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ABSTRACT

Diffusion language models (DLMs) have strong theoretical efficiency but are lim-
ited by fixed-length decoding and incompatibility with key-value (KV) caches.
Block diffusion mitigates these issues, yet still enforces a fixed block size and re-
quires expensive training. We introduce Next Sequence Prediction (NSP), which
unifies next-token and next-block prediction, enabling the model to adaptively de-
termine the generation length at each step. When the length is fixed to 1, NSP re-
duces to standard next-token prediction. Building on NSP, we propose Sequential
Diffusion Language Model (SDLM), which can retrofit pre-trained autoregressive
language models (ALMs) at minimal cost. Specifically, SDLM performs diffu-
sion inference within fixed-size mask blocks, but dynamically decodes consecu-
tive subsequences based on model confidence, thereby preserving KV-cache com-
patibility and improving robustness to varying uncertainty and semantics across
the sequence. Experiments show that SDLM matches or surpasses strong autore-
gressive baselines using only 3.5M training samples, while achieving 2.1× higher
throughput than Qwen-2.5. Notably, the SDLM-32B model delivers even more
pronounced efficiency gains, demonstrating the strong scalability potential of our
modeling paradigm. Code and models will be released.

1 INTRODUCTION

In recent years, diffusion models have made significant progress in computer vision, dominating
various fields such as image generation (Ho et al., 2020; Rombach et al., 2022) and robot con-
trol (Chi et al., 2023; Kapelyukh et al., 2023). This successful paradigm has recently emerged as
a potential solution for language modeling, i.e., diffusion language models (DLMs). Compared to
autoregressive language models (ALMs), DLMs generate tokens in parallel through a denoising
process, showing superior theoretical efficiency. However, DLMs are also criticized for its fixed
decoding length and inability to use KV cache (Radford et al., 2019).

To address these limitations, it is a natural thought to combine the benefit of DLM and ALM, similar
to existing efforts like Block Diffusion (Arriola et al., 2025). Specifically, Block Diffusion reformu-
late the next token prediction of ALM as the next block prediction, where tokens in each block are
decoded in a diffusion manner. In this case, Block Diffusion not only preserve the autoregressive
property for flexible and robust prediction, while also exploiting diffusion-style parallel prediction
for better efficiency.

Despite the effectiveness, Block Diffusion models still remain two practical limitations. Firstly,
the block size is fixed in block diffusion models, which means that the model should predict a
constant number of tokens in each step. However, the distribution of certainty and semantics varies
across the entire sequence, typically requiring adjusting the suitable block size in predicting different
subsequences. As shown in Figure 1(b), a fixed block size easily fails in token prediction that
requires previous context information. Secondly, both the DLM and the block diffusion model
require training from scratch and cannot be easily developed from a pre-trained ALM. This not only
leads to significant training costs but also creates obstacles for developing larger models.

In this paper, we introduce Next Sequence Prediction (NSP), a general form of next token prediction
and next block prediction. Specifically, NSP defines an autoregressive probability distribution for
sequences of discrete random variables. As shown in Figure 1(c), NSP predicts future sequences of
variable length, where a sequence can be either one token or a block of tokens. At each step, NSP
decodes the tokens in the sequence in a diffusion manner. Therefore, NSP can dynamically adjust
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Figure 1: Comparison of decoding paradigms. (a) ALMs: decode one token at a time. (b) DLMs
(e.g. Block Diffusion): decode all tokens in a fixed block before moving to the next. (c) SDLM
(Ours): dynamically predicts a contiguous subsequence within a fixed block. (d) Performance vs.
Speed: MATH-500 results showing trade-off between speed (TPS) and accuracy.

its decoding sequence size according to the difficulty and semantics of future sequences. When
the length of the prediction sequence is always 1, NSP degenerates to next-token prediction. This
property allows NSP to seamlessly adapt to existing pre-trained ALMs with cheap costs.

Based on the principle of NSP, we propose Sequential Diffusion Language Models (SDLMs) with
innovative training and inference strategies. As shown in Figure 2, SDLMs are developed based on
a pre-trained ALMs, employing a novel parallel block training approach to extend next token pre-
diction to next sequence prediction. In parallel block training, we use a custom attention mask that
makes the prefix and the current block visible to each prediction window, enabling parallel training
over multiple future blocks. During inference, SDLM predicts a fixed-length block at each step and
then dynamically decodes a continuous subsequence via a confidence scheme based on threshold or
verification. Unlike our concurrent work, Samragh et al. (2025) employs gated LoRA with next-
token and multi-token prediction losses, whereas we use NTP cross-entropy loss for full supervised
fine-tuning. For sampling, we apply bidirectional attention with confidence-based decoding, without
extra sampling heads.

To validate our approach, we construct different scales of LLMs and conduct extensive experiments
on 13 benchmarks across general, math, knowledge and coding tasks. Experiments show that our
SDLMs achieve on-par performance with existing ALMs with much faster speed, e.g., 2.1× faster
than Qwen-2.5-3B (Team, 2024). Compared to existing DLMs, our SDLMs demonstrate compre-
hensive advantages in performance, efficiency, and training costs. For example, SDLM-3B sig-
nificantly outperforms DLMs like Dream-7B (Ye et al., 2025) and LLaDA-8B (Nie et al., 2025b)
across multiple benchmarks, while requiring far less training compute and yielding substantially
higher inference speed. More importantly, the scalability of SDLMs is validated on the larger mod-
els, i.e., Qwen-2.5-32B, requiring only 3.5M training samples. In summary, our contributions are
three-folds:

• We introduce Next Sequence Prediction (NSP) as a general form of next token prediction
and next block prediction. NSP not only combines the advantage of autoregressive models
and diffusion models, while providing a practical way to relax the fixed block-size con-
straint in prior block diffusion models.

