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Abstract

Personalized federated learning, as a variant of federated learning, trains customized mod-
els for clients using their heterogeneously distributed data. However, it is still inconclusive
about how to design personalized models with better representation of shared global knowl-
edge and personalized pattern. To bridge the gap, we in this paper explore personalized
models with low-rank and sparse decomposition. Specifically, we employ proper regulariza-
tion to extract a low-rank global knowledge representation (GKR), so as to distill global
knowledge into a compact representation. Subsequently, we employ a sparse component
over the obtained GKR to fuse the personalized pattern into the global knowledge. As a
solution, we propose a two-stage proximal-based algorithm named Federated learning with
mixed Sparse and Low-Rank representation (FedSLR) to efficiently search for the mixed
models. Theoretically, under proper assumptions, we show that the GKR trained by Fed-
SLR can at least sub-linearly converge to a stationary point of the regularized problem, and
that the sparse component being fused can converge to its stationary point under proper
settings. Extensive experiments also demonstrate the superior empirical performance of
FedSLR. Moreover, FedSLR. reduces the number of parameters, and lowers the down-link
communication complexity, which are all desirable for federated learning algorithms.

1 Introduction

Federated Learning (FL) (McMahan et al., 2016) has emerged as a solution to exploit data on the edge in a
privacy-preserving manner. In FL, clients train a global model collaboratively without sharing private data.
However, the global model may not feature a good adaption for each client’s task per (Zhao et al., 2018).

To bridge the gap, the concept of Personalized Federated Learning (PFL) is proposed as a remedy. PFL
deploys customized models for each client, which typically incorporates a global component that represents
global knowledge from all the clients, and a personalized component that represents the local knowledge.
The main stream of PFL can be classified into four genres, i.e., layer-wise separation (Arivazhagan et al.,
2019), linear interpolation (Deng et al., 2019), regularization (Li et al., 2021c), and personalized masks
(Huang et al., 2022; Li et al., 2021a; 2020). All of these studies either explicitly or implicitly enforce a global
component and a personalized component to the personalized models. Despite a plethora of research on
this topic having emerged in sight, PFL is still far from its maturity. Particularly, it is still unclear how
to better represent the global knowledge with the global component and the personalized pattern with the
local component, and more importantly, how to merge them together to produce better performance.

Moreover, existing PFL studies usually involve additional personalized parameters in their local models, e.g.,
(Deng et al., 2020). However, the local knowledge should be complementary to the global knowledge, which
means it does not need dominating expressiveness in the parameter space. On the other hand, the global
knowledge, which represents clients’ commonality, and is complemented by personalized component, may
not need a large global parameter space to achieve its functionality. All in all, we are trying to explore:

Do we need such amount of parameters to represent the local pattern, as well as the global
knowledge? Can the expressiveness of local models be optimized by intersecting the param-
eter space of the personalized and global component?
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To answer above questions, we utilize the idea of decomposing personalized models as a mixture of a low-rank
Global Knowledge Representation (GKR) and a sparse personalized component, wherein the GKR is used
to extract the core common information across the clients, and the sparse component serves as representing
the personalized pattern for each client. To realize this goal, we employ proper regularization on the GKR
and the sparse component in two separate optimization problems. The formulated regularization-involved
problems, for which there is not an existing solution to our best knowledge, are alternatively solved via the
proposed two-stage algorithm (named FedSLR). The proposed algorithm enjoys superior performance over
the personalized tasks, while simultaneously reducing the communication and model complexity. In summary,
we highlight the following characteristics that FedSLR features: (i) The GKR component can better represent
the global knowledge. Its accuracy performance is increased compared to general FL solution (e.g., FedAvg).
(ii) The mixed personalized models, which are fused with local pattern with sparse components, obtain
SOTA performance for each client’s task among all the existing personalize methods. (iii) Both the two
models being generated can be compressed to have a smaller amount of parameters via factorization, which
is easier to deploy in the commonality hardware. Besides, down-link communication cost in the training
phase can be largely reduced according to our training mechanism.

Empirically, we conduct extensive experiment to validate the performance of FedSLR. Specifically, our ex-
periments on CIFAR-100 verify that: (i) the Global Knowledge Representation (GKR) can better represent
the global knowledge (GKR model achieves 7.23% higher accuracy compared to FedAvg), and the mixed
models can significantly improve the model accuracy of personalized tasks (the mixed model produced by
FedSLR achieves 4.47% higher accuracy to Ditto). (ii) Moreover, both GKR and the mixed model are
more compact to respectively represent the global and personalized knowledge (GKR model achieve 50.40%
less parameters while the mixed model pruned out 40.11% parameters). (iii) The downlink communication
overhead is lowered (38.34% fewer downlink communication in one session of FL).

Theoretically, we establish the convergence property of GKR and the sparse personalized component, which
showcases that both components could asymptotically converge to their stationary points under proper
setting. To the end, our contributions are summarized as follows,

o We derive shared global knowledge with a low-rank global knowledge representation (GKR). However, a
low-rank GKR may not represent personalized information covered by local data. Therefore, we propose
to perform fusion of personalized pattern via merging sparse personalized components, which complements
the expressiveness of the low-rank model, while only incur minor extra parameters for the mixed models.

e We propose a new methodology named FedSLR for optimizing the proposed two-stage problem. FedSLR
only requires the minor extra computation of proximal operator on the server, while can significantly
boost performance, reduce communication size, and lighten model complexity.

e We present convergence analysis to FedSLR, which concludes that under the assumption of Kurdyka-
Lojasiewicz condition, the GKR produced by FedSLR could at least sub-linearly converge to a stationary
point. Also, the sparse components can asymptotically converge to their stationary points under proper
settings. Extensive empirical experiments also demonstrate the superiority of FedSLR.

2 Related Work

Federated learning. FL is first proposed in (McMahan et al., 2016) to enable collaborative training of
a network model without requiring the clients’ data to be exchanged. However, the data resided in clients
are intrinsically heterogeneous (or Non-IID), which leads to performance degradation of the global model
produced by FL (Zhao et al., 2018). Many attempts have been proposed to alleviate the data heterogeneity
issue. Scaffold (Karimireddy et al., 2020), for example, introduces a variance reduction technique to correct
the drift of local training. Similarly, FedCM (Xu et al., 2021) uses client-level momentum to perform drift
correction to the local gradient update. Another genre, the prox-based algorithm, e.g., FedProx (Li et al.,
2018), incorporates a proximal term in the local loss to constrain the inconsistency of the local objective. In
addition to the proximal term, A subsequent study, (Acar et al., 2021) further incorporates a linear term in
its local loss to strengthen local consistency. FedPD (Zhang et al., 2021) and FedAdmm (Wang et al., 2022)
explore the combination of the method of ADMM into FL problem to counter the Non-IID issue.
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Figure 1: Illustration of FedSLR. Firstly, the server performs proximal operator over the average of local
models to enforce low-rank global knowledge representation (GKR). Secondly, the GKR is distributed to
clients, and is used for training. Thirdly, client fuses the personalized sparse component with respect to
GKR. Finally, the local gradient (equivalently, the auxiliary variable ;) is updated on both server and
clients according to the local models communicated from the clients.

Personalized federated learning. PFL is a relaxed variant of FL. In PFL, the goal is to train customized
models for each client, and each customized model is used to perform an individual task for each client.
We classify the PFL solutions in the following genres. The first genre is to separate the global layers
and personalized layers, e.g., (Collins et al., 2021; Liang et al., 2020; Arivazhagan et al., 2019), which
respectively contain global knowledge and personalized pattern of each specific client. The second genre is
linear interpolation. To illustrate, (Deng et al., 2020; Mansour et al., 2020) and (Gasanov et al., 2021) propose
to linearly interpolate personalized components and global component to produce the personalized models.
The third genre, inspired by the literature on multi-task learning, is to introduce proximal regularizer to
constrain the proximity of global model and personalized models, e.g., (Li et al., 2021¢; Yu et al., 2020). The
last genre is to personalize the global model with a sparse mask, see (Huang et al., 2022; Li et al., 2021a).

In this paper, we apply the idea of sparse plus low-rank decomposition to bridge FL and PFL. Specifically,
we train GKR via a proximal-based descent method. Then, along the optimization trajectory of GKR,
each client simultaneously optimizes the personalized sparse component using their local data. In this way,
the GKR shares the commonality among all user’s data, and the personalized component captures the
personalized pattern, which facilitates the mixed model to acquire better local performance. We emphasize
that our proposed idea, that the personalized model can be decomposed to a low-rank GKR and a sparse
personalized component, is novel over the existing literature.

3 Problem Setup

We first assume there are M clients (indexed by 4) in the system. Each client hosts n; pieces of data.

Classical FL problem. The FL problem in (McMahan et al., 2016) is formulated as follows:

M
w = arg min,, {f(w) = % Zfz(w)} (1)

where f;(w) := - > iy Loss(w; (x5, y;)) is the the empirical loss (e.g., average of cross entropy) of the
i-th client. However, the global model obtained by minimizing global consensus may not perform well in
personalized tasks, in other words, is incapable of minimizing each specific f;(-).
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Alternatively, under the assumption that the model deployed in each client can be not exactly the same, our
PFL formulation can be separated into two sub-problems, as follows.

Global knowledge representation (GKR). To derive the global knowledge with a compact size of model,
we alternatively establish the following global knowledge representation problem.

(P1) Find a stationary point @*such that 0 € 9 f (w*),

M L
where f(w) = {f(w) = me)} - {R(w) =AY ||Wl||*}
=1 =1

Here, we use R(w) to impose low-rank regularizer for model with L layers, where || - ||« is the nuclear norm.
Prior entering the model weights into the regularizer, we follow scheme 2 in (Idelbayev & Carreira-Perpinan,
2020) to do the matrix transformation for different layers of a neural network, where W; € Ré1%di2 = ¢(w, 1)
maps the original weights of I-th layer into the transformed matrix . By factorization, one can decompose
matrix weights of each layer W, into W, = U, V,T where U, € R%:1" V; € R%:2" and 7 is the rank of matrix.
With sufficiently large intensity of the regularizer, r could be reduced to a sufficiently small number such that
its number of parameter can be much smaller than that of the full size model, i.e., rx (dj1+d;2) < dj1 X dj 2.
In this way, we distill the global knowledge into a compact model with fewer parameters.

