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Abstract

Data-free meta-learning (DFML) aims to enable
efficient learning of new tasks by meta-learning
from a collection of pre-trained models without
access to the training data. Existing DFML work
can only meta-learn from (i) white-box and (ii)
small-scale pre-trained models (iii) with the same
architecture, neglecting the more practical set-
ting where the users only have inference access
to the APIs with arbitrary model architectures
and model scale inside. To solve this issue, we
propose a Bi-level Data-free Meta Knowledge
Distillation (BiDf-MKD) framework to transfer
more general meta knowledge from a collection of
black-box APIs to one single meta model. Specifi-
cally, by just querying APIs, we inverse each API
to recover its training data via a zero-order gradi-
ent estimator and then perform meta-learning via
a novel bi-level meta knowledge distillation struc-
ture, in which we design a boundary query set
recovery technique to recover a more informative
query set near the decision boundary. In addi-
tion, to encourage better generalization within the
setting of limited API budgets, we propose task
memory replay to diversify the underlying task
distribution by covering more interpolated tasks.
Extensive experiments in various real-world sce-
narios show the superior performance of our BiDf-
MKD framework.
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1. Introduction
Data-free meta-learning (DFML) aims to meta-learn the use-
ful prior knowledge from a collection of pre-trained models
to enable efficient learning of new tasks without access to
the training data due to privacy issues. Existing DFML work
(Wang et al., 2022c) can only deal with the white-box pre-
trained models, assuming access to the underlying model
architecture and parameters. However, this assumption is
not always satisfied. Recently, the concept of Model as A Se-
vice (MaaS) (Roman et al., 2009) comes to reality. Without
access to the underlying models, users only have inference
access to the corresponding APIs provided by the service
providers like OpenAI or Google. For example, Cloud Vi-
sion API of Google, Amazon AI and Alibaba Cloud provide
thousands of APIs designed for solving various specific
tasks. TensorFlow Lite APIs provides numerous lightweight
APIs deployed on mobiles, microcontrollers and edge de-
vices. In this paper, we argue that these APIs can not only
be the black-box tools for solving specific tasks, but can also
serve as the training resources of meta-learning to enable
efficient learning of new unseen tasks. The significance of
doing this is to remove the need for large volumes of labeled
data to perform meta-learning and reliably protect data pri-
vacy and security. This motivation leads to our valuable
but challenging topic, i.e., black-box DFML, which aims
to meta-learn the meta-initialization from a collection of
black-box APIs without access to the training data and with
only inference access, to enable efficient learning of new
tasks without data privacy leakage.

The main challenges of black-box DFML lie in three aspects:
(i) data-free: we have no access to the original training data
of each API; (ii) black-box: we have no prior knowledge
of the underlying model architecture and parameters inside
each API; (iii) model-agnostic: each API may correspond
to arbitrary underlying model architectures and model scale.
Existing DFML work (Wang et al., 2022c) only tries to
handle the first challenge, which can not meta-learn from
black-box APIs with arbitrary underlying model architec-
ture and scale. Concretely, Wang et al. (2022c) propose to
meta-learn a neural network to predict the meta-initialization
given a collection of white-box pre-trained models. How-
ever, this method requires the exact parameter of each pre-
trained model, and it requires all pre-trained models share
the same architecture. Besides, it can not scale to large-scale
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pre-trained models because it directly uses a hyper neural
network to output all parameters of the meta-initialization.

In this work, we solve all these issues in a unified framework
(see Fig. 2). We propose a novel Bi-level Data-free Meta
Knowledge Distillation (BiDf-MKD) framework to transfer
more general meta knowledge from a collection of black-
box APIs to one single meta model, which serves as the
meta-initialization to initialize the task-specific models of
new unseen tasks. Specifically, by just querying the API, we
first “inverse” each API to recover the label-conditional data
starting from latent standard Gaussian noise via a zero-order
gradient estimator. With the aid of the recovered data, we
then perform meta-learning by transferring the general meta
knowledge from a collection of black-box APIs to the meta
model through our proposed bi-level meta knowledge dis-
tillation structure. Then, we formally define the knowledge
vanish (see Definition 4.1) issue involved in the bi-level
characteristic of meta-learning from the perspective of in-
formation theory, i.e., the outer-level optimization of meta-
learning could be useless. We argue that the knowledge
vanish issue in the data-free setting is more significant than
in the data-based setting due to the relatively low diversity
of recovered data. As illustrated in Fig. 3, to alleviate such
issue, we design a boundary query set recovery technique
to amplify the diversity by recovering a more informative
query set near the decision boundary. In addition, to en-
courage better generalization to the unseen tasks within the
setting of limited API budgets, we propose task memory
replay on more interpolated tasks. The interpolated tasks
do not correspond to any API so that we can diversify the
underlying task distribution associated with the given APIs
by covering more new tasks. Overall, our proposed frame-
work can effectively solve the black-box DFML problem
(i) without the need for real data, (ii) with only inference
access to the APIs, (iii) regardless of the underlying model
architecture and model scale inside each API, and (iv) with-
out data privacy leakage. Thus, it substantially expands the
real-world application scenarios of black-box DFML.

We perform extensive experiments in three real-world black-
box scenarios (see Fig. 1), including (i) API-SS. All APIs
are designed for solving tasks from the Same meta training
subset with the Same architecture inside. (ii) API-SH. All
APIs are designed for solving tasks from the Same meta
training subset but with Heterogeneous architectures inside.
(iii) API-MH. All APIs are designed for solving tasks from
Multiple meta training subsets with Heterogeneous architec-
tures inside. For benchmarks of three scenarios on CIFAR-
FS, MiniImageNet and CUB, our framework achieves sig-
nificant performance gains in the range of 8.09% to 21.46%.
We summarize the main contributions as three-fold:

• For the first time, we propose a new practical and valu-
able setting of DFML, i.e., black-box DFML, whose

goal is to meta-learn the meta-initialization from a col-
lection of black-box APIs without access to the original
training data and with only inference access, to enable
efficient learning of new tasks without privacy leakage.

• We propose BiDf-MKD to meta-learn the meta-
initialization by transferring general meta knowledge
from a collection of black-box APIs to one single
model. We formally define the knowledge vanish issue
of meta-learning and design the boundary query set
recovery technique to alleviate it. We also propose task
memory replay to boost the generalization ability for
the setting of limited API budgets.

• We propose three real-world black-box scenarios (API-
SS, API-SH, and API-MH) for a complete and practi-
cal evaluation of black-box DFML. We are the first
to propose a data-free, inference-based and model-
agnostic framework, simultaneously applicable to all
three scenarios without any change and outperforming
the SOTA baselines by a large margin.

