)

The Spike Feed-Forward Network (SFFN) module follows the standard Transformer FFN struc-
ture but replaces activation functions with spiking neurons. Specifically, we support both the classic
LIF neuron and the ternary spiking neuron introduced in SpikingLLM-v2. The module is defined
as:

FC(x) = SpikeNeuron
(
Wx+ b

)
, (5)

SFFN(x) = FC2
(
FC1(x)

)
, (6)

where SpikeNeuron represents either a LIF or ternary spiking activation depending on the model
variant. This formulation allows the feedforward block to remain fully spike-driven while supporting
richer information encoding in SpikingLLM-v2.

3.3 SPIKE-FORM KNOWLEDGE DISTILLATION

To enable effective knowledge transfer from the teacher Artificial Neural Network (ANN) to the
student Spiking Neural Network (SNN), we propose a novel framework called Spike-Form Knowl-
edge Distillation (SKD). It consists of five key components targeting different representational lev-
els as shown in Figure 3. Given the potential structural mismatch between teacher and student (e.g.,
in embedding dimensions, number of layers, or attention heads), we introduce structural alignment
techniques to ensure compatibility, such as linear projections for dimension matching, head-wise
mapping or projection for attention alignment, and layer skipping to bridge differing network depths.

Among various alignments, we focus on Spike-Attention Alignment and Spike-Feature Align-
ment. The reason is that other alignments (embedding, soft/hard targets) are largely consistent

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Overview of our Spike-Form Knowledge Distillation (SKD) framework. Knowledge
is transferred from a frozen ANN teacher to a trainable SNN student via five alignment modules:
(1) Embedding Alignment (EA); (2) Spike-Attention Alignment (SAA); F (3) Spike-Feature
Alignment (SFA); (4) Soft-Target Alignment (STA); and (5) Hard-Target Alignment (HTA).
Losses include MSE, CE, and spike-aware temporal strategies. In particular, our proposed Rate-
MSE loss (equation 9) aligns the attention dynamics between ANN and SNN models over time.
Dashed arrows indicate loss paths; spike-related operations are denoted with icons.

between ANNs and SNNs, while these two exhibit substantial differences: ANN representations are
floating-point values, whereas SNN representations are discrete spikes (0-1), and they also include
a temporal dimension. Detailed formulation and implementation of these alignments are provided
in the Appendix A.3.

Spike-Attention Alignment Given the fundamental difference in attention mechanisms, floating-
point representations in the ANN versus spike-based representations in the SNN, as well as the
additional temporal dimension in the SNN’s attention outputs, which causes dimensional mismatch,
we design two alignment strategies to enable effective cross-domain knowledge transfer:

(a) Temporal Replication and Spiking: We replicate the static attention map AANN ∈ RL×L across
T time steps:

ÃANN = Repeat(AANN, T) ∈ RT×L×L. (7)

Each time step is then passed through a spiking neuron:

ÂANN
spike(t) = σspike(ÃANN(t)), t = 1, . . . , T. (8)

We compute Rate-MSE loss:

LRateMSE
attn = MSE

(
1

T

∑
t

ÂANN
spike(t),

1

T

∑
t

ASNN(t)

)
. (9)

(b) Temporal Fusion and Distribution Matching: Alternatively, we temporally average the SNN
spike-attention and match it to the ANN attention using Mean Squared Error (MSE):

ĀSNN =
1

T

T∑
t=1

ASNN(t), LMSE
attn = MSE(AANN, ĀSNN). (10)

The overall spike-attention alignment loss is:

Lattn = α1LRateMSE
attn + α2LMSE

attn . (11)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Spike-Feature Alignment Similarly, intermediate hidden states are aligned using a combination
of rate-based and temporally averaged MSE:

Lfeat = β1LRateMSE
feat + β2LMSE

feat , (12)

with linear projections and skip-layer connections used to handle mismatched dimensions and
depths.

Total Loss Combining embedding alignment, spike-based alignments, and traditional distillation,
the student SNN is supervised with the overall training objective:

Ltotal = λ1Lemb + λ2Lattn + λ3Lfeat + λ4Lsoft + λ5Lhard. (13)

4 EXPERIMENTS

4.1 TRAINING DETAILS

We use FineWeb-Edu (Penedo et al., 2024), a high-quality subset of the FineWeb corpus curated
for factual and educational content. A 10B-token portion of the dataset is selected for pretraining.
Notably, our SpikingLLM models achieve competitive performance under strict energy constraints,
despite being trained on orders-of-magnitude fewer tokens (1–10 billion) compared to conventional
ANN counterparts (typically requiring more than 100 Billion tokens), even at reduced parameter
scales (0.125B-1.3B). The detailed training setup are provided in the Appendix A.4.

Table 1: Comparison of performance and estimated energy efficiency between SpikingLLM and
conventional ANN baselines on the ACC benchmark. SpikingLLM-v1 adopts classic LIF neurons
(see equation 2) implemented via SpikingJelly, while SpikingLLM-v2 employs ternary-valued spik-
ing neurons with amplitude encoding (see equation 3), following the SpikeLM design. All energy
estimates are calculated under a uniform FP32-based energy model for fair comparison. Time Step
indicates the number of discrete simulation steps used during SNN inference.

Model Params
(B)

Tokens
(B)

Spike
Form

Time
Step

OPs
(G)

Firing
Rate

Energy
(mJ)

Zero - shot Accuracy (%) ↑
ARC-e ARC-c WG BQ PIQA HS OBQA HQA Avg.

OPT 0.125 180 × — 125.6 — 125.95 43.6 19.3 52.3 54.6 62.4 32.1 20.2 23.7 38.60
Pythia 0.160 300 × — 125.7 — 126.01 43.7 19.8 52.8 55.1 62.7 33.6 20.1 24.2 39.00
SpikeGPT 0.046 16.5 Binary — 3.66 0.174 3.29 32.3 16.2 50.2 45.7 54.6 25.3 15.7 20.6 32.58
SpikeGPT 0.216 16.5 Binary — 18.3 0.168 16.53 35.2 17.7 50.7 47.3 55.1 27.6 17.3 23.1 34.25
SpikingLLM-v1 0.125 1.0 Binary 2 12.1 0.196 5.24 39.1 18.9 50.3 52.7 56.7 28.1 19.8 22.9 36.05
SpikingLLM-v2 0.125 1.0 Ternary 2 13.7 0.412 10.74 38.5 18.3 51.3 52.3 57.7 29.1 19.2 22.5 36.11
SpikingLLM-v1 0.125 1.0 Binary 4 23.1 0.173 9.43 39.4 19.0 51.2 53.0 57.5 29.2 19.7 23.1 36.50
SpikingLLM-v2 0.125 1.0 Ternary 4 25.8 0.386 19.92 38.9 18.5 51.5 52.9 58.0 28.3 19.2 22.9 36.27

OPT 0.350 180 × — 360.8 — 197.57 47.5 22.2 55.3 57.2 66.1 40.7 25.7 26.6 42.68
Pythia 0.410 300 × — 360.9 — 197.71 48.7 24.8 56.8 58.1 66.7 41.6 26.1 26.2 43.63
SpikingLLM-v1 0.350 2.0 Binary 2 43.4 0.182 9.31 41.5 21.7 52.3 55.1 59.7 32.7 21.2 23.8 38.48
SpikingLLM-v2 0.350 2.0 Ternary 2 47.7 0.404 18.61 41.5 21.7 52.4 54.9 59.1 31.6 20.8 23.1 38.14
SpikingLLM-v1 0.350 2.0 Binary 4 84.2 0.178 16.75 42.1 21.4 52.1 56.1 60.5 33.1 21.9 23.5 38.84
SpikingLLM-v2 0.350 2.0 Ternary 4 88.3 0.377 35.35 41.8 21.9 52.8 55.7 60.4 34.0 21.3 23.1 38.87