(2)

Fusion of personalized pattern. Constructed upon the low rank GKR obtained before, we further
establish a formulation to merge the personalized pattern into the global knowledge, as follows:

(P2) {pi}= argn;iin {f(ﬁz) = fil@" +pi)} + {7%(1%) = pllpill1} - (3)

In this formulation, we use a sparse component to represent the personalized pattern, so as to complement and
improve the expressiveness of GKR. Or more specifically, we use a GKR plus sparse personalized components
as the models we used in inference of the personalized task. The sparsity of the personalized component
controls the degree of local knowledge to be fused. As we show later, properly sparsifying the personalized
component enables a better merge between global and local knowledge, while simply no sparsification or too
much sparsification would both lead to performance degradation. Moreover, the sparse matrix would only
introduce minor extra parameters upon GKR. Here we use L1 norm to sparsify the personalized component.

Remark 1. Our proposed problem formulation is separated into two sub-problems. The objective of the first
sub-problem (P1) is to train global knowledge representation, aiming to derive the global knowledge, and
that of the second sub-problem (P2) is to fuse the personalized pattern into GKR that we obtain in the first
problem. QOur problem definition is unorthodox to the main stream of PFL research, most of which can be
generalized to a bi-variables optimization problem (see the general form in Eq. (3) of (Pillutla et al., 2022) ),
and therefore the methods FedSim/FedAlt in (Pillutla et al., 2022) can not be directly applied to our problems.

4 Methodology

We now derive our FedSLR solution, which can be separated into two phases of optimization.

Phase I: represent the global knowledge with a low-rank component. To mitigate the communica-
tion cost, and the computation overhead in the local phase, we propose to postpone the proximal operator
to the global aggregation phase. Prior to that, we switch the task of local training of i-th client to solve a
sub-problem as follows:

. 1
(Local Phase) w; 141 = argmin,, fi(w) — (yi¢, w) + ﬁ”'wt —w||? (4)
g
where 74 is the global learning rate used in the aggregation phase, v; + is an auxiliary variable we introduce to
record the local gradient, which is essential in the aggregation phase to recover the global proximal gradient
descent. This sub-problem could be solved (or inaccurately solved) via an iterative solver, e.g., SGD.

1Here we show the detailed implementation for this matrix transformation. We apply different transformations for different
layer architecture of a deep neural network. For the convolutional layer, we reshape the original vector weights of convolutional
layer w; € ROX4XiXd to matrix W; € R°X%2X4_ where 0,1, d respectively represents the output/input channel size and kernel
size. For linear layer, we map vector w; € R°*? to matrix w; € R%*, where o and 4 are the output/input neuron size.
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After the local training, we introduce an update to the auxiliary variable in each round, as follows:

1
(Auxiliary Variable Update) v; 111 = ;¢ + F(wt — Wi 41) (5)
g

With auxiliary variable {; +1} and local weights {w; 41} ready, we take a global proximal step in server,

M M
. 1
(Aggregation) w;y1 = Prox, y|.|. (M Z W 441 — UMg Z%vt“) (6)
i=1 i=1

Remark 2. The inspiration of our proposed method stems from the LPGD method (a direct application
of prozimal descent algorithm into the mon-smooth regularized problem (P1), see Appendix A.1). Firstly,
observed from the optimality condition of Eq. (4) that we indeed have V f;(w; 141) — Vit — n—lg('wt —Wj41) =
0. Combining this with Eq.(5), it is sufficient to show that v;111 = Vfi(w;y1). Then, plugging this
relation into Aggregation in Eq. (6), we show that if the local iterates converge, i.e., w;i41 — Wy, the
latter term can indeed approzimate V fi(wy), and thereby the global iterative update can reduce to wyy; =
Prox, x|, (we —ngV f(wy)), which is exactly the same update for LPGD (if its local step K = 1). To
sum up, our solution excels the direct application of LPGD method in two aspects: i) We postpone the
prozimal operator with intense computation to the aggregation phase, which only need to perform once in
one global iteration, and is computed by the server with typically more sufficient computational resources. ii)
In addition, since GKR distributed to clients is low-rank, the downlink communication can be largely saved.

Phase II: Local fusion with a sparse component. After the GKR w; is updated in the first phase
of optimization, we train the personalized component to acquire fusion of the personalized pattern into the
global knowledge. This can be done by performing a proximal step as follows,

(Local Fusion)  pi ¢ ky1 = Proxy, ., (Pier — mVafi(ws + pi e ki §)) (7)

where Prox,, ., (-) is used to sparsify the personalized component, 7; is the local stepsize, V3 takes the
differentiation with respect to p, and £ is the stochastic sample from the i-th client’s local data.

Remark 3. Our phase II optimization relies on the classical proximal stochastic GD method. It frozens the
GKR w; obtained in the previous global round, and optimize p; towards the local loss in order to absorb the
local knowledge. The proximal operator for L1 reqularizer is performed in every local step, but the overhead
should not be large (compared to operator for low-rank regularizer), since only direct value shrinkage over
model weights is needed to be performed (see Appendeiz A.2).

The entire workflow of our FedSLR algorithm is formally captured in Algorithm 1.

5 Theoretical Analysis

We in this section give the following basic assumptions to characterize the non-convex optimization landscape.
Before we proceed, we first set up a few notations we use. || - || is used to represent the L2 norm unless
otherwise specified. OR(-) is a set that captures the subgradient for function R(-). dist(C, D) = inf{||x —y|| |
x € C,y € D} captures the distance between two sets.

Assumption 1 (L-smoothness). We assume L-smoothness over the client’s loss function, formally, we
assume there exists a positive constant L such that ||V f;(w) — Vfi(w')|| < L||w — w'|| holds for arbitrary
w,w' € R

Assumption 2 (Bounded gradient). Suppose the gradient of local loss is upper-bounded, i.e., there exists a
positive constant B such that |V f;(w)|| < B holds for w € R?,

Assumption 3 (Proper closed global objective). The global objective f(-) is proper and closed.

Remark 4. Assumps 1 and 2 are widely used to characterize the convergence property of federated learning
algorithms, e.g.,(Xu et al., 2021; Li et al., 2019; Gong et al., 2022) . By Assumption 3, we intend to ensure
that i) the global objective is lower bounded, i.e., for w € R?, f(w) = & Zf\il fi(w) > —oo, and i) the

global objective is lower semi-continuous. The assumption is widely used in analysis of proximal algorithms.
e.g., (Wang et al., 2018; Li & Pong, 2016).
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Algorithm 1 Federated learning with mixed Sparse and Low-Rank representation (FedSLR)

Input Training iteration T'; Local stepsize 1;; Global stepsize 7y ; Local step K;
1: procedure SERVER’S MAIN Loop
2 for t=0,1,...,7—1do
3: for i€ [M] do
4 Send w; to the i-th client, invoke its main loop and receive w; ;41
5 Vi1 = Vit + %(wt — Wi t41) > Update auxiliary variable on server

<@

wit1 = Proxg, |-|. (ﬁ Zf\il Wi 41 — ﬁ Zf\il ng%,tﬂ) > Apply the update
7: procedure CLIENT’S MAIN Loop
Receive wy from server.
9: Call Phase I OPT to obtain w; ¢+1 and ~; 1.
10: Call Phase II OPT to obtain p; ¢ k.

o

11: Send w; 141 to Server, and keep p; ¢, k privately.

12: procedure Puase I OPT (GKR)

13: w; 41 = argmin,, fi(w) — (vi,, w) + i”wt — wH2 > Train GKR in Local
14: Yi,t+1 = Vit + %(wt — Wi 41) > Update the auxiliary variable
15: Return w; 41 and v;,¢41

16: procedure PHASE II OPT (PERSONALIZED COMPONENT)

17: Pit,0 = Pit— K > Warm-start from the last-called
18: for ke [K] do

19: Ditk+1 = Prox, ., (Pe,e.x0 — mVafi(we + piex; §)) > Local Fusion with SGD

20: Return p; ¢, x

Theorem 1 (Subsequence convergence). Suppose that Assumptions 1-8 hold true, the global step size is
chosen as 0 < ng < ﬁ, and that there exists a subsequence of sequence (W, w; t,vi ) converges to a cluster
point (w*, w;,~;). Then, the subsequence generated by FedSLR establishes the following property:

lim (th +1 {wz 1z +1} {71 tJ +1}) - hm (th ) {wl tJ} {’71 12 }) (w*v {wj}v {71*}) (8)

Jj—oo

Moreover, the cluster point is indeed a statzonary point of the global problem, or equivalently,
0 € IR(w Z V fi(w®). (9)

Under the mild assumption of Kurdyka-Lojasiewicz (KL) property (Attouch et al., 2010), we shall show the
last iterate global convergence rate of the generated sequence. The definition of KL property is moved to
Appendix C.1 due to space limitations.

Then, we define the potential function, which serves as a keystone to characterize the convergence.

Definition 1 (Potential function). The potential function is defined as follows:
1= 1
2
Dy, (x, {yi}, {v:}) == Zfz i) + R(z g'yi,w—yiHM;%Hw—yiH . (10

We then make an additional assumption of KL property over the above potential function.
Assumption 4. The proper and closed function D, (x,{y:}, {7V} satisfies the KL property.

Remark 5. Given that f is proper and closed as in Assumption 3, Assumption 4 holds true as long as
the local objective f;(+) is a sub-analytic function, a logarithm function, an exponential function, or a semi-
algebraic function (Chen et al., 2021). This assumption is rather mild, since most of the nonconvex objective
functions encountered in machine learning applications falls in this range.

