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Abstract

While queueing network models are powerful tools for analyzing service sys-
tems, they traditionally require substantial human effort and domain expertise to
construct. To make this modeling approach more scalable and accessible, we
propose a data-driven framework for queueing network modeling and simulation
based on autoregressive sequence models trained on event-stream data. Instead
of explicitly specifying arrival processes, service mechanisms, or routing logic,
our approach learns the conditional distributions of event types and event times,
recasting the modeling task as a problem of sequence distribution learning. We
show that Transformer-style architectures can effectively parameterize these distri-
butions, enabling automated construction of high-fidelity simulators. As a proof of
concept, we validate our framework on event tables generated from diverse queue-
ing networks, showcasing its utility in simulation, uncertainty quantification, and
counterfactual evaluation. Leveraging advances in artificial intelligence and the
growing availability of data, our framework takes a step toward more automated,
data-driven modeling pipelines to support broader adoption of queueing network
models across service domains.

1 Introduction
Queueing network models are powerful mathematical frameworks for understanding and managing
congestion in a wide range of service systems, such as call centers, hospitals, and ride-sharing
platforms [6, 9, 7, 10, 2]. By capturing the stochastic nature of demand and service processes in
resource-constrained environments, they enable performance analysis under uncertainty, evaluate
trade-offs between service quality and resource utilization, and support policy evaluation. When
closed-form analysis is intractable, stochastic simulation becomes the workhorse for estimating key
metrics and optimizing operations; in practice, these simulators often serve as the computational core
of digital twins that provide monitoring, forecasting, and what-if experimentation in congestion-prone
environments [12].
Despite these advantages, their adoption at scale is limited by the expertise required to select and
calibrate appropriate networks (e.g., service disciplines, routing rules, and network topologies). For
instance, modeling patient flow in hospitals has been the focus of many studies [1, 11, 5], each
grappling with the intricacies of capturing system-specific dynamics. This work investigates how
modern machine-learning (ML) infrastructure can lower these technical barriers across domains.
Modern information systems nowadays produce rich, high-resolution event tables that log sequences
of discrete events (transitions) along with their timestamps [6, 3]. For example, electronic health
records routinely encode full patient trajectories across care stages (Figure 1). These high-resolution
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Figure 1: Operational data recorded as event tables: discrete transitions with timestamps.

Table 1: Traditional versus data-driven modeling pipelines.
Traditional Pipeline Data-Driven Pipeline (Ours)
1. Select a queueing network model, e.g., 𝑀/𝑀/𝑛
or 𝑀/𝑀/𝑛+𝑀 .

1. Frame a single learning problem: predict the
next event and its time.

2. Calibrate parameters (arrival rate, service rate,
abandonment rate).

2. Fit a high-capacity sequence model via
stochastic gradient descent.

3. Code up a discrete-event simulator. 3. Generate trajectories by autoregressive sampling.

data streams invite a fundamental rethinking—instead of hand-crafting a structural model and coding
a discrete-event simulator, we can now learn a system’s dynamics directly and entirely from the data.
We propose a new approach termed data-driven stochastic modeling with autoregressive sequence
models: a generative framework that maps an event history to a distribution over the next event
type and its occurrence time (Table 1). In particular, inspired by the success of autoregressive
sequence models such as Transformers in modeling sequential data like natural language [13, 4],
we investigate how these architectures can be adapted to the event-stream setting that dominates
operations management. Once trained, the model acts as a black-box simulator, generating realistic
trajectories without requiring explicit knowledge of queues, service disciplines, or routing rules.
This paradigm offers three practical benefits: (i) Expressivity—it naturally captures non-Markovian
and cross-resource dependencies that are hard to encode analytically; (ii) Built-in uncertainty
quantification (UQ)—autoregressive sampling yields full predictive distributions enabling UQ; and
(iii) Versatility—a single trained model can support what-if analysis, policy evaluation, and policy
optimization without retraining. (The full version of the paper is available here.)