OPT 1.300 180 × — 1237.1 — 632.22 57.8 30.4 60.4 60.8 71.7 52.6 33.4 30.7 49.73
Pythia 1.400 300 × — 1237.4 — 632.48 60.5 31.2 61.3 61.1 71.1 53.6 33.2 31.9 50.49
SpikingLLM-v1 1.300 10.0 Binary 2 66.7 0.192 37.16 45.7 23.5 54.2 56.3 62.3 40.2 24.5 24.0 41.33
SpikingLLM-v2 1.300 10.0 Ternary 2 74.2 0.426 74.32 44.5 23.7 54.2 55.3 62.3 40.4 24.6 23.6 41.08
SpikingLLM-v1 1.300 10.0 Binary 4 131.9 0.184 66.89 46.3 24.3 55.6 56.8 63.4 41.7 25.2 24.3 42.19
SpikingLLM-v2 1.300 10.0 Ternary 4 141.6 0.411 141.21 45.8 24.5 55.6 56.1 63.4 41.3 25.5 24.8 42.12

4.2 MODEL EVALUATION

We evaluate models using zero-shot accuracy on diverse commonsense reasoning and QA bench-
marks, including ARC-Easy (ARC-e), ARC-Challenge (ARC-c) (Clark et al., 2018), Winogrande
(WG) (Sakaguchi et al., 2021), BoolQ (BQ) (Clark et al., 2019), PIQA (Bisk et al., 2020), Hel-
laSwag (HS) (Zellers et al., 2019), OpenBookQA (OBQA) (Mihaylov et al., 2018), and HeadQA
(HQA) (Vilares & Gómez-Rodrı́guez, 2019), measuring the generalization and reasoning abilities

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

without task-specific finetuning. As shown in Table 1, SpikingLLM achieves 82.60–94.56% of the
zero-shot accuracy of counterpart ANN models at the same scale, despite using significantly fewer
operations and training tokens. For example, SpikingLLM-v1 (1.3B, 10B tokens, 4 steps) reaches
42.19% accuracy versus 49.73% for OPT-1.3B, consuming only 10.6% of the energy per inference.
For fair comparison with existing spiking LLMs, we focus on Zhu et al. (2023), a decoder-only SNN
trained from scratch and architecturally comparable. We don’t directly compare with Xing et al.
(2024b) or Lv et al. (2023), which are not decoder-only and target different downstream tasks. And
since Xing et al. (2024a) is derived via quantization and spiking conversion from pretrained ANN
LLMs, we defer detailed comparisons with such quantization-based approaches to Appendix A.7.

4.3 ENERGY CONSUMPTION

To assess the efficiency of SNNs, we first measure the firing rate, defined as the average proportion
of active spikes, where lower rates indicate higher sparsity and greater energy efficiency. Based on
the firing rate, we then estimate the theoretical energy consumption during inference by simulating
a 45nm neuromorphic chip, following Horowitz (2014); Kundu et al. (2021a); Yin et al. (2021);
Kim & Panda (2021). Energy estimates are based on the total number of spike operations (SOPs),
compared against floating-point operations (FLOPs) in baseline ANN models. Detailed computa-
tion steps are provided in Appendix A.6. The Table 1 reports the per-sample energy consumption,
firing rates, and zero-shot accuracy across benchmarks. Our results show that: SpikingLLM-v1 con-
sistently consumes an order of magnitude less energy than ANN baselines (e.g., 9.43 mJ vs. 126.01
mJ at 125M) while achieving over 93% of the accuracy. Across parameter scales (0.125B–1.3B),
SpikingLLM maintains competitive performance at only 4.16%–5.87% of the computational cost.
Moreover, increasing time steps slightly improves performance (36.05% → 36.50% at 125M) with
moderate energy overhead. SpikingLLM-v2 offers slightly higher accuracy at increased energy,
providing a flexible trade-off for application constraints. These findings validate the viability of
SNN-based LLMs for energy-constrained environments, such as edge devices and neuromorphic
accelerators.

4.4 ABLATION STUDY

We conduct a series of ablation experiments on the SpikingLLM-v1 model with 125M parameters
to evaluate the contributions of key components and training factors. Specifically, we investigate: (1)
the role of spike-driven modules, (2) the impact of varying simulation time steps, (3) the influence
of training token volume, and (4) the effectiveness of our multi-level distillation alignment strategy.

Spike-driven Modules We first examine the effect of spike-driven modules by replacing CSSA
and SFFN with their ANN counterparts. As shown in Figure 4a, the fully spike-driven design
(CSSA+SFFN) achieves 36.05% accuracy with only 5.24 mJ energy. Replacing either module
slightly improves accuracy (up to 36.57%) but increases energy consumption by more than 10×.
Using ANN attention and FFN together yields 37.10% accuracy at the cost of 24× higher energy.
These results highlight that CSSA and SFFN are essential for preserving the energy-efficiency ad-
vantage of SpikingLLM.

Distillation Alignment Strategy We assess each alignment component by progressively adding
it to the base HTA model. As shown in Figure 4b, STA yields the largest individual gain (+1.11%),
while EA offers a smaller effect (+0.33%)., suggesting limited standalone benefit of energy align-
ment at this stage. Higher-level constraints such as SFA and SAA further improve performance
(+0.63% and +0.38%). When combining STA with EA or SFA, the improvements increase more
significantly, indicating complementary effects. Combining multiple objectives produces stronger
gains, and the full set (STA, EA, SFA, SAA) achieves the best accuracy (36.25%, +1.68%). These
results highlight the complementary benefits of hierarchical alignment for effective knowledge trans-
fer from ANN teachers to spiking students.

Time Steps We further study the effect of varying simulation time steps (1–8). As shown in
Figure 4c, more time steps improve accuracy by refining temporal resolution, but gains saturate
beyond 4 steps while energy cost rises sharply. Firing rates gradually decline with longer steps,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Effect of spike-driven modules. (b) Effect of alignment objectives.

(c) Effect of varying time steps. (d) Effect of training data volume.

Figure 4: Visualization of ablation experiments.

indicating increased sparsity. Overall, 2–4 steps provide a good trade-off between efficiency and
performance, while more steps yield marginal accuracy gains at higher energy cost.

Training Token Volume Finally, we evaluate the impact of training data size by varying tokens
from 0.1B to 2.0B. As shown in Figure 4d, accuracy improves consistently with more data, with the
largest gains in the low-data regime (0.1B → 0.5B) and saturation beyond 1.0B tokens. Performance
rises from 33.67% to 36.40%, reaching 94.3% of the teacher’s accuracy (38.60%). Interestingly, the
firing rate gradually decreases as training data increases, suggesting that larger training dataset not
only improves performance but also enhances temporal sparsity, likely due to more structured repre-
sentations. These results demonstrate the data efficiency of our training framework, enabling near-
saturated performance with relatively few tokens. Further details on firing and activation patterns
are visualized in the Appendix A.8.

5 CONCLUSION

We introduce SpikingLLM, the fully binary spike-driven LLM trained from random initialization.
Its Causal Spiking Self-Attention (CSSA) enables softmax-free, spike-based autoregressive mod-
eling, reducing computational cost by over 10× compared to ANNs. A multi-level Spike-Form
Knowledge Distillation (SKD) framework further improves performance by aligning representa-
tions across multiple levels. SpikingLLM achieves competitive accuracy with fewer training tokens
and lower energy, demonstrating a promising pathway for energy-efficient, brain-inspired NLP.

Limitations: While SpikingLLM significantly reduces computational cost, its accuracy still lags
behind large-scale ANN LLMs on some benchmarks, and training larger models requires careful
tuning of time steps and distillation schedules. Future work could explore improved spike-based ar-
chitectures and more effective distillation strategies to further close the gap with ANN performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT.

All experiments in this work are conducted on publicly available datasets without involving private
or sensitive information. The proposed methods are intended purely for academic research, and any
deployment should carefully consider potential ethical risks such as bias or misuse.

REPRODUCIBILITY STATEMENT.