Under the KL property, we showcase the convergence property for GKR, in the phase I optimization.
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Theorem 2 (Glocal convergence of phase-one optimization). Suppose that Assumptions 1-4 hold, the global
step size is chosen as 0 < ng < ﬁ, and that there exists a subsequence of (wy, w;y,Yi) converges to a
cluster point (w*, w},v}). Under different settings of 0 of the KL property, the generated sequence of GKR
establishes the following convergence rate:

o Case § = 0. For sufficiently large iteration T > t,

M
dist (O, % Z V filwr) + 8R(wT)> =0 (finite iterations) (11)

=1

o Case 0 = (0, 3]. For sufficiently large iteration T > t{,

M
) 1 Chry , .
dist <O, fYi g V fi(wr) + GR(wT)> < \/ e fo (1—Cy)T=%  (linear convergence) (12)

i=1 2

o Case 6 = (3,1). For all T >0, we have:
| M
dist (07 i Z Vfi(wr) + 3R(wT)> < CsT~“=2 (sub-linear convergence) (13)

where C1 = 4(179L2 + 772L4 e L 1% C = L2ng + % - 2n , C3 = L+4+n4l + % +1, Cy = %,
Cs = 1/% =%/(20 — 1)Cy are all positive constants.

Moreover, the iterate w; converges to the stationary point of problem (P1) with any initialization, i.e.,
limy_,o0 wy = W*, where w* satisfies 0 € OR(W*) + 15 Zf\il V fi(w*).

Remark 6. The convergence rate to a stationary point is heavily determined by parameter 6 in the KL
property. A smaller 8 implies that the potential function is descended faster in its geometry, and therefore
guaranteeing a faster convergence rate. Specifically, for 6 = 0, the stationary point could be reached within
finite iterations. For 6 € (0, %}, linear convergence rate can be achieved. While for 6 € (%, 1), only sub-linear
convergence rate can be achieved. In summary, as long as the potential function satisfies the KL property
with 8 € [0,1), theGKR always converges to a stationary point with respect to w in Eq. (2) if T — oo.

Then we use Theorem 3 to characterize the convergence of local fusion phase. Here we apply gradient
mapping for the personalized component as convergence criterion (same in (Li & Li, 2018),(Ghadimi et al.,
2016), (Metel & Takeda, 2021)), which is formally defined as G, (w, pisi) = %(Pi,t,k — Prox,, 1.1, (Pi,e.x —
mVafi(we, pick))), where Vo fi(wy, p; k) is the gradient respect to the second parameter i.e., p.
Assumption 5. The variance of stochastic gradient with respect to p for any w € R? and p € R? is bounded
as follows, E||Vafi(w + p;€) = Vafi(w +p)|* < 0%,

Theorem 3 (Convergence rate of local fusion phase). With assumptions for Theorem 2 and an extra as-
sumption 5, suppose that local step size is chosen as 0 < 1 < L%Ll, FedSLR in its local fusion phase exhibits
the following convergence guarantee:

T—-1K-1

A*a 7, - i'li}*, ;k C 2
77 2 2 EllG (w0, pig )2 < Co(HELLp 2P B (2 1ye2) g
6
t=1 k=1
where Gy = e, Cr = (B + Diwy — a7|* + FE5ng(Dy, (wo, {wio}, {i0}) ~

D, (w*, {w;}, {~] })) + L? are constants, and ¢;(w,p) = fi(w + p) + R(p) is the loss in (P2).
Remark 7. The gradient mappz'ng |Gy, (Wi, Pit )| |* can be viewed as a projected gradient of the fusion loss
in (P2). If |G, (Wi, pisi)||* <€, the _personalized component p; ; is indeed an approximate stationary point
for the loss of local fusion, i.e., HszZ(wt +pit) + VR(pit)|| = O(e). where VR(pit) € OR(pis), see Bq.
(8) in (Metel & Takeda, 2021) . Theorem 8 showcases that both the first and second term in the upper bound
diminish as T — oo. Therefore, if the variance o> — 0, which holds via taking full batch size, the stationary

point is reached at the rate of O(%).
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6 Experiment

In this section, we conduct extensive experiments to validate the efficacy of the proposed FedSLR.

6.1 Experimental Setup

Datasets. We conduct simulation on CIFAR10/CIFAR100/Tinyimagenet, with both IID and Non-IID data
splitting, respectively. Specifically, for IID splitting, data is splitted uniformly to all the 100 clients. While
for Non-IID, we use a-Dirichlet distribution to split the data to all the clients. Here « is set to 0.1 for all
the Non-IID experiments. Datails of the setting are given in Appendix B.1.

Baselines. We compare our proposed FedSLR solution with several baselines, including some general FL
solutions, e.g., FedAvg (McMahan et al., 2016), FedDyn (Acar et al., 2021), SCAFFOLD (Karimireddy et al.,
2020), some existing PFL solutions, e.g., FedSpa (Huang et al., 2022) , Ditto (Li et al., 2021c), Per-FedAvg
(Fallah et al., 2020), FedRep (Collins et al., 2021), APFL (Deng et al., 2020), LgFedAvg (Liang et al., 2020)
and a pure Local solution. We tune the hyper-parameters of the baselines to their best states. We postpone
the detailed baseline description to Appendix B.2.

Models and hyper-parameters. We consistently use ResNetl8 with group norm (For CIFAR10/100,
with kernel size 3 x 3 in its first conv, while for tinyimagenet, 7 x 7 instead) in all set of experiments. We
use a SGD optimizer with weight decayed parameter 1e~3 for the local solver. The learning rate is initalized
with 0.1 and decayed with 0.998 after each communication round. We simulate 100 clients in total, and
10 of them are picked for local training for each round. For all the global methods (i.e., FedSLR(GKR) 2,
FedDyn, FedAvg, SCAFFOLD), local epochs and batch size are fixed to 2 and 20. For FedSLR and Ditto,
the local epoch used in local fusion is 1, and also with batch size 20. For FedSLR, the proximal stepsize is
1g = 10, the low-rank penalty is A = 0.0001 and the sparse penalty is 4 = 0.001 in our main experiment.
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Figure 2: Test accuracy vs. communication rounds over IID and Non-IID.

6.2 Main results

Performance. We show the accuracy in Figure 2 and Table 1. We see that FedSLR(GKR) achieves
commensurate performance with some improved global solution, and largely outperforms FedAvg if data
distribution is Non-IID. Our personalized solution FedSLR(mixed) outperforms all the other personalized
baselines in all the three datasets in both Non-IID and IID setting. Specially, we observe that all the
personalized solutions experience performance degradation in the IID setting, i.e., their performance usually
cannot emulate the SOTA global solution, e.g., FedDyn. However, we see that our personalized solution
FedSLR is the most resilient to the data distribution, i.e., it performs well in both IID and Non-IID setting.
Tts performance could also be interpreted by its representation visualization, see Figure 4 in Appendix B.3.1.

2We test the performance of GKR model obtained by Phase I optimization via deploying it to all the clients.
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Table 1: Test accuracy (%) on the CIFAR-10/100 and TinyImagenet under IID and Non-IID setting.

Method CIFAR-10 CIFAR-100 TinyImagenet
| 1ID Non-IID | IID Non-IID | IID Non-IID

SCAFFOLD 91.33 82.91 66.68 59.48 43.13 34.11
FedDyn 92.61 90.14 68.68 64.29 43.52 38.02
FedAvg 90.25 82.89 61.92 55.78 35.17 30.56
FedSLR (GKR) 91.73 87.52 66.40 64.22 41.32 35.13
Per-FedAvg 89.57 91.55 57.10 63.73 34.41 37.52
LGFedAvg 38.32 81.35 12.96 49.90 5.34 35.68
FedRep 89.28 93.41 15.36 60.42 5.48 46.42
Ditto 89.16 94.39 59.36 78.67 34.78 58.30
APFL 75.11 87.11 30.99 61.14 20.16 48.02
Local 38.30 82.17 10.97 47.99 3.86 34.28
FedSpa 88.31 93.19 48.00 73.87 30.39 53.76
FedSLR (mixed) | 89.72 95.30 64.95 82.19 38.20 59.13

Table 2: Communication cost (GB) and # of params (M) on the Non-IID splitting of three datasets.
FedAvg(*) refers to a class of algorithms with no communication reduction/increase, e.g., FedDyn.

Method CIFAR-10 CIFAR-100 Tinylmagenet
‘Comm cost | # of params HComm cost | # of params HComm cost | # of params |

FedAvg (*) 893.92 11.17 893.92 11.17 893.92 11.17
SCAFFOLD 1787.83 11.17 1787.83 11.17 1787.83 11.17
FedSLR (GKR) 626.89 3.51 722.60 5.54 730.00 5.34
APFL 893.92 22.35 893.92 22.35 893.92 22.35
FedSpa 446.96 5.59 446.96 5.59 446.96 5.59
LG-FedAvg 0.41 11.17 4.08 11.17 8.13 11.17
FedRep 893.51 11.17 889.84 11.17 885.78 11.17
FedSLR (mixed)| 626.89 3.96 722.60 6.69 730.00 7.59

Communication and model parameters. Table 2 illustrates the communication cost and model com-
plexity with different methods. As shown, GKR model of FedSLR has smaller model complexity with smaller
communication overhead in training. Built upon the low-rank model, FedSLR acquires personalized models
with only modicum parameters added.

Sensitivity of hyper-parameters. We postpone the ablation result to Appendix B.3.2. Our main ob-
servations are that i) properly adjusting low-rank penalty for the GKR facilitates a better knowledge rep-
resentation, and that ii) properly sparsifying the local component facilitates better representation of local
pattern, and thereby promoting personalized performance. These observations further verify our choice of
low-rank plus sparse models as personalized models can further boost performance.

7 Conclusion

In this paper, we present the optimization framework of FedSLR to fuse the personalized pattern into the
global knowledge, so as to achieve personalized federated learning. Empirical experiment shows that our
solution acquires better representation of the global knowledge, promise higher personalized performance,
but with fewer parameters needed in its model, and simultaneously, smaller downlink communication cost
is incurred. Theoretically, our analysis on FedSLR concludes that the last iterate of GKR could converge
to the stationary point in at least sub-linear convergence rate, and the sparse component which represents
personalized pattern could also asymptotically converge under proper setting.
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A Implementation details

A.1 Application of proximal GD into problem (P1)

Proximal gradient descent is a classical solution with sufficient theoretical guarantee to solve problems with
non-smooth regularizer, and specially, regularizer with nuclear norm. One naive solution for problem (P1) is
to merge the classical proximal gradient descent into local step of FedAvg. Explicitly, we show the following
the local update rule for solving problem (P1), as follows. Firstly, for local step k € [K], do

(Local Phase) w k11 = Proxyy., (wiex — 7V fi(wi k) (15)

Here, Proxy.|,(X) £ argminz 3|/ Z — X||* + A|| Z||. is the standard proximal operator for nuclear norm,
which is guaranteed to have closed-form solution (See Appendix A.2).

