
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEQUENTIAL DIFFUSION LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion language models (DLMs) have strong theoretical efficiency but are lim-
ited by fixed-length decoding and incompatibility with key-value (KV) caches.
Block diffusion mitigates these issues, yet still enforces a fixed block size and re-
quires expensive training. We introduce Next Sequence Prediction (NSP), which
unifies next-token and next-block prediction, enabling the model to adaptively de-
termine the generation length at each step. When the length is fixed to 1, NSP re-
duces to standard next-token prediction. Building on NSP, we propose Sequential
Diffusion Language Model (SDLM), which can retrofit pre-trained autoregressive
language models (ALMs) at minimal cost. Specifically, SDLM performs diffu-
sion inference within fixed-size mask blocks, but dynamically decodes consecu-
tive subsequences based on model confidence, thereby preserving KV-cache com-
patibility and improving robustness to varying uncertainty and semantics across
the sequence. Experiments show that SDLM matches or surpasses strong autore-
gressive baselines using only 3.5M training samples, while achieving 2.1× higher
throughput than Qwen-2.5. Notably, the SDLM-32B model delivers even more
pronounced efficiency gains, demonstrating the strong scalability potential of our
modeling paradigm. Code and models will be released.

1 INTRODUCTION

In recent years, diffusion models have made significant progress in computer vision, dominating
various fields such as image generation (Ho et al., 2020; Rombach et al., 2022) and robot con-
trol (Chi et al., 2023; Kapelyukh et al., 2023). This successful paradigm has recently emerged as
a potential solution for language modeling, i.e., diffusion language models (DLMs). Compared to
autoregressive language models (ALMs), DLMs generate tokens in parallel through a denoising
process, showing superior theoretical efficiency. However, DLMs are also criticized for its fixed
decoding length and inability to use KV cache (Radford et al., 2019).

To address these limitations, it is a natural thought to combine the benefit of DLM and ALM, similar
to existing efforts like Block Diffusion (Arriola et al., 2025). Specifically, Block Diffusion reformu-
late the next token prediction of ALM as the next block prediction, where tokens in each block are
decoded in a diffusion manner. In this case, Block Diffusion not only preserve the autoregressive
property for flexible and robust prediction, while also exploiting diffusion-style parallel prediction
for better efficiency.

Despite the effectiveness, Block Diffusion models still remain two practical limitations. Firstly,
the block size is fixed in block diffusion models, which means that the model should predict a
constant number of tokens in each step. However, the distribution of certainty and semantics varies
across the entire sequence, typically requiring adjusting the suitable block size in predicting different
subsequences. As shown in Figure 1(b), a fixed block size easily fails in token prediction that
requires previous context information. Secondly, both the DLM and the block diffusion model
require training from scratch and cannot be easily developed from a pre-trained ALM. This not only
leads to significant training costs but also creates obstacles for developing larger models.

In this paper, we introduce Next Sequence Prediction (NSP), a general form of next token prediction
and next block prediction. Specifically, NSP defines an autoregressive probability distribution for
sequences of discrete random variables. As shown in Figure 1(c), NSP predicts future sequences of
variable length, where a sequence can be either one token or a block of tokens. At each step, NSP
decodes the tokens in the sequence in a diffusion manner. Therefore, NSP can dynamically adjust

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Success starts with every

Success singlestarts with every

Success singlestarts stepwith every

Decoded TokenMask Token

Cached Token

<mask> <mask> <mask> <mask>

Success <mask> with <mask>

Success starts with every

Success <mask> <mask> <mask>

Success singlestarts with the

Success singlestarts stepwith a

(a) Autoregression Language Model (b) Block Diffusion Language Model

(c) Sequential Diffusion Language Model

.

Success <mask>starts <mask>with <mask>

Discarded Token

Step 𝑡𝑡

Step 𝑡𝑡 + 1

(d) Faster Decoding vs. Performance across Models

<mask> <mask> <mask> <mask>

fixed size

dynamic size

dynamic size

Figure 1: Comparison of decoding paradigms. (a) ALMs: decode one token at a time. (b) DLMs
(e.g. Block Diffusion): decode all tokens in a fixed block before moving to the next. (c) SDLM
(Ours): dynamically predicts a contiguous subsequence within a fixed block. (d) Performance vs.
Speed: MATH-500 results showing trade-off between speed (TPS) and accuracy.

its decoding sequence size according to the difficulty and semantics of future sequences. When
the length of the prediction sequence is always 1, NSP degenerates to next-token prediction. This
property allows NSP to seamlessly adapt to existing pre-trained ALMs with cheap costs.

Based on the principle of NSP, we propose Sequential Diffusion Language Models (SDLMs) with
innovative training and inference strategies. As shown in Figure 2, SDLMs are developed based on
a pre-trained ALMs, employing a novel parallel block training approach to extend next token pre-
diction to next sequence prediction. In parallel block training, we use a custom attention mask that
makes the prefix and the current block visible to each prediction window, enabling parallel training
over multiple future blocks. During inference, SDLM predicts a fixed-length block at each step and
then dynamically decodes a continuous subsequence via a confidence scheme based on threshold or
verification. Unlike our concurrent work, Samragh et al. (2025) employs gated LoRA with next-
token and multi-token prediction losses, whereas we use NTP cross-entropy loss for full supervised
fine-tuning. For sampling, we apply bidirectional attention with confidence-based decoding, without
extra sampling heads.

To validate our approach, we construct different scales of LLMs and conduct extensive experiments
on 13 benchmarks across general, math, knowledge and coding tasks. Experiments show that our
SDLMs achieve on-par performance with existing ALMs with much faster speed, e.g., 2.1× faster
than Qwen-2.5-3B (Team, 2024). Compared to existing DLMs, our SDLMs demonstrate compre-
hensive advantages in performance, efficiency, and training costs. For example, SDLM-3B sig-
nificantly outperforms DLMs like Dream-7B (Ye et al., 2025) and LLaDA-8B (Nie et al., 2025b)
across multiple benchmarks, while requiring far less training compute and yielding substantially
higher inference speed. More importantly, the scalability of SDLMs is validated on the larger mod-
els, i.e., Qwen-2.5-32B, requiring only 3.5M training samples. In summary, our contributions are
three-folds:

• We introduce Next Sequence Prediction (NSP) as a general form of next token prediction
and next block prediction. NSP not only combines the advantage of autoregressive models
and diffusion models, while providing a practical way to relax the fixed block-size con-
straint in prior block diffusion models.

