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Abstract

Modern neural network libraries all take as a001
hyperparameter a random seed, typically used002
to determine the initial state of the model pa-003
rameters. This opinion piece argues that there004
are some safe uses for random seeds: as part005
of the hyperparameter search to select a good006
model, creating an ensemble of several mod-007
els, or measuring the sensitivity of the training008
algorithm to the random seed hyperparameter.009
It argues that some uses for random seeds are010
risky: using a fixed random seed for “repli-011
cability” and varying only the random seed012
to create score distributions for performance013
comparison. An analysis of 85 recent publica-014
tions from the ACL Anthology finds that more015
than 50% contain risky uses of random seeds.016

1 Introduction017

Modern neural network libraries all take as a hyper-018

parameter a random seed, a number that is used to019

initialize a pseudorandom number generator. That020

generator is typically used to determine the initial021

state of model parameters, but may also affect op-022

timization (and inference) in other ways, such as023

selecting which units to mask under dropout, or se-024

lecting which instances of the training data go into025

each minibatch during gradient descent. Like any026

hyperparameter, neural network random seeds can027

have a large or small impact on model performance028

depending on the specifics of the architecture and029

the data. Thus, it is important to optimize the ran-030

dom seed hyperparameter as we would any other031

hyperparameter, such as learning rate or regulariza-032

tion strength.033

Such tuning is especially important with the pre-034

trained transformer architectures currently popular035

in NLP (BERT, Devlin et al., 2019; RoBERTa Liu036

et al., 2019; etc.), which are quite sensitive to their037

random seeds (Risch and Krestel, 2020; Dodge038

et al., 2020; Mosbach et al., 2021). Several solu-039

tions to this problem have been proposed, including040

specific optimizer setups (Mosbach et al., 2021), 041

ensemble methods (Risch and Krestel, 2020), and 042

explicitly tuning the random seed like other hyper- 043

parameters (Dodge et al., 2020). 044

The NLP community thus has some awareness 045

of the problems that random seeds present, but it 046

is inconsistent in its approaches to solving those 047

problems. The remainder of this opinion piece first 048

presents a taxonomy of different ways that neural 049

network random seeds are used in the NLP commu- 050

nity, explaining which uses are safe and which are 051

risky. It then reviews 85 articles published in the 052

ACL Anthology, categorizing their random seed 053

uses based on the taxonomy. This analysis finds 054

that more than 50% of the articles include risky 055

uses of random seeds, suggesting that the NLP 056

community still needs a broader discussion about 057

how we approach random seeds. 058

2 A taxonomy of random seed uses 059

This section highlights five common uses of neural 060

network random seeds in the NLP community, and 061

categorizes them as either safe or risky. 062

2.1 Safe use: Model selection 063

The random seed is a hyperparameter of a neu- 064

ral network architecture that determines where in 065

the model parameter space optimization should be- 066

gin. It may also affect optimization by determining 067

the order of minibatches in gradient descent, or 068

through mechanisms like dropout’s random sam- 069

pling of unit activations. As the random seed is 070

a hyperparameter, it can and should be optimized 071

just as other hyperparameters are. Unlike some 072

other hyperparameters, there is no intuitive expla- 073

nation of why one random seed would be better or 074

worse than another, so the typical strategy is to try a 075

number of randomly selected seeds. For example: 076

Instead, we compensate for the inher- 077

ent randomness of the network by train- 078

1



ing multiple models with randomized ini-079

tializations and use as the final model080

the one which achieved the best perfor-081

mance on the validation set. . . (Björne082

and Salakoski, 2018)083

The test results are derived from the 1-084

best random seed on the validation set.085

(Kuncoro et al., 2020)086

2.2 Safe use: Ensemble creation087

Ensemble methods are an effective way of com-088

bining multiple machine-learning models to make089

better predictions (Rokach, 2010). A common ap-090

proach to creating neural network ensembles is to091

train the same architecture with different random092

seeds, and have the resulting models vote (Perrone093

and Cooper, 1995). For example:094

In order to improve the stability of the095

RNNs, we ensemble five distinct models,096

each initialized with a different random097

seed. (Nicolai et al., 2017)098

Our model is composed of the ensemble099

of 8 single models. The hyperparameters100

and the training procedure used in each101

single model are the same except the ran-102

dom seed. (Yang and Wang, 2019)103

2.3 Safe use: Sensitivity analysis104

Sometimes it is useful to demonstrate how sensitive105

a neural network architecture is to a particular hy-106

perparameter. For example, Santurkar et al. (2018)107

shows that batch normalization makes neural net-108

work architectures less sensitive to the learning rate109

hyperparameter. Similarly, it may be useful to show110

how sensitive neural network architectures are to111

their random seed hyperparameter. For example:112