After K steps of local training, one can perform the general average aggregation over the obtained low rank
model, or formally,

M
. 1
(Aggregation) w41 = i ; Wit K (16)

However, this intuitive solution comes with two main drawbacks: i) Proximal operator may be computa-
tionally prohibitive to perform in every step of local training, especially if the training surrogate does not
have enough computation resources. ii) The method cannot produce real low-rank model until the model
converges. To see this, notice that the GKR w;1 cannot be low rank unless for all possible pairs i, j € [M],
Wi 41 = Wj 1. In other words, the GKR exchanged between clients and server cannot be really compressed
by factorization, and therefore cannot benefit from it.

A.2 The proximal operator

The proximal operators mentioned in the main paragraph (i.e., nuclear and L1 regularizers) have the following
closed-form solution.

Proximal operator for nuclear regularizer. The computation of this operator involves singular value
decomposition (SVD) of the weights matrix. After SVD, the operator performs value shrinkage of the
singular value. The explicit form is shown below,

Prox |- (X) = U diag(Sx,, (d)) V" (17)

where X = U diag(d)V'T is the SVD of the averaged matrix, 0(X)) = d is the singular value, and the soft
threshold operation S,(x) is defined as follows:

Ti—a T;>a
(So(@))i=<(mi+a z;<—a (18)
0 otherwise

Note that the computation needed for this operator is non-trivial, since SVD over the target matrix may
requires intense computation.

Proximal operator for L1 regularizer. This operator involves value shrinkage over the target vector,
with closed-form as follows,

PI"OXNH.Hl(CL‘) = Sﬂ(w) (19)

where the S, (x) is the same soft thresholding operator defined above. This operator is used in the second
phase of FedSLR, which only introduces negligible computation, since only additive on each coordinate is
required.

13
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A.3 FedSLR under partial participation

Partial participation, i.e., only a fraction of clients are selected in each round of training, is a common feature
for federated learning. In Algorithm 2, we implement partial participation into the framework of FedSLR.
In our experiment, we would consistently use Algorithm 2 for partial participation.

Algorithm 2 FedSLR under partial participation
Input Training iteration 7'; Local learning rate 7;; Global learning rate n, ; Local steps K;

1: procedure SERVER’S MAIN Loop

2 for t=0,1,...,7T—1do

3 Uniformly sample a fraction of client into S
4: for i€ S; do
5
6

Send w; to the ¢-th client, invoke its main loop and receive w; ¢41
1
Yit+1 = Vit T E(wt — Wi 41)

7: for i ¢ S; do

8: Yit+1 = Vit

9: w1 = Proxy,, . (ﬁ > ies, Witt1 — = Zf\il “’le) > Apply the update
10: procedure CLIENT’S MAIN LooP

11: Receive w; from server.

12: Call Phase I OPT to obtain w; y; and ;1.

13: Call Phase II OPT to obtain p;+ k.

14: Send w; 141 to Server, and keep p; ; x privately.

15: procedure PHASE I OPT (GKR)

16: w; 1 = argmin,, fi(w) — (vi, w) + i”wt —wl? > Train GKR in Local
17: Yit+1 = Yipt + n—lg(wt — W 41) > Update the Auxiliary Variable
18: Return w; ;11 and v; 441

19: procedure PHASE IT OPT (PERSONALIZED COMPONENT)

20: DPit,0 = Pit- K > Warm-start from the last-called
21: for ke [K] do

22: Pit k1 = Prox, 1., (Pi,e.x — mVafi(we + pier; §)) > Local Fusion with SGD
23: Return p; ¢

B Missing contents in experiment

B.1 Data splitting

There are totally M = 100 clients in the simulation. We split the training data to these 100 clients under
IID and Non-IID setting. For the IID setting, data are uniformly sampled for each client. For the Non-IID
setting, we use a-Dirichlet distribution on the label ratios to ensure uneven label distributions among devices
as (Hsu et al., 2019). The lower the distribution parameter « is, the more uneven the label distribution will
be, and would be more challenging for FL. After the initial splitting of training data, we sample 100 pieces
of testing data from the testing set to each client, with the same label ratio of their training data. Testing
is performed on each client’s own testing data and the overall testing accuracy (that we refer to Top-1 Acc
in our experiment) is calculated as the average of all the client’s testing accuracy. For all the baselines, we
consistently use 0.1 participation ratio, i.e., 10 out of 100 clients are randomly selected in each round.

B.2 Baselines

We implement three general FL solutions to compare with the proposed FedSLR, which all produce one
single model that is "versatile" in performing tasks in all clients. Specifically, FedAvg (McMahan et al., 2016)
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is the earliest FL solution. SCAFFOLD (Karimireddy et al., 2020) applies variance-reduction based drift
correction technique. FedDyn applies dynamic regularization to maintain local consistency of the global
model. We use Option 2 for the update of control variate of SCAFFOLD, and the penalty of the dynamic
regularization in FedDyn is set to 0.1.

We also implement several PFL solutions for comparison of FedSLR. Specifically, Ditto (Li et al., 2021c)
applies proximal term to constrain the distance between clients’ personalized models and global model. Per-
FedAvg (Fallah et al., 2020) applies meta learning to search for a global model that is "easy" to generalize the
personalized tasks. APFL (Deng et al., 2020) utilizes linear interpolation to insert personalized component
into the global model. FedRep (Collins et al., 2021) and LGFedAvg (Liang et al., 2020) separate the global
layers and personalized layers. In our implementation, algorithm-related hyper-parameters are tuned to their
best-states. Specifically, the proximal penalty of Ditto is 0.1, the finetune step-size and local learning rate
(i.e., a and 3) are set to 0.01 and 0.001, the interpolated parameter of APFL is set to 0.5. For FedRep, we
fix the convolutional layers of our model to shared layers, while leaving the last linear layer as personalized
layer. For Lg-FedAvg, the conv layers are personalized, and the linear layer is shared.

B.3 Additional experimental results
B.3.1 Additional visualization for performance evaluation

We show relative accuracy performance of different schemes in Figure 3, where the median of each violin
plot demonstrates the median relative accuracy among the clients, and the shape of the violin demonstrates
the distribution of their relative accuracy.

Personalized Methods (Non-IID) Personalized Methods (lID)
0.4 o010
034 0.05
Y 024
< 0.00{ -- -~ - -- -
2 o1
= —0.05
2 o004 ---\W----- ---- ---= --
—0.14 —0.10 4
02 T T T T —0.15 4 T T T T
FedSLR (mixed) Ditto  PerfedAvg FedSpa FedSLR (mixed) Ditto  PerfedAvg  FedSpa
Non-Personalized Methods (Non-IID) Non-Personalized Methods (I1D)
02 0.10 1
g
£ 014 0.05 4
v
H
& 0004 - - - --
£ 00 -- --- - -
3
—0.05 1
—0.14
T T T —0.10 1 T T T
FedSLR (GKR) ~ SCAFFOLD FedDyn FedSLR (GKR) ~ SCAFFOLD FedDyn

Figure 3: Relative accuracy (FedAvg as baseline) on CIFAR100. Accurcay is tested on each client’s local
data distribution. Wider sections of the violin plot represent a higher portion of the population will take on
the given relative accuracy. Population above red line means that the accuracy is improved (compared with
FedAvg ) for this population of clients, otherwise, is degraded.

We also show the t-SNE 2D illustration of the local representation in Figure. 4, to further visualize how the
personalized classifier and feature extractor promote classification performance.

B.3.2 Hyper-parameters sensitivity of FedSLR

We conduct experiment on CIFAR-100 to evaluate the hyper-parameters sensitivity of FedSLR. Sensitivity
of low-rank penalty A. We adjust different values to A while fixing proximal stepsize n, = 10 and sparse
penalty p = 0.001, whose results are available in Table 3. As shown, the communication cost and number
of parameters of both the mixed and GKR model are largely lowered as the low-rank penalty escalates.
Notably, there is a significant drop of accuracy if the penalty A is set too large (e.g., 0.001), however, we also
see that with proper low-rank penalty (e.g., 0.0001), the accuracy performance improves for both the GKR
and mixed models. This concludes that making global component to be low-rank can help better represent
global knowledge across clients.
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0 1 2 3 4 5 - 6 7 8 9
Global extractor + Global classifier Global extractor + Per classifier
Global extractor ground truth 20 (acc: 81.38%) 0 (acc: 88.19%)
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Per extractor + Global classifier Per extractor + Per classifier
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Figure 4: t-SNE illustration of the local representation of a random client. Following (Li et al., 2021b),
the representation is derived from the last hidden layer of a Resnet18-GN model trained by FedSLR. Per
extractor/classifier contains the low-rank plus sparse weights in its convolutional/linear layers. Global ex-
tractor /classifier only contains low-rank weights in its convolutional/linear layers, but the sparse personalized
component is discarded. We see that via inserting the sparse component over the extractor, the points with
different labels are more separated, and therefore are easier to classify. Moreover, via local fusion on both
the extractor and classifier, data points have less chance to be mis-labeled (see the red circle, among which
some points are mis-classified to label 2).

Table 3: Parameter sensitivity of low-rank penalty A on CIFAR-100.

\ FedSLR (GKR) FedSLR (mixed model)
‘ Acc 1 Comm cost |  # of params | ‘ Acc 1 Comm cost |  # of params |
le-05 63.63 819.44 7.33 81.89 819.44 8.54
5e-05 64.27 770.39 6.56 81.20 770.39 7.83
0.0001 64.22 722.60 5.54 82.19 722.60 6.69
0.0005 61.81 568.43 3.09 80.10 568.43 4.04
0.001 54.26 498.20 1.27 74.33 498.20 2.24

Sensitivity of sparse penalty ;. Then we fix 7, = 10 and low-rank penalty to A = le~* while adjusting
1. As shown in Table 4, via enlarging the sparse penalty, the number of parameters of the personalized
models could be lowered, but would sacrifice some accuracy performance. However, we also observe that
proper sparse regularization would induce even better performance for the personalized models. This further
corroborates that the personalized component to be sparse can better capture the local pattern.