• Based on NSP, we deploy Sequential Diffusion Language Models (SDLMs) through a novel
parallel block training method. SDLMs employ a customized attention mask where each
block is visible to its prefix and itself, enabling parallel training and dynamic variable-
length sequence generation via threshold- or verification-based selection.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Extensive experiments not only demonstrate the effectiveness and efficiency against exist-
ing ALMs and DLMs, but also confirm its scalability on large-scale models. In particular,
with only 3.5M training samples, our SDLMs achieves comparable performance and nearly
2× speedup against Qwen-2.5-32B-SFT.

2 RELATED WORK

2.1 AUTOREGRESSIVE LLMS AND MULTI-TOKEN PREDICTION

Autoregressive large language models (ALMs), such as GPT (Radford et al., 2018; OpenAI, 2022;
2024), LLaMA series (Touvron et al., 2023a;b; Grattafiori et al., 2024; Chiang et al., 2023), Qwen
series (Bai et al., 2023; Yang et al., 2024; Team, 2024; Yang et al., 2025) and other advanced
LLMs (DeepMind, 2025; Team et al., 2025; xAI, 2025; Anthropic, 2023; Liu et al., 2024), generate
text in a token-by-token manner and have demonstrated strong performance across a wide range
of language tasks, including question answering, code generation, mathematical problem solving
and dialogue systems. However, this strictly sequential decoding process limits generation speed.
To mitigate this, KV Cache has been introduced to store previously computed attention keys and
values, avoiding redundant computations and significantly improving inference efficiency.

To address the limitations of serial decoding, multi-token prediction (MTP) (Cai et al., 2024;
Gloeckle et al., 2024; Liu et al., 2024) enables the model predict multiple future tokens in paral-
lel via multiple output heads. These parallel predictions can be used with speculative decoding (Xia
et al., 2022; Stern et al., 2018) to validate multiple candidates and greatly reduce forward steps. For
example, DeepSeek-V3 shows up to 3× faster inference with MTP with speculative decoding.

2.2 DIFFUSION LANGUAGE MODELS

Recent diffusion models have shown increasing potential in language tasks. Masked discrete diffu-
sion models (MDMs) (Zheng et al., 2023; Gong et al., 2024; Ou et al., 2024; Nie et al., 2024) have
achieved perplexity comparable to ALMs. LLaDA (Nie et al., 2025a) further scales MDMs to 8B pa-
rameters, matching state-of-the-art ALMs. Dream (Ye et al., 2025) adopts shifted prediction and au-
toregressive initializes, effectively reducing training costs while also delivering strong performance.
Block Diffusion (Arriola et al., 2025) introduces block-level generation for variable-length decoding
with KV cache reuse. Gemini Diffusion (Google DeepMind, 2025) and Seed Diffusion (Song et al.,
2025) further improve speed while narrowing the gap with ALMs.

Although recent acceleration technologies such as dKV-Cache (Ma et al., 2025), Fast-dLLM (Wu
et al., 2025), and dLLM-Cache (Liu et al., 2025) attempt to use approximate KV caching mecha-
nisms to accelerate DLM inference, these methods still suffer from substantial computational over-
head caused by padding the sequence to the maximum sequence length for each forward computa-
tion.

3 METHODS

3.1 PRELIMINARY AND NOTATION

In autoregressive large language models (ALMs) (OpenAI, 2024; Grattafiori et al., 2024; Yang et al.,
2025; DeepMind, 2025), text generation is typically modeled as a conditional probability chain,
referred to as the next-token prediction paradigm. Given a sequence of input tokens {x1, ..., xL},
the objective is to minimize the cross-entropy loss:

LALM(x; θ) = −Ex

[
L∑

i=1

logPθ(x
i | x<i)

]
, (1)

where the model Pθ(· | x<i) aims to maximizes the conditional probability of the current word by
leveraging the preceding context x<i = x0, . . . , xi−1.

In contrast, diffusion language models (DLMs) (Ou et al., 2024; Nie et al., 2025a; Ye et al., 2025)
generate outputs by progressively denoising from a fully noisy state in parallel. Block Diffusion (Ar-
riola et al., 2025) are a specialized DLM variant that constrains the diffusion operation to proceed

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

sequentially in blocks. At each time step t, the model receives a noisy block Xi
t = x

iD:(i+1)D
t and

predicts all masked tokens (denoted as [m]) within a block of length D, formally defined as:

LBD(X; θ) = −
L/D∑
i=1

Et∼[0,1]Eq
α′
t

1− αt
logPθ(X

i|X<i, Xi
t), (2)

where X denotes the ground-truth, q is the forward masking process that gradually corrupts to-
kens, αt ∈ [0, 1] is the probability of keeping (not masking) a token at time t so that the masking
probability is 1− αt, and α′

t is the instantaneous rate of change of αt in continuous time.

3.2 SEQUENTIAL DIFFUSION LANGUAGE MODELS

In DLMs, the entire sequence is predicted in parallel based on confidence scores. This can result
in premature and inaccurate predictions for later tokens, imposing greater demands on the model’s
robustness. But predictions for tokens at lower position indices generally benefit from more reliable
contextual information and introduce less bias (Wang et al., 2024). Meanwhile, the distribution
of certainty and semantics varies across the entire sequence. To this end, we introduce the Next
Sequence Prediction (NSP) paradigm, which aims to dynamically adjust the size of the decoding
sequence at each step based on the difficulty and semantics of the future sequence.

Based on the above understanding, we propose the Sequential Diffusion Language Models (SDLM)
to reduce error accumulation in diffusion-based generation and improve parallel prediction effi-
ciency. As shown in Figure 1(c), the model adopts bidirectional attention similar to Block Diffu-
sion to understand the semantic information in the future fixed-length noise block Xi

T . Differently,
SDLM masks all tokens in the prediction block (masking probability = 1) and is trained by mini-
mizing the cross entropy of all masked tokens. The training objective is formalized as:

L(X; θ) = −EX,XT

[
1

D

∑
i

logPθ

(
Xi | x<(i−1), Xi

T

)]
,

Xi = xi:(i+D), Xi
T = [xi−1, [m], ..., [m]︸ ︷︷ ︸

D−1

],
(3)

where i denotes a random index within the target sequence, since dynamic length inference makes
the decoding start position non-fixed. To better unify next token prediction and block prediction, we
continue to employ standard AR’s one-position shift between input IDs and labels.