• Based on NSP, we deploy Sequential Diffusion Language Models (SDLMs) through a novel
parallel block training method. SDLMs employ a customized attention mask where each
block is visible to its prefix and itself, enabling parallel training and dynamic variable-
length sequence generation via threshold- or verification-based selection.
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• Extensive experiments not only demonstrate the effectiveness and efficiency against exist-
ing ALMs and DLMs, but also confirm its scalability on large-scale models. In particular,
with only 3.5M training samples, our SDLMs achieves comparable performance and nearly
2× speedup against Qwen-2.5-32B-SFT.

2 RELATED WORK

2.1 AUTOREGRESSIVE LLMS AND MULTI-TOKEN PREDICTION

Autoregressive large language models (ALMs), such as GPT (Radford et al., 2018; OpenAI, 2022;
2024), LLaMA series (Touvron et al., 2023a;b; Grattafiori et al., 2024; Chiang et al., 2023), Qwen
series (Bai et al., 2023; Yang et al., 2024; Team, 2024; Yang et al., 2025) and other advanced
LLMs (DeepMind, 2025; Team et al., 2025; xAI, 2025; Anthropic, 2023; Liu et al., 2024), generate
text in a token-by-token manner and have demonstrated strong performance across a wide range
of language tasks, including question answering, code generation, mathematical problem solving
and dialogue systems. However, this strictly sequential decoding process limits generation speed.
To mitigate this, KV Cache has been introduced to store previously computed attention keys and
values, avoiding redundant computations and significantly improving inference efficiency.

To address the limitations of serial decoding, multi-token prediction (MTP) (Cai et al., 2024;
Gloeckle et al., 2024; Liu et al., 2024) enables the model predict multiple future tokens in paral-
lel via multiple output heads. These parallel predictions can be used with speculative decoding (Xia
et al., 2022; Stern et al., 2018) to validate multiple candidates and greatly reduce forward steps. For
example, DeepSeek-V3 shows up to 3× faster inference with MTP with speculative decoding.

2.2 DIFFUSION LANGUAGE MODELS

Recent diffusion models have shown increasing potential in language tasks. Masked discrete diffu-
sion models (MDMs) (Zheng et al., 2023; Gong et al., 2024; Ou et al., 2024; Nie et al., 2024) have
achieved perplexity comparable to ALMs. LLaDA (Nie et al., 2025a) further scales MDMs to 8B pa-
rameters, matching state-of-the-art ALMs. Dream (Ye et al., 2025) adopts shifted prediction and au-
toregressive initializes, effectively reducing training costs while also delivering strong performance.
Block Diffusion (Arriola et al., 2025) introduces block-level generation for variable-length decoding
with KV cache reuse. Gemini Diffusion (Google DeepMind, 2025) and Seed Diffusion (Song et al.,
2025) further improve speed while narrowing the gap with ALMs.

Although recent acceleration technologies such as dKV-Cache (Ma et al., 2025), Fast-dLLM (Wu
et al., 2025), and dLLM-Cache (Liu et al., 2025) attempt to use approximate KV caching mecha-
nisms to accelerate DLM inference, these methods still suffer from substantial computational over-
head caused by padding the sequence to the maximum sequence length for each forward computa-
tion.

3 METHODS

3.1 PRELIMINARY AND NOTATION

In autoregressive large language models (ALMs) (OpenAI, 2024; Grattafiori et al., 2024; Yang et al.,
2025; DeepMind, 2025), text generation is typically modeled as a conditional probability chain,
referred to as the next-token prediction paradigm. Given a sequence of input tokens {x1, ..., xL},
the objective is to minimize the cross-entropy loss:

LALM(x; θ) = −Ex

[
L∑

i=1

logPθ(x
i | x<i)

]
, (1)

where the model Pθ(· | x<i) aims to maximizes the conditional probability of the current word by
leveraging the preceding context x<i = x0, . . . , xi−1.

In contrast, diffusion language models (DLMs) (Ou et al., 2024; Nie et al., 2025a; Ye et al., 2025)
generate outputs by progressively denoising from a fully noisy state in parallel. Block Diffusion (Ar-
riola et al., 2025) are a specialized DLM variant that constrains the diffusion operation to proceed
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sequentially in blocks. At each time step t, the model receives a noisy block Xi
t = x

iD:(i+1)D
t and

predicts all masked tokens (denoted as [m]) within a block of length D, formally defined as:

LBD(X; θ) = −
L/D∑
i=1

Et∼[0,1]Eq
α′
t

1− αt
logPθ(X

i|X<i, Xi
t), (2)

where X denotes the ground-truth, q is the forward masking process that gradually corrupts to-
kens, αt ∈ [0, 1] is the probability of keeping (not masking) a token at time t so that the masking
probability is 1− αt, and α′

t is the instantaneous rate of change of αt in continuous time.

3.2 SEQUENTIAL DIFFUSION LANGUAGE MODELS

In DLMs, the entire sequence is predicted in parallel based on confidence scores. This can result
in premature and inaccurate predictions for later tokens, imposing greater demands on the model’s
robustness. But predictions for tokens at lower position indices generally benefit from more reliable
contextual information and introduce less bias (Wang et al., 2024). Meanwhile, the distribution
of certainty and semantics varies across the entire sequence. To this end, we introduce the Next
Sequence Prediction (NSP) paradigm, which aims to dynamically adjust the size of the decoding
sequence at each step based on the difficulty and semantics of the future sequence.