Table 4: Parameter sensitivity of sparse penalty p on CIFAR-100.
FedSLR (mixed model)

g | Acct  Comm cost |  # of params |
0.0001 79.15 720.60 8.50 £ 0.79
0.0005 81.78 722.60 7.12 + 0.65
0.001 82.19 722.60 6.69 + 0.56
0.005 81.82 722.60 5.78 + 0.17

0.01 80.81 720.60 5.56 + 0.08

Sensitivity of proximal step size 7,. We then tune the proximal step size n, while fixing A = le
and 1 = 0.001. As can be observed, choosing 1, to a proper value is vital to the accuracy performance of
FedSLR. Additionally, we see that with a larger 7y, the obtained model size and communication cost can be
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reduced, which can be explained by looking into the proximal operator. Specifically, for n, that is too large,
the proximal operator would prune out most of the singular value of the model’s weight matrix. Therefore
the parameter number along with the communication cost would reduce with a larger n,, but the accuracy
performance would probably degrade simultaneously.

Table 5: Parameter sensitivity of proximal step size 1, on CIFAR-100.

. FedSLR (GKR) FedSLR (mixed model)
g
‘ Acc 1 Comm cost  # of params ‘ Acc Comm cost |  # of params |
2 60.74 894.06 10.65 80.37 894.06 12.36
10 64.22 722.60 5.54 82.19 722.60 6.69
20 61.02 668.94 5.16 80.60 668.94 6.15
100 58.69 559.88 2.99 78.33 559.88 3.90

C Missing contents in theoretical analysis

In this section, we shall introduce the details of our theoretical results.

C.1 Definition of KL property

We first show the definition of KL property, which has been widely used to model the optimization landscape
of many machine learning tasks, e.g., (Attouch et al., 2010).

Definition 2 (KL property). A function g : R™ — R is said to have the Kurdyka- Lojasiewicz (KL) property
at & if there exists v € (0,+00), a neighbouhood U of Z, and a function ¢ : [0,v) — Ry, such that for all
x €U with {x: g(%) < g(x) < g(&) + v}, the following condition holds,

¢'(g(x) — g(2)) dist (0, dg(x)) > 1,
where p(v) = cv!=? for 6 €[0,1) and ¢ > 0.
The KL property is a useful analysis tool to characterize the local geometry around the critical points in the

non-convex landscape, and could be viewed as a generalization of Polyak-FLojasiewicz (PL) condition(Karimi
et al., 2016) when the KL parameter is § = 4 (Chen et al., 2021).

C.2 Facts

For sake of clearness, we first provide the following facts that can be readily obtained as per the workflow of
our algorithm.
Fact 1 (Property of solving local subproblem). Recall that Fq. (4) gives, for i € [M],

1
5 llwe — w]? (20)

w; 141 = argmin f;(w) — (vi, w) + 5
w ng

Moreover, from the optimality condition of the above equation, the following holds true for i € [M].

1
Vii(witi1) = Yie — — (Wi — wi41) =0 (21)
g9

Fact 2 (Property of auxilliary variable). The update of auzilliary variable gives, for i € [M],

1
Yit+1 — Vit = —(w; — wi,t-‘rl) (22)
Mg
Moreover, combining Eq. (21) and (22), for i € [M],

Yit+1 = Vfi(wii1) (23)
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Fact 3 (Property of global aggregation). Aggregation gives:

2

M
w1 = arg muiIn% w — % Z Wi 41 — 779% Z%’Hl + ngR(w)
ie[M] i=1 (24)
1 1 1
= arg n%nR(w) + i ;<7i,t+lvw> + %Hw i ;wi,t+1”2
The optimality condition shows that:
1 1 1
0 € OR(wet1) + 77 ;%,tﬂ + Fg(wt+1 ~ ;wi,Hl) (25)
Fact 4 (Global optimality condition). Combining Eq. (28) and Eq, (25), we have:
1 1 1
0 € OR(wer) + 77 ; Vfi(wi 1) + %(wtﬂ -7 ;wi,t) (26)

Fact 5 (Gradient mapping between steps of local fusion). Define gradient mapping as Gy, (w¢, pi¢ k) =
%(pu’k — Prox, .11, (Pi,t.6 — mVafi(we, pier))). Per Eq. (7) the following holds,

1
(szt,k - pi7t,k+1) (27)

gm (wupi,mk) = —
m

C.3 Missing proof of Theorem 1

Now we proceed to give the proof of Theorem 1.

Proof sketch. Our proof sketch can be summarized as follows: i) We showcase in Lemma 3 that the potential
function is non-decreasing along the sequence, and its descent is positively related to |Jw; 11 — w; || and
|lwiy1 — wel|. Telescoping its descent along the whole sequence to infinite, we can prove that the final
converged value of the potential function is the infinite sum of the above two norms. ii) By Lemma 2, we
see that converged value of the potential function can not take negatively infinite, and therefore, we further
conclude that w; 441 — w; and w;y; — w;. Combining this with Lemma 1, ~; ;41 — - immediately
follows, which corroborates our first claim in the theorem. iii) Then we start our proof of stationary property
of the cluster point. Conditioned on the sequence convergence property obtained before, we sequentially show
that the residual term in the RHS of the condition is eliminable, that the local gradient at the cluster point
and iterates point are interchangeable, and that the subgradient of regularizer at iterates point is a subset
of that at the cluster point. iv) Plugging these claims into the global optimality condition Eq. (26), the
stationary property follows as stated.

C.3.1 Key lemmas

Lemma 1 (Bounded gap between global and local models). Combining Eq. (22) and L-smoothness assump-
tion, the following relation immediately follows: |Jw; — w; 1411 < Lng||w; 41 — w; 4|

Proof. Eq. (22), together with Eq.(23), read:

1
Vfilwiiy1) — Vfi(wis) = F(wt — Wi 41) (28)
9
Then, we arrive at,
lwe — wi 1|l = ngl|V fi(wit1) = V fi(wi ) [ SLngllwi 41 — wi | (29)
where the last inequality holds by L-smoothness Assumption 1. This completes the proof. O
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Lemma 2 (Lower bound of potential function). If the cluster point ((w*,{w},{v;})) exists, the potential
function at the cluster point exhibits the following lower bound:

—00 < Dy, (w*, {w; }, {7}) (30)
Proof. By definition, we have
1 & 1 & 1 &
* * * _ . * * i * * * i - * * (|2
Dy, (w*, {w; }, {7/ }) —M;fz(wi)—i—R(w )"‘M;(%‘»w wi>+M;2ngHw wy ||

1 & 1Y 1 M - 68D
— . * * . _— * * *12 _ * (|12
—M;ﬂ(wi)m(wHM;Qngnw w; + gl M;mmn

Moreover, by the definition of cluster point, we have lim;_, 7; ;s = =;. Combining this with Eq. (23) and
Assumption 2, it follows that:

gV 11 = lim —nglyi e |? > lim = ||V fi(w; )| > =1y B® > —o0 (32)
Jj—o0 Jj—o0
This together with Assumption 3, the fact that R(-) can not be negative value, complete the proof. O

Lemma 3 (Sufficient and non-increasing descent). The descent of the potential function along the sequence
generated by FedSLR can be upper bounded as follows:

Dy, (wig1, {wie1}, {Vise+1}) — Do, (wi, {wie}, {vie})

M
1 , L 1 , 1 ) (33)
SM ; ((L Mot 35— %)Hwi,tﬂ —w;q||” — %Hwﬂrl — wy|

1

51, the descent is non-increasing along t.

Moreover, if ng is chosen as 0 < ng <

Proof. To evaluate the non-increasing property of potential function along the sequence (wy, {w; .}, {7vit}),
we first show the property of the gap between two consecutive iterates, and notice that:

Dy, (wig1, {wie1}, {Vist41}) — Doy (wr, {wi e}, {vie})
=Dy, (Wegr, {wisi1}, {Vie41}) — Do, (Wi, {wi s 41}, {Vise41})

+ Dy, (we, {wi i1}, {Vi+1}) — Dy, (Wi, {wi i1 b, {vie}) (34)
T2
+ Dy, (Wi, {wi p1 b5 it }) — Doy (Wi, {wi e}, {vie})

T3

19
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Bounding T1. By the definition of potential function, term T1 can be expanded and upper-bounded as
follows:

Dy, (Wi, {wi 1}, {Vip+1}) — Dy (i, {wie1}, {Vie+1})
M

1
=R(wii1) — R(we) + i §<’W¢+17 Wil — Wy)
1 1 , 1 )
T Z(%Hwtﬂ w1l %Hwt w; 41]]”)
ieM

M
1 1 1
=R(wit11) — R(wy) + i i:E 1 (Yitt1, W1 — wy) + i ieEM 7277;; (Wig1 + Wy — 2W; 441, Wiy — Wy)

since a2 —b2=(a+b)(a—0b)

1 & 1y (35)

=R(wii1) — R(wy) + ( i i_ZI’Yz‘,tJrl + i ;ng(wt+1 —Wipq1) |, Wigp1 — We)
LMoy ,
M 2 %Hwt-&-l — wy|
1

=—R(wi) + R(wig1) +( g ,wp— weyr) — M;%”wwﬂ — w,||?

by Eq.(25) -
< - L 3 L||wt+1 —w?

M i=1 21

where g € OR(w;41) is one of the sub-gradient such that equation holds for Eq. (25). The last inequality
hodls since for convex function f(-) and any subgradient g at point z, claim f(z) + g(y — =) < f(y) holds
true.