During inference, we introduce Longest Prefix Decoding, which uses low-order position priors,
to decode the next sequence based on model’s confidence. Specifically, at each step, the model
perceives history x<(i−1) and produces fixed-length future logits Zi = [z1i , . . . , z

D
i] ∈ RD×|V| over

vocabulary V , ultimately decoding only the first γτ (Zi) tokens. In the next step, predictions are
repeated starting from the previous step’s end position. The formalization is as follows:

X̂i = Decode
(
Zi, γτ (Z

i)
)

(4)

where γτ (Z
i) determines the adaptive sequence length to be decoded (with 1 ≤ γτ (Z

i) ≤ D),
and Decode(·) denotes extracting the next γτ (Zi) contiguous tokens from Zi, which we denote
as X̂i. The maximum sequence length function γτ (·) is detailed in Section 3.4. This adaptive
length mechanism can effectively balance generation efficiency and quality based on text’s semantic
richness and uncertainty.

3.3 TRAINING

As noted in Section 3.2, when the block size is 1 our model reduces to the autoregressive paradigm,
allowing reuse of pretrained ALM weights and cut training costs. From the perspective of instruction
fine-tuning, we define the input as S = [X;Y], where X is the prefix and Y the response.

Training. During training, we partition Y into blocks at random positions to train the model’s
prediction capabilities at different starting positions. As shown in the Equation 3, for a starting posi-
tion i, we construct a noise block Y i

T = [yi−1, [m], . . . , [m]] and predict the next fixed-length block

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Causal Attention Bidirectional Attention Not Visible

(a) (b)

Prefill

𝑥𝑥0 𝑥𝑥𝑢𝑢 𝑥𝑥𝑢𝑢 𝑚𝑚 𝑚𝑚 𝑚𝑚

𝑦𝑦1 𝑦𝑦2 𝑦𝑦3

……

…

𝑥𝑥0

𝑥𝑥𝑡𝑡

𝑦𝑦1Prompt Token

Last Decoded Token

Mask TokenDecoded token 𝑚𝑚

Discarded Token|E| EOS Token

Decode

Cache Cached K/V

K/V Cache
𝑦𝑦1 𝑦𝑦2 𝑦𝑦3 𝑦𝑦3 𝑚𝑚 𝑚𝑚 𝑚𝑚

𝑦𝑦4 𝑦𝑦5

K/V Cache
𝑦𝑦4 𝑦𝑦5 𝑦𝑦5 𝑚𝑚 𝑚𝑚 𝑚𝑚

𝑦𝑦6

K/V Cache
𝑦𝑦𝑣𝑣−2 𝑦𝑦𝑣𝑣−2 𝑚𝑚 𝑚𝑚 𝑚𝑚

𝑦𝑦𝑣𝑣−1

𝑥𝑥1 𝑥𝑥2 𝑦𝑦1 𝑦𝑦3 |E|𝑦𝑦2 𝑦𝑦4 𝑦𝑦5 𝑦𝑦6 𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑦𝑦4 𝑚𝑚 𝑚𝑚𝑥𝑥2

𝑥𝑥1
𝑥𝑥2
𝑦𝑦1
𝑦𝑦2

|E|

𝑦𝑦3
𝑦𝑦4
𝑦𝑦5
𝑦𝑦6

𝑚𝑚
𝑚𝑚
𝑚𝑚
𝑦𝑦4
𝑚𝑚
𝑚𝑚

𝑥𝑥2

Prompt Response

0 1 2 4 83 5 6 7 2 3 4 5 6 71
𝑦𝑦2 𝑦𝑦4 𝑦𝑦5𝑦𝑦3 |E|𝑦𝑦1

𝑚𝑚

8

𝑚𝑚

… …

K/V Cache
𝑦𝑦6 𝑦𝑦6 𝑚𝑚 𝑚𝑚

𝑦𝑦6

Inputs

Position
Labels

𝑚𝑚

𝑦𝑦7

𝑦𝑦𝑣𝑣 |E|

𝑦𝑦6

Figure 2: Structured attention mask for parallel block training and sampling. (a) Reordered
input yields a mask with causal prefix (top-left), visible cross-block prefix (bottom-left), and intra-
block bidirectional attention (bottom-right). (b) Confidence-based next sequence prediction with KV
reuse. A block of D tokens is predicted with D−1 masks. The longest high-confidence subsequence
is selected as dynamic output. Cached KV states enable efficient decoding.

Y i = yi:(i+D) (simplified as Y i = [y1i , . . . , y
D
i]) by shifting. A bidirectional attention mechanism

is used within the block for feature information, which serves as the basis for decoding dynamic-
length sequences. For historical information, we maintain casual attention as ALMs. Therefore, for
a single noise block Y i

T , we can construct a custom attention mask A ∈ {0, 1}(i+D)×(i+D):

Auv = 1v≤u ⊕ 1u≥i∩v≥i (5)

This enforces strict causality for u < i and full mutual attention for u, v ≥ i.

Parallel Training. To enable efficient parallel training, we construct the sequence by interleaving
noise blocks and target blocks as:

ST = concat(X, I1 · Y 1
T , Y

1︸ ︷︷ ︸
Block 1

, . . . , Ii · Y i
T , Y

i︸ ︷︷ ︸
Block i

, . . .) (6)

where Ii ∈ {0, 1} is a random indicator variable that controls whether a noise block Y i
T is inserted

at the current starting position i to predict the ground-truth block Y i. Each noise block Y i
T attends

only within itself, while Y i is visible as prefix to later blocks but not vice versa, ensuring causality
through attention constraints and positional encodings.

Since transformers rely on positional encodings, by rearranging S, the attention mask forms three
parts as shown in Figure 2: (1) causal attention (top-left), (2) visible prefixes for each block (bottom-
left), and (3) bidirectional attention within blocks (bottom-right). To improve training efficiency, we
can concatenate any number of noise blocks after the target sequence within max sequence length.
The sparse attention structure allows flex attention (Dong et al., 2024) to accelerate training.

3.4 INFERENCE

As described in Equation 4, we introduce the Longest Prefix Decoding method for dynamic length
decoding based on low-order position priors. We primarily rely on the model’s confidence in its
inferences as the basis to refine the length function γ(·), and design two types of decoding strategies:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Greedy Decoding. We implement γτ through a confidence-based stopping rule that identifies the
longest prefix satisfying:

γτ (Z
i) = max

({
j ∈ {1, 2, . . . , D} |

j∏
k=1

p(zki) ≥ τ

}
∪ {1}

)
(7)

where p(zki) quantifies confidence at position k (where zki ∈ R|V| is the position-k logit vector), and
τ is a predefined threshold. This approach greedily decodes at most j tokens (j ≥ 1) whose cumu-
lative product of confidence scores is greater than τ . We explore two distinct confidence functions:

(1) Logit Value Confidence. This metric uses the softmax probability of the decoded token v at
position k, to capture the model’s per-token confidence in its top prediction:

plogit(z
k
i) = softmax(zki)v (8)

(2) Entropy-Normalized Confidence. While plogit provides a pointwise confidence signal, it over-
looks distributional ambiguity. Inspired by Wang et al. (2025) that higher predictive entropy corre-
lates with forking behavior during generation, we employ an entropy-based confidence score:

pentropy(z
k
i) = 1− Hp

log |V|
, where Hp = −

|V|∑
n

pn log pn (9)

Here, pn is the softmax probability of the n-th word. Then, the entropy Hp is normalized by log |V|.
Lower entropy indicates higher confidence, while higher entropy reflects more uncertainty.