The experimental results in this paper are reproducible. We describe the model architecture and
training process details in the main text and appendix. We will release the source code after review.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Lennard Bodden, Duc Bach Ha, Franziska Schwaiger, Lars Kreuzberg, and Sven Behnke. Spiking
centernet: A distillation-boosted spiking neural network for object detection. In 2024 Interna-
tional Joint Conference on Neural Networks, pp. 1–9. IEEE, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
infrastructure platform for spike-based intelligence. Science Advances, 9(40):eadi1480, 2023.

Mathias Gehrig, Willem Aarents, Daniel Gehrig, and Davide Scaramuzza. Dsec: A stereo event
camera dataset for driving scenarios. IEEE Robotics and Automation Letters, 6(3):4947–4954,
2021.

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press, 2014.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
international solid-state circuits conference digest of technical papers, pp. 10–14. IEEE, 2014.

Yifan Hu, Yujie Wu, Lei Deng, and Guoqi Li. Advancing residual learning towards powerful deep
spiking neural networks. arXiv preprint arXiv:2112.08954, 7:7, 2021.

Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions on neural networks,
14(6):1569–1572, 2003.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351,
2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ayush Kaushal, Tejas Vaidhya, Arnab Kumar Mondal, Tejas Pandey, Aaryan Bhagat, and Irina Rish.
Spectra: Surprising effectiveness of pretraining ternary language models at scale. arXiv preprint
arXiv:2407.12327, 2024.

Youngeun Kim and Priyadarshini Panda. Optimizing deeper spiking neural networks for dynamic
vision sensing. Neural Networks, 144:686–698, 2021.

Souvik Kundu, Gourav Datta, Massoud Pedram, and Peter A Beerel. Spike-thrift: Towards energy-
efficient deep spiking neural networks by limiting spiking activity via attention-guided compres-
sion. In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp.
3953–3962, 2021a.

Souvik Kundu, Massoud Pedram, and Peter A Beerel. Hire-snn: Harnessing the inherent robustness
of energy-efficient deep spiking neural networks by training with crafted input noise. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 5209–5218, 2021b.

Chankyu Lee, Adarsh Kumar Kosta, Alex Zihao Zhu, Kenneth Chaney, Kostas Daniilidis, and
Kaushik Roy. Spike-flownet: event-based optical flow estimation with energy-efficient hybrid
neural networks. In European conference on computer vision, pp. 366–382. Springer, 2020.

Yudong Li, Yunlin Lei, and Xu Yang. Spikeformer: Training high-performance spiking neural
network with transformer. Neurocomputing, 574:127279, 2024.

Ziqi Li, Tao Gao, Yisheng An, Ting Chen, Jing Zhang, Yuanbo Wen, Mengkun Liu, and Qianxi
Zhang. Brain-inspired spiking neural networks for energy-efficient object detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp.
3552–3562, 2025.

Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and spike-driven
inference spiking neural network for high-performance and energy-efficient object detection. In
European Conference on Computer Vision, pp. 253–272. Springer, 2024.

Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zixuan Ling, Cenyuan Zhang, Xiaoqing Zheng,
and Xuanjing Huang. Spikebert: A language spikformer learned from bert with knowledge dis-
tillation. arXiv preprint arXiv:2308.15122, 2023.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image
datasets to spiking neuromorphic datasets using saccades. Frontiers in neuroscience, 9:437, 2015.

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

Haonan Qiu, Munan Ning, Zeyin Song, Wei Fang, Yanqi Chen, Tao Sun, Zhengyu Ma, Li Yuan, and
Yonghong Tian. Self-architectural knowledge distillation for spiking neural networks. Neural
Networks, 178:106475, 2024.

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation. In
International Conference on Learning Representations, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Samuel Schmidgall, Rojin Ziaei, Jascha Achterberg, Louis Kirsch, S Hajiseyedrazi, and Jason
Eshraghian. Brain-inspired learning in artificial neural networks: a review. APL Machine Learn-
ing, 2(2), 2024.

Catherine D Schuman, Shruti R Kulkarni, Maryam Parsa, J Parker Mitchell, Prasanna Date, and Bill
Kay. Opportunities for neuromorphic computing algorithms and applications. Nature Computa-
tional Science, 2(1):10–19, 2022.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. Communications of the
ACM, 63(12):54–63, 2020.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 13693–13696, 2020.

Qiaoyi Su, Yuhong Chou, Yifan Hu, Jianing Li, Shijie Mei, Ziyang Zhang, and Guoqi Li. Deep
directly-trained spiking neural networks for object detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

David Vilares and Carlos Gómez-Rodrı́guez. Head-qa: A healthcare dataset for complex reasoning.
arXiv preprint arXiv:1906.04701, 2019.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
models. arXiv preprint arXiv:2310.11453, 2023.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Xingrun Xing, Boyan Gao, Zheng Liu, David A Clifton, Shitao Xiao, Wanpeng Zhang, Li Du,
Zheng Zhang, Guoqi Li, and Jiajun Zhang. Spikellm: Scaling up spiking neural network to
large language models via saliency-based spiking. In The Thirteenth International Conference on
Learning Representations, 2024a.

Xingrun Xing, Zheng Zhang, Ziyi Ni, Shitao Xiao, Yiming Ju, Siqi Fan, Yequan Wang, Jiajun
Zhang, and Guoqi Li. Spikelm: Towards general spike-driven language modeling via elastic
bi-spiking mechanisms. arXiv preprint arXiv:2406.03287, 2024b.

Qi Xu, Yaxin Li, Jiangrong Shen, Jian K Liu, Huajin Tang, and Gang Pan. Constructing deep spiking
neural networks from artificial neural networks with knowledge distillation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7886–7895, 2023.

Qi Xu, Yaxin Li, Xuanye Fang, Jiangrong Shen, Qiang Zhang, and Gang Pan. Reversing structural
pattern learning with biologically inspired knowledge distillation for spiking neural networks. In
Proceedings of the 32nd ACM International Conference on Multimedia, pp. 3431–3439, 2024.

Man Yao, Huanhuan Gao, Guangshe Zhao, Dingheng Wang, Yihan Lin, Zhaoxu Yang, and Guoqi Li.
Temporal-wise attention spiking neural networks for event streams classification. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 10221–10230, 2021.

Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate and efficient time-domain classi-
fication with adaptive spiking recurrent neural networks. Nature Machine Intelligence, 3(10):
905–913, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Zhengyu Ma, Han Zhang, Huihui Zhou, and Yonghong
Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural net-
work. arXiv preprint arXiv:2304.11954, 2023.

Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan,
Zhengyu Ma, Huihui Zhou, and Yonghong Tian. Qkformer: Hierarchical spiking transformer
using qk attention. Advances in Neural Information Processing Systems, 37:13074–13098, 2024.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. arXiv preprint
arXiv:2209.15425, 2022.

Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. Spikegpt: Generative pre-trained
language model with spiking neural networks. arXiv preprint arXiv:2302.13939, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE OF LLMS

In this work, we used Large Language Models (LLMs) in a limited and auxiliary capacity. Specifi-
cally, LLMs were employed for retrieval and discovery of related literature on Spiking Neural Net-
works (SNNs), neuromorphic computing, and energy-efficient large language models. This assisted
us in identifying relevant prior work and ensuring broader coverage of existing approaches. Impor-
tantly, LLMs were not involved in designing algorithms, implementing models, or analyzing experi-
mental results. All methodological innovations, including the Causal Spiking Self-Attention (CSSA)
and Spike-Form Knowledge Distillation (SKD), were independently conceived, implemented, and
validated by the authors. Thus, the role of LLMs was restricted to accelerating literature exploration,
without influencing the scientific contributions of this paper.