2 Conceptual Framework and Methodology
Operational data are typically available in the form of event tables, which record a sequence of events
along with their corresponding timestamps. Let the observed sequence of events and inter-event
times be denoted by {(𝐸𝑖 , 𝑇𝑖), 𝑖 = 1, ...}, where 𝐸𝑖 ∈ E denotes the type of the 𝑖th event, and 𝑇𝑖 is the
time elapsed between event 𝑖 − 1 and event 𝑖. We assume that this data is generated by an underlying
stochastic process 𝑋0:∞ = {𝑋 (𝑡) : 𝑡 ≥ 0} defined on the probability space (Ω, F , P) with 𝑋 (𝑡) taking
values in (S, Σ). The law on the path space (S [0,∞) ,G) is denoted by P. For any observed path
𝑥0:𝑡 = {𝑥(𝑠) : 0 ≤ 𝑠 ≤ 𝑡}, the conditional law of the future trajectory is denoted by P(· | 𝑥0:𝑡 ). In
many service systems, the underlying stochastic process takes the form of a jump process, where the
system visits discrete states for random durations: {(𝑆𝑖 , 𝑇𝑖), 𝑖 = 1, 2, · · · } with transition primitives:

P(𝑇𝑛 = 𝑡 | 𝑆1, 𝑇1, . . . , 𝑆𝑛) , P(𝑆𝑛+1 = 𝑠 | 𝑆1, 𝑇1, . . . , 𝑆𝑛, 𝑇𝑛) . (1)
Importantly, we do not assume any structural properties such as the Markov property and the process
is allowed to exhibit full path dependence. Event tables can be viewed as a simplified encoding of
the jump process, where states can be deduced from discrete events: given 𝑆1 and (𝐸1, . . . , 𝐸𝑛), one
can deterministically determine 𝑆𝑛+1, yielding dynamics directly in event space,

Ptime
𝑛 (𝑇𝑛) = P(𝑇𝑛 | 𝑆1, 𝑇1:𝑛−1, 𝐸1:𝑛−1), Pevent

𝑛 (𝐸𝑛) = P(𝐸𝑛 | 𝑆1, 𝑇1:𝑛−1, 𝐸1:𝑛−1, 𝑇𝑛), (2)
Thus the continuous-time trajectory 𝑋0:∞, the jump process {(𝑆𝑖 , 𝑇𝑖)}, and the event table
{𝑆1, 𝑇1, 𝐸1, 𝑇2, 𝐸2, . . .} are mathematically equivalent. We adopt the event-table view because typi-
cally |E | ≪ |S| and logging is natural in this format (e.g. 𝑀/𝑀/1 queue has only two events: arrival,
departure). The joint distribution over the inter-event times, and event types can be written as a product
of the autoregressive conditional distributions: P(𝑆1, 𝑇1:𝑛, 𝐸1:𝑛) = P0 (𝑆1)

∏𝑛
𝑖=1 P

time
𝑖

(𝑇𝑖) Pevent
𝑖

(𝐸𝑖).
The primary goal of a stochastic modeler is to simulate plausible trajectories of the service sys-
tem (𝑆1, 𝐸1:∞, 𝑇1:∞) ∼ P, enabling prediction or other downstream analyses (e.g., estimating wait
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times, counterfactual analysis). In traditional framework, an expert specifies a structural model
P̃ and then builds a discrete-event simulator. We instead learn the conditionals P𝑡𝑖𝑚𝑒𝑛 (𝑡) and
P𝑒𝑣𝑒𝑛𝑡𝑛 (𝑒) for all 𝑛 ≥ 1 directly from data. Let the conditional distributions be parameterized by
𝜙: 𝑃𝑡𝑖𝑚𝑒

𝜙,𝑛
(𝑇𝑛) and 𝑃𝑒𝑣𝑒𝑛𝑡

𝜙,𝑛
(𝐸𝑛). The resulting joint predictive model is given by 𝑃𝜙 (𝑆1, 𝑇1:𝑛, 𝐸1:𝑛) =

𝑃𝜙,0 (𝑆1)
∏𝑛
𝑖=1 𝑃

time
𝜙,𝑖

(𝑇𝑖) 𝑃event
𝜙,𝑖

(𝐸𝑖). The model 𝑃𝜙 is trained to approximate the true data-generating

distribution P by minimizing 𝐷kl

(
P(·) ||𝑃𝜙 (·)

)
= −E(𝑆1 ,𝐸1:∞ ,𝑇1:∞ )∼P [log 𝑃𝜙 (𝑆1, 𝐸1:∞, 𝑇1:∞)] + const.