Self-Speculative Decoding. Following the speculative decoding (Stern et al., 2018), we decode
multiple tokens in parallel and verify their correctness through self-consistency checks. In each step,
the model produces D speculative tokens Ŷ i = [ŷ1i , . . . , ŷ

D
i] (where ŷki denote the k-th decoded

token of block i) in an initial forward pass. To validate them, D verification inputs are constructed
by progressively extending prefixes of the sampled tokens, appending mask [m] at the first unverified
position and padding to form a batch. A second forward pass then yields corresponding predictions
Ỹ i = [ỹ1i , . . . , ỹ

D
i]. The decoding sequence length is determined by the consistency-driven function:

γverify(Z
i) = max

({
j ∈ {1, 2, . . . , D} | ŷji = ỹji

}
∪ {1}

)
(10)

Compared to confidence-based truncation via γτ , which relies on local heuristics, self-speculative
decoding performs explicit consistency checks for self-verification without external models, offering
greater reliability at the cost of an additional forward pass.

4 EXPERIMENTS

4.1 SETTING

To ensure a fair comparison, we fine-tune the Qwen-2.5 base model (Team, 2024) with all open-
source instruction datasets (3.5 million samples, 2.3 billion tokens), covering math, code, and
instruct-following. We compare SDLM against same-scale ALMs (Qwen2.5-3B/32B-Instruct, fine-
tuned verison of Qwen2.5-3B/32B under the same setting), and larger DLMs like Dream-7B-Instruct
and LLaDA-8B-Instruct across benchmarks spanning general, mathematics, science, and coding
tasks. All evaluated with OpenCompass (Contributors, 2023) under standardized settings. Details
about training and evaluating can be found in Appendix A.

4.2 MAIN RESULTS

Table 1 shows the performance and inference efficiency of our SDLM, trained in a single epoch on
only 3.5M samples. SDLM-32B attains 92.4 on GSM8K, 74.2 on MATH-500, and 78.6 on IFEval,
while remaining competitive on coding tasks. The SDLM-3B performs on par with or even surpasses
Qwen-2.5-3B-SFT, and significantly outperforms larger DLMs such as LLaDA-8B and Dream-7B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance of instruct models across 8 long-form tasks. Numbers in parentheses (#)
denote the speedup ratio: average tokens per pass vs. ALMs (1 token per pass). Results marked by
† and ¶ are from Team (2024) and Ye et al. (2025) respectively. “–” indicates unknown data.

Model Name GSM8K MATH GPQA HumanEval HumanEval+ MBPP MBPP+ IFEval Avg.

ALMs

Qwen-2.5-3B† 86.7 65.9 30.3 74.4 – 72.7 – 58.2 –
Qwen-2.5-3B-SFT 85.8 59.8 27.8 73.8 60.4 68.5 42.6 62.1 60.1
Qwen-2.5-32B † 95.9 83.1 49.5 88.4 – 84.0 – 79.5 –
Qwen-2.5-32B-SFT 93.2 74.8 33.8 82.9 76.2 82.1 59.0 76.5 72.3

DLMs

LLaDA-8B¶ 78.6 26.6 31.8 47.6 – 34.2 – 59.9 –
Dream-7B¶ 81.0 39.2 33.0 55.5 – 58.8 – 62.5 –

SDLM-3B (D = 4)
τ = .98

84.6 60.8 28.3 67.1 59.8 65.4 40.5 57.1 57.9
(2.15) (2.18) (2.26) (1.91) (1.76) (1.66) (1.78) (1.38) (1.89)

τ = .82
84.5 57.8 28.3 66.5 60.4 65.0 40.0 55.8 57.3

(2.75) (2.73) (2.66) (2.53) (2.25) (2.30) (2.29) (1.58) (2.39)

SDLM-32B (D = 4)
τ = .98

92.4 74.2 36.4 81.1 73.8 80.9 58.2 78.6 71.9
(2.15) (2.35) (2.34) (2.05) (2.29) (1.56) (1.51) (1.25) (1.94)

τ = .82
92.3 73.0 36.9 79.9 73.2 80.9 57.1 78.2 71.4

(2.71) (2.88) (2.61) (2.82) (2.72) (2.17) (2.25) (1.43) (2.45)

In terms of generation efficiency, SDLM generate about 2 tokens per forward pass, reducing latency
to about two-thirds of comparable ALMs. Taking GSM8K as an example, SDLM-32B at τ = 0.98
achieves accuracy 92.4 (vs. 93.2 for its same-scale SFT counterpart) while generating 2.15 tokens
per step. Lowering τ to 0.82 further increases token output to 2.71 with only a 0.1 pct accuracy drop,
highlighting an attractive speed-accuracy tradeoff. SDLM-3B follows a similar trend on GSM8K
with minimal performance drop as τ is lowered. This trend holds across all benchmarks, where
lowering τ consistently increases token generation while maintaining competitive performance. The
effect and robustness of different τ values are ablated in Section 4.3.

Table 2: Performance of instruct models across 5 gen-
eral mutiple-choice tasks.

Model Name MMLU Winogrande Hellaswag ARC-C ARC-E

ALMs

Qwen-2.5-3B-SFT 67.6 60.8 75.3 83.1 91.4
Qwen-2.5-32B-SFT 83.7 78.0 92.4 94.2 99.1

DLMs

LLaDA-8B 65.5 – 74.6 88.5 –
Dream-7B 67.0 – – – –

SDLM-3B (D = 4) 66.3 60.2 74.2 82.7 92.0
SDLM-32B (D = 4) 82.8 79.2 92.0 94.9 98.9

In terms of short-answer benchmarks
shown in Table 2, SDLM-32B performs
within 1 ptc of its autogressive counter-
part across MMLU, Winogrande, and
Hellaswag, while SDLM-3B matches
Qwen-2.5-3B-SFT on these bench-
marks. This demonstrates that SDLM
retains the semantic and reasoning abil-
ities of the base ALMs while enabling
more efficient parallel decoding, con-
firming that our diffusion training pre-
serves the base model’s NTP capability.