2. Related Work
Meta-learning & Data-free meta-learning. Meta-learning
(Schmidhuber, 1987), a.k.a. learning to learn, aims to
meta-learn useful prior knowledge from a collection of
tasks, which can be generalized to new unseen tasks ef-
ficiently. MAML (Finn et al., 2017) and its variants (Abbas
et al., 2022; Jeong & Kim, 2020; Raghu et al., 2019; Behl
et al., 2019; Rajeswaran et al., 2019) meta-learn a sensi-
tive meta-initialization to initialize the task-specific model,
while other works (Santoro et al., 2016; Mishra et al., 2017;
Garnelo et al., 2018; Munkhdalai & Yu, 2017) meta-learn
a hyper neural network to output the task-specific model
parameters conditioned on the support set. Existing meta-
learning works (Vinyals et al., 2016; Wang et al., 2021;
Finn et al., 2018; Yao et al., 2021; Wang et al., 2022b; Har-
rison et al., 2020; Ye et al., 2020a; Li et al., 2020; Yang
et al., 2021; Simon et al., 2022; Liu et al., 2019; Wang
et al., 2022a; 2020; Zhou et al., 2021) assume the access to
the training data associated with each task. More recently,
Wang et al. (2022c) propose a new meta-learning paradigm,
data-free meta-learning, which aims to meta-learn the meta-
initialization from a collection of pre-trained modes without
access to their training data. However, it imposes strict
restrictions on pre-trained models: (i) white-box, (ii) small-
scale, and (iii) with the same architecture, thus reducing its
applicable scenarios in real applications.

Knowledge distillation for meta-learning. Our work is
reminiscent of knowledge distillation (KD) (Hinton et al.,
2015) as we leverage a collection of APIs to supervise the
meta-learning. Below, we first briefly review KD and com-
pare ours with existing KD works for meta-learning. KD
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Figure 1. According to the datasets and model architectures inside the APIs, we propose three real-world black-box scenarios for a
complete and practical evaluation of black-box DFML. We are the first to propose a unified framework simultaneously applicable to all
three scenarios without any change, thus greatly expanding the real-world application scope of black-box DFML.

aims to supervise the training process of the student model
with the knowledge of the teacher model. The knowledge
can be the soft-label predictions (Hinton et al., 2015), hid-
den layer activation (Romero et al., 2014; Koratana et al.,
2019), embedding (Chen et al., 2018; Ahn et al., 2019),
or relationship (Ye et al., 2020b). Existing meta-learning
works based on KD differ greatly from ours in motivation,
setting and manner. Ye et al. (2022) associate each task with
an additional teacher classifier to provide additional supervi-
sion for meta-learning. They conduct KD by minimizing the
prediction disagreement on real data, thus not applicable to
the data-free setting. Besides, it relies on separate training
with real data to obtain the teacher classifiers. REFILLED
(Ye et al., 2020b) performs KD between one teacher model
and one student model in different label spaces. It relies on
the relationship among embeddings, which are unavailable
in our black-box setting.

Model inversion. Model inversion (Fredrikson et al., 2015;
Wu et al., 2016; Zhang et al., 2020) aims to recover the
training data from the pre-trained model. Our framework
also involves recovering data from black-box APIs to trans-
fer meta knowledge. Existing techniques (Fredrikson et al.,
2015; Wu et al., 2016; Zhang et al., 2020; Deng & Zhang,
2021; Lopes et al., 2017; Chawla et al., 2021; Zhu et al.,
2021; Liu et al., 2021; Zhang et al., 2022b) about model
inversion from white-box pre-trained models are not applica-
ble to our black-box setting. Recent works DFME (Truong
et al., 2021) and MAZE (Kariyappa et al., 2021) leverage
the black-box model inversion technique to perform model
extraction. Key differences include our meta-learning objec-
tive and loss formulation for label-conditional data recovery.
We also design a novel boundary data recovery technique to
recover more informative data near the decision boundary
(see Fig. 3).

3. Problem Setup
In this section, we first clarify the definition of black-box
DFML, followed by its meta testing procedure.

3.1. Black-box DFML Setup

We are given a collection of APIs {Ai} solving different
tasks, with only inference access and without accessing
their original training data. We aim to meta-learn the meta-
initialization θ, which can be adapted fast to new unseen
tasks {T new

i }. Note that each API may correspond to arbi-
trary underlying model architecture and model scale.

3.2. Meta Testing

During meta testing, several unseen N -way K-shot tasks
{T new

i = {Snew
i ,Qnew

i }} arrive together. The classes
appearing in meta testing tasks are unseen during meta train-
ing. Each task contains a support set Snew

i with N classes
and K instances per class. We use the support set Snew

i to
adapt the meta initialization to the task-specific task (i.e.,
θ → θnew

i ). The query set Qnew
i is what we actually need

to predict. The final accuracy is measured by the average
accuracy for those meta testing tasks.

4. Methodology
In this section, we propose a unified framework (Fig. 2)
to solve the black-box DFML problem, including (i) BiDf-
MKD to transfer meta knowledge (Sec. 4.1) and (ii) task
memory replay to boost generalization ability (Sec. 4.2).

4.1. Bi-level data-free meta knowledge distillation
(BiDf-MKD)

Task recovery via API inversion. For the API Ai, we aim
to recover the task-specific training data set X̂ , with which
general meta knowledge can be transferred from the API
Ai(·) to the meta model F (·;θ). As illustrated in Fig. 2,
it consists of four components: a generator G(·;θG), an
API Ai, a gradient estimator and a memory bank B. The
generator G(·;θG) takes the standard Gaussian noise z as
input and outputs the recovered data x̂ = G(z;θG). To
make the recovery process label-conditional, we update the
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Figure 2. The whole pipeline of our proposed BiDf-MKD framework. For each API Ai, we recover its training data starting from the
random standard Gaussian noise Zi. By continually querying the black-box API Ai, we gradually update the noise to label-conditional
data. We then split the recovered data into the support set Si and query set Qi to perform meta-learning via our bi-level meta knowledge
distillation structure. Alternatively, we can perform task memory replay with MAML over more interpolated tasks.

corresponding z and θG simultaneously by minimizing the
per datum cross-entropy loss

min
z,θG

ℓcls(x̂, y) = CE(Ai(x̂), y), s.t. x̂ = G(z;θG), (1)

where y is the pre-defined class label. To recover a batch of
data X̂ of class labels Y , we update Z and θG by minimiz-
ing the batch-wise loss

min
Z,θG

Lcls(X̂) =
1

|X̂|

∑
(x̂,y)∈(X̂,Y )

lcls(x̂, y),

s.t. X̂ = G(Z;θG).