Based on the above understanding, we propose the Sequential Diffusion Language Models (SDLM)
to reduce error accumulation in diffusion-based generation and improve parallel prediction effi-
ciency. As shown in Figure 1(c), the model adopts bidirectional attention similar to Block Diffu-
sion to understand the semantic information in the future fixed-length noise block Xi

T . Differently,
SDLM masks all tokens in the prediction block (masking probability = 1) and is trained by mini-
mizing the cross entropy of all masked tokens. The training objective is formalized as:

L(X; θ) = −EX,XT

[
1

D

∑
i

logPθ

(
Xi | x<(i−1), Xi

T

)]
,

Xi = xi:(i+D), Xi
T = [xi−1, [m], ..., [m]︸ ︷︷ ︸

D−1

],
(3)

where i denotes a random index within the target sequence, since dynamic length inference makes
the decoding start position non-fixed. To better unify next token prediction and block prediction, we
continue to employ standard AR’s one-position shift between input IDs and labels.

During inference, we introduce Longest Prefix Decoding, which uses low-order position priors,
to decode the next sequence based on model’s confidence. Specifically, at each step, the model
perceives history x<(i−1) and produces fixed-length future logits Zi = [z1i , . . . , z

D
i ] ∈ RD×|V| over

vocabulary V , ultimately decoding only the first γτ (Zi) tokens. In the next step, predictions are
repeated starting from the previous step’s end position. The formalization is as follows:

X̂i = Decode
(
Zi, γτ (Z

i)
)

(4)

where γτ (Z
i) determines the adaptive sequence length to be decoded (with 1 ≤ γτ (Z

i) ≤ D),
and Decode(·) denotes extracting the next γτ (Zi) contiguous tokens from Zi, which we denote
as X̂i. The maximum sequence length function γτ (·) is detailed in Section 3.4. This adaptive
length mechanism can effectively balance generation efficiency and quality based on text’s semantic
richness and uncertainty.

3.3 TRAINING

As noted in Section 3.2, when the block size is 1 our model reduces to the autoregressive paradigm,
allowing reuse of pretrained ALM weights and cut training costs. From the perspective of instruction
fine-tuning, we define the input as S = [X;Y ], where X is the prefix and Y the response.

Training. During training, we partition Y into blocks at random positions to train the model’s
prediction capabilities at different starting positions. As shown in the Equation 3, for a starting posi-
tion i, we construct a noise block Y i

T = [yi−1, [m], . . . , [m]] and predict the next fixed-length block

4
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Figure 2: Structured attention mask for parallel block training and sampling. (a) Reordered
input yields a mask with causal prefix (top-left), visible cross-block prefix (bottom-left), and intra-
block bidirectional attention (bottom-right). (b) Confidence-based next sequence prediction with KV
reuse. A block of D tokens is predicted with D−1 masks. The longest high-confidence subsequence
is selected as dynamic output. Cached KV states enable efficient decoding.

Y i = yi:(i+D) (simplified as Y i = [y1i , . . . , y
D
i ]) by shifting. A bidirectional attention mechanism

is used within the block for feature information, which serves as the basis for decoding dynamic-
length sequences. For historical information, we maintain casual attention as ALMs. Therefore, for
a single noise block Y i

T , we can construct a custom attention mask A ∈ {0, 1}(i+D)×(i+D):

Auv = 1v≤u ⊕ 1u≥i∩v≥i (5)

This enforces strict causality for u < i and full mutual attention for u, v ≥ i.

Parallel Training. To enable efficient parallel training, we construct the sequence by interleaving
noise blocks and target blocks as:

ST = concat(X, I1 · Y 1
T , Y

1︸ ︷︷ ︸
Block 1

, . . . , Ii · Y i
T , Y

i︸ ︷︷ ︸
Block i

, . . . ) (6)

where Ii ∈ {0, 1} is a random indicator variable that controls whether a noise block Y i
T is inserted

at the current starting position i to predict the ground-truth block Y i. Each noise block Y i
T attends

only within itself, while Y i is visible as prefix to later blocks but not vice versa, ensuring causality
through attention constraints and positional encodings.

Since transformers rely on positional encodings, by rearranging S, the attention mask forms three
parts as shown in Figure 2: (1) causal attention (top-left), (2) visible prefixes for each block (bottom-
left), and (3) bidirectional attention within blocks (bottom-right). To improve training efficiency, we
can concatenate any number of noise blocks after the target sequence within max sequence length.
The sparse attention structure allows flex attention (Dong et al., 2024) to accelerate training.

3.4 INFERENCE

As described in Equation 4, we introduce the Longest Prefix Decoding method for dynamic length
decoding based on low-order position priors. We primarily rely on the model’s confidence in its
inferences as the basis to refine the length function γ(·), and design two types of decoding strategies:
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Greedy Decoding. We implement γτ through a confidence-based stopping rule that identifies the
longest prefix satisfying:

γτ (Z
i) = max

({
j ∈ {1, 2, . . . , D} |

j∏
k=1

p(zki ) ≥ τ

}
∪ {1}

)
(7)

where p(zki ) quantifies confidence at position k (where zki ∈ R|V| is the position-k logit vector), and
τ is a predefined threshold. This approach greedily decodes at most j tokens (j ≥ 1) whose cumu-
lative product of confidence scores is greater than τ . We explore two distinct confidence functions:

(1) Logit Value Confidence. This metric uses the softmax probability of the decoded token v at
position k, to capture the model’s per-token confidence in its top prediction:

plogit(z
k
i ) = softmax(zki )v (8)

(2) Entropy-Normalized Confidence. While plogit provides a pointwise confidence signal, it over-
looks distributional ambiguity. Inspired by Wang et al. (2025) that higher predictive entropy corre-
lates with forking behavior during generation, we employ an entropy-based confidence score:

pentropy(z
k
i ) = 1− Hp

log |V|
, where Hp = −

|V|∑
n

pn log pn (9)

Here, pn is the softmax probability of the n-th word. Then, the entropy Hp is normalized by log |V|.
Lower entropy indicates higher confidence, while higher entropy reflects more uncertainty.