A.2 ALGORITHM PROCEDURE OF CSSA

Algorithm 1 Causal Spiking Self-Attention (CSSA)
Input: Spike-based input X
Output: Spiking attention output

1: // Step 1: Input Projection (FP ← Spike@FP)
2: q, k, v ← LinearQ,K,V (X)
3: // Step 2: Spiking Neuron Encoding (Spike← FP)
4: spikeq ← SpikingNeuronQ(q)
5: spikek ← SpikingNeuronK(k)
6: spikev ← SpikingNeuronV (v)
7: // Step 3: Attention (Integer ← Spike@Spike)
8: attn int← spikeq@spikeTk
9: // Step 4: Causal Masking and Spiking

10: causal mask← causal mask⊙ attn mask
11: attn causal← causal mask⊙ attn int
12: spikeattn ← SpikingNeuronAttn(attn causal)
13: // Step 5: Summation (Integer ← Spike@Spike)
14: attn out← spikeattn@spikeTv
15: spikeattn out ← SpikingNeuronAttnOut(attn out)
16: // Step 6: Output Projection (FP ← Spike@FP)
17: fp out← Linearout(spikeattn out)
18: // Step 7: Spiking (Spike← FP)
19: spike out← SpikingNeuronOut(fp out)
20: return spike out

A.3 DETAILED DESIGN OF SKD

We present Spike-Form Knowledge Distillation (SKD), a framework that distills a frozen ANN
teacher into a trainable SNN student. Distillation proceeds through five aligned losses: Embedding
Alignment (EA), Soft-Target Alignment (STA), and Hard-Target Alignment (HTA) reuse standard
MSE/CE because continuous vectors are already compatible; Spike-Attention Alignment (SAA)
and Spike-Feature Alignment (SFA) introduce spike-aware temporal losses to bridge the unique
continuous-to-binary and spatial-to-temporal gap that only these two representations expose.

A.3.1 EMBEDDING ALIGNMENT

We align the output distributions from the embedding layers of the teacher and student networks
using Mean Squared Error (MSE) loss:

Lemb = MSE(PANN
emb , P SNN

emb). (14)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

This alignment ensures consistent semantic representations at the input level, easing the optimiza-
tion burden and improving representation consistency across modalities. A linear transformation is
applied if the embedding dimensions are not directly compatible.

A.3.2 SPIKE-ATTENTION ALIGNMENT

Given the fundamental difference in attention mechanisms—floating-point representations in the
ANN versus spike-based representations in the SNN—as well as the additional temporal dimen-
sion in the SNN’s attention outputs, which causes dimensional mismatch, we design two alignment
strategies to enable effective cross-domain knowledge transfer:

(a) Temporal Replication and Spiking: We replicate the static attention map AANN ∈ RL×L

across T time steps:
ÃANN = Repeat(AANN, T) ∈ RT×L×L. (15)

Each time step is then passed through a spiking neuron:

ÂANN
spike(t) = σspike(ÃANN(t)), t = 1, . . . , T. (16)

We compute Rate-MSE loss:

LRateMSE
attn = MSE

(
1

T

∑
t

ÂANN
spike(t),

1

T

∑
t

ASNN(t)

)
. (17)

(b) Temporal Fusion and Distribution Matching: Alternatively, we temporally average the SNN
spike-attention and match it to the ANN attention using Mean Squared Error (MSE):

ĀSNN =
1

T

T∑
t=1

ASNN(t), LMSE
attn = MSE(AANN, ĀSNN). (18)

The overall spike-attention alignment loss is:

Lattn = α1LRateMSE
attn + α2LMSE

attn . (19)

A.3.3 SPIKE-FEATURE ALIGNMENT

To align intermediate hidden states, we apply the same transformation strategies to the feature maps:

Lfeat = β1LRateMSE
feat + β2LMSE

feat , (20)

where each component is computed similarly to the attention alignment, but on the feature tensors
HANN and HSNN. And linear projections are inserted if the hidden dimensions differ. Skip-layer
connections are used if the number of layers does not match.

A.3.4 SOFT TARGET ALIGNMENT

We apply soft-label distillation using the teacher and student logits:

Lsoft = KL
(

logitsANN

τ

∥∥∥ logitsSNN

τ

)
, (21)

where τ is a temperature hyperparameter to soften the logits.

A.3.5 HARD TARGET ALIGNMENT

We also include the traditional cross-entropy loss with the ground truth:

Lhard = CE(logitsSNN, y). (22)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3.6 TOTAL LOSS

The final training objective combines all loss terms:
Ltotal = λ1Lemb + λ2Lattn + λ3Lfeat + λ4Lsoft + λ5Lhard. (23)

Each λi balances the contribution of its corresponding component.

A.4 TRAINING DETAILS

Table 2: Summary of training hyperparameters and configurations used for SpikingLLM, including
optimization settings, distillation parameters, and hardware specifications.

Hyperparameter Value

Teacher ANN model OPT-family
Student SNN model SpikingLLM
Tokenizer / Vocabulary Aligned with OPT
Batch size 16
Gradient accumulation steps 16
Effective batch size 256
Optimizer Adam
Learning rate 5× 10−4

Scheduler Cosine decay
Warm-up ratio 0.2
Gradient clipping threshold 0.7
Temperature τ (for SKD) 2.0
Distillation weights (λ1 to λ5) 0.2, 0.1, 0.1, 0.3, 0.3
Inference time steps (T) 2 and 4
Hardware NVIDIA RTX 4090 (24GB)

Training Paradigm The training of SpikingLLM follows a teacher–student paradigm, where the
teacher model is a pre-trained open-source ANN-based large language model from the OPT family,
and the student is our spike-based SpikingLLM. To ensure consistency between the teacher and
student models, we align both the vocabulary and tokenizer with those used in OPT.

Optimization Setup All experiments are conducted using a batch size of 16 and a gradient accu-
mulation factor of 16, effectively yielding a total batch size of 256 tokens. The optimizer used is
Adam, with a learning rate set to 5 × 10−4. A cosine learning rate scheduler with a warm-up ratio
of 0.2 is employed to stabilize early training. Gradient clipping is applied with a threshold of 0.7
to avoid exploding gradients in the early training phases, which can be particularly pronounced in
spiking models. And all models are trained on NVIDIA 4090 GPUs with 24GB memory.

Spike-Form Knowledge Distillation For spike-form knowledge distillation (SKD), we adopt a
temperature of τ = 2.0 in the soft targets from the teacher model. The overall loss is computed as a
weighted combination of multiple alignment objectives defined in Method Section. The correspond-
ing loss weights are: λ1 = 0.2, λ2 = 0.1, λ3 = 0.1, λ4 = 0.3, and λ5 = 0.3.

Inference Time Steps To study the trade-off between accuracy and energy efficiency, Spik-
ingLLM is trained with varying numbers of inference time steps, specifically T = 2 and T = 4. A
higher number of steps improves temporal resolution and accuracy at the cost of increased energy
consumption, enabling flexible deployment depending on the application constraints.

Training Data Selection The subset of training data used in our experiments was drawn
from the fineweb-edu dataset (Penedo et al., 2024), specifically the 10BT sample ac-
cessible at https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu/
tree/main/sample/10BT. Since our claim of using a lower training token volume is a core
contribution, it is crucial to detail how the data was sampled to ensure reproducibility. This subset
was selected directly from the publicly available sample without additional filtering or preprocess-
ing, providing other researchers with a clear and reproducible training set.

16

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu/tree/main/sample/10BT
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu/tree/main/sample/10BT

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.5 SURROGATE GRADIENT

Training spiking neural networks (SNNs) presents a significant challenge due to the non-
differentiable nature of spike generation functions, such as the Heaviside step function used in
the spiking neuron model. To enable end-to-end optimization with backpropagation, we adopt a
surrogate gradient approach introduced by Fang et al. (2020).

Specifically, the discrete spiking activation S is approximated by a continuous and differentiable
function using an arctangent-based surrogate:

S ≈ 1

π
arctan

(π
2
αU
)
+

1

2
, (24)

where U is the membrane potential and α is a tunable hyperparameter controlling the sharpness
of the transition. In our experiments, we set α = 2 by default, balancing gradient magnitude and
smoothness.

Taking the derivative of Equation equation 24 yields the surrogate gradient used during backpropa-
gation:

∂S

∂U
=

α

2
· 1

1 +
(
π
2αU

)2 . (25)

This surrogate formulation enables stable and effective gradient-based optimization for Spik-
ingLLM. It allows error signals to be backpropagated through spike-generating layers without re-
quiring exact gradients, thus making the training pipeline compatible with standard deep learning
frameworks.