Bounding T2. Now we proceed to give upper-bound of term T2, as follows,

>}

e (Wi, AW e41 1, {¥ie+1}) — Do, (Wi, {wi 41}, {vie})

M
Z<7i,t+1 — Yit, Wt — ’wi,t+1>

<vfi(wi,t+1) - vfi(“’i,t), wy — wz’,t+1>

See first case of Eq. (23) (36)
Mgl V fiwi 1) = Vilwiy) |I°

See Eq. (21)

1
<y > Pngllwiiis — wiyl®

i€[M] L smoothness, Assump 1
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Bounding T3. Term T3 can be bounded as follows,

Dy, (wi, {w; 41}, {Vit}) — D, (wh {wi th {vie})

M
1
:M Z(fz’(wz‘,tﬂ fz wzt Z Yi,t, Wit — wi,t+1>
i=1 i=1

M

1 1 1
+ =) (G llwe —wi e |* — [we — wie|?)
M ; 21y 214
LM LM
=— > (filwitt1) = filwie)) + — > (Vits Wit — Wirs1)
M ; M z; (37)
Z (2w — Wit — Wi 1, Wit — Witt1)))
h uz
e a?—b2=(a+b)(a—b)
1 & 1 <
M Z(fi(wi,tﬂ) — filwi)) +( i Z(%‘,t +1ng(we — wipy1)) | Wit — Witt1)
i=1 i=1
1L |
7 o 1 Wit+1 —
M pat 214

By L-smoothness, we have —f(w; ;) < —f(w;+1) — V(Wi 1) (Wi — w;e41) + %Hwi’t — w; ¢11]|%. This
further implies that

Dy, (we, {wi i1}, {7in}) — Dy, (we, {wie}, {7in})

M
1
< <M Z(*Vfi(wz,tﬂ) +vit + ng(we — wip41)), Wi — wi,t+l>

i=1
M
1 L 1 ) (38)
T i;( 5 %)Hwi,tﬂ —wiq|
M
L
Z: 5 |w1 t+1 — wz‘,t||2
where the last inequality holds by plugging Eq.(21).
Summing the upper bound of Eq. (38), Eq. (36) and Eq. (35), we reach the following conclusion:
Dy, (Wit {wi g1}, {Vir1}) — Dy, (we, {wi e}, {vie})
M
1 L 1 1 (39)
<ar 2 (@ g~ gl — il - Q—%wam - w?)
Further, if n, is chosen as 0 < g < 2L’ such that L%, —|— 5 — 55— < 0 and _T < 0, the non-increasing
property follows immediately. O
C.3.2 Formal proof
Now we showcase the formal proof of Theorem 1. We derive the complete proof into two parts.
The first part is to prove claim i)
jliglo(wtfﬂ, {wp i b Avip}) = jliglo(ww‘,{wtj}, {view}) = (" {w} {v'}) (40)
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Telescoping the descent. Lemma 3 show the descent of potential function satisfies some very nice property
(i.e., non-increasing). To start our proof, we telescope the iterated descent from ¢ = 0,...,T — 1, which
gives,

Dy, (wr, {wir}, {vi1}) — Dy, (wo, {wio}, {Vio})

L 1 1
(€0 + 5 = glwess = will = e - wl?) (41)

On the other hand, by assumption, a cluster point (w*, {w;}, {~v;}) of sequence (wy, {w;}, {vi+}) exists.
Then, there exists a subsequence (wy;, {w; 4}, {7; 1 }) satisfies:

Tim (wy, {wi o} {0 D) = (@ {wi} (57) (12)

By the lower semi-continuous property of D(-) (given that the functions f(-) and R(-) are closed), we indeed
have:

Dy, (w*, {w; }, {7}) < ]hjolo inf Dy, (wya, {wes }s {Vies }) (43)
This together with inequality (41) yields:

Dy, (w”, {w;'}, {7/'}) = Dn, (wo, {wio}, {7i0})

< hjgo Dng (wy, {wy }, {’Yi,ta‘}) - Dng (wo, {wi o}, {Vio})
’ (44)

1 &M 1 1
<L (L5 4+ L — =Y wies — wiel — s —wtn?)
M Z;;( ! 214 2ng4

Lower bound the potential function at cluster point. Since D, (w*,{w;},{~;}) is lower bounded as
per Lemma 2, the following relation follows immediately:

oo M
1 1 1
—0 < of tg=1 ;ﬂ <(L2779 + L — %)”wi,t—&-l —wi? - T%Hwtﬂ - wt2) (45)

Derive the convergence property. Recall that LQng + L — ﬁ < 0 as per our choice of n,. It follows
9
that,
lim ||wi,t+1 — ’U.li’t” =0= Wi t+1 — Wi t, lim H’th+1 — 'UJtH =0= Wiy — Wy (46)
t—o0 t—o00

Combining the above result with Lemma 1, we further obtain that,
tli)r& lwe — w1l =0 = w1 — wy. (47)
By the update of Eq. (22), we obtain that ||y, (+1 — 7¥i.¢l| = ngllwe — wi 41|, and therefore,
tlgglo Vi1 = Yiall =0 = Vi1 = Vi (48)
Plugging the above results into Eq. (42), we have:
jlggo(wtuh {wtf+1}7 {'Yi,tj+1}) = jlgglo(wth{wtf}? {'7i,tj}) = (w* {w; },{7}) (49)
The second part of proof is to verify Claim i): the cluster point is a stationary point of the global problem.

Starting from the global optimality condition. Choosing ¢t = ¢/ in Eq.(26) and taking the limit
j — o0, it follows that:

M M
1 1 1
li '+*E li i(w; i) + lim — .7‘—*5 it
0 Gjlm OR(wys) 7 i:1j1m V fi(w; 1) Jim " <wt i i_lwﬂ) (50)
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The residual term is eliminable. Since lim; o ||w —wys 1] = 0 and limj_, o ||wy —1 — w; 45 ]| = 0, we
obtain that lim; o wy = lim;_, o w; 4, subsequently, by eliminating the residual, we reach this conclusion:

M
. 1 .
0€ lim OR(wy;) + i ;:1 Jlggo V fi(w; 1) (51)

J]—00

Vfi(w; ) and Vf;(w}) are interchangeable. By L-smoothness and convergence of iterates, we obtain
that:

Jim [|V fiwi ) = Vi) < Liw g —w|
< L(|Jw; s — wys || + wp 1 — wys|| + [Jwys — w*]]) (52)
=0

where the last equation holds by Eq. (46) and Eq. (47). Subsequently, we indeed have V f;(w; ;) = V f;(w™),
i.e., they are interchangeable within the limit, and plugging this into Eq. (51), we obtain that:

0€ lim OR(wy) + — Zv fi(w*) (53)

— 00
J zl

Subgradients OR(wy;) is a subset of OR(w;). As per Eq. (24), we have:

M 9 1M
wy = argmmR Z Vi1, W) + —|Jw— — Zwi’t+1|‘2 (54)
z=1 Mg M i—1
Therefore, it follows that:
1 1 )
R(wy) Z Viyti» Wy )+ Hth M Z w; |
1€[M]
1 Y 1 1 (%)
< R(w") + Vi izzl<7i,tjaw*> + T%HW* ~ Z w; 45 ?

Taking expectation over all the randomness, extending limit 7 — oo to the both sides, and applying w;; —
w*, it yields:
lim sup R(wy;) < R(w*) (56)

Jj—oo

On the other hand, since nuclear norm R(-) is lower-semi-continuous, it immediately follows that:

lim inf R(w;;) > R(w™) (57)
J—00
This together with Eq. (56) , we have:
lim R(w;) = R(w”) (58)
Jj—o0

Applying Eq. (58) into the robustness property of sub-differential, which gives:

{veR": 32" =, f(a") = f(z),v" > v,0' €0f (2)} COf(x), (59)
we further obtain that
lim OR(wy;) C OR(w™), (60)
j—oo

which showcases that the subgradients at point w,; is indeed a subset of those at cluster point w*.

Derive the property at cluster point w*. Plugging this into Eq. (53), we arrive at our final conclusion
as follows:

0 € lim OR(w Zsz (61)

]—}OO

This completes the proof.
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C.4 Missing proof of Theorem 2

Then we show the proof of Theorem 2 . Before the formal proof, we give a proof sketch for sake of readability.

Proof sketch. The milestone of the proof can be summarized as follows. i) We first define an auxiliary
term called residual of the potential function, and find that it has some very nice property (Lemma 4), i.e.,
ry — 0 and r; > 0. ii) We find that the squared sub-differential of the global loss can be bounded by a term
with ||w; 11 — w;]|?. On the other hand, we derive that 7; can also be lower bounded by ||w; 141 — w; ¢
Combining both derivation, we connect the local loss’s sub-differential with r;. iii) Then we further derive
the upper bound of r; is connected with the sub-differential of the potential function, which is also related
to the term ||w; t+1 — w;¢||. iv) By jointing all the derived factors, we derive the recursion r; —ryy; = Cyrdd.
Jointing the property of r;, we derive the analysis of final convergence rate under three cases of 6, which
completes the proof of our first statement. On the other hand, we derive the global convergence of w;: by
showing that it is summable. Combining this with the convergence result between w; and w; ¢, and the
conclusion in Theorem 1, we show that w; can indeed converge to its stationary point.

C.4.1 Key lemmas

Lemma 4 (Limit of residual). Under the same assumption of Theorem 2, the residual r; =
Dy, (wy, {w; ¢}, {vit}) — Dy, (w*, {w}, {7}) establishes the following property: i) ry > 0 for t > 0, i)
limtﬁoo ry = 0.

Proof. We first show that r; > 0 for ¢ > 0. From the lower semi-continuity of D,, (+), we obtain that:

T inf D, (wos, (w40}, (i00}) = Dy (w7, 77) > 0. (62)

Further, by the non-increasing descent property shown by Lemma 3, for ¢ > 0, we have
Dy, (wi {wih {3i}) 2 lim inf Dy, (wir, (w0, {750)) (63)
Combining Inequality (62) and (63) , we obtain that for ¢ > 0:

Ty = D”]g (wt7 {wt}7 {Vi,t}) - D’f?g (’LU*, ’UJ:, 71*) > 0’ (64)

which shows our first claim.