Self-Speculative Decoding. Following the speculative decoding (Stern et al., 2018), we decode
multiple tokens in parallel and verify their correctness through self-consistency checks. In each step,
the model produces D speculative tokens Ŷ i = [ŷ1i , . . . , ŷ

D
i ] (where ŷki denote the k-th decoded

token of block i) in an initial forward pass. To validate them, D verification inputs are constructed
by progressively extending prefixes of the sampled tokens, appending mask [m] at the first unverified
position and padding to form a batch. A second forward pass then yields corresponding predictions
Ỹ i = [ỹ1i , . . . , ỹ

D
i ]. The decoding sequence length is determined by the consistency-driven function:

γverify(Z
i) = max

({
j ∈ {1, 2, . . . , D} | ŷji = ỹji

}
∪ {1}

)
(10)

Compared to confidence-based truncation via γτ , which relies on local heuristics, self-speculative
decoding performs explicit consistency checks for self-verification without external models, offering
greater reliability at the cost of an additional forward pass.

4 EXPERIMENTS

4.1 SETTING

To ensure a fair comparison, we fine-tune the Qwen-2.5 base model (Team, 2024) with all open-
source instruction datasets (3.5 million samples, 2.3 billion tokens), covering math, code, and
instruct-following. We compare SDLM against same-scale ALMs (Qwen2.5-3B/32B-Instruct, fine-
tuned verison of Qwen2.5-3B/32B under the same setting), and larger DLMs like Dream-7B-Instruct
and LLaDA-8B-Instruct across benchmarks spanning general, mathematics, science, and coding
tasks. All evaluated with OpenCompass (Contributors, 2023) under standardized settings. Details
about training and evaluating can be found in Appendix A.

4.2 MAIN RESULTS

Table 1 shows the performance and inference efficiency of our SDLM, trained in a single epoch on
only 3.5M samples. SDLM-32B attains 92.4 on GSM8K, 74.2 on MATH-500, and 78.6 on IFEval,
while remaining competitive on coding tasks. The SDLM-3B performs on par with or even surpasses
Qwen-2.5-3B-SFT, and significantly outperforms larger DLMs such as LLaDA-8B and Dream-7B.
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Table 1: Performance of instruct models across 8 long-form tasks. Numbers in parentheses (#)
denote the speedup ratio: average tokens per pass vs. ALMs (1 token per pass). Results marked by
† and ¶ are from Team (2024) and Ye et al. (2025) respectively. “–” indicates unknown data.

Model Name GSM8K MATH GPQA HumanEval HumanEval+ MBPP MBPP+ IFEval Avg.

ALMs

Qwen-2.5-3B† 86.7 65.9 30.3 74.4 – 72.7 – 58.2 –
Qwen-2.5-3B-SFT 85.8 59.8 27.8 73.8 60.4 68.5 42.6 62.1 60.1
Qwen-2.5-32B † 95.9 83.1 49.5 88.4 – 84.0 – 79.5 –
Qwen-2.5-32B-SFT 93.2 74.8 33.8 82.9 76.2 82.1 59.0 76.5 72.3

DLMs

LLaDA-8B¶ 78.6 26.6 31.8 47.6 – 34.2 – 59.9 –
Dream-7B¶ 81.0 39.2 33.0 55.5 – 58.8 – 62.5 –

SDLM-3B (D = 4)
τ = .98

84.6 60.8 28.3 67.1 59.8 65.4 40.5 57.1 57.9
(2.15) (2.18) (2.26) (1.91) (1.76) (1.66) (1.78) (1.38) (1.89)

τ = .82
84.5 57.8 28.3 66.5 60.4 65.0 40.0 55.8 57.3

(2.75) (2.73) (2.66) (2.53) (2.25) (2.30) (2.29) (1.58) (2.39)

SDLM-32B (D = 4)
τ = .98

92.4 74.2 36.4 81.1 73.8 80.9 58.2 78.6 71.9
(2.15) (2.35) (2.34) (2.05) (2.29) (1.56) (1.51) (1.25) (1.94)

τ = .82
92.3 73.0 36.9 79.9 73.2 80.9 57.1 78.2 71.4

(2.71) (2.88) (2.61) (2.82) (2.72) (2.17) (2.25) (1.43) (2.45)

In terms of generation efficiency, SDLM generate about 2 tokens per forward pass, reducing latency
to about two-thirds of comparable ALMs. Taking GSM8K as an example, SDLM-32B at τ = 0.98
achieves accuracy 92.4 (vs. 93.2 for its same-scale SFT counterpart) while generating 2.15 tokens
per step. Lowering τ to 0.82 further increases token output to 2.71 with only a 0.1 pct accuracy drop,
highlighting an attractive speed-accuracy tradeoff. SDLM-3B follows a similar trend on GSM8K
with minimal performance drop as τ is lowered. This trend holds across all benchmarks, where
lowering τ consistently increases token generation while maintaining competitive performance. The
effect and robustness of different τ values are ablated in Section 4.3.