We next (§3.3) examine the expected vari-113

ance in attention-produced weights by114

initializing multiple training sequences115

with different random seeds. . . (Wiegr-116

effe and Pinter, 2019)117

Our model shows a lower standard de-118

viation on each task, which means our119

model is less sensitive to random seeds120

than other models. (Hua et al., 2021)121

2.4 Risky use: Single fixed seed122

NLP articles sometimes pick a single fixed random123

seed, claiming that this is done to improve consis-124

tency or replicability. For example:125

An arbitrary but fixed random seed was 126

used for each run to ensure reproducibil- 127

ity. . . (Le and Fokkens, 2018) 128

For consistency, we used the same set 129

of hyperparameters and a fixed random 130

seed across all experiments. (Lin et al., 131

2020) 132

Why is this risky? First, fixing the random seed 133

does not guarantee replicability. For example, the 134

tensorflow library has a history of producing differ- 135

ent results given the same random seeds, especially 136

on GPUs (Two Sigma, 2017; Kanwar et al., 2021). 137

Second, not optimizing the random seed hyperpa- 138

rameter has the same drawbacks as not optimizing 139

any other hyperparameter: performance will be an 140

underestimate of the performance the architecture 141

is capable of with an optimized model. 142

What should one do instead? The random seed 143

should be optimized as any other hyperparameter. 144

Dodge et al. (2020), for example, show that doing 145

so leads to simpler models exceeding the published 146

results of more complex state-of-the-art models on 147

multiple GLUE tasks (Wang et al., 2018). The 148

space of hyperparameters explored (and thus the 149

number of random seeds explored) can be restricted 150

to match the availability of compute resources with 151

techniques such as random hyperparameter search 152

(Bergstra and Bengio, 2012) where n hyperparame- 153

ter settings are sampled from the space of all hyper- 154

parameter settings (with random seeds treated the 155

same as all other hyperparameters). In an extremely 156

resource-limited scenario, random search might se- 157

lect only a single value of some hyperparameter 158

(such as random seed), which might be acceptable 159

given the constraints, but should probably be ac- 160

companied by an explicit acknowledgement of the 161

risks of underestimating performance. 162

2.5 Risky use: Performance comparison 163

It is a good idea to compare not just the point esti- 164

mate of a single model’s performance, but distribu- 165

tions of model performance, as comparing perfor- 166

mance distributions results in more reliable conclu- 167

sions (Reimers and Gurevych, 2017; Dodge et al., 168

2019; Radosavovic et al., 2020). However, it has 169

sometimes been suggested that such distributions 170

can be obtained by training the same architecture 171

and varying only the random seed. For example: 172

We re-ran both implementations multi- 173

ple times, each time only changing the 174
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seed value of the random number gener-175

ator. . . we observe a statistically signif-176

icant difference between these two dis-177

tributions. . . (Reimers and Gurevych,178

2017)179

Indeed, the best approach is to stop re-180

porting single-value results, and instead181

report the distribution of results from182

a range of seeds. Doing so allows for183

a fairer comparison across models. . .184

(Crane, 2018)185

(Note the difference between sections 2.3 and 2.5:186

sensitivity analysis describes only how sensitive187

the model is to the random seed; performance com-188

parision makes claims about whether one model is189

better than another.)190

Why is this risky? If the goal is to compare the191

best possible model trainable from one architecture192

to the best possible model trainable from another193

architecture, as in the case of leaderboard compar-194

isons, then varying random seeds is generating a195

bunch of suboptimal models for that comparison.196

If the goal is to compare the family of models that197

result from training one architecture to the family198

of models that result from training another archi-199

tecture, then varying only the random seed is gen-200

erating a small biased slice of the family, since the201

family consists of the model variations across all202

hyperparameter settings, not just random seeds.203

What should one do instead? If the goal is to204

compare the best possible models trainable from205

different architectures, then the random seed needs206

to be optimized just as we would for any other hy-207

perparameter. It’s still a good idea to compare dis-208

tributions, rather than point estimates, so standard209

statistical techniques can be applied. For example,210

bootstrap samples may be drawn from the test set,211

and evaluating a model on each of those samples212

will give a distribution over the model’s expected213

performance (Dror et al., 2018). Comparing these214

distributions will give a statistically sound estimate215

of whether the best model found for one neural216

network architecture outperforms the best model217

found for another. If the goal is instead to compare218

families of models, then it makes sense to train219

many versions of the same architecture, but they220

should be sampled to vary across all hyperparam-221

eters, not just the random seed hyperparameter1.222

1Occasionally, the random seed might be the only hyperpa-
rameter, e.g., an extreme black box machine-learning scenario