(2)

After obtaining a certain number of data, we feed these
recovered X̂ into the memory bank B, i.e., a first-in-first-
out (FIFO) container with a certain volume.

Zero-order gradient estimation. Recall that our objective
of task recovery is to update z ∈ Z and θG simultaneously
by minimizing Lcls.

θt+1
G = θt

G − η∇θGLcls (3a)

zt+1 = zt − η∇zLcls. (3b)

Updating z and θG in such way involves calculating
∇θGLcls and ∇zLcls. With the use of the chain rule, we

decompose each gradient into two components:

∇θGLcls =
∂Lcls

∂θG
=

1

|X̂|

∑
x̂∈X̂

[
∂ℓcls
∂x̂

× ∂x̂

∂θG

]
(4a)

∇zLcls =
∂Lcls

∂z
=

∂ℓcls
∂x̂

× ∂x̂

∂z
. (4b)

The second factors ( ∂x̂
∂θG

and ∂x̂
∂z ) in Eq. (4a) and Eq. (4b)

can be automatically calculated via the automatic differenti-
ation mechanism in PyTorch (Paszke et al., 2017) or Tensor-
Flow (Abadi et al., 2015). However, it is not applicable for
calculating the first factor (∂ℓcls∂x̂ ), because we have no ac-
cess to the underlying model parameters inside the API. To
this end, we adopt a zero-order gradient estimator to obtain
an approximation of the first-order gradient by just query-
ing the API. To explain how the first-order gradient (∂ℓcls∂x̂ )
is estimated, consider the random noise vector z ∈ Rdz ,
which yields the recovered data G(z;θG) = x̂ ∈ Rdx̂ with
label y and the loss value ℓcls(x̂, y) ∈ R. We can feed the
recovered data plus a set of random direction vectors to
query the API and estimate the gradient according to the
difference of two loss values. This leads to the randomized
gradient estimation (Liu et al., 2020b):

∇̂x̂ℓcls=
1

q

q∑
i=1

[
dx̂
µ

(ℓcls (x̂+ µui, y)− ℓcls(x̂, y))ui

]
, (5)

where {ui}qi=1 are q random direction vectors sampled in-
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dependently and uniformly from the sphere of a unit ball.
µ > 0, a.k.a the smoothing parameter, is a given small step
size. The estimation ∇̂x̂ℓcls is reasonable because Eq. (5)
provides an unbiased estimate of the first-order gradient
∇x̂ℓcls of the Gaussian smoothing version (Gao et al., 2018;
Zhang et al., 2022c). With the zero-order gradient estimator,
we can obtain the estimated gradient according to Eq. (4):

∇θGLcls ≈
1

|X̂|

∑
x̂∈X̂

[
∇̂x̂ℓcls ×

∂x̂

∂θG

]
(6a)

∇zLcls ≈ ∇̂x̂ℓcls ×
∂x̂

∂z
, (6b)

where ∂x̂
∂θG

∈ Rdx̂×dθG and ∂x̂
∂z ∈ Rdx̂×dz are the Jacobian

matrices and ∇̂x̂ℓcls ∈ R1×dx̂ is the zero-order gradient
estimation. Then we can perform gradient descent by updat-
ing Z and θG according to Eq. (3) to produce the recovered
data required to perform meta knowledge distillation.

Bi-level meta knowledge distillation for meta-learning.
We propose a bi-level meta knowledge distillation struc-
ture to perform meta-learning by transferring general meta
knowledge from a collection of black-box APIs into one
single meta model with the recovered data. Different from
the common knowledge distillation methods requiring the
teacher and student designed for the same task, the meta
model is not tailored to any specific task. Thus, it is not
appropriate to directly transfer the task-specific knowledge
from the API (viewed as the teacher) to the meta model
(viewed as the student). To this end, our bi-level structure
controls the knowledge flow from each API to the meta
model via an intermediate task-specific model, which trans-
fers more general meta knowledge. The meta knowledge
enables fast knowledge distillation of the inner loop, thus
not task-specific and approximate to be transferred to the
meta model.

Our proposed BiDf-MKD involves a bi-level structure, i.e.,
the inner level and the outer level. For API Ai, we split
its recovered data X̂i into two non-overlap support set Si

and query set Qi. For the inner level, we transfer the task-
specific knowledge from Ai to a task-specific model F (·;θi)
initialized by θ so that the task-specific model F (·;θi) can
act like Ai on Si. We clone this task-specific model F (·;θi)
from API Ai by minimizing the disagreement of predictions
between them:

θi= min
θ
Linner

BiDf−MKD≜min
θ

∑
x̂∈Si

ℓKL(F (x̂;θ), Ai(x̂)), (7)

where ℓKL(p, q) measures the Kullback–Leibler (KL) di-
vergence (MacKay et al., 2003) between distributions p
and q. One can apply other measures that can characterize
the difference of distributions. The objective of the inner
level is only to transfer the task-specific knowledge from the
API Ai to the task-specific model F (·;θi). Note that the
task-specific knowledge is not desired for the meta model,

recovered support set
recovered query set
real data

inner-level decision boundary
outer-level decision boundary
decision boundary of API

w/o boundary query set recovery w/ boundary query set recovery

knowledge vanish

𝜼 = 𝟏

𝜼 = 𝟎

Figure 3. Knowledge vanish issue of meta-learning occurs when
the outer-level optimization can be ignored.

because the meta model should possess the potential to
work well with all tasks after adaptation and one certain
task-specific knowledge can not directly adapt to other dif-
ferent tasks. Then, with the aid of the inner level, we resort
to the outer level to explore more general meta knowledge,
which is beneficial to the meta model.

The core idea of the outer level is to explore more general
meta knowledge, with which we can make the best use of the
task-specific knowledge in the inner level. In other words,
it is hard to obtain an excellent task-specific model relying
solely on the task-specific knowledge in the inner level with
few recovered data. We desire more general meta knowledge
to facilitate the inner-level knowledge distillation so as to
narrow the gap between the task-specific model F (·;θi) and
the API Ai as much as possible. The gap is evaluated by
testing the task-specific model F (·;θi) on a wider range of
hold-out data Qi, which is equivalent to minimizing

min
θ
Louter

BiDf−MKD(θ) =
∑
x̂∈Qi

ℓKL(F (x̂;θi), Ai(x̂)),

s.t. θi = min
θ
Linner

BiDf−MKD,

(8)

where θi is obtained after the inner level following Eq. (7)
and θ is the meta model parameters we truly update.
F (x̂;θi) and Ai(x̂) outputs the prediction (after softmax)
on x̂ from the task-specific model and API, respectively.