Table 2: Performance of instruct models across 5 gen-
eral mutiple-choice tasks.

Model Name MMLU Winogrande Hellaswag ARC-C ARC-E

ALMs

Qwen-2.5-3B-SFT 67.6 60.8 75.3 83.1 91.4
Qwen-2.5-32B-SFT 83.7 78.0 92.4 94.2 99.1

DLMs

LLaDA-8B 65.5 – 74.6 88.5 –
Dream-7B 67.0 – – – –

SDLM-3B (D = 4) 66.3 60.2 74.2 82.7 92.0
SDLM-32B (D = 4) 82.8 79.2 92.0 94.9 98.9

In terms of short-answer benchmarks
shown in Table 2, SDLM-32B performs
within 1 ptc of its autogressive counter-
part across MMLU, Winogrande, and
Hellaswag, while SDLM-3B matches
Qwen-2.5-3B-SFT on these bench-
marks. This demonstrates that SDLM
retains the semantic and reasoning abil-
ities of the base ALMs while enabling
more efficient parallel decoding, con-
firming that our diffusion training pre-
serves the base model’s NTP capability.

Overall, SDLM delivers “near-SFT ac-
curacy with significant inference accel-
eration” at both 3B and 32B scales, proving that NSP generation can stably converge in large-model
regimes and providing a solid foundation for future work with larger parameters, longer training,
and wider blocks.

4.3 TRADE-OFF BETWEEN SPEEDUP AND PERFORMANCE

Existing DLMs (Nie et al., 2025a; Ye et al., 2025) exploit parallel token generation but face a key
trade-off: generating one token per step maintains quality, while producing multiple tokens often
degrades it. Moreover, the reliance on fixed-length noise sequences constrains flexibility and limits
practical efficiency gains over ALMs. In contrast, SDLM only concatenate a block-length masks
per step, incurring minimal overhead compared to NTP inference.

Figure 3 shows the speed-performance trade-off with varying confidence threshold τ across
GSM8K, MATH-500 and HumanEval+. As τ decreases, SDLM generates more tokens per step,
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Figure 3: Trade-off between performance and speed under different inference setting for
SDLM-3B (D = 4) and SDLM-3B (D = 8). Adjusting τ allows a controllable trade-off between
speed and performance. SpeedUp denotes the average number of tokens output per forward pass.

Table 3: SDLM-3B (D = 8) with larger block size and sampling with self-speculative de-
coding. (a) Larger blocks yield higher throughput with only minimal performance degradation. (b)
With self-speculative decoding, the average accepted tokens per step (in green) significantly exceeds
greedy decoding with threshold (Conf. τ ).

Model Name GSM8K MATH HumanEval+ MBPP MBPP+ Avg.

Qwen-2.5-3B-SFT (AR) 85.8 59.8 60.4 68.5 42.6 63.4

SDLM-3B
(D = 4)

Conf. τ = .98
84.6 60.8 59.8 65.4 40.5 62.2

(2.15) (2.18) (1.76) (1.66) (1.78) (1.91)

Speculative. 85.1 61.2 58.4 65.8 40.5 62.2
(3.62) (3.54) (3.40) (3.29) (3.23) (3.42)

SDLM-3B
(D = 8)

Conf. τ = .98
83.3 58.4 59.2 64.2 39.7 61.0

(2.52) (2.51) (2.01) (1.71) (2.16) (2.18)

Speculative. 83.6 60.2 57.3 64.2 39.4 60.9
((5.99) (5.73) (5.18)) (4.84) (5.33) (5.41)

achieving up to 3.5× speed-up. On math tasks like MATH-500, accuracy remains stable (61.4 →
59.2) as long as tokens per step stay under 3. Code tasks like HumanEval+ are more sensitive, with
performance remaining high at around 1.7 tokens per step (60.4→ 59.8).

Furthermore, we compare the effects of generation block size D and confidence functions (Logit vs.
Entropy). Results show that D = 4 generally yields slightly better accuracy, while the new trained
model SDLM-3B (D = 8) enables greater acceleration due to larger parallel generation capacity.
Both confidence function-based schemes maintain good performance. The threshold τ provides a
flexible balance between speed and performance across various tasks and configurations.

4.4 ABLATION STUDY

We further explore larger D and self-speculative decoding (Table 3), alternative model designs (Ap-
pendix C), and comparisons with other speed-up methods (e.g., MTP; Appendix D). We retrain all
variants under the same settings to assess their impact on both performance and efficiency.

Block Size. We investigate the impact of larger block sizes on SDLM-3B in Table 3, focusing on
the new trained model SDLM-3B (D = 8). Compared to D = 4, the D = 8 configuration delivers
substantially higher throughput with comparable model performance. Under Conf. τ = 0.98, the
average number of output tokens per step increases from 1.9 (D = 4) to 2.2 (D = 8), with only a
1.2-point drop in overall accuracy. increasing D from 4 to 8 boosts the accepted tokens with only a
small quality drop, suggesting potential for further throughput gains.