A.6 THEORETICAL SYNAPTIC OPERATION AND ENERGY CONSUMPTION CALCULATION

The theoretical energy consumption of SpikingLLM is estimated by first calculating the synaptic
operations (SOPs). For each block or layer l, we have:

SOPs(l) = fr(l)× T × FLOPs(l), (26)

where l indexes a block in SpikingLLM, fr(l) is the average firing rate of the input spike train to
block l (measured as spikes per neuron per time step), and T is the simulation time steps of the
spiking neuron. FLOPs(l) denotes the number of multiply-and-accumulate (MAC) operations of
block l in the equivalent ANN. SOPs(l) thus represents the spike-based accumulate (AC) operations
performed in the SNN.

Following Horowitz (2014), we assume the energy per operation on a 45 nm process as

EMAC = 4.6 pJ, EAC = 0.9 pJ.

For ANNs, the theoretical energy consumption of a block b is

PowerANN(b) = EMAC × FLOPs(b). (27)

For SNNs, the theoretical energy consumption of block b is

PowerSNN(b) = EAC × SOPs(b). (28)

According to ((Horowitz, 2014; Kundu et al., 2021a;b; Hu et al., 2021; Yin et al., 2021; Kim &
Panda, 2021; Yao et al., 2021)), the total energy consumption of SpikingLLM can be decomposed
into three parts: (1) the embedding stage, which is executed with dense MAC operations, (2) the L
stacked transformer blocks, each of which is spiking and therefore counted using AC operations, and
(3) the language-model head (LM-head) that maps hidden states to vocabulary logits (dense MACs).
We write:

ESpikingLLM = EMAC ·
(
FLOPs Embed + FLOPs LM-head

)
+ EAC ·

L∑
l=1

(
SOPCSSA(l) + SOPSFFN(l)

)
(29)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where FLOPs Embed and FLOPs LM-head denote the MAC operations of the embedding stage and the
output projection to vocabulary logits, respectively; SOPCSSA(l) and SOPSFFN(l) represent the spike-
accumulate operations of the Spiking Causal Self-Attention and Spiking Feed-Forward Network
modules in block l; EMAC and EAC are the energy costs per MAC and AC operation; L is the number
of transformer blocks; and fr and T denote the average firing rate and the number of simulation time
steps.

A.7 COMPARISON WITH SPIKELLM

Table 3: Comparison of SpikingLLM and SpikeLLM across different model scales, neuron/spike
formats, and time steps. Avg. Acc. reports zero-shot accuracy (%), and SNN/ANN Ratio shows the
performance of spiking models relative to their ANN counterparts.

Model Params (B) Tokens (B) Spike Form Time Step Avg. Acc.(%) ↑ SNN/ANN
Ratio (%) ↑

SpikingLLM-v1 0.125 1.0 Binary 2 36.05 93.39
SpikingLLM-v2 0.125 1.0 Ternary 2 36.11 93.55
SpikingLLM-v1 0.125 1.0 Binary 4 36.50 94.56
SpikingLLM-v2 0.125 1.0 Ternary 4 36.27 93.96

SpikingLLM-v1 0.350 2.0 Binary 2 38.48 90.16
SpikingLLM-v2 0.350 2.0 Ternary 2 38.14 89.36
SpikingLLM-v1 0.350 2.0 Binary 4 38.84 91.00
SpikingLLM-v2 0.350 2.0 Ternary 4 38.87 91.07

SpikingLLM-v1 1.300 10.0 Binary 2 41.33 83.11
SpikingLLM-v2 1.300 10.0 Ternary 2 41.08 82.60
SpikingLLM-v1 1.300 10.0 Binary 4 42.19 84.84
SpikingLLM-v2 1.300 10.0 Ternary 4 42.12 84.70

SpikeLLM 7.000 — Integer (W2A16) 2 49.92 78.17
SpikeLLM 7.000 — Integer (W2A8) 4 41.77 65.41
SpikeLLM 13.00 — Integer (W2A16) 2 53.76 81.34
SpikeLLM 13.00 — Integer (W2A8) 4 50.12 75.78
SpikeLLM 70.00 — Integer (W2A16) 2 60.47 82.55

Table 3 compares SpikingLLM with SpikeLLM across different model scales, quantization meth-
ods, spike forms, and simulation time steps. Overall, SpikingLLM achieves competitive zero-shot
accuracy with smaller models and lower-precision spike forms. Notably, the SNN/ANN ratio of
SpikingLLM is consistently higher (82–95%) than that of SpikeLLM, indicating that our spike-
based models retain more of the original ANN performance. This improvement is largely attributed
to our multi-level knowledge distillation framework, which effectively transfers information from
ANN teachers to spiking students. These results not only highlight the efficiency and effectiveness
of our approach but also provide a promising pathway for further improving SNN-LLMs through
advanced distillation strategies.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.8 FIRING VISUALIZATION

Figure 5: At T = 2, the firing activity is relatively concentrated in a few specific layers, as indi-
cated by localized high-intensity regions in the heatmap. This suggests that, under limited temporal
resolution, only a subset of layers become highly active, likely those responsible for early-stage
processing and critical feature extraction. The rest of the network remains relatively quiescent, re-
flecting a sparse activation pattern constrained by the short integration window.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 6: With the increase to three time steps, the regions of elevated firing rate begin to extend
across more layers. This indicates that more layers participate in the computation as temporal res-
olution improves, enabling broader propagation of information. The increased coverage reflects a
more distributed spiking pattern, suggesting enhanced temporal integration and coordination among
layers.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 7: At T = 4, the firing activity becomes even more widespread, engaging a significant
portion of the network. A greater number of layers exhibit moderate to high firing rates, which
may reflect more comprehensive information processing and deeper hierarchical interactions. The
broader engagement suggests that intermediate temporal budgets allow for more expressive internal
representations.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 8: When the number of time steps is increased to T = 8, the firing distribution becomes
relatively uniform across most layers. While some layers still exhibit elevated activity, the overall
pattern is more homogeneous, indicating that nearly all layers participate in the computation to
some extent. This may reflect a fully temporally saturated regime, where the network is capable of
leveraging extended integration windows for more complex and nuanced feature extraction.

To investigate the temporal dynamics of spiking activity in SpikingLLM-v1, we visualize the firing
rate distributions across layers under varying numbers of inference time steps: T = 2, T = 3,
T = 4, and T = 8. The firing rate heatmaps are constructed such that the vertical axis corresponds
to different model layers, the horizontal axis represents discrete time steps, and the color intensity
encodes the normalized firing rate ranging from low (purple) to high (yellow) (see Figures 5–8).

Overall, the progression of firing rate distributions across increasing time steps reveals a transition
from sparse and localized activation to distributed and pervasive spiking. This dynamic suggests that
SpikingLLM-v1 adapts its computational strategy based on the temporal budget: utilizing minimal
resources under constrained settings (e.g., T = 2) and expanding activation as more time steps

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

become available. These results highlight the temporal adaptability of spiking neural architectures
and their potential for scalable, energy-aware language processing.

Figure 9: This figure presents the spiking activity across token positions for four representative
layers (Layer 0, Layer 3, Layer 7, and Layer 11) at an early inference time step. The firing patterns
are relatively sparse and uniformly distributed, particularly in the lower layers. This reflects the
initial stage of neuronal processing, where the model begins encoding input signals with limited
temporal context. Notably, deeper layers such as Layer 11 exhibit subdued activation, suggesting
that higher-level abstractions have not yet emerged.

In addition to the layer-wise temporal spiking visualization, we further examine the firing patterns
of SpikingLLM-v1 at the level of individual token positions. A new set of visualizations (see
Figures 9–12) illustrates the spiking activity across different token positions for selected layers
(specifically, Layer 0, Layer 3, Layer 7, and Layer 11) under varying inference time steps. In these
heatmaps, the vertical axis corresponds to token positions, the horizontal axis denotes discrete time
steps, and the color intensity indicates the firing magnitude, with lighter colors representing stronger
activity and darker regions indicating lower activation.