Boundary query set recovery for knowledge vanish. The
ideal BiDf-MKD is conducted in such a way that narrows
the gap between the task-specific model and the API on the
hold-out query set. However, the outer-level knowledge dis-
tillation could be too “lazy” to explore the meta knowledge.
This issue is more significant in the data-free meta-learning
setting than in the data-based meta-learning setting because
of the relatively low diversity of the recovered data. Con-
sider an extreme example with Si = Qi. The task-specific
model distilled from the API on Si in the inner level can
perform perfectly on Qi in the outer level. This could lead
to an illusion where the task-specific model is so “perfect”
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that we can explore no more knowledge to facilitate the
inner-level knowledge distillation. We then formally define
the complete knowledge vanish issue of meta-learning from
the perspective of information theory.
Definition 4.1. The complete knowledge vanish of meta-
learning occurs when the outer-level optimization can be
ignored, namely the mutual information I(θ;Qi|θi,Si) =
0 (or H(θ|θi,Si) = H(θ|θi,Si,Qi)).

Refer to App. A for the relation between the mutual informa-
tion I and entropy H . Explicitly maximizing I(θ;Qi|θi) re-
quires an unknown posterior distribution over θ. Instead, we
implicitly encourage H(θ|θi,Si) > H(θ|θi,Si,Qi) by
recovering Qi with more information. Zhang et al. (2022a)
point out the samples near the decision boundary contained
more valuable information for classification. This moti-
vation leads to our proposed boundary query set recovery
technique, which urges the generator to recover the query set
between the decision boundaries of the task-specific model
F (·;θi) and API Ai(·) (see Fig. 3). Specifically, we first
recover the support set Si (orange circles) by minimizing
Eq. (2). Then, we use Si to conduct the inner-level knowl-
edge distillation following Eq. (7) to distill the task-specific
model parameters θi with the inner-level decision boundary
(orange arc). To recover a more informative query set (blue
circles) for the outer-level knowledge distillation, we in-
corporate F (·|θi) to query set recovery by maximizing the
disagreement between F (·|θi) and the API Ai(·) following
Eq. (9). Note that large disagreement may guide to generate
just some outliers. Therefore, we only pay more attention to
those boundary samples and introduce the loss for boundary
query set recovery:

min
z,θG

ℓQ(x̂, y)

=CE(Ai(x̂), y)−λQ · η · ℓKL(F (x̂;θi), Ai(x̂)),

s.t. x̂ = G(z;θG),

η = I{argmaxF (x̂;θi) = argmaxAi(x̂)}.

(9)

The function I(·) is an indicator to enable x̂ with the same
prediction from the API and the task-specific model (η = 1),
otherwise disable it (η = 0). Unlike the loss Eq. (1), the loss
Eq. (9) guides to recover x̂ between the decision boundaries
of the task-specific model F (·;θi) (orange arc) and API
Ai(·) (grey arc), which provides more information for the
outer-level knowledge distillation.

4.2. Task memory replay

The basic BiDf-MKD aims to transfer the meta knowledge
of a collection of APIs to one single meta model. A small
number of APIs (e.g., 100 APIs) are insufficient to represent
the actual underlying task distributions and makes it easy
to overfit, leading to poor generalization ability for the new
unseen tasks. To make our method work well within the
setting of limited API budgets, we propose task memory

replay to diversify the underlying task distribution by cover-
ing more interpolated tasks. We design a memory bank with
the first-in-first-out structure to store the previous recovered
task data from each API. We then generate new tasks that
interpolate between the previous tasks.

Suppose the memory bank B has stored the recovered task
data {Si,Qi}Ti=0 recovered from the APIs {Ai}Ti=0. Each
task corresponds to a different label space. We generate a
new task with a new label space by randomly resampling the
class labels and the corresponding support set (Sm,Y Sm

)
and query set (Qm,Y Qm

) from the memory bank. These
new interpolated tasks do not correspond to any given API
and thus diversify the task distribution, leading to better
generalization to unseen tasks. For these interpolated tasks,
we adopt MAML (Finn et al., 2017), consistent with the
bi-level structure of BiDf-MKD, to update the meta model
by minimizing

min
θ
Louter

mem = Lcls(F (Qm;θm),Y Qm
),

s.t. θm = min
θ
Linner

mem ≜ min
θ
Lcls(F(Sm;θ),Y Sm).

(10)

The moment to perform task memory replay is flexible.
For example, each API may come in a sequential way and
we can perform task memory replay at the interval of two
adjacent APIs or in exceptional cases where network in-
terruption happens. Task memory replay does not need to
query the APIs online, thus requiring no network connection
and making our framework more stable. Overall, we inte-
grate BiDf-MKD and task memory replay in an end-to-end
manner, which is summarized in Alg. 1 of App. D.

5. Experiments
We verify the effectiveness of our proposed BiDf-MKD
framework in various real-world scenarios (API-SS, API-
SH, and API-MH) with comprehensive ablation studies.

5.1. Experimental Setup

Baselines. (i) Random. Randomly parameterize the meta-
initialization for meta testing. (ii) Best-API. We select the
API with the highest reported accuracy to directly predict the
query set during meta testing. (iii) Single-DFKD. Single-
level data-free knowledge distillation. Update the meta
model in a sequential manner, with only single-level data-
free knowledge distillation (Eq. (7)). This baseline only
transfers the task-specific knowledge sequentially instead of
meta knowledge from APIs to meta model. (iv) Distill-Avg.
We perform single-level data-free knowledge distillation
(Eq. (7)) for each API to obtain a surrogate white-box model.
We average all surrogate model parameters layer-wise as
the meta-initialization. (v) White-box DFML. Perform our
BiDf-MKD in an ideal white-box setting, where the actual
first-order (FO) gradients of the parameters inside the APIs
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Figure 4. Histogram of the reported accuracy of APIs.

are available for task recovery. This baseline provides an
upper bound of performance for black-box DFML.

API quality. Fig. 4 shows the histogram of the reported
accuracy of APIs (Conv4) pre-trained on CIFAR-FS, Mini-
ImageNet and CUB, respectively. We provide more sta-
tistical results of APIs with other architectures (ResNet10
and ResNet18) in App. C.1. We argue that our framework
should work well in the real-world scenario, where some
APIs may be with relatively low accuracy. Refer to App. C.1
for more discussions on robustness against the API quality
variation.