Self-Speculative Decoding. We further evluate self-speculative decoding in Table 3. In the Specu-
lative rows, with D = 4 and D = 8, SDLM accepts an average of 3.4 and 5.4 tokens per step, corre-
sponding to roughly 85% and 68% of the proposal budget, respectively. Model performance remains
comparable across settings. However, this method incurs additional validation overhead, differing
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To find the fraction of 2 feet that is 3 inches , we need to convert the feet 
to inches and then divide the  by the total number.
1 foot = 12 inches
2 feet = 2 * 12 = 24 inches
Now, we can the 3 inches by the fraction of 2 4 inches:
\[ \frac{3}{24} = \frac{1}{8} \]
So, the answer is 1/8.
\[ \boxed{\frac{1}{8}} \]<|im_end|>

What fraction of 2 feet is 3 inches? Express your answer as a common fraction.
Please reason step by step, and put your final answer within \boxed{}.

38 step with 113 tokens

User:

SDLM:

Write a Fibonacci function in Python.User:
SDLM: 12 step with 44 tokensdef fibonacci(n):

if n == 0:
return 0

elif n == 1:
return 1

else:
return fibonacci(n-1) + fibonacci(n-2)<|im_end|>#(fib

Figure 4: Visualization of the sampling process. Where each blue block indicates a subsequence
generated in a single decoding step.

in experimental setup compared to the other two decoding methods. Despite this, it substantially
enhances the model’s responsiveness, demonstrating its potential under specific conditions.

Case Study. Figure 4 illustrates SDLM’s flexible decoding, where the generated sequence length
adapts to local context. In fluent or structured regions (e.g. math expressions, structured code
segments, common phrases), it confidently emits longer sequences at once. While facing uncertainty
or forking, it slows down with shorter outputs. This adaptive strategy balances speed with precision.

5 CONCLUSION

In conclusion, we propose Next Sequence Prediction (NSP), a unified framework bridging autore-
gressive and diffusion decoding. Building on NSP, we develop Sequential Diffusion Language
Models (SDLMs) that adapt pretrained ALMs via parallel block training and dynamic decod-
ing. SDLM matches SFT-tuned ALMs in performance while decoding faster, offering a stronger
speed–performance trade-off. We hope this work inspires further exploration of unified sequence
generation.

REPRODUCIBILITY & ETHICS STATEMENT

All data are publicly available, and code is provided in an anonymous repository (https:
//anonymous.4open.science/r/SDLM-112358/readme.md) for full reproducibility.
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A DETAILS OF TRAINING

We show the training hyperparameters in Table 4.

Table 4: Training Hyperparameters for SDLM.

Parameter SDLM-3B SDLM-32B

Max sequence length 5,632
Epochs 1
Batch size (global) 256 464
Training steps 13,699 7,558
Learning rate 5× 10−6 (constant)
ZeRO stage 1 3

The training corpus comprises with: Tulu-3-SFT-Mixture (Lambert et al., 2024), Table-GPT (Li
et al., 2023), SciRIFF (Wadden et al., 2024), SmolTalk (Allal et al., 2025), OPC-SFT-Stage2 (Huang
et al., 2024), and ScaleQuest-Math (Ding et al., 2024), with a combined total of 3.5 million samples
(∼ 2.3 billion tokens).

To comprehensively evaluate the capabilities of SDLM, we conduct evaluations across a diverse set
of benchmarks encompassing:

General Tasks. MMLU (Hendrycks et al., 2021a)(5-shot), Winogrande (Sakaguchi et al., 2021)(0-
shot), Hellaswag (Zellers et al., 2019)(10-shot), ARC-C/E (Clark et al., 2018)(0-shot), IFEval (Zhou
et al., 2023)(0-shot).

Mathematics & Science Tasks. GSM8K (Cobbe et al., 2021) (0-shot), MATH-500 (Hendrycks
et al., 2021b)(0-shot), GPQA (Rein et al., 2024) (0-shot).

Coding Tasks. HumanEval (Chen et al., 2021) (0-shot), Humaneval+ (Liu et al., 2023) (0-shot),
MBPP (Austin et al., 2021) (3-shot), MBPP+ (Liu et al., 2023) (3-shot).

B PSEUDOCODE FOR SDLM

We now include pseudocode for SDLM training (Algorithm 1), confidence-based decoding (Algo-
rithm 2), and self-speculative decoding (Algorithm 3). The corresponding input IDs, position IDs,
and attention masks are shown in Figure 2 (a) (training) and Figure 5 (inference). For confidence-
based decoding, the relevant mask is the bold upper-left block in Figure 5.

Algorithm 1 Supervised Fine-Tuning of SDLM
Require: ModelM, Sequence x, block size D
Ensure: Parameters θ

1: repeat
2: ST ← construct input via Eq. 3, Eq. 6
3: S0 ← ground-truth labels
4: PE← block-wise position ids aligned with ST

5: A← Fig. 2 (a)
6: Ŝ0 =M(ST , PE, A)

7: L(ST , S0) = CEblock(Ŝ0, S0)
8: θ ← θ − η∇θL
9: until converged

10: return θ

14
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Figure 5: Structured attention mask for sampling. (a) The bold upper-left block shows the mask
used during confidence-based generation; the full mask shows the mask used in self-speculative
decoding.