These token-level firing visualizations provide a more granular perspective on the internal compu-
tation dynamics of SpikingLLM-v1. The evolution of spiking activity across time steps reveals a
clear progression: from diffuse and uniform firing in early layers and time steps, toward increas-
ingly selective and structured activation in deeper layers as more time is allocated. This suggests
a hierarchical processing mechanism wherein early layers operate in a temporally shallow regime,
broadly encoding input stimuli, while deeper layers gradually accumulate temporal context to per-
form more abstract and task-specific computations. Overall, the model exhibits both spatial and
temporal specialization, underscoring the potential of spiking neural architectures for dynamic and
efficient information processing.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 10: At T = 3, the firing distributions become slightly more structured across token positions
and layers. While lower layers maintain broadly distributed activity, deeper layers begin to display
early signs of selective activation. Compared to T = 2, this figure reveals the onset of temporal
refinement, indicating that additional time steps allow the model to initiate more context-sensitive
computation, particularly in the upper layers.

Figure 11: With four time steps, the model exhibits more pronounced spatiotemporal differentiation
in firing behavior. Activity becomes more variable across token positions, and certain regions in
deeper layers start to display concentrated firing. This suggests that the network is engaging in
increasingly specialized processing, distributing its computation more selectively based on both
input semantics and accumulated temporal evidence.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 12: By T = 8, the firing patterns exhibit substantial temporal evolution and structural com-
plexity. Deeper layers, in particular, show heightened and more focused activation for specific token
regions, reflecting refined internal representations. This level of activity suggests that the model has
transitioned into a more stable and semantically rich encoding phase. The marked increase in firing
diversity and intensity across layers highlights the model’s capacity to utilize extended temporal
windows for deeper contextual integration and task-specific computation.

A.9 WEIGHT VISUALIZATION

In this subsection, we analyze the weight distributions of Artificial Neural Networks (ANNs) and
Spiking Neural Networks (SNNs) across different layers and components. The weight visualization
provides valuable insights into the fundamental differences between these two types of neural net-
works and highlights the unique characteristics of SNNs. The weight distributions of ANNs and
SNNs exhibit distinct patterns across various layers and components (q proj, k proj, v proj,
out proj, fc1, fc2).

Figure 13: Weight distribution comparison between Artificial Neural Networks (ANNs) and Spiking
Neural Networks (SNNs). ANNs typically exhibit a more concentrated weight distribution around
zero, especially in early layers (e.g., Layer 0). In deeper layers (e.g., Layer 11), their weight distri-
bution becomes slightly more spread out but remains relatively compact, indicating tightly clustered
weights that contribute to stability and ease of training. In contrast, SNNs show a broader and more
dispersed weight distribution, with weights less tightly clustered around zero. This broader spread
is particularly notable in deeper layers (e.g., Layer 11), reflecting the dynamic and diverse weight
updates characteristic of their spiking nature.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Our approach differs from traditional ANN-to-SNN conversion methods in that we do not passively
fit SNN weights to match those of ANNs. Instead, we actively capture and adapt to the unique char-
acteristics of SNNs. This active adaptation is crucial for leveraging the full potential of SNNs, which
operate on spiking dynamics rather than continuous activation values. By focusing on the inherent
properties of SNNs, such as their broader weight distribution and dynamic spiking behavior, our
method ensures that the network is optimized for spiking neural computation. This approach allows
SNNs to maintain their distinct advantages, such as energy efficiency and biological plausibility,
while still achieving high performance.

In summary, the weight visualization clearly demonstrates the differences between ANNs and SNNs.
Our method capitalizes on these differences by actively adapting to the unique characteristics of
SNNs, rather than forcing them to conform to the weight and activation patterns of ANNs. This
approach is essential for developing effective and efficient SNNs that can fully leverage their spiking
dynamics.

A.10 OUTLIER ANALYSIS OF WEIGHT DISTRIBUTIONS

To further investigate the differences between Artificial Neural Networks (ANNs) and Spiking Neu-
ral Networks (SNNs), we analyze the number of outliers in the weight distributions across various
layers and components. Outliers are defined as weights that significantly deviate from the mean,
potentially indicating instability or over-parameterization in specific components.

A.10.1 TOTAL NUMBER OF OUTLIERS

As summarized in Table 4, ANNs exhibit significantly more outliers, with over three times as many
compared to SNNs across all evaluated layers.

Table 4: Total number of weight outliers across all layers and components.

Model Total Outliers
ANN 18,663
SNN 5,834

A.10.2 LAYER-WISE COMPARISON

To gain deeper insights, we present a detailed layer-wise and component-wise comparison in Table 5,
showing the number of outliers for both models. ANNs exhibit a significantly higher number
of outliers, especially in deeper fully connected layers (fc1, fc2), which may be due to larger
weight magnitudes and higher variance. While SNNs show fewer outliers overall, reflecting their
more compact and tightly regulated weight distributions. Interestingly, in some components (e.g.,
q proj, k proj at Layer 7), SNNs have more outliers than ANNs. This suggests local spikes in
weight variability, possibly due to the intrinsic dynamics of spiking updates. The standard deviation
of weights (not shown here) is consistently lower in SNNs, reinforcing the observation that they
operate within a narrower, more stable range. These findings highlight a fundamental difference
in the behavior of ANNs and SNNs: while ANNs may rely on larger weight magnitudes and are
more prone to extreme values, SNNs exhibit smoother, biologically plausible weight distributions
that reduce the risk of instability.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 5: Comparison of weight statistics between ANN and SNN across various layers and compo-
nents.

Layer Component Model Mean Std Max Min Num Outliers
0 q proj ANN -3.15E-05 7.87E-02 0.77 -0.80 596
0 q proj SNN 1.30E-04 1.14E-02 0.06 -0.06 6
0 k proj ANN 6.12E-05 7.26E-02 0.77 -0.70 1154
0 k proj SNN -3.36E-05 1.10E-02 0.06 -0.06 24
0 v proj ANN -1.55E-05 1.28E-02 0.17 -0.19 163
0 v proj SNN 2.97E-05 1.31E-02 0.08 -0.08 34
0 out proj ANN -8.64E-06 1.30E-02 0.78 -0.62 702
0 out proj SNN -2.16E-04 1.58E-02 0.12 -0.11 73
0 fc1 ANN -3.17E-03 2.93E-02 0.56 -1.00 5657
0 fc1 SNN 4.58E-04 1.16E-02 0.06 -0.06 2
0 fc2 ANN -1.23E-05 2.62E-02 1.00 -1.00 716
0 fc2 SNN 2.74E-04 1.24E-02 0.06 -0.11 189
3 q proj ANN -2.93E-04 6.02E-02 0.56 -0.48 105
3 q proj SNN 1.98E-04 1.15E-02 0.07 -0.10 57
3 k proj ANN 1.19E-04 6.16E-02 0.45 -0.46 116
3 k proj SNN 1.34E-04 1.10E-02 0.10 -0.10 199
3 v proj ANN 1.71E-05 2.06E-02 0.23 -0.27 60
3 v proj SNN -2.36E-04 1.39E-02 0.09 -0.09 63
3 out proj ANN 2.38E-06 1.74E-02 0.50 -0.36 183
3 out proj SNN -2.75E-04 1.48E-02 0.10 -0.10 79
3 fc1 ANN -1.81E-03 2.49E-02 0.86 -0.73 2045
3 fc1 SNN 2.39E-05 1.30E-02 0.07 -0.08 38
3 fc2 ANN -2.44E-06 2.67E-02 0.64 -1.06 2053
3 fc2 SNN 4.87E-05 1.30E-02 0.08 -0.10 137
7 q proj ANN -1.80E-04 5.98E-02 0.53 -0.54 147
7 q proj SNN -4.13E-04 1.10E-02 0.13 -0.13 1484
7 k proj ANN -2.34E-05 6.03E-02 0.74 -0.68 185
7 k proj SNN 5.25E-04 1.35E-02 0.17 -0.19 1004
7 v proj ANN 1.22E-05 2.02E-02 0.13 -0.14 20
7 v proj SNN -2.11E-04 1.35E-02 0.12 -0.12 207
7 out proj ANN 1.25E-05 1.76E-02 0.19 -0.19 93
7 out proj SNN -1.91E-04 2.03E-02 0.19 -0.17 609
7 fc1 ANN -4.40E-03 2.73E-02 0.59 -0.59 315
7 fc1 SNN 6.75E-05 1.30E-02 0.15 -0.13 224
7 fc2 ANN -3.44E-05 3.00E-02 0.38 -1.00 1315
7 fc2 SNN -8.44E-05 1.24E-02 0.10 -0.12 204