Overall, SDLM delivers “near-SFT ac-
curacy with significant inference accel-
eration” at both 3B and 32B scales, proving that NSP generation can stably converge in large-model
regimes and providing a solid foundation for future work with larger parameters, longer training,
and wider blocks.

4.3 TRADE-OFF BETWEEN SPEEDUP AND PERFORMANCE

Existing DLMs (Nie et al., 2025a; Ye et al., 2025) exploit parallel token generation but face a key
trade-off: generating one token per step maintains quality, while producing multiple tokens often
degrades it. Moreover, the reliance on fixed-length noise sequences constrains flexibility and limits
practical efficiency gains over ALMs. In contrast, SDLM only concatenate a block-length masks
per step, incurring minimal overhead compared to NTP inference.

Figure 3 shows the speed-performance trade-off with varying confidence threshold τ across
GSM8K, MATH-500 and HumanEval+. As τ decreases, SDLM generates more tokens per step,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Trade-off between performance and speed under different inference setting for
SDLM-3B (D = 4) and SDLM-3B (D = 8). Adjusting τ allows a controllable trade-off between
speed and performance. SpeedUp denotes the average number of tokens output per forward pass.

Table 3: SDLM-3B (D = 8) with larger block size and sampling with self-speculative de-
coding. (a) Larger blocks yield higher throughput with only minimal performance degradation. (b)
With self-speculative decoding, the average accepted tokens per step (in green) significantly exceeds
greedy decoding with threshold (Conf. τ).

Model Name GSM8K MATH HumanEval+ MBPP MBPP+ Avg.

Qwen-2.5-3B-SFT (AR) 85.8 59.8 60.4 68.5 42.6 63.4

SDLM-3B
(D = 4)

Conf. τ = .98
84.6 60.8 59.8 65.4 40.5 62.2

(2.15) (2.18) (1.76) (1.66) (1.78) (1.91)

Speculative. 85.1 61.2 58.4 65.8 40.5 62.2
(3.62) (3.54) (3.40) (3.29) (3.23) (3.42)

SDLM-3B
(D = 8)

Conf. τ = .98
83.3 58.4 59.2 64.2 39.7 61.0

(2.52) (2.51) (2.01) (1.71) (2.16) (2.18)

Speculative. 83.6 60.2 57.3 64.2 39.4 60.9
((5.99) (5.73) (5.18)) (4.84) (5.33) (5.41)

achieving up to 3.5× speed-up. On math tasks like MATH-500, accuracy remains stable (61.4 →
59.2) as long as tokens per step stay under 3. Code tasks like HumanEval+ are more sensitive, with
performance remaining high at around 1.7 tokens per step (60.4→ 59.8).

Furthermore, we compare the effects of generation block size D and confidence functions (Logit vs.
Entropy). Results show that D = 4 generally yields slightly better accuracy, while the new trained
model SDLM-3B (D = 8) enables greater acceleration due to larger parallel generation capacity.
Both confidence function-based schemes maintain good performance. The threshold τ provides a
flexible balance between speed and performance across various tasks and configurations.

4.4 ABLATION STUDY

We further explore larger D and self-speculative decoding (Table 3), alternative model designs (Ap-
pendix C), and comparisons with other speed-up methods (e.g., MTP; Appendix D). We retrain all
variants under the same settings to assess their impact on both performance and efficiency.

Block Size. We investigate the impact of larger block sizes on SDLM-3B in Table 3, focusing on
the new trained model SDLM-3B (D = 8). Compared to D = 4, the D = 8 configuration delivers
substantially higher throughput with comparable model performance. Under Conf. τ = 0.98, the
average number of output tokens per step increases from 1.9 (D = 4) to 2.2 (D = 8), with only a
1.2-point drop in overall accuracy. increasing D from 4 to 8 boosts the accepted tokens with only a
small quality drop, suggesting potential for further throughput gains.

Self-Speculative Decoding. We further evluate self-speculative decoding in Table 3. In the Specu-
lative rows, with D = 4 and D = 8, SDLM accepts an average of 3.4 and 5.4 tokens per step, corre-
sponding to roughly 85% and 68% of the proposal budget, respectively. Model performance remains
comparable across settings. However, this method incurs additional validation overhead, differing

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

To find the fraction of 2 feet that is 3 inches , we need to convert the feet
to inches and then divide the by the total number.
1 foot = 12 inches
2 feet = 2 * 12 = 24 inches
Now, we can the 3 inches by the fraction of 2 4 inches:
\[\frac{3}{24} = \frac{1}{8} \]
So, the answer is 1/8.
\[\boxed{\frac{1}{8}} \]<|im_end|>

What fraction of 2 feet is 3 inches? Express your answer as a common fraction.
Please reason step by step, and put your final answer within \boxed{}.

38 step with 113 tokens

User:

SDLM:

Write a Fibonacci function in Python.User:
SDLM: 12 step with 44 tokensdef fibonacci(n):

if n == 0:
return 0

elif n == 1:
return 1

else:
return fibonacci(n-1) + fibonacci(n-2)<|im_end|>#(fib

Figure 4: Visualization of the sampling process. Where each blue block indicates a subsequence
generated in a single decoding step.

in experimental setup compared to the other two decoding methods. Despite this, it substantially
enhances the model’s responsiveness, demonstrating its potential under specific conditions.

Case Study. Figure 4 illustrates SDLM’s flexible decoding, where the generated sequence length
adapts to local context. In fluent or structured regions (e.g. math expressions, structured code
segments, common phrases), it confidently emits longer sequences at once. While facing uncertainty
or forking, it slows down with shorter outputs. This adaptive strategy balances speed with precision.

5 CONCLUSION

In conclusion, we propose Next Sequence Prediction (NSP), a unified framework bridging autore-
gressive and diffusion decoding. Building on NSP, we develop Sequential Diffusion Language
Models (SDLMs) that adapt pretrained ALMs via parallel block training and dynamic decod-
ing. SDLM matches SFT-tuned ALMs in performance while decoding faster, offering a stronger
speed–performance trade-off. We hope this work inspires further exploration of unified sequence
generation.

REPRODUCIBILITY & ETHICS STATEMENT

All data are publicly available, and code is provided in an anonymous repository (https:
//anonymous.4open.science/r/SDLM-112358/readme.md) for full reproducibility.
This work follows the ICLR Code of Ethics, upholding integrity, fairness, and respect for privacy.

REFERENCES

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivastav,
Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
Thomas Wolf. Smollm2: When smol goes big – data-centric training of a small language model,
2025. URL https://arxiv.org/abs/2502.02737.