Now we show the limit of ;. Since 74 is lower-bounded by 0, and is non-increasing, we see that the limitation
limy_, o0 ¢ exists. On the other hand, by Eq. ( 58), we have lim;_,o R(w;;) = R(w*). By the convergence
of sequence Eq. (8) and the continuity of f;(-), we have lim;_, o fi(wy) = fi(w*). Therefore, it is sufficient
to prove that,

M

. 1
lim {Dng (W, {wy }, {7i7t1} Zfz (wy) + R(wys ) + M Z<%‘,t]‘,wti - wi,t-7>

00
J -1

M

2
E — [|wys _wi,tj||2}
=Ny

i
1 M 1 M
< {D%(fw*,{w*},{vr} = 37 2 filw") + R(w") + MZ<7;’W* - wi)

which indeed shows lim;_,o, supry < 0. Combining this with Eq. (62), we arrive at lim;_,o 4 = 0. Given
that lim;_, o r; exists, we reach the conclusion lim;_,,, 7 = 0. O
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C.4.2 Formal proof

Proof. Let ry = Dy, (wi, {wi e}, {Vit}) — Dy, (w*, {w;}, {7;;}) captures the residual of potential function
between an iterated point (wy, {w;}, {7::}) and the cluster point (w*, w},~;).

Derive the upper bound of subgradient. By inequality (26), we have:

1 & 1 1 &
0 € OR(w;) + i ; Vii(w; ) + %(wt i ; w; ¢) (66)
which in turn implies that:
1 & 1
i ;(Vfi(wt) = Vfi(wiz)) - " —(wy — = sz t) € = ;sz wy) + OR(wy) (67)

Recall that the definition of distance between two sets is dist(C, D) = inf{||x — y|||x € C,y € D}. Viewing
the LHS of the above inequality as a point in the set (i.e., the RHS), the following relation follows,

o1&
dist (0, i Z V fi(wy) + 8R(wt)>

i=1
LM 1 | M 2
Vi Z 1(vfi(wt) — Vii(wis)) — Fg(wt i ;wi,t>
M 9 M
= Z [V filwe) =V filwi)ll* + o ; e — wie|?
<2 ST )y wi? 63
w26, (63)
<5 2.6, = 1)~ wiasi P + i — wiel)
eM g
4 2 (aps )12 2 ) 12
< Z ng + My L) IV fi(wiepr) = V fi(wi)|* + (77 + L) lwi 41 — wiel”)
eM g
1
SM zh: ||wz t+1 — W; t”

where Cy = 4(n,L? + n2L* +oo L?). The second-to-last inequality holds by Lemma 1.

Connect the subdlﬁ'erentlal with 7;. On the other hand, by Lemma 3, we have:

M M
1 ) L1
T — T4l 2 *Z (Czwz 11— wigl? +7||’wt+1 w | > > *Zcznwz 1 —wigl® (69)
M= 2ng M=
where Cy = L%n, + 5 — W is a positive constant by assumption.

Since 1441 > 0 for any ¢t > 0 (See Lemma 4), the following relation holds true:

dist ( ZVfZ wy) + OR(w; ) \/7 VT (70)

Notice above that the subgradient of the global loss can be upper bound by r;. In the following, we shall
introduce KL property to achieve an upper bound of r;.
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Upper bound r; with KL property of the potential function. Since the potential function satisfies
KL property with ¢(v) = cv!~? we know for all ¢ that satisfies ; > 0, the following relation holds true,

(1 — 0)r; dist(0, 0Dy, (we, {wi s}, {Vie})) > 1, (71)

with its equivalence form as follows,

r0 < (1 — 0) dist(0, 0D, (wr, {wi}, {7 })). (72)

Upper bound the subdifferential of the potential function. We now show that the sub-
gradient of the potential function can indeed be upper bounded. Note that 9D, (-,-,-) =
(Ow, Dy (-s5), Vo, . P (57, +)s Vi . Dy, (-5 ) ). Now we separately give the subdifferential with respect to
different groups of variables. \

M M
1 1 1
Ow, Dy, (Wi, {w; ¢ },{7it}) = OR(wy) + i ; Yit + %(wt ~ 12:; w; )30 (73)

where the last inequality holds by the optimality condition (25).

Then we proceed to show the gradient with respect to w; , as follows,

vmeng (wy, {wi,t}a {‘Yz‘,t})

1 1
:M(vfz‘('wi,t) — Yit — Fg(wt - wz‘,t))

1 1 1
:M(vfi(wi,t+l) =it — —(wy —wipq1) +— (Wi p — wiq1) + Vi(wie) — Vi(w;i41)) (74)

Mg Mg
=0, by Eq. (21)

= (Vfilwi) = Vfilwienn) + (i — wi1))

M 7 it 7 1,t+1 Mg it 1,t+1

Finally, the gradient with respect to +; ; has this equivalent form:

1
Vi Do, (we, {wi i}, {vie}) = — (wi — wiy)

M

1
= M(wt — Wi 1 T Wi 41 — Wiy)

1
= %(%,tﬂ — Y + %(wi,t—i-l —w;)) (75)
by Eq. 21
1

= @(vfi(’wi,t—&-l) — Vii(wiys) + — (Wi — wiy))

M Ng

Note that diSt(Ov apﬁg('v ) )) = \/diSt2(07 6‘“/'1,D779 ('7 %y )) + vai,t,Dng(.7 B )”2 + ||V'n,f,Dng ('7 %y )H2 Sum-
ming the above sub-differentials, we arrive at,

M
. 1+n 1
dlSt(QaDny (we, {wi e}, {7ie})) < M 5 Z(vai(wi,t) = Vii(witi1) + n*(wi,t —w; 1)
i=1 9
M
1+ 1
< = ;(vawi,a = Vi) + llwi = wial) - (76)
1 M
= 37 2_ Cslwie —wi e

@
I
—
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WherngzL—i-ngL—i-i—i-l.

Upper bound to r; with the subdifferential of the potential function. This together with Eq. (72)
show that, r; can be bounded as follows,

M
1
r) < Vi 20(1 — 0)Cslwie — wi g, (77)
i=1

Recall that the norm term [Jw;; — w; ;41> is bounded as Inequality (69). We first taking square of both
sides of (77), yielding

M 2 M
2 (3 o Gyl —winll] < 12D R0 0w —wi P (18)
FTA\M & e(1-9) ’ ’ - M &= s ’

Plugging Eq. (69) into the above results, under the case that r; > 0 for all ¢ > 0, we can ensure:

Ty — Tl = % r2f
t t+1 = C??Cz(]. _ 9)2 t (79)
= C47’t20

where Cy = 5 is a positive constant for 8 € [0,1).

Co
C2c2(1-6)

Separate into three cases. We then separate our analysis under three different settings of 6.

« Firstly, assume D, (x,y, ) satisfies the KL property with § = 0. As per Eq. (79), if 7, > 0 holds for all
t > 0, we have r; > Cy for all ¢ > 0. Recall from Lemma 4 that lim;_,., r; = 0, which means rr > Cy
cannot be true when 7' is a sufficiently large number. Therefore, there must exist a ¢ such that ry, = 0.
If this is the case, observed from Lemma 4 that r; > 0 for all ¢ > 0, and that r; is non-increasing. It is
sufficient to conclude that for a sufficiently large number T' > tg, 7 = 0 must hold true. Inserting this
result into RHS of Eq. (70), the desired rate follows immediately.

 Then, consider the case D, (x,y,y) satisfies the KL property with 6 € (0, %] First we assume that r, > 0
for all ¢ > 0. From Eq. (79), it follows that: r¢11 < rp — C4rt29. Since lim;_, o, r; = 0, there must exist
a t{, such that, 72? > rr hold for all T > t{,, and equivalently, rr41 < (1 — Cy)ry. This further implies
that rp < (1 — 04)T*t6rt6. Now consider another case that there exists a ¢y such that r, = 0 for all
T > tg, following the same analysis given in the previous case we reach the same result rr = 0 holds for
all sufficiently large T' > t{. These together with Eq. (70) implying that for a sufficiently large T" > ),

C17’t/ Cl’r‘t/

dist (0, LM Vfi(wr) + aR(wT)) < max({/ gt (1 — C4)7,0) < \/ k(11— Cy) T,

« Finally, suppose D, (x,y,~) satisfies the KL property with 6 € (%, 1). We first evaluate the case that

r¢ > 0 for all t > 0. Define a continuous non-increasing function g : (0,4+00) — R by g(z) = 2=,
Plugging this definition into Eq. (79), we have Cy < (ry — 1441)g(r) < f::)rl g(z)dr = %
holds for all ¢ > 0. Since 20 —1 > 0, we have rtllfo —ri720 < (260 — 1)C,. Summing from ¢t = 0 to
r =T —1, we have rp < 1’2{’/1m . Moreover Same as the previous analysis, we have rp for all

t > 0. Thus, these together with Eq. (70) show that for T' > 0, dist (0, &= Zi\il V fi(wr) + 3R(wT)) <

max(y/ &L 2 /T(20 — 1)Cy,0) < C5T~ 49~ where C5 = |/ & *%/(20 — 1)Cy.