Comparing these distributions will give a statisti- 223

cally sound estimate of whether one architecture 224

(and not just the best-optimized instance of that 225

architecture) is better than another. 226

3 Random seed uses in ACL 227

Having introduced both safe and risky uses of neu- 228

ral network random seeds, we now turn to the cur- 229

rent state of NLP with respect to such seeds. The 230

following analysis is illustrative, not exhaustive, 231

providing a conservative estimate of the prevalence 232

of the problem. 233

On 29 Jun 2021, I searched the ACL Anthol- 234

ogy for articles containing the phrases “random 235

seed” and “neural network”2. The ACL Anthology 236

search interface returns a maximum of 10 pages 237

of results, with 10 results per page, so I collected 238

all 100 search results. Non-articles (entire proceed- 239

ings, author pages, supplementary material) were 240

excluded, as were articles where the random seeds 241

were not used to initialize a neural network (e.g., 242

only for dataset selection). The result was 85 arti- 243

cles, from publications between 2015 and 2021. 244

I read each of the articles and categorized its 245

use of random seeds into one of the five purposes 246

introduced in section 2. While it is conceptually 247

possible for an article to fall into more than one 248

category (e.g., having both ensembles and sensi- 249

tivity analysis) the vast majority of articles I read 250

fell into a single category, typically with just a sin- 251

gle sentence where random seed was used. For 252

the tiny fraction of articles where more than one 253

category applied, since my goal only was to get a 254

rough distribution of random seed use, I selected a 255

“primary” category arbitrarily from the categories 256

present. The supplementary material for this ar- 257

ticle includes a spreadsheet detailing each article 258

reviewed, its category of random seed use, and a 259

snippet of English text from the article justifying 260

my assignment of that category. 261

Table 1 shows the distribution of articles across 262

the different random seed purposes. More than half 263

of the articles (48) include a risky use of random 264

seeds, with 24 using a single fixed seed and 24 265

using only random seeds to generate distributions 266

for performance comparisons. This suggests that 267

where the only way to get model variants is to vary the order
in which training data instances are fed to the model. In such
cases, it would be acceptable to vary only the random seed.

2https://www.aclweb.org/anthology/
search/?q=%22random+seed%22+%22neural+
network%22
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Figure 1: Uses of neural network random seeds by year for 85 ACL Anthology articles.

Type Purpose Count

Safe Model selection 12
Safe Ensemble creation 13
Safe Sensitivity analysis 12

Safe sub-total 37

Risky Fixed seed 24
Risky Performance comparison 24

Risky sub-total 48

Table 1: Uses of neural network random seeds for 85
ACL Anthology articles.

NLP researchers are often using neural network268

random seeds without the necessary care.269

One might wonder if the NLP community is270

getting better over time, that is, if risky uses are271

on the decline as NLP researchers become more272

familiar with neural networks research. Figure 1273

shows that this was not the case: though the volume274

of articles that matched the query varies from year275

to year, for most years the number of risky uses276

of random seeds is similar to the number of safe277

uses. This suggests that NLP researchers continue278

to have trouble distinguishing safe from risky uses279

of neural network random seeds.280

4 Discussion281

We have seen that risky uses of neural network ran-282

dom seeds – using only a fixed seed or generating283

performance distributions for model comparisons284

by varying only random seeds – are still widespread285

within the NLP community. The analysis in sec-286

tion 3 is a conservative estimate of the problem.287

The query used in the analysis matched articles288

only if they had the explicit phrases “neural net-289

work” and “random seed” both within the article.290

That means the search did not return articles on291

neural networks where no “random seed” was men- 292

tioned, yet in such cases it is likely that a single 293

fixed seed was used. Therefore the proportion of 294

fixed seed papers in our sample is likely an under- 295

estimate of the proportion in the true population3. 296

How do we move the NLP community away 297

from risky uses of neural network random seeds? 298

Hopefully, this article can help to start the neces- 299

sary conversations, but clearly it is not an endpoint 300

in and of itself. Part of the responsibility must 301

fall on mentors in the NLP community, such as 302

university faculty and industry research leads, to 303

ensure that they are training their mentees about 304

these topics. Part of the responsibility will fall on 305

reviewers of NLP articles, who can identify mis- 306

uses of neural network random seeds and flag them 307

for revision. And of course part of the responsibil- 308

ity falls on NLP authors themselves to make sure 309

they understand the nuances of neural network hy- 310

perparameters like random seeds and the ways in 311

which they should and should not be used. 312

5 Conclusion 313

This opinion piece has introduced a simple taxon- 314

omy of common uses for neural network random 315

seeds in the NLP literature, describing three safe 316

uses (model selection, ensemble creation, and sen- 317

sitivity analysis) and two risky uses (single fixed 318

seed and varying only the random seed to gener- 319

ate distributions for performance comparison). An 320

analysis of 85 articles from the ACL Anthology 321

showed that more than half of these NLP articles 322

include risky uses of neural network random seeds. 323

Hopefully, highlighting this issue can help the NLP 324

community to improve our mentorship and training 325

and move away from risky uses of neural network 326

random seeds in the future. 327

3This query also can’t address another interesting issue
that is out of scope for the current article: quantifying how
many articles don’t optimize any hyperparameters at all.
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