Anthropic. Introducing Claude, 2023. URL https://www.anthropic.com/index/
introducing-claude.

9

https://anonymous.4open.science/r/SDLM-112358/readme.md
https://anonymous.4open.science/r/SDLM-112358/readme.md
https://arxiv.org/abs/2502.02737
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
gressive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing GPT-4 with 90%* ChatGPT quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023.

Google DeepMind. Gemini 2.5, 2025. URL https://blog.google/technology/
google-deepmind/gemini-model-thinking-updates-march-2025/.

Yuyang Ding, Xinyu Shi, Xiaobo Liang, Juntao Li, Qiaoming Zhu, and Min Zhang. Unleash-
ing reasoning capability of llms via scalable question synthesis from scratch. arXiv preprint
arXiv:2410.18693, 2024.

Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A
programming model for generating optimized attention kernels. arXiv preprint arXiv:2412.05496,
2024.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Syn-
naeve. Better & faster large language models via multi-token prediction. arXiv preprint
arXiv:2404.19737, 2024.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. arXiv preprint arXiv:2410.17891, 2024.

Google DeepMind. https://blog.google/technology/google-deepmind/gemini-diffusion/. https:
//blog.google/technology/google-deepmind/gemini-diffusion/, 2025.
Accessed: 2024-07-24.

10

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/open-compass/opencompass
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-diffusion/
https://blog.google/technology/google-deepmind/gemini-diffusion/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In ICLR. OpenReview.net,
2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
NeurIPS Datasets and Benchmarks, 2021b.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang,
J. H. Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu,
Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for
top-tier code large language models. 2024. URL https://arxiv.org/pdf/2411.04905.

Ivan Kapelyukh, Vitalis Vosylius, and Edward Johns. Dall-e-bot: Introducing web-scale diffusion
models to robotics. IEEE Robotics and Automation Letters, 8(7):3956–3963, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik,
Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm,
Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu
3: Pushing frontiers in open language model post-training. 2024.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski Fainman,
Dongmei Zhang, and Surajit Chaudhuri. Table-gpt: Table-tuned gpt for diverse table tasks. arXiv
preprint arXiv:2310.09263, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-3: Scaling up inference
acceleration of large language models via training-time test. In Annual Conference on Neural
Information Processing Systems, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36:21558–21572, 2023.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyan Wei, Shaobo Wang, and
Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching,
2025. URL https://github.com/maomaocun/dLLM-cache.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. arXiv preprint arXiv:2410.18514, 2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025a.

11

https://arxiv.org/pdf/2411.04905
https://github.com/maomaocun/dLLM-cache

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025b.

OpenAI. Introducing ChatGPT, 2022. URL https://openai.com/index/chatgpt/.

OpenAI. Hello GPT-4o, 2024. URL https://openai.com/index/hello-gpt-4o/.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
arXiv preprint arXiv:2406.03736, 2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. Technical report, OpenAI, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An ad-
versarial winograd schema challenge at scale. Commun. ACM, 64(9):99–106, 2021.

Mohammad Samragh, Arnav Kundu, David Harrison, Kumari Nishu, Devang Naik, Minsik Cho, and
Mehrdad Farajtabar. Your llm knows the future: Uncovering its multi-token prediction potential.
arXiv preprint arXiv:2507.11851, 2025.

Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
Yang, Hongli Yu, Xingwei Qu, et al. Seed diffusion: A large-scale diffusion language model with
high-speed inference. arXiv preprint arXiv:2508.02193, 2025.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

David Wadden, Kejian Shi, Jacob Morrison, Aakanksha Naik, Shruti Singh, Nitzan Barzilay, Kyle
Lo, Tom Hope, Luca Soldaini, Shannon Zejiang Shen, et al. Sciriff: A resource to enhance
language model instruction-following over scientific literature. arXiv preprint arXiv:2406.07835,
2024.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025.

12

https://openai.com/index/chatgpt/
https://openai.com/index/hello-gpt-4o/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Weiyun Wang, Zhe Chen, Wenhai Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu,
Xizhou Zhu, Lewei Lu, Yu Qiao, et al. Enhancing the reasoning ability of multimodal large
language models via mixed preference optimization. arXiv preprint arXiv:2411.10442, 2024.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

xAI. Grok 3 beta — the age of reasoning agents, 2025. URL https://x.ai/news/grok-3.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative de-
coding: Exploiting speculative execution for accelerating seq2seq generation. arXiv preprint
arXiv:2203.16487, 2022.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025. URL https://hkunlp.github.io/blog/2025/dream.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
for text generation. arXiv preprint arXiv:2302.05737, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

13

https://x.ai/news/grok-3
https://hkunlp.github.io/blog/2025/dream

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DETAILS OF TRAINING

We show the training hyperparameters in Table 4.

Table 4: Training Hyperparameters for SDLM.

Parameter SDLM-3B SDLM-32B

Max sequence length 5,632
Epochs 1
Batch size (global) 256 464
Training steps 13,699 7,558
Learning rate 5× 10−6 (constant)
ZeRO stage 1 3

The training corpus comprises with: Tulu-3-SFT-Mixture (Lambert et al., 2024), Table-GPT (Li
et al., 2023), SciRIFF (Wadden et al., 2024), SmolTalk (Allal et al., 2025), OPC-SFT-Stage2 (Huang
et al., 2024), and ScaleQuest-Math (Ding et al., 2024), with a combined total of 3.5 million samples
(∼ 2.3 billion tokens).

To comprehensively evaluate the capabilities of SDLM, we conduct evaluations across a diverse set
of benchmarks encompassing:

General Tasks. MMLU (Hendrycks et al., 2021a)(5-shot), Winogrande (Sakaguchi et al., 2021)(0-
shot), Hellaswag (Zellers et al., 2019)(10-shot), ARC-C/E (Clark et al., 2018)(0-shot), IFEval (Zhou
et al., 2023)(0-shot).

Mathematics & Science Tasks. GSM8K (Cobbe et al., 2021) (0-shot), MATH-500 (Hendrycks
et al., 2021b)(0-shot), GPQA (Rein et al., 2024) (0-shot).

Coding Tasks. HumanEval (Chen et al., 2021) (0-shot), Humaneval+ (Liu et al., 2023) (0-shot),
MBPP (Austin et al., 2021) (3-shot), MBPP+ (Liu et al., 2023) (3-shot).