Implementation details & Datasets. We evaluate our BiDf-
MKD framework on the meta-testing subsets of CIFAR-
FS (Bertinetto et al., 2018), MiniImageNet (Vinyals et al.,
2016), and CUB-200-2011 (CUB) (Wah et al., 2011). Refer
to App. E.2 and App. E.1 for detailed dataset setup and
implementation details for three scenarios.

5.2. Experiments of black-box DFML in API-SS

Overview. We first perform experiments in API-SS sce-
nario, where all APIs are designed for solving different
5-way tasks from the same meta training subset (CIFAR-FS,
MiniImageNet or CUB) with the same architecture (Conv4).

Results. Tab. 1 shows the results for 5-way classification
in API-SS scenario. For 1-shot learning, ours outperforms
the best baselines by 11.24%, 8.15% and 8.09% on three
datasets, respectively. For 5-shot learning, ours outperforms
the best baselines by 20.02%, 18, 23% and 21.46% on three
datasets, respectively. The results show that simply param-
eterizing the meta-initialization does not work for meta-
learning. We observe a significant performance reduction of
the best API from about 90% to about 20% because of the
non-overlapping label space between the best API and the
meta testing tasks and we can not fine-tune the API with the
support set of new unseen tasks because of the black-box
setting. The single-DFKD simply transfers the task-specific
knowledge to the meta model in a sequential way; its bad

performance reveals the accumulated task-specific knowl-
edge is not beneficial to the efficient learning of new unseen
tasks. Distill-Avg fuse all surrogate white-box models layer-
wise and then fine-tune the meta-initialization; it also dose
not perform well because those surrogate models train on
different tasks, thus lacking precise correspondence among
them. Ours performs the best because of the strong gener-
alization ability of our transferred meta knowledge, which
enables the efficient learning of new unseen tasks.

Table 1. Compare to baselines in API-SS scenario.
API-SS Method 1-shot 5-shot

CIFAR-FS
5-way

Random 20.35 ± 0.42 20.59 ± 0.45
Best-API 19.04 ± 0.68 19.04 ± 0.67
Single-DFKD 20.04 ± 0.63 20.14 ± 0.64
Distill-Avg 24.24 ± 0.46 27.56 ± 0.51
Ours 35.48 ± 0.67 47.58 ± 0.74

MiniImageNet
5-way

Random 21.20 ± 0.38 21.13 ± 0.37
Best-API 20.51 ± 0.63 20.39 ± 0.62
Single-DFKD 20.03 ± 0.60 20.14 ± 0.66
Distill-Avg 20.53 ± 0.20 21.24 ± 0.24
Ours 29.35 ± 0.60 39.47 ± 0.64

CUB
5-way

Random 21.09 ± 0.38 21.11 ± 0.37
Best-API 19.99 ± 0.69 19.95 ± 0.70
Single-DFKD 19.56 ± 0.64 20.06 ± 0.64
Distill-Avg 21.07 ± 0.25 21.97 ± 0.30
Ours 29.10 ± 0.64 43.43 ± 0.66

5.3. Experiments of black-box DFML in SH

Overview. We then perform experiments in a more real-
istic scenario, API-SH, where all APIs are designed for
solving different tasks from the same meta training subset
(CIFAR-FS, MiniImageNet or CUB) but with heterogeneous
architectures (Conv4, ResNet10 and ResNet18).

Results. Tab. 2 shows the result for 5-way classification in
API-SH scenario. For 1-shot learning, ours outperforms
the best baselines by 12.76%, 9.35% and 9.02% on three
datasets, respectively. For 5-shot learning, ours outperforms
the best baselines by 21.01%, 18.61% and 22.87% on three
datasets, respectively. All baselines can not effectively solve
the black-box DFML problem in API-SH scenario with the
similar reasons of API-SS discussed in Sec. 5.2. Ours is
far better than all baselines and can apply to the API-SH
scenario without any change because the meta knowledge
distillation involved in our BiDf-MKD framework imposes
no restriction on the underlying model architectures and
scale inside each black-box API.

5.4. Experiments of black-box DFML in API-MH

Overview. We further perform experiments in a more chal-
lenging API-MH scenario, where all APIs are designed
for solving different tasks from multiple meta training sub-
sets (CIFAR-FS, MiniImageNet and CUB) with heteroge-
neous architectures (Conv4, ResNet10 and ResNet18) in-
side. For meta testing, we evaluate the meta-learned meta-
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Table 2. Compare to baselines in API-SH scenario.
API-SH Method 1-shot 5-shot

CIFAR-FS
5-way

Random 20.35 ± 0.42 20.59 ± 0.45
Best-API 19.04 ± 0.68 19.04 ± 0.67
Single-DFKD 19.56 ± 0.67 20.06 ± 0.60
Distill-Avg 22.82 ± 0.38 25.91 ± 0.45
Ours 35.58 ± 0.79 46.92 ± 0.77

MiniImageNet
5-way

Random 21.20 ± 0.38 21.13 ± 0.37
Best-API 20.51 ± 0.63 20.39 ± 0.62
Single-DFKD 20.11 ± 0.64 20.23 ± 0.66
Distill-Avg 20.32 ± 0.22 20.67 ± 0.24
Ours 30.55 ± 0.62 39.74 ± 0.65

CUB
5-way

Random 21.09 ± 0.38 21.11 ± 0.37
Best-API 19.99 ± 0.69 19.95 ± 0.70
Single-DFKD 20.13 ± 0.66 20.24± 0.64
Distill-Avg 20.46 ± 0.24 21.02 ± 0.26
Ours 30.11 ± 0.58 43.98 ± 0.64

initialization on unseen tasks from CIFAR-FS, MiniIma-
geNet and CUB simultaneously.

Results. Tab. 3 shows the results for 5-way classification
in API-MH scenario. Ours has significant performance
advantages (11.21% and 17.13% for 1-shot and 5-shot, re-
spectively) compared with all other baselines, which shows
the superiority and broad applicability of our BiDf-MKD
framework to work well with black-box APIs from multiple
datasets with heterogeneous architectures.