We can further decompose this objective as:

−E𝑆1∼P0

[
log 𝑃𝜙,0 (𝑆1)

]
+

∑︁
𝑖≥1

−E𝑇𝑖∼Ptime
𝑖

[
log 𝑃time

𝜙,𝑖 (𝑇𝑖)
]
+

∑︁
𝑖≥1

−E𝐸𝑖∼Pevent
𝑖

[
log 𝑃event

𝜙,𝑖 (𝐸𝑖)
]
.

Training and simulation: Given 𝐾 event tables, each of length 𝑁 , generated from a service
system P(·), we train our model by minimizing the objective L(𝜙) = 1

𝐾

∑𝐾
𝑗=1{− log 𝑃𝜙,0

(
𝑆
( 𝑗 )
1

)
−∑𝑁

𝑖=1 log 𝑃time
𝜙,𝑖

(
𝑇
( 𝑗 )
𝑖

)
−∑𝑁

𝑖=1 log 𝑃event
𝜙,𝑖

(
𝐸

( 𝑗 )
𝑖

)
}, using (stochastic) gradient descent. Once trained, the

sequence model can be used to generate system trajectories in an autoregressive manner (Fig. 2) from
𝑃𝜙 (· | 𝑆1, 𝑇1:𝑛, 𝐸1:𝑛). We adopt Transformer [13] as the backbone of our sequence model, motivated
by its scalability and accessibility [4, 8]. Crucially, our methodology is model-agnostic and can be
adapted to any future deep-learning architecture that offers greater computational efficiency.

Figure 2: Two stages of implementing our approach.

Generalizing the formulation: Our formulation naturally extends to incorporate parameter un-
certainty 𝜃 ∼ 𝜇, as well as the control policy 𝜋 by defining the process law as P(𝑋0:∞ | 𝜋) =∫
𝑃𝜋,𝜃 (𝑋0:∞) 𝑑𝜇(𝜃). Under this setting, the conditional distribution is given by Ptime

𝑛 (𝑇𝑛 | 𝜋) =∫
𝑃𝜋,𝜃 (𝑇𝑛 | 𝑆1, 𝑇1:𝑛−1, 𝐸1:𝑛−1) 𝑑𝜇(𝜃 | 𝑆1, 𝑇1:𝑛−1, 𝐸1:𝑛−1, 𝜋). Similarly we can define Pevent

𝑛 (𝐸𝑛 | 𝜋).

3 Experiments and Theoretical Insight
In this section we present a rigorous empirical evaluation of our approach across a range of down-
stream tasks, and a key theoretical insight into the performance of a trained sequence model.
Empirical validation. We begin by validating our methodology on canonical Markovian parallel
server queues, such as multi-class 𝑀/𝑀/𝑛 queues, under different scheduling policies. We then
demonstrate its scalability to more complex settings, including non-Markovian queues such as𝐺/𝐺/1
queue and non-stationary systems such as 𝑀𝑡/𝑀/𝑛 queue. Additionally, we conduct a case study
using real-world call center data, involving a tandem queueing network with customer abandonment
and multiple customer classes. In all experiments, we train a Transformer on event–time sequences
Dtrain = {(𝑆 ( 𝑗 )1 , 𝑇