B PSEUDOCODE FOR SDLM

We now include pseudocode for SDLM training (Algorithm 1), confidence-based decoding (Algo-
rithm 2), and self-speculative decoding (Algorithm 3). The corresponding input IDs, position IDs,
and attention masks are shown in Figure 2 (a) (training) and Figure 5 (inference). For confidence-
based decoding, the relevant mask is the bold upper-left block in Figure 5.

Algorithm 1 Supervised Fine-Tuning of SDLM
Require: ModelM, Sequence x, block size D
Ensure: Parameters θ

1: repeat
2: ST ← construct input via Eq. 3, Eq. 6
3: S0 ← ground-truth labels
4: PE← block-wise position ids aligned with ST

5: A← Fig. 2 (a)
6: Ŝ0 =M(ST , PE, A)

7: L(ST , S0) = CEblock(Ŝ0, S0)
8: θ ← θ − η∇θL
9: until converged

10: return θ

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: Structured attention mask for sampling. (a) The bold upper-left block shows the mask
used during confidence-based generation; the full mask shows the mask used in self-speculative
decoding.

Algorithm 2 Conf Generate
Require: ModelM, prompt x, block size D
Ensure: Generated sequence y

1: Initialize KV-cache; y ← x; L← |x|
2: while not EOS do
3: xin ← [y, y−1, MASK×(D−1)] ▷ prepare diffusion block
4: PEin ← range(0, L) ∥ [L−1] ∥ range(L−1, L+D−2) ▷ revise pe for
5: (logits,KVnew)←M(xin,KVcache,PEin)
6: KVcache ← truncate KVnew to positions 0:L ▷ only update causal KV
7: d̂1:D ← last D-token predictions from logits ▷ candidate block
8: k ← max{j ∈ [1, D] | confidence(d̂1:j) ≥ τ} ▷ longest prefix accepted
9: y ← y ∥ d̂1:k; L← L+ k ▷ append accepted tokens

10: if d̂1:k contains EOS then
11: break
12: end if
13: end while
14: return y

C MORE ABLATION STUDY OF MODEL DESION

No Shift Prediction. To verify the effectiveness of shift prediction, we employ a method similar
to LLaDA to directly predict the original tokens at the mask location. As shown in Figure 6, under
the same training cost, this method leads to a noticeable decline in model performance, with Hu-
manEval+ scores dropping by approximately 14 points. After log analysis, we find that the model
has more repeated outputs. This indicates that the shift prediction method exploits the strong ability
of ALMs to predict the first token and provides a stable starting point for diffusion decoding.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 3 Self-Speculative Decoding Generate
Require: Draft/Verify modelM, prompt x, block size D
Ensure: Generated sequence y

1: Initialize KV-cache; y ← x; L← |x|
2: pad len = D(D−1) + D(D+1)

2

3: ▷ Prefill: obtain initial draft block ydraft
1:D

4: xin ← [y, y−1, MASK×(D−1)]
5: PEin ← range(0, L) ∥ [L−1] ∥ range(L−1, L+D−2)
6: (logits,KV)←M(xin,PEin,KV)
7: KV← truncate to positions 0:L ▷ keep only causal cache
8: ydraft ← last-D predictions from logits

9: ▷ Decode: draft & verify loop
10: while not EOS do
11: (pad(ydraft), pad(PE))← PadInputs(ydraft, L) ▷ block-pyramid verify input, Fig. 5
12: xin ← [y, y−1, pad(ydraft)]
13: PEin ← range(0, L) ∥ [L−1] ∥ pad(PE)
14: (logits,KVnew)←M(xin,PEin,KV) ▷ joint forward: compute verify + new draft blocks
15: KV← truncate KVnew to positions 0:L ▷ only update causal part
16: yverify ← last-pad len predictions from logits
17: (y(0), y(1))← reshape(ydraft, yverify) ▷ draft block candidates & verify block candidates
18: (ynew-draft, k)← AcceptCount(y(0), y(1)) ▷ determine accepted tokens
19: y ← y ∥ ydraft

1:k ; L← L+ k;
20: if ydraft

1:k contains EOS then
21: break
22: end if
23: ydraft ← ynew-draft ▷ update draft block candidates
24: end while
25: return y

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Ablation on attention mask type and prediction shift strategy. We ablate (1) Casual
Attention: replace with causal mask, and (2) No shift: predicte xt instead of xt+1).

Performance

30

40

50

60

70

80

90

GSM8K MATH HumanEval+ MBPP MBPP+

84.284.2

58.858.8

45.745.7

6868

38.438.4

84.284.2

6060 59.859.8
64.664.6

38.638.6

85.885.8

60.860.8 59.859.8

65.465.4

40.540.5

No Shift Causal Attention SDLM-3B (D=4)
2025/9/25 18:41 bar-label-rotation (1).html

file:///Users/yueyin/Downloads/bar-label-rotation (1).html 1/1

2025/9/25 18:41 bar-label-rotation (2).html

file:///Users/yueyin/Downloads/bar-label-rotation (2).html 1/1

Figure 5:

To find the fraction of 2 feet that is 3 inches , we need to convert the feet
to inches and then divide the by the total number.
1 foot = 12 inches
2 feet = 2 * 12 = 24 inches
Now, we can the 3 inches by the fraction of 2 4 inches:
\[\frac{3}{24} = \frac{1}{8} \]
So, the answer is 1/8.
\[\boxed{\frac{1}{8}} \]<|im_end|>

What fraction of 2 feet is 3 inches? Express your answer as a common fraction.
Please reason step by step, and put your final answer within \boxed{}.

38 step with 113 tokens

User:

SDLM:

Write a Fibonacci function in Python.User:
SDLM: 12 step with 44 tokensdef fibonacci(n):

if n == 0:
return 0

elif n == 1:
return 1

else:
return fibonacci(n-1) + fibonacci(n-2)<|im_end|>#(fib

Figure 6: Visualization of the sampling process. Where each blue block indicates a subsequence
generated in a single decoding step.

No Shift Prediction. To verify the effectiveness of shift prediction, we employ a method similar to
LLaDA to directly predict the original tokens at the mask location. As shown in Figure 4, under the
same training cost, this method leads to a noticeable decline in model performance, with HumanEval
and HumanEval+ scores dropping by approximately 14 points. After log analysis, we find that the
model has more repeated outputs. This indicates that the shift prediction method exploits the strong
ability of ALMs to predict the first token and provides a stable starting point for diffusion decoding.

9

Figure 6: Ablation on attention mask type and prediction shift strategy. We conduct the follow-
ing ablation experiments: (1) No shift: predicting xt instead of xt+1; (2) Leisure precautions: using
a causal mask instead. The left image shows its model performance, while the right image shows
the acceleration ratio.