Algorithm 2 Conf Generate
Require: ModelM, prompt x, block size D
Ensure: Generated sequence y

1: Initialize KV-cache; y ← x; L← |x|
2: while not EOS do
3: xin ← [ y, y−1, MASK×(D−1) ] ▷ prepare diffusion block
4: PEin ← range(0, L) ∥ [L−1] ∥ range(L−1, L+D−2) ▷ revise pe for
5: (logits,KVnew)←M(xin,KVcache,PEin)
6: KVcache ← truncate KVnew to positions 0:L ▷ only update causal KV
7: d̂1:D ← last D-token predictions from logits ▷ candidate block
8: k ← max{j ∈ [1, D] | confidence(d̂1:j) ≥ τ} ▷ longest prefix accepted
9: y ← y ∥ d̂1:k; L← L+ k ▷ append accepted tokens

10: if d̂1:k contains EOS then
11: break
12: end if
13: end while
14: return y

C MORE ABLATION STUDY OF MODEL DESION

No Shift Prediction. To verify the effectiveness of shift prediction, we employ a method similar
to LLaDA to directly predict the original tokens at the mask location. As shown in Figure 6, under
the same training cost, this method leads to a noticeable decline in model performance, with Hu-
manEval+ scores dropping by approximately 14 points. After log analysis, we find that the model
has more repeated outputs. This indicates that the shift prediction method exploits the strong ability
of ALMs to predict the first token and provides a stable starting point for diffusion decoding.

15
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Algorithm 3 Self-Speculative Decoding Generate
Require: Draft/Verify modelM, prompt x, block size D
Ensure: Generated sequence y

1: Initialize KV-cache; y ← x; L← |x|
2: pad len = D(D−1) + D(D+1)

2

3: ▷ Prefill: obtain initial draft block ydraft
1:D

4: xin ← [ y, y−1, MASK×(D−1) ]
5: PEin ← range(0, L) ∥ [L−1] ∥ range(L−1, L+D−2)
6: (logits,KV)←M(xin,PEin,KV)
7: KV← truncate to positions 0:L ▷ keep only causal cache
8: ydraft ← last-D predictions from logits

9: ▷ Decode: draft & verify loop
10: while not EOS do
11: ( pad(ydraft), pad(PE) )← PadInputs(ydraft, L) ▷ block-pyramid verify input, Fig. 5
12: xin ← [ y, y−1, pad(ydraft) ]
13: PEin ← range(0, L) ∥ [L−1] ∥ pad(PE)
14: (logits,KVnew)←M(xin,PEin,KV) ▷ joint forward: compute verify + new draft blocks
15: KV← truncate KVnew to positions 0:L ▷ only update causal part
16: yverify ← last-pad len predictions from logits
17: ( y(0), y(1) )← reshape(ydraft, yverify) ▷ draft block candidates & verify block candidates
18: ( ynew-draft, k )← AcceptCount(y(0), y(1)) ▷ determine accepted tokens
19: y ← y ∥ ydraft

1:k ; L← L+ k;
20: if ydraft

1:k contains EOS then
21: break
22: end if
23: ydraft ← ynew-draft ▷ update draft block candidates
24: end while
25: return y
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Figure 4: Ablation on attention mask type and prediction shift strategy. We ablate (1) Casual
Attention: replace with causal mask, and (2) No shift: predicte xt instead of xt+1).
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Figure 5:

To find the fraction of 2 feet that is 3 inches , we need to convert the feet 
to inches and then divide the  by the total number.
1 foot = 12 inches
2 feet = 2 * 12 = 24 inches
Now, we can the 3 inches by the fraction of 2 4 inches:
\[ \frac{3}{24} = \frac{1}{8} \]
So, the answer is 1/8.
\[ \boxed{\frac{1}{8}} \]<|im_end|>

What fraction of 2 feet is 3 inches? Express your answer as a common fraction.
Please reason step by step, and put your final answer within \boxed{}.

38 step with 113 tokens

User:

SDLM:

Write a Fibonacci function in Python.User:
SDLM: 12 step with 44 tokensdef fibonacci(n):

if n == 0:
return 0

elif n == 1:
return 1

else:
return fibonacci(n-1) + fibonacci(n-2)<|im_end|>#(fib

Figure 6: Visualization of the sampling process. Where each blue block indicates a subsequence
generated in a single decoding step.

No Shift Prediction. To verify the effectiveness of shift prediction, we employ a method similar to
LLaDA to directly predict the original tokens at the mask location. As shown in Figure 4, under the
same training cost, this method leads to a noticeable decline in model performance, with HumanEval
and HumanEval+ scores dropping by approximately 14 points. After log analysis, we find that the
model has more repeated outputs. This indicates that the shift prediction method exploits the strong
ability of ALMs to predict the first token and provides a stable starting point for diffusion decoding.

9

Figure 6: Ablation on attention mask type and prediction shift strategy. We conduct the follow-
ing ablation experiments: (1) No shift: predicting xt instead of xt+1; (2) Leisure precautions: using
a causal mask instead. The left image shows its model performance, while the right image shows
the acceleration ratio.

Causal Attention. As shown in Figure 6, we replace bidirectional attention inside each block with
a causal (unidirectional) masking. With a block size D = 4, the two variants obtain almost identical
scores on some benchmarks and exhibit comparable training difficulty. However, the average num-
ber of tokens generated per step decreases from 1.88 to 1.82, indicating that bidirectional attention
enlarges the local receptive field during decoding and improves parallel generation efficiency.
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Table 5: SDLM with larger block size and sampling with self-speculative decoding. SC.:
Performance; SuP (SpeedUp×): average accepted tokens per step; TPS: actual throughput, denotes
as Equation 11. In addidion, BD denotes the length of draft tokens (num of heads in MTPs and
decoding window size of SDLM).