Now we try to showcase that the iterate w; can globally converge the the stationary point w*.
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Define D* = D, (w*, {w;},{~;}). By construction, we derive that,

M
ﬁ > Csllwsy — wi | - ((Dy, (wi, {wis}, {¥ii}) = D) = @(Dy, (w1, {wi i1}, {¥is1}) — D))
> dist(0, 9Dy, (wy, {wi i}, {¥i,e})) - (0(Dy, (wr, {wi e}, {¥i,e}) — D)
= @(Dyy (Wi, {wi i1}, {Vie+1}) — D))
> dist(0, 0D, (wi, {wit}, {7ie})) - ¢ (Do, (Wi, {wie}, {vie}) — D7)
(Dn, (we, {wi i}, {7t }) — Dy, (wer, {wi e} {vie41})
=Dy, (we, {wi e}, {Vit}) — Dy, (werr, {wi 1} {vie+1})
(80)

where the second to last inequality holds by concavity of ¢ and the last one holds by KL property. Plugging
Eq. (69) into the above inequality, it yields,

M
1 " *
i > Csllwiy — wigsll - (@D, (wi, {wi s}, {¥ix}) = D) — (D, (wigr, {wi g1}, {Fins1}) — D))
i=1

1 M
Z > Collwi g1 — wielf?

i=1

(81)

Therefore, by reorganize, we obtain that,

1M
M Z H'wi,t — Wij,t+1 |
i=1 (82)

< (2(Dy, (we, {wi 1}, {7Vit}) — D*) — @(Dy, (W1, {wi 1}, {Vie41}) — D))

By telescoping from ¢t = 1 to oo, we have,

0o 1 M
D= llwiy — wi |
t=1 M =1

C
Si

Co

C
<3

=6,
where the second inequality holds by lim;_,o, r; = 0, as stated in Lemma 4. Therefore ||w;; — w; 1] is
summable, which means the whole sequence w; ; is convergent to its cluster point w;, i.e., lim;_ o0 w; = w;.
Moreover, based on the convergence result between w; ;41 and w; in Eq. (47), we also see that lim;_,c wy =
w*. Note that in Theorem 1, we observe that the cluster point is indeed the stationary point, and therefore

limy_, o w; = w*. This concludes the proof. [

(@(Dy, (wo, {wi o}, {7i.0}) = D) = @(Dy, (Weo, {Wi 00}, {Vis00}) = D*)) (83)

(¢(Dy, (wo, {wio}, {vio}) —D*)) < o0

C.5 Missing proof of Theorem 3

Let a stochastic Proximal GM as G, ¢(w,p) £ % (p — proxmﬁ(p —nV fi(w +p;f)), which serves as an
auxiliary variable in the proof.

Proof Sketch. Our proof starts with the L-smoothness expansion at the iterative point. For the linear
term in the expansion, we treat it with Lemma 5 to recover the 12-norm between sequential iterates, i.e.,
|pit+1 — picl|?>. Then we measure the error brought by stochastic proximal gradient by constructing the
term (Vafi(wy + pit) — Vafi(we + pit; €), Pit+1 — Pit) , which can indeed be bounded by the variance o2.
By reorganizing, the stochastic gradient mapping (GM) can be directly bounded. Finally, we leverage the

smoothness of gradient mapping, i.e., Lemma 7 to track the error between stochastic/real gradient mapping.
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C.5.1 Key lemmas

Lemma 5. The following relation holds true,

& (84)

- - 1
(Vafi(ws +pit;€),Pite — Pistk+1) = (R(Dit k1) — R(Die k) + Enpi,t,kJrl — Diik

Proof. By the optimality condition of the prox function, we know that there exists a sub-gradient s €
OR(Piti) such that p; ¢ k1 — Ptk + mVafi(we + piv ) +ms = 0. Further, we obtain that, (p; s x+1 —
Ptk +mVafi(we + Ditr; €) +mS, Ptk — Pitk+1) = 0, which further implies that,

1
<V2f¢(wt + Dit.k; f),Pi,t,k: - pi,t,k+1> = <57pi,t,k+1 - pi,t,k> + a||pi,t,k+1 - pi,t,k||2

) . 1 ) (85)
> (R(pitk+1) — R(Piek)) + EHpi,t,k—i—l —DPitkl
where the last inequality holds by convexity of R(-). O
Lemma 6 (Young Inequality).
1 1
(a,5) < gllalP + 2 o] (56)

Lemma 7 (Smoothness of Gradient Mapping). The gradient mapping and a stochastic one exhibits the
following smoothness property,

1
G (Wi, Pit k) — Gy (Wi, Pt i) || = ||E(P1“0Xm,7‘z(1) —mVfi(w + p;§))

—prox, z(p—nVfiw+p))| &7
<||Vfi(w+p; &) — Vfi(w+ p)|

where the inequality holds due to the nonexpansivity of the proximal operator of proper closed convex func-
tions, see Property 5 in (Metel & Takeda, 2021).

C.5.2 Formal proof

Proof. By L-smoothness, we obtain that,

E i fi (0" + it k+1)

. . L
<fi(W* 4+ pig k) + Eep (Vofi(W + Dig k) Pist k1 — Pistk) + gEt,k’ 1Pit k1 — Pikl]
<fil®" +Pisk) +Eip (Vofi(®™ +Dis k) — Vofi(we + Ditk)s Pitk+1 — Dit.k)

n (88)
+ By i (Vo fi(we + pie k) — Vafi(we + Die k), Pt k+1 — Pit k)

Ts

L
+E¢ i (Vafi(we + Dit 1; &), Pit k1 — Pist k) +§Et,k||pi,t,k‘+1 —piesl?

T3

By Young’s inequality and L-smoothness, we obtain that,

1 ok 1
T < §Et,k||v2fi('w +pirk) — Vafilwe +pirs)|* + §Et7k|‘pi,t7k+l —piekl?
< S Eerfw” — wy||* + S Eekllpit+1 — pickl?

Besides, T, can be bounded as follows,
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T
=E¢ i (Vafi(we + it i; &) — Vafi(we + Dit i), Onie(Wr, Dit k)
< Er (Vafilwe + Pis ;&) — Vafilwe + Dit i) Gnpe (Wi, i) — Gy (We, Pit k) + G (Wi, Pit 1))
< Ey g (Vafilwe + Disr; &) — Vafi(we + i k), G, (Wi, D))

90
+ E k|| Vafilwe + pie ;&) — Vafilwe + Die ) [||Gni e (Wi, Dit k) — Gy (Wi, Die ko) || (90)
S Eik [Vafilwe + it x; &) — Vafilwe + i) | |Gy e (Wi, Pitr) — Gy (Wi, Pie k)|
< B | Vafi(wi + pisr; €) — Vafi(we + pies)||
<o*
where the second-to-last and the last inequality respectively holds by Lemma 7, and assumption 5.
Finally, term T3 can be bounded with Lemma 5, as follows,
~ ~ 1
S RPit k) — EepR(Pitky1) — aEt,kai,t,kJrl — piekl)? (91)
By re-arranging Ty and T5 into Eq. (88), and let ¢;(w,p) = f;(w + p) + R(p), we have,
Ak Ak L 1 2
E¢ x0i (0", pitir1) < ¢i(0F, pigr) + (5 o + 2>Et k|Pit k1 — Pitkll
L
+0?
(L + 1)n? ’ (92)
< ¢i(W", pie.k) + (fl = 1) Ee |Gy ¢ (we, i )|
g 2
2 T
o<y < %ﬂ? it follow that,
2E; 1 (¢i (W™, Pit.k) — Qi (W™, p; + L2E; || w* — wy||? + o2
Er |Gy (we, i) || < ¢k (i (W, P ¢ k) — Gi(W*, Pyt kv1)) al el (93)

2m — (L + 1)n?

Taking expectation over the condition and telescoping the bound from k =0to K —1and t =0 to T — 1,
it gives,

T-1K-1
TK Z Z E||Gny e (we, pieo)|?
t=0 k=0
<2(¢i(ﬁ;*,pz‘,o,o) i, Pirorx—)) + A ST L2 — w2 4 02 o
- 2m — (L + 1)771
2E(¢i(W*, pio,0) — ¢i(Ww*, p;)) + % t 5 LQE” —wy|? + 02

2m — (L + 1)771

Then we shall expand the term - Zle L?||w* — w||? using the global convergence result given by Theorem
2, and the epsilon definition of limits. Specifically, by w; — w™*, there exists a positive constant N such that
for any ¢t > N, ||w; — *|| < € holds for € > 0. Then plugging this result into the expansion, we have:

1 T-1 1 N T-1
7 O BLwy — | = (3 LEllw, — |+ Y L?w; — ")
t=0 t=0 t=N+1

1 N T—1
:T(ZL%Ith—w*II“ > L)
t=0

t=N+1
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Choosing € = ﬁ, we have:

Nt LE|w, — P | L2

T T (96)

1 T—1
=3 L, — @ <
t=0

Notice that [[wiy1 — wi||* < 2ny(Dy, (wi, {wi i}, {7ie}) — Dy, (wig1, {wi 1}, {7ies1})) as per Inequality
(39). Utilizing this fact, the following inequality holds for ¢ > 1,

t
Elw, —@"|* <t~ E(llwo — &|* + ) _ w1 —wy|?)
=1

t
<t-E(|lwo — &"|* + ) w1 —wy?) (97)

j=1
<t-E(llwo — w*||* + ng(Dy, (wo, {wi o}, {7i0}) — Dn, (we, {wi i}, {7i}))
<t |lwg — W*||* + tng(Dy, (wo, {wi o}, {7i,0}) — Dy, (w*, {w;}, {7}

where the last inequality holds by Inequality (64). Plugging this into Inequality (95), we obtain that,

1 T-1
= 3 LR, — |
t=0

N(N % N(N * * *
(MO 4 1) g — |2 + M5y (D, (wo, {wio}, {i0}) — Do, (w*, {wi}, {77 }) + L2
T

(98)

<

Let Cr = (XED 1) g —b* |24+ XX (D, (wo, {wio}, {7i0})— Do, (w*, {w}, {77 }))+ L% Plugging
Inequality (96) into RHS of (94), we arrive at,

T-1K-1 Ak % * C 2

1 2(¢i(W*, pi,0) — i(W*,p}))+ F +o
E § E g wy, P; 2 S U, 7 T 99
TK t=1 k=1 G200 P )| 2m — (L+1)7712 (58)

Further notice that the real gradient mapping can be bounded as follows,

5
L
T

E| |gm (wy, Pi,t,k)HQ

1
TK t=1 k=1
T—1K-1
2 2 2
ST 0D (BlIGn e (wr, i )|+ E|Gry (wi, Dii k) = G (wi, Die i) )
t=1 k=1
T—1K-1
2 2 2 (100)
STK 0D (ElGy (wi pie k)P + B Vafi(wi + pik) = Vafi(ws + i )IIP)
t=1 k=1
g T-1E-1
STR Z (E[|Gn, (wr, pie )] + 02)
t=1 k=1
<2(¢i(’lf’*7pz‘,o,o) — ¢i(w*,p})) + G + (2m — (L + D)nf + 1)0?
- m = £
where the second inequality holds by Lemma 7. This completes the proof. O
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