Causal Attention. As shown in Figure 6, we replace bidirectional attention inside each block with
a causal (unidirectional) masking. With a block size D = 4, the two variants obtain almost identical
scores on some benchmarks and exhibit comparable training difficulty. However, the average num-
ber of tokens generated per step decreases from 1.88 to 1.82, indicating that bidirectional attention
enlarges the local receptive field during decoding and improves parallel generation efficiency.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: SDLM with larger block size and sampling with self-speculative decoding. SC.:
Performance; SuP (SpeedUp×): average accepted tokens per step; TPS: actual throughput, denotes
as Equation 11. In addidion, BD denotes the length of draft tokens (num of heads in MTPs and
decoding window size of SDLM).

Model GSM8K MATH HumanEval+ MBPP Avg.
SC. SuP TPS SC. SuP TPS SC. SuP TPS SC. SuP TPS SC. SuP TPS

ALMs

Vicuna-7B-v1.51 Vanilla 11.8 1.00 40.00 2.0 1.00 40.26 16.5 1.00 39.01 38.1 1.00 40.21 – 1.00 39.87
Qwen2.5-3B-SFT Vanilla 86.0 1.00 30.95 60.8 1.00 31.22 61.0 1.00 31.32 68.5 1.00 31.00 69.1 1.00 31.12
Qwen2.5-3B-SFT vLLM 85.6 1.00 138.15 62.2 1.00 138.29 59.2 1.00 137.05 70.0 1.00 132.46 69.3 1.00 136.49

MTPs

Medusa-V1.0-7B2 BD=6 10.4 3.64 119.15 2.0 3.82 128.40 16.5 3.90 127.74 26.1 4.25 103.40 – 3.90 119.67
Qwen2.5-3B-Eagle3 BD=16 77.41 5.78 142.29 57.60 6.13 182.31 59.15 5.71 146.37 67.70 5.24 139.39 65.45 5.72 152.59
Qwen2.5-3B-Eagle3 BD=32 78.51 8.01 256.97 59.60 8.65 190.39 58.54 7.73 161.99 68.48 7.18 157.33 66.28 7.89 191.67

DLMs

SDLM-3B
(D = 4)

BD=4 85.0 3.62 98.52 60.4 3.57 98.58 59.2 3.44 93.49 65.4 3.35 86.11 67.5 3.50 94.18
BD=8 85.5 5.34 143.30 60.0 5.12 137.49 59.8 4.88 129.43 65.4 4.51 111.31 67.7 4.96 130.38

SDLM-3B
(D = 8)

BD=8 83.6 5.99 161.00 59.6 5.73 155.53 57.9 5.37 141.47 64.2 5.09 125.27 66.3 5.55 145.82
BD=16 84.2 7.30 176.44 60.2 6.82 166.83 59.2 6.33 152.69 65.4 5.68 126.39 67.3 6.53 155.59

D COMPARISON WITH MULTI-TOKEN PREDICTION

SDLM can be viewed through the lens of multi-token prediction (MTP) as well. Both SDLM and
MTP parallelize autoregressive generation by predicting multiple tokens in a single forward pass.
For a prediction horizon of D tokens, MTP use D separate output heads, with the i-th head predicting
the token at position m+ i. Similarly, SDLM uses D positions in the input sequence: the last token
(at position m) and D − 1 mask tokens. The prediction at the last token position corresponds
to the token at t + 1 (equivalent to MTP’s first head), and the prediction at the j-th mask token
(1 ≤ j ≤ D − 1) corresponds to the token at m+ 1 + j (equivalent to MTP’s (j + 1)-th head).

However, SDLM introduces two advantages. First, the predictions are generated within a local bidi-
rectional attention window, enabling joint context utilization across the predicted tokens. This con-
trasts with MTP’s isolated head (Cai et al., 2024; Gloeckle et al., 2024) or left-to-right attention (Liu
et al., 2024). Second, extending the prediction horizon requires no architectural modification: ap-
pending additional mask tokens suffices, while MTP necessitates adding new output heads.

To ensure a fair comparison with MTP style methods with speculative decoding, we evaluate the
following models:

• Autoregressive: both vanilla HuggingFace transformers.generate() (PyTorch
backend with pre-allocated KV-cache) and the vLLM Kwon et al. (2023) acceleration
framework;

• Medusa Cai et al. (2024): A method accelerating generation by employing a few additional
decoding heads; evaluated using Medusa-V1.0-7B and its base model, Vicuna-7B-v1.5;

• Eagle-3 Li et al. (2025): A SoTA multi-token prediction with speculative decoding; evalu-
ated using trained Qwen2.5-3B-Eagle3 with our training data;

• SDLM (Ours): Our method of self-speculative decoding with enhanced KV-cache support.

We compute TPS with actual generated tokens and wall-clock inference time as follows:

TPS ≈
∑

num samples actual generate tokens

wall-clock inference time
(11)

As shown in Table 5, we first compare SDLM with the SFT baseline model trained under the same
setting, SDLM exhibits only a small drop in performance across the four benchmarks, but already
achieves about a 3× end-to-end speedup over vanilla decoding, when both the training and inference

1https://huggingface.co/lmsys/vicuna-7b-v1.5
2https://huggingface.co/FasterDecoding/medusa-v1.0-vicuna-7b-v1.5

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

windows size are set to 4. Furthermore, for SDLM-3B (D = 8), when we increase the inference
window size to 16, we observe an even longer effective decoding length without noticeable perfor-
mance degradation, and the actual speedup reaches about 5× compared with vanilla decoding, while
remaining highly comparable to vLLM across the four evaluated tasks.

For comparison with MTP approaches, Medusa achieves nearly a 3× speedup over its base model,
and the state-of-the-art speculative decoding model Eagle-3 also demonstrates close to a 5× speedup
(see their Table 1 on GSM8K for a fair comparison). In our evaluation, when using a block window
of 16, SDLM achieves acceleration comparable to Eagel-3 (TPS 155 vs. 152), while exhibiting
slightly lower speedup compared with Eagle-3 using a larger block size of 32.

These results indicate that SDLM can achieve excellent acceleration when combined with specula-
tive decoding. Moreover, SDLM naturally generalizes to larger speculative windows that are never
seen during training, and the bidirectional attention design may further enhance modeling capacity.
We believe that with more carefully optimized training objectives and attention kernels, SDLM can
become even faster and more accurate in the future.

All results in Table 5 are evaluated using the standard OpenCompass settings, and the wall-clock
inference time is measured by simply placing a timer around the generate call.

E USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely for assisting with language polishing and minor
writing support. All research ideas and analyses were conceived and developed by the authors.

18