11 q proj ANN -2.52E-04 5.57E-02 0.50 -0.49 153
11 q proj SNN -1.89E-04 1.19E-02 0.15 -0.12 181
11 k proj ANN 5.30E-05 5.44E-02 0.53 -0.53 366
11 k proj SNN 2.98E-04 1.17E-02 0.19 -0.11 225
11 v proj ANN 4.60E-05 2.95E-02 0.20 -0.50 68
11 v proj SNN -5.92E-05 1.35E-02 0.24 -0.19 268
11 out proj ANN -2.00E-05 3.15E-02 0.89 -0.88 478
11 out proj SNN -1.07E-05 1.96E-02 0.19 -0.16 325
11 fc1 ANN 4.87E-03 2.82E-02 0.92 -1.04 473
11 fc1 SNN -4.00E-05 1.37E-02 0.07 -0.09 52
11 fc2 ANN 3.81E-05 3.23E-02 1.56 -1.23 1500
11 fc2 SNN 2.15E-05 1.50E-02 0.12 -0.11 150

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

A.11 EXTENDING CSSA TO LLAMA ARCHITECTURE

To demonstrate the versatility of our proposed CSSA (Causal Spiking Self-Attention) mechanism,
we extend its application beyond the original OPT-based SpikingLLM architecture. Specifically,
we implement CSSA on the Llama architecture (Touvron et al., 2023), training two new models:
SpikingLLM-v1-Llama with 165M and 1.2B parameters. This expansion validates that CSSA is
designed fundamentally for spike-based language modeling, independent of specific architectural
choices.

Table 6: Performance comparison of SpikingLLM models across different architectures and
timesteps.

Model Params
(B)

Time
Step

Zero-shot Accuracy (%) ↑
ARC-e ARC-c WG BQ PIQA HS OBQA HQA Avg.

SpikingLLM-v1-OPT 0.125 T=2 39.1 18.9 50.3 52.7 56.7 28.1 19.8 22.9 36.05
SpikingLLM-v1-OPT 0.125 T=4 39.4 19.0 51.2 53.0 57.5 29.2 19.7 23.1 36.50
SpikingLLM-v1-Llama 0.165 T=2 39.3 19.2 51.3 52.8 56.8 28.3 20.3 23.2 36.40
SpikingLLM-v1-Llama 0.165 T=4 39.6 19.6 51.7 53.2 57.3 29.5 20.7 23.7 36.91

SpikingLLM-v1-OPT 1.300 T=2 45.7 23.5 54.2 56.3 62.3 40.2 24.5 24.0 41.33
SpikingLLM-v1-OPT 1.300 T=4 46.3 24.3 55.6 56.8 63.4 41.7 25.2 24.3 42.19
SpikingLLM-v1-Llama 1.200 T=2 45.8 23.9 54.7 56.1 63.0 40.6 24.7 24.1 41.61
SpikingLLM-v1-Llama 1.200 T=4 46.5 24.4 55.9 56.6 63.6 41.8 25.4 24.4 42.33

The results show consistent performance improvements when increasing timesteps from T=2 to
T=4 across all model variants. Notably, the Llama-based models achieve comparable or slightly
better results than their OPT-based counterparts, particularly in the 1.2B parameter range where
SpikingLLM-Llama (T=4) reaches an average accuracy of 42.33%. This demonstrates that CSSA
effectively captures spiking dynamics across different transformer architectures while maintaining
competitive language modeling capabilities.

A.12 COMPARISON WITH QUANTIZED ANNS

To contextualize our contributions, it is crucial to distinguish Spiking Neural Networks (SNNs) from
quantized Artificial Neural Networks (ANNs), a common point of comparison. Quantized ANNs
achieve efficiency through spatial discretization, converting continuous floating-point weights or
activations into low-bit, fixed-point formats (e.g., 2-bit, 4-bit). While this approach facilitates model
compression and acceleration, the underlying computation remains fundamentally dependent on
dense Multiply-Accumulate (MAC) operations. Although 1-bit networks eliminate MACs, they are
notoriously difficult to train effectively.

In stark contrast, SNNs leverage temporal sparse encoding via binary spikes. A spike (1) or its ab-
sence (0) at a given timestep encodes information, enabling event-driven and asynchronous compu-
tation. This paradigm allows for substantial energy savings on neuromorphic hardware by exploiting
sparsity, a benefit difficult for quantized ANNs to replicate (Horowitz, 2014). Our work harnesses
this inherent property of SNNs to significantly reduce inference energy while preserving language
generation capabilities.

We provide a direct performance comparison between our 1.3B/1.2B SpikingLLM models and state-
of-the-art quantization methods in Table 7. While quantized ANNs like Shao et al. (2023), Kaushal
et al. (2024), and Wang et al. (2023) may exhibit a marginal edge in accuracy, we emphasize that
these represent fundamentally different methodological paradigms.

Therefore, the primary contribution of our work is not to surpass quantization methods in accuracy,
but to pioneer and validate a new, energy-efficient pathway for large language models. Our signif-
icance is threefold: (1) We introduce the first train-from-scratch binary-spike-based LLM; (2) We
propose the Continuous Spiking Self-Attention (CSSA) mechanism to enable effective causal mod-
eling in SNNs; and (3) We demonstrate the fundamental feasibility of SNN-LLMs, filling a critical

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

gap in the field and establishing a foundation for future research into scalable, energy-conscious
language models.

Table 7: Performance comparison of SpikingLLM with quantized LLMs.

Model Params
(B)

Zero-shot Accuracy (%) ↑
ARC-e ARC-c WG BQ PIQA HS OBQA HQA Avg.

SpikingLLM-v1 (T=2) 1.3 45.7 23.5 54.2 56.3 62.3 40.2 24.5 24.0 41.33
SpikingLLM-v1 (T=4) 1.3 46.3 24.3 55.6 56.8 63.4 41.7 25.2 24.3 42.19
SpikingLLM-v1-Llama (T=2) 1.2 45.8 23.9 54.7 56.1 63.0 40.6 24.7 24.1 41.61
SpikingLLM-v1-Llama (T=4) 1.2 46.5 24.4 55.9 56.6 63.6 41.8 25.4 24.4 42.33

BitNet (1.58-bit) 1.3 48.7 24.1 56.8 57.4 64.2 40.6 24.6 24.9 42.66
SmoothQuant (W4A4) 1.3 44.3 23.5 54.2 55.6 62.3 40.0 23.9 23.2 40.88
OmniQuant (W4A4) 1.3 49.7 25.5 58.1 58.3 66.0 41.7 26.2 25.7 43.90
TriLM (1.58-bit) 1.1 46.2 23.9 55.5 56.5 64.1 39.2 24.7 24.5 41.83
TriLM (1.58-bit) 1.5 49.1 25.2 57.3 57.2 64.5 41.1 25.6 25.3 43.16

A.13 EFFECT OF TRAINING SCALE AND CONVERSATIONAL ABILITY

To validate the scalability of our SpikingLLM, we conducted experiments to assess the impact of in-
creased training data. Our initial 1B and 10B token training runs were conducted under constrained
GPU resources, primarily serving as a proof-of-concept. To further probe the potential of our model,
we scaled the training for the 125M and 1.3B models to 5B and 25B tokens, respectively. While
this scale is still modest compared to standard pre-training regimens, the use of knowledge distilla-
tion from a teacher model allows the student SpikingLLM to learn more effectively, mitigating the
extensive data requirements typically associated with training from scratch.