Table 3. Compare to baselines in API-MH scenario.
API-MH Method 1-shot 5-shot

5-way

Random 20.88 ± 0.39 21.00 ± 0.40
Best-API 19.44 ± 0.65 19.64 ± 0.66
Single-DFKD 19.04 ± 0.66 19.68 ± 0.64
Distill-Avg 21.57 ± 0.25 23.11 ± 0.29
Ours 32.78 ± 0.60 40.24 ± 0.65

5.5. Ablation Studies

Effectiveness of each component of our framework.
Tab. 4 analyzes the effectiveness of each component on
CIFAR-FS in API-SS scenario. We first introduce the
vanilla only performing meta-learning via task memory
replay (Sec. 4.2). The vanilla still achieves a significant
performance gain compared with the best baselines in Tab. 1
by 8.89% and 16.89% for 1-shot and 5-shot learning, which
hints the feasibility for meta-learning on synthetic data. By
adding BiDf-MKD to transfer the meta knowledge, we
observe a performance gain of 1.96% and 2.49%. The rea-
son is that BiDf-MKD provides a way to leverage richer
supervision (i.e., the semantic class relationship in the soft-
label prediction from those black-box APIs) instead of the
only hard-label supervision from the synthetic data. We
also observe an improvement (0.89% and 0.79%) from our
boundary query set recovery technique (Fig. 3), which ver-
ifies its effectiveness for alleviating the knowledge vanish
issue. With all components, we achieve the best perfor-
mance with a boosting improvement of 2.35% and 3.13%,
thus demonstrating the effectiveness of the joint schema.

Table 4. Ablation studies on CIFAR-FS in API-SS scenario.

API-SS Component Accuracy

BiDf-MKD Boundary 5-way 1-shot 5-way 5-shot

Vanilla 33.13 ± 0.66 44.45 ± 0.76

✓ 35.09 ± 0.71 46.94 ± 0.74
✓ 34.02 ± 0.70 45.24 ± 0.74

Ours ✓ ✓ 35.48 ± 0.67 47.58 ± 0.74

Figure 5. Effect of the number of APIs in API-SS scenario.

Effectiveness of zero-order gradient estimator. Tab. 5 pro-
vides an unfair comparison with an unfair baseline, white-
box DFML, by performing our BiDf-MKD in an ideal white-
box setting where the actual first-order (FO) gradients of the
parameters inside the APIs are available for task recovery.
The accuracy of white-box DFML serves as the upper bound
for that of black-box DFML. The minor performance gaps
on three datasets demonstrate our zero-order (ZO) gradient
estimator can provide reasonable gradient estimation, which
can achieve comparable meta-learning performance.

Table 5. Effectiveness of zero-order gradient estimator. Grey: un-
fair comparison with white-box DFML.

API-SS Method 1-shot 5-shot

CIFAR-FS
5-way

FO 37.66 ± 0.75 51.16 ± 0.79
ZO 35.48 ± 0.67 47.58 ± 0.74

MiniImageNet
5-way

FO 30.66 ± 0.59 42.30 ± 0.64
ZO 29.35 ± 0.60 39.47 ± 0.64

CUB
5-way

FO 31.62 ± 0.60 44.32 ± 0.69
ZO 29.10 ± 0.64 43.43 ± 0.66

Effect of the number of APIs. Fig. 5 shows the perfor-
mance difference with the different number of black-box
APIs in API-SS scenario. Here, we further introduce an
intrinsic factor, i.e., cover rate, which indicates the coverage
rate of classes in the meta training subset. As the number of
APIs increases, the cover rate increases, boosting the gener-
alization ability for unseen tasks with higher meta testing
accuracy. When the cover rate reaches 100% (more than
50 APIs), we can still observe a performance improvement
because the additional APIs provide richer supervision of
semantic relationships among different classes.

Effect of the number of query times. Tab. 8 shows the
effect of the number of query times (i.e., the value of q in
Eq. (5)) on the accuracy and time cost. More query times
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Figure 6. Effect of the number of query times on the accuracy
and time cost. Here, white-box DFML provides unfair bounds of
accuracy and time cost.
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pine_tree rose sea bee elephant
2 3 40 1

CIFAF-FS

Recovered data from white-box DFML

Recovered data from ours

pine_tree rose sea bee elephant
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Figure 7. Visualization of recovered data on CIFAR-FS.

can lead to more accurate zero-order gradient estimation,
thus leading to more accurate task recovery results and better
meta-learning performance. Considering the time cost, we
set q = 100 in practice with comparable performance and
tolerable time cost compared with the unfair performance
bound of white-box DFML.

Data privacy. A profound significance of black-box DFML
is that we can achieve comparable meta-learning perfor-
mance compared with the unfair white-box DFML without
data privacy leakage. We argue that the real intention for
releasing APIs (or pre-trained models) without data is to pro-
tect data privacy and security. However, as shown in Fig. 7,
the recovered data from white-box DFML is highly similar
to the original data, leaking sensitive data information and
violating the original intentions. In contrast, ours recov-
ers the data visually distinct from the original data, thus
avoiding privacy leakage. Note that although the recovered
data from ours look much different from the original data,
ours still achieves a comparable meta-learning performance
compared with the white-box DFML (see Tab. 5).

6. Conclusion
For the first time, we propose a practical and valuable set-
ting of DFML, i.e., black-box DFML, which aims to meta-
learn the meta-initialization from a collection of black-box
APIs without access to the original training data and with
only inference access, to enable efficient learning of new
tasks without privacy leakage. To solve this challenging

problem, we propose a novel BiDf-MKD framework inte-
grated with task memory replay to transfer the general meta
knowledge into one single model. At last, we propose three
real-world scenarios for a complete and practical evaluation
of black-box DFML, where extensive experiments verify
our framework’s effectiveness and superiority.
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Appendix

A. Mutual Information and Entropy
A.1. Mutual information

Mutual information (Shannon, 1948; Kreer, 1957) I(X,Y ) measures the mutual dependence of two random variables X
and Y . Intuitively, it quantifies how much observing one random variable can reduce the uncertainty about the other random
variable (i.e., uncertainty reduction) or measures how much observing one random variable can obtain the information
about the other random variable (i.e., information gain). Below, we give the definition of discrete mutual information and
continuous mutual information, respectively.
Definition A.1. Discrete mutual information. The definition of mutual information I(X,Y ) of two discrete random
variables X and Y is given by

I(X;Y ) =
∑
y∈Y

∑
x∈X

P(X,Y )(x, y) log
P(X,Y )(x, y)

PX(x)PY (y)
.

X and Y are random variables with the values over the space X and Y , respectively. P(X,Y ) is their joint distribution. PX

and PY are their marginal distributions.

For two continuous random variables X and Y , we replace the summations with the integrals.
Definition A.2. Continuous mutual information. The definition of mutual information I(X,Y ) of two continuous random
variables X and Y is given by

I(X;Y ) =

∫
Y

∫
X
P(X,Y )(x, y) log

P(X,Y )(x, y)

PX(x)PY (y)
dx dy.

A.2. Entropy

Entropy (Ben-Naim, 2008) H(X) is a measure of uncertainty of the random variable X . Below, we give the definition of
discrete entropy and continuous entropy, respectively.
Definition A.3. Discrete entropy. The definition of the entropy H(X) of a discrete random variable X is given by

H(X) = −
∑
x∈X

PX(x) logPX(x).