( 𝑗 )
1 , 𝐸

( 𝑗 )
1 , . . . , 𝑇

( 𝑗 )
𝑁
, 𝐸

( 𝑗 )
𝑁

) : 1 ≤ 𝑗 ≤ 𝐾}, generated by a discrete-event simulator
from the target system. To evaluate the Transformer’s performance, we generate trajectories using the
trained Transformer and compare the resulting distributions of key performance metrics (e.g. inter-
arrival times, service times, and waiting times) with those obtained from the ground-truth simulator.
As shown in Figure 3, the results demonstrate strong alignment. These experiments demonstrate the
flexibility of our Transformer-based approach in modeling a broad range of queueing dynamics.
Uncertainty quantification. We further evaluate our method’s ability to quantify uncertainty in
performance metrics when the system’s transition dynamics are uncertain. To this end, we consider
a 𝑀/𝑀/1 queue where the parameters 𝜃 := (arrival rate, service rate) are sampled from a prior. We
train the transformer-based model on data generated under these priors. For evaluation, we compare
the posterior distributions of trajectory-level averages (e.g. waiting times) produced by our model to
those obtained by traditional Bayesian inference approach (Oracle). We observe a strong agreement
between the two (Figure 3), confirming our method’s natural ability to quantify uncertainty.
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Counterfactual simulation for staffing (𝑀𝑡/𝑀/𝑁). We also showcase our method’s capability
for counterfactual analysis, a key prerequisite for policy optimization in service operations. We
consider an 𝑀𝑡/𝑀/𝑁 service system, where the arrival rate varies each day, characterized by a
day-specific baseline 𝑐. The objective is to determine how many servers 𝑁 ∈ {2, 3, . . . , 20} to
employ. Conditioned on the baseline 𝑐 and each candidate server 𝑁 , the trained transformer model
generates counterfactual trajectories to estimate time-varying waiting times. As illustrated in Figure
3, the model’s estimates closely align with those from a discrete-event simulator, enabling efficient
and data-driven staffing decisions.

M/M/5: Class-5 waiting time G/G/1: Waiting time 𝑀𝑡/𝑀/𝑛: Average waiting time

Call center: Class-4 waiting time UQ (M/M/1): Average waiting time Counterfactual: 𝑁=5, 𝑐=2 waiting time

Figure 3: Representative results from experiments
Data requirements and towards foundation models: Naturally, the flexibility of our method comes
at a cost of increased data demand, a condition increasingly satisfied in modern service systems.
For M/M/1 we require ∼1k–2k event tables, M/M/5 needs ∼3k–4k for comparable convergence.
As expected, required data increases with structural/event-type complexity. When real-world data
are scarce, a promising alternative is to generate synthetic event data using high-fidelity simulators
for pretraining foundation models of service systems, which can then be fine-tuned to specific
environments with smaller amounts of domain-specific data. We conduct a preliminary experiment
with a Transformer pretrained across four three-node networks and observe effective in-context
adaptation: with only 10–15 context events it typically infers the correct network and generates valid
continuations. This suggests scalable, general-purpose queueing simulators are feasible.

Key theoretical insight: We study how accurately a trained sequence model 𝑃𝜙 ( 𝑋0:𝑡 ∼ 𝑃0:𝑡 )
estimates a performance functional 𝑓 (e.g., average waiting time) relative to the true process P. To
enable theoretical analysis, we assume that both P and 𝑃𝜙 are mixtures over a family of positive
Harris recurrent Markov processes {𝑃𝜃 }, satisfying standard regeneration and moment conditions,
but differing in their respective mixing measures 𝜇(𝜃) and 𝜇(𝜃). For time-averaged metrics 𝑓 (𝑋0:𝑡 ) =
1
𝑡

∫ 𝑡
0 ℎ(𝑋𝑠) 𝑑𝑠, the limit 𝑓 (𝜃) exists almost surely under 𝑃𝜃 . Our main result establishes,

𝑊1
(
𝑓 (𝑋0:𝑡 ), 𝑓 (𝜃)

)
≤ 𝑐1

√︁
𝐷kl (𝜇 ||𝜇) + 𝑐2/

√
𝑡 for all 𝑡 > 0.

The first term on right-hand side, quantifies the error arising from imperfect learning; and we note
that 𝐷kl

(
P0:𝑡 ||𝑃0:𝑡

)
→ 𝐷kl (𝜇 ||𝜇). The second term (order 𝑡−1/2) captures approximation error

induced by the finite prediction horizon which persists even with a perfect model for finite 𝑡. In
essence, model’s utility is governed by our ability to minimize its training loss. Encouragingly,
modern machine learning practices are well-suited to minimizing such losses effectively at scale.
Conclusion: In this work, we propose a novel framework for stochastic modeling that leverages
autoregressive sequence models to learn system dynamics directly from event-stream data. This
approach significantly lowers the barrier to access for sophisticated stochastic modeling, enabling
the development of high-fidelity simulators using modern AI tools and readily available operational
data. Promising directions for future research include the development of queueing foundation models
and the integration of learned simulators with policy optimization for automated decision-making.
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