Table 8: Performance of SpikingLLM with varying training token counts.

Model Params
(B)

Tokens
(B)

Zero-shot Accuracy (%) ↑
ARC-e ARC-c WG BQ PIQA HS OBQA HQA Avg.

SpikingLLM-v1 (T=2) 0.125 1.0 39.1 18.9 50.3 52.7 56.7 28.1 19.8 22.9 36.05
SpikingLLM-v1 (T=2) 0.125 5.0 41.4 19.2 51.4 53.4 58.2 30.2 19.9 23.1 37.10

SpikingLLM-v1 (T=2) 1.300 10.0 45.7 23.5 54.2 56.3 62.3 40.2 24.5 24.0 41.33
SpikingLLM-v1 (T=2) 1.300 25.0 48.3 26.4 57.8 58.6 65.1 44.9 27.3 26.7 44.39

As shown in Table 8, increasing the training tokens yields significant performance gains. The aver-
age accuracy of the 125M model improved by 1.05% when trained on 5B tokens compared to 1B
tokens. More impressively, the 1.3B model’s average accuracy increased by 3.06% when scaling
from 10B to 25B tokens. These results demonstrate that SpikingLLM is not merely a small-scale
proof-of-concept but a model architecture that responds positively and effectively to increased train-
ing data, suggesting strong potential for further scaling.

To further investigate the training dynamics, we plot the training loss curves for our models. Fig-
ure 14 illustrates the loss progression for the 1.3B model trained on both 10B and 25B tokens. The
curves exhibit a smooth and consistent downward trend, indicating that our training process is sta-
ble and converges effectively. Notably, the model trained on 25B tokens continues to decrease its
loss to a lower final value, corroborating the quantitative performance gains observed in Table 8.
This stable convergence behavior across different training scales demonstrates the robustness of our
proposed SpikingLLM architecture and the effectiveness of the CSSA mechanism in facilitating the
optimization of spike-based language models.

Beyond quantitative metrics, we qualitatively evaluated the conversational abilities of our
SpikingLLM-1.3B model trained with 10B and 25B tokens. Table 9 presents sample responses
to a set of prompts. The 10B model exhibits basic conversational skills and can maintain a simple

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 14: Training loss curves for the SpikingLLM-1.3B model, comparing the 10B and 25B token
training regimes. The smooth downward trend confirms stable convergence.

dialogue. However, it fails to answer factual questions correctly, likely due to a lack of exposure
to that specific knowledge during its limited training. In contrast, the 25B model provides more
accurate and detailed responses, correctly answering the factual question about the U.S. capital
and generating more coherent and contextually relevant text. This qualitative improvement aligns
with the quantitative gains, underscoring the importance of training scale for developing the factual
knowledge and reasoning capabilities of spiking language models.

Table 9: Comparison of conversational abilities for SpikingLLM-v1-1.3B trained on different token
counts.

Prompt SpikingLLM-v1 (10B Tokens) SpikingLLM-v1 (25B Tokens)

Hi there! How are
you doing today?

Hi! How are you? I’m doing well.
How about you?

I’m doing great! I’m just tired as hell.
I went to bed at 11pm last night, and
now I’m up at 4am. I have a class to-
morrow morning at 7:30, so I have to
get up and go to class.

Where is the capital of
the United States?

It’s in the middle of the country. Washington, D.C.

How about the cat? I think it’s a good idea to have a cat in
the house.

I have a cat and he doesn’t like the
camera. I’ll send you a picture when
he is in the mood.

A.14 ANALYSIS OF LONG-CONTEXT DEPENDENCY AND SPARSITY

In the Continuous Spiking Self-Attention (CSSA) mechanism, information propagation relies on
spike-triggered updates of the attention state. Consequently, a higher sparsity level—achieved by
increasing the firing threshold or reducing the number of timesteps—can theoretically weaken the
transmission of long-range signals, potentially impairing the model’s ability to model long-distance
dependencies.

To empirically evaluate this, we conducted a sliding-window evaluation on the WikiText-2 dataset.
We compared our SpikingLLM-1.3B (T=4) and SpikingLLM-Llama-1.2B (T=4) models with vary-
ing firing thresholds against the full-precision OPT-1.3B and Llama-3.2-1.2B baselines. The models
were tested with context lengths of 512, 1024, 2048, 4096, and 8192 tokens, and the performance

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

was measured using Perplexity (PPL). For reference, the maximum supported context length for
OPT-1.3B is 2048. The results are presented in Table 10.

Table 10: Perplexity (PPL) on WikiText-2 with varying context lengths and firing thresholds. The
firing rate (sparsity) is shown in parentheses.

Model Params Threshold Context Length
512 1024 2048 4096 8192

OPT 1.3B - 16.26 13.58 11.13 - -
Llama-3.2 1.2B - 12.93 10.96 9.76 9.02 8.54

SpikingLLM-v1 1.3B
0.70 36.72 (0.184) 32.49 (0.183) 29.34 (0.181) - -
0.85 39.75 (0.177) 36.30 (0.175) 32.18 (0.174) - -
1.00 43.17 (0.163) 39.88 (0.162) 34.62 (0.160) - -

SpikingLLM-v1-Llama 1.2B
0.70 33.53 (0.198) 29.82 (0.195) 27.59 (0.194) 25.32 (0.192) 23.77 (0.190)
0.85 37.14 (0.186) 33.37 (0.185) 31.26 (0.185) 28.89 (0.183) 25.42 (0.181)
1.00 40.88 (0.174) 37.25 (0.172) 34.08 (0.171) 30.76 (0.171) 27.19 (0.168)

The results lead to several key observations. First, as the sparsity increases (i.e., the threshold rises
from 0.70 to 1.00), the PPL performance degrades across all context lengths. This confirms our
intuition that higher sparsity can impede the flow of information. However, the magnitude of this
degradation is moderate, suggesting that increasing sparsity within a certain range does not cause a
catastrophic collapse in long-context dependency handling.

And more intriguingly, for a fixed threshold, the PPL consistently decreases as the context length
increases. For instance, the SpikingLLM-v1-Llama model with a threshold of 0.70 improves from
a PPL of 33.53 at 512 tokens to 23.77 at 8192 tokens. This indicates that the natural increase in
sparsity caused by longer sequences has a negligible negative impact on the model’s capability. The
model retains its ability to extract global information from longer contexts.

Finally, we acknowledge that the current design of CSSA lacks specialized mechanisms for handling
extremely long contexts. We are actively working to address this limitation through future research
directions, such as adaptive spike scheduling and the integration of long-term memory neurons.
We believe these are engineering frontier challenges rather than fundamental obstacles and can be
progressively overcome in future work.

31

	Introduction
	Related Work
	SNNs in Downstream Tasks
	Knowledge Distillation

	Methods
	Problem Statement
	SpikingLLM Architecture
	Spiking Neuron Modules
	Causal Spiking Self-Attention (CSSA)
	Spike Feed-Forward Network (SFFN)

	Spike-Form Knowledge Distillation

	Experiments
	Training Details
	Model Evaluation
	Energy Consumption
	Ablation Study

	Conclusion
	Appendix
	Use of LLMs
	Algorithm Procedure of CSSA
	Detailed design of SKD
	Embedding Alignment
	Spike-Attention Alignment
	Spike-Feature Alignment
	Soft Target Alignment
	Hard Target Alignment
	Total Loss

	Training Details
	Surrogate Gradient
	Theoretical Synaptic Operation and Energy Consumption Calculation
	Comparison with SpikeLLM
	Firing Visualization
	Weight Visualization
	Outlier Analysis of Weight Distributions
	Total Number of Outliers
	Layer-wise Comparison

	Extending CSSA to Llama Architecture
	Comparison with Quantized ANNs
	Effect of Training Scale and Conversational Ability
	Analysis of Long-Context Dependency and Sparsity