We can also extend it to the continuous random variable by replacing the summations with the integrals.
Definition A.4. Continuous entropy. The definition of the entropy H(X) of a continuous random variable X is given by

H(X) = −
∫
X
PX(x) logPX(x) dx.

A.3. Conditional entropy

Conditional entropy quantifies the uncertainty of one random variable given that the value of the other random variable is
known. Below, we give the definition of discrete conditional entropy and conditional continuous entropy, respectively.
Definition A.5. Discrete conditional entropy. The definition of the conditional entropy H(X|Y ) of a discrete random
variable X given the other discrete random variable Y is given by

H(Y |X) = −
∑
y∈Y

∑
x∈X

P(X,Y )(x, y) logP(Y |X=x)(y).

Definition A.6. Continuous conditional entropy. The definition of the conditional entropy H(X|Y ) of a continuous random
variable X given the other continuous random variable Y is given by

H(Y |X) = −
∫
Y

∫
X
P(X,Y )(x, y) logP(Y |X=x)(y) dx dy.

13



Learning to Learn from APIs: Black-Box Data-Free Meta-Learning

A.4. Relation between mutual information and entropy

Here, we give a detailed deduction of the relation between mutual information and entropy for the case of discrete random
variables X and Y . The deduction for the case of continuous random variables is the same except for replacing the
summations with the integrals.

I(X;Y ) =
∑

x∈X ,y∈Y
P(X,Y )(x, y) log

P(X,Y )(x, y)

PX(x)PY (y)

=
∑

x∈X ,y∈Y
P(X,Y )(x, y) log

p(X,Y )(x, y)

PX(x)
−

∑
x∈X ,y∈Y

P(X,Y )(x, y) logPY (y)

=
∑

x∈X ,y∈Y
PX(x)P(Y |X=x)(y) logPY |X=x(y)−

∑
x∈X ,y∈Y

P(X,Y )(x, y) logPY (y)

=
∑
x∈X

PX(x)

∑
y∈Y

P(Y |X=x)(y) logP(Y |X=x)(y)

−
∑
y∈Y

(∑
x∈X

P(X,Y )(x, y)

)
logPY (y)

= −
∑
x∈X

PX(x)H(Y | X = x)−
∑
y∈Y

PY (y) logPY (y)

= −H(Y | X) + H(Y )

= H(Y )−H(Y | X).

B. Full Architecture of Generator
Tab. 6 lists the structure of the generator in our proposed BiDf-MKD framework. The generator takes the standard Gaussion
noise as input and outputs the recovered data. Here, dz is dimension of Gaussian noise data z, which is set as 256 in practice.
The negative slope of LeakyReLU is 0.2. We set img size as 32 for APIs pre-trained on CIFAR-FS and 84 for APIs
pre-trained on MiniImageNet and CUB. We set the number of channels nc as 3 for color image recovery and the number of
convolutional filters nf as 64.

Notion Description

img size × img size resolution of recovered image
bs batch size
nc number of channels of recovered image
nf number of convolutional filters

FC(·) fully connected layer;
BN batch normalization layer

Conv2D(input, output,filter size, stride, padding) convolutional layer

Structure Dimension
Before After

z ∈ Rdz ∼ N (0,1) — [ bs, dz ]

FC(z) [ bs, dz ] [ bs, 2× nf × (img size//4)× (img size//4) ]

Reshape [ bs, 2× nf × (img size//4)× (img size//4) ] [ bs, 2× nf, (img size//4), (img size//4) ]

BN [ bs, 2× nf, (img size//4), (img size//4) ] [ bs, 2× nf, (img size//4), (img size//4) ]
Upsampling [ bs, 2× nf, (img size//4), (img size//4)) ] [ bs, 2× nf, (img size//2), (img size//2)) ]

Conv2D(2× nf, 2× nf, 3, 1, 1) [ bs, 2× nf, (img size//2), (img size//2)) ] [ bs, 2× nf, (img size//2), (img size//2)) ]
BN, LeakyReLU [ bs, 2× nf, (img size//2), (img size//2)) ] [ bs, 2× nf, (img size//2), (img size//2)) ]

Upsampling [ bs, 2× nf, (img size//2), (img size//2)) ] [ bs, 2× nf, img size, img size ]

Conv2D(2× nf, nf, 3, 1, 1) [ bs, 2× nf, img size, img size ] [ bs, nf, img size, img size ]
BN, LeakyReLU [ bs, nf, img size, img size ] [ bs, nf, img size, img size ]

Conv2D(nf, nc, 3, 1, 1) [ bs, nf, img size, img size ] [ bs, nc, img size, img size ]
Sigmoid [ bs, nc, img size, img size ] [ bs, nc, img size, img size ]

Table 6. Detailed structure of generator in our proposed BiDf-MKD framework. We highlight the dimension change in red.

14



Learning to Learn from APIs: Black-Box Data-Free Meta-Learning

C. More Discussions
C.1. Discussions on robustness against API quality variation

Fig. 8 shows the reported accuracy of given APIs (Conv4, ResNet10 and ResNet18, respectively) pre-trained on CIFAR-FS,
MiniImageNet and CUB, respectively. We collect these black-box APIs to simulate the real-world scenario where various
MaaS providers provide black-box APIs pre-trained on multiple datasets with heterogeneous architectures for solving
different tasks. In addition, since we only have inference access to these black-box APIs without the original training data,
we can not further improve the accuracy of these APIs by fine-tuning or re-training. In other words, our proposed framework
should work well in a setting where a small number of APIs can be with relatively low accuracy. Therefore, as shown in
Fig. 8, we perform our proposed BiDf-MKD method with the APIs of both high quality and relatively low quality. The
results in Tabs. 1 to 3 show the superiority of our BiDf-MKD compared with the SOTA baselines against the API quality
variation.

Figure 8. Histogram of reported accuracy of given APIs (Conv4, ResNet10, and ResNet18, respectively) pre-trained on CIFAR-FS,
MiniImageNet, and CUB, respectively.

C.2. Comparison between knowledge vanish issue and memorization issue of meta-learning

The meta-learning memorization (Yin et al., 2019) describes an issue that the meta model overfits the training tasks, thus
leading to poor generalization ability to unseen tasks. The memorization issue occurs the meta model can ignore the support
set and directly perform well on the query set, i.e., the support set is useless. Our knowledge vanish issue is remarkably
distinct from the memorization issue because the former occurs when the query set is useless. In addition, the knowledge
vanish issue is more significant in the data-free meta-learning setting than in the data-based meta-learning setting because of
the relatively low diversity of recovered data.