Model GSM8K MATH HumanEval+ MBPP Avg.
SC. SuP TPS SC. SuP TPS SC. SuP TPS SC. SuP TPS SC. SuP TPS

ALMs

Vicuna-7B-v1.51 Vanilla 11.8 1.00 40.00 2.0 1.00 40.26 16.5 1.00 39.01 38.1 1.00 40.21 – 1.00 39.87
Qwen2.5-3B-SFT Vanilla 86.0 1.00 30.95 60.8 1.00 31.22 61.0 1.00 31.32 68.5 1.00 31.00 69.1 1.00 31.12
Qwen2.5-3B-SFT vLLM 85.6 1.00 138.15 62.2 1.00 138.29 59.2 1.00 137.05 70.0 1.00 132.46 69.3 1.00 136.49

MTPs

Medusa-V1.0-7B2 BD=6 10.4 3.64 119.15 2.0 3.82 128.40 16.5 3.90 127.74 26.1 4.25 103.40 – 3.90 119.67
Qwen2.5-3B-Eagle3 BD=16 77.41 5.78 142.29 57.60 6.13 182.31 59.15 5.71 146.37 67.70 5.24 139.39 65.45 5.72 152.59
Qwen2.5-3B-Eagle3 BD=32 78.51 8.01 256.97 59.60 8.65 190.39 58.54 7.73 161.99 68.48 7.18 157.33 66.28 7.89 191.67

DLMs

SDLM-3B
(D = 4)

BD=4 85.0 3.62 98.52 60.4 3.57 98.58 59.2 3.44 93.49 65.4 3.35 86.11 67.5 3.50 94.18
BD=8 85.5 5.34 143.30 60.0 5.12 137.49 59.8 4.88 129.43 65.4 4.51 111.31 67.7 4.96 130.38

SDLM-3B
(D = 8)

BD=8 83.6 5.99 161.00 59.6 5.73 155.53 57.9 5.37 141.47 64.2 5.09 125.27 66.3 5.55 145.82
BD=16 84.2 7.30 176.44 60.2 6.82 166.83 59.2 6.33 152.69 65.4 5.68 126.39 67.3 6.53 155.59

D COMPARISON WITH MULTI-TOKEN PREDICTION

SDLM can be viewed through the lens of multi-token prediction (MTP) as well. Both SDLM and
MTP parallelize autoregressive generation by predicting multiple tokens in a single forward pass.
For a prediction horizon of D tokens, MTP use D separate output heads, with the i-th head predicting
the token at position m+ i. Similarly, SDLM uses D positions in the input sequence: the last token
(at position m) and D − 1 mask tokens. The prediction at the last token position corresponds
to the token at t + 1 (equivalent to MTP’s first head), and the prediction at the j-th mask token
(1 ≤ j ≤ D − 1) corresponds to the token at m+ 1 + j (equivalent to MTP’s (j + 1)-th head).

However, SDLM introduces two advantages. First, the predictions are generated within a local bidi-
rectional attention window, enabling joint context utilization across the predicted tokens. This con-
trasts with MTP’s isolated head (Cai et al., 2024; Gloeckle et al., 2024) or left-to-right attention (Liu
et al., 2024). Second, extending the prediction horizon requires no architectural modification: ap-
pending additional mask tokens suffices, while MTP necessitates adding new output heads.

To ensure a fair comparison with MTP style methods with speculative decoding, we evaluate the
following models:

• Autoregressive: both vanilla HuggingFace transformers.generate() (PyTorch
backend with pre-allocated KV-cache) and the vLLM Kwon et al. (2023) acceleration
framework;

• Medusa Cai et al. (2024): A method accelerating generation by employing a few additional
decoding heads; evaluated using Medusa-V1.0-7B and its base model, Vicuna-7B-v1.5;

• Eagle-3 Li et al. (2025): A SoTA multi-token prediction with speculative decoding; evalu-
ated using trained Qwen2.5-3B-Eagle3 with our training data;

• SDLM (Ours): Our method of self-speculative decoding with enhanced KV-cache support.

We compute TPS with actual generated tokens and wall-clock inference time as follows:

TPS ≈
∑

num samples actual generate tokens

wall-clock inference time
(11)

As shown in Table 5, we first compare SDLM with the SFT baseline model trained under the same
setting, SDLM exhibits only a small drop in performance across the four benchmarks, but already
achieves about a 3× end-to-end speedup over vanilla decoding, when both the training and inference

1https://huggingface.co/lmsys/vicuna-7b-v1.5
2https://huggingface.co/FasterDecoding/medusa-v1.0-vicuna-7b-v1.5
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windows size are set to 4. Furthermore, for SDLM-3B (D = 8), when we increase the inference
window size to 16, we observe an even longer effective decoding length without noticeable perfor-
mance degradation, and the actual speedup reaches about 5× compared with vanilla decoding, while
remaining highly comparable to vLLM across the four evaluated tasks.

For comparison with MTP approaches, Medusa achieves nearly a 3× speedup over its base model,
and the state-of-the-art speculative decoding model Eagle-3 also demonstrates close to a 5× speedup
(see their Table 1 on GSM8K for a fair comparison). In our evaluation, when using a block window
of 16, SDLM achieves acceleration comparable to Eagel-3 (TPS 155 vs. 152), while exhibiting
slightly lower speedup compared with Eagle-3 using a larger block size of 32.

These results indicate that SDLM can achieve excellent acceleration when combined with specula-
tive decoding. Moreover, SDLM naturally generalizes to larger speculative windows that are never
seen during training, and the bidirectional attention design may further enhance modeling capacity.
We believe that with more carefully optimized training objectives and attention kernels, SDLM can
become even faster and more accurate in the future.

All results in Table 5 are evaluated using the standard OpenCompass settings, and the wall-clock
inference time is measured by simply placing a timer around the generate call.

E USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely for assisting with language polishing and minor
writing support. All research ideas and analyses were conceived and developed by the authors.
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