D. Summarized Algorithm
We summarize the algorithm of our end-to-end BiDf-MKD framework in Alg. 1.

E. Detailed Experimental Setup
E.1. Implementation details

API-SS. For API-SS scenario, all APIs are designed for solving different tasks from the same meta training subset with the
same model architecture inside. We take Conv4 as the architecture of the model inside each API and the meta model for
API-SS. Conv4 is commonly used in meta-learning works (Finn et al., 2017; Chen et al., 2020; Liu et al., 2020a; Wang et al.,
2019), which consists of four convolutional blocks. Each block consists of 32 3× 3 filters, a BatchNorm, a ReLU and a
2× 2 max-pooling. All APIs are designed for solving different 5-way tasks, which are constructed by randomly sampling 5
classes from the same meta training subset (CIFAR-FS, MiniImageNet or CUB). We adopt Adam optimizer to pre-train the
model inside each black-box API via standard supervised learning with a learning rate of 0.01. In practice, we collect 100
black-box APIs. For BiDf-MKD, we recover 30 images for the support set and query set, respectively. We adopt Adam
optimizer to optimize the generator parameters θG and input z simultaneously by minimizing Eq. (2) with the learning rate
of 0.001 for 200 epochs. We adopt Adam optimizer to optimize the meta model parameters θ by minimizing Eq. (8) with the
inner-level learning rate of 0.01 and the outer-level learning rate of 0.001. For boundary query set recovery, we empirically
set the coefficient λQ as 1. For task memory replay, we adopt MAML to perform meta-learning on the interpolated tasks.
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Algorithm 1: Black-box data-free meta-learning.
Input: Max iterations N ; a collection of T APIs {Ai}T−1

i=0 ; the meta model F (·;θ); memory bank B; the batch size BatchSize.
Output: meta-initialization θ.

Randomly initialize θ
B ← [ ]
for t← 0 to N do

for bs← 0 to BatchSize do
if no task memory replay then // BiDf-MKD

Sample an API Ai

// support set recovery
Recover the support set Si by minimizing Eq. (2) via zero-order gradient estimator
// inner level of BiDf-MKD
Minimize Eq. (7) via gradient descent w.r.t. to θ to obtain the task-specific model parameters θi

// boundary query set recovery
Recover the query set Qi by minimizing Eq. (9) via zero-order gradient estimator
// outer level of BiDf-MKD
Minimize Eq. (8) via gradient descent to update the meta model parameters θ
B ← B ∪ {Si,Qi}

else // task memory replay
// task interpolation
Construct interpolated task {Sm,Qm} from B
// memory replay
Minimize Eq. (10) via gradient descent to update the meta model parameters θ

bs← bs+ 1
t← t+ 1

We conduct MAML with the Adam optimizer with the inner-level learning rate of 0.01 and the outer-level learning rate of
0.001. For the zero-order gradient estimator, we query each API with 100 random direction vectors drawn from the sphere
of a unit ball. We set the smoothing parameter µ as 0.005 in Eq. (5).

API-SH. For API-SH scenario, all APIs are designed for solving different tasks from the same meta training subset with
heterogeneous model architectures inside. We take Conv4, ResNet-10 and ResNet-18 as the architectures inside the given
APIs. Compared to Conv4, ResNet-10 and ResNet-18 are larger-scale neural networks. We take Conv4 as the meta model
architecture. All APIs are designed for solving different 5-way tasks, which are constructed by randomly sampling 5 classes
from the same meta training subset. The other configurations are the same as those of API-SS.

API-MH. For API-MH scenario, all APIs are designed for solving different tasks from multiple meta training subsets with
heterogeneous model architectures inside. We take Conv4, ResNet-10 and ResNet-18 as the architectures inside the given
APIs. We take Conv4 as the meta model architecture. All APIs are designed for solving different 5-way tasks, which are
constructed by randomly sampling 5 classes from multiple meta training subsets, including CIFAR-FS, MiniImageNet and
CUB. For meta testing, we evaluate the meta-learned meta-initialization on unseen tasks from CIFAR-FS, MiniImageNet
and CUB, respectively. The other configurations are the same as those of API-SS.

E.2. Datasets for Meta Testing

CIFAR-FS (Bertinetto et al., 2018), MiniImageNet (Vinyals et al., 2016) are commonly used in meta-learning, consisting
of 100 classes with 600 images per class. We split each dataset into three subsets following (Wang et al., 2022c): 64
classes for meta training, 16 classes for meta validation and 20 classes for meta testing. In addition to these, we investigate
CUB-200-2011 (CUB) birds dataset (Wah et al., 2011), composing of 11,788 images of 200 bird species, to evaluate the
effectiveness of our BiDf-MKD on fine-grained classification. We split into three subsets following (Chen et al., 2019): 100
classes for meta training, 50 classes for meta validation and 50 classes for meta testing. For CIFAR-FS, MiniImageNet and
CUB, all splits are non-overlapping. Note that we have no access to the meta training subset in the DFML setting, and we
only use meta testing subset for evaluation.
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E.3. Evaluation metric.

We evaluate the performance by the average accuracy and standard deviation over 600 unseen target tasks sampled from
meta testing subset. For API-SS and API-SH, we construct several meta testing tasks from one specific meta testing subset
(i.e., CIFAR-FS, MiniImageNet or CUB), while for API-MH, we construct several meta testing tasks from all meta testing
subsets (i.e., CIFAR-FS, MiniImageNet and CUB) equally.

F. More Results
Effect of the number of APIs. Tab. 7 shows the effect of the number of black-box APIs on the meta testing accuracy. The
results in Tab. 7 are consistent with Fig. 5. We additionally introduce an intrinsic factor, i.e., cover rate, which indicates the
coverage rate of classes of meta training subset, to better illustrate the relationship between the number of APIs and the
meta-learning performance. Refer to Sec. 5.5 for detailed result analysis.

Table 7. Effect of the number of APIs in API-SS scenario.
API-SS APIs 1-shot 5-shot

CIFAR-FS
5-way

1 30.76 ± 0.64 33.87 ± 0.72
10 32.39 ± 0.66 40.08 ± 0.74
20 34.14 ± 0.74 42.43 ± 0.74
30 34.49 ± 0.66 43.28 ± 0.81
40 34.97 ± 0.64 45.98 ± 0.76
50 34.82 ± 0.71 46.58 ± 0.81
60 35.14 ± 0.62 47.20 ± 0.74
70 35.32 ± 0.64 47.42 ± 0.79
100 35.48 ± 0.67 47.58 ± 0.74

Effect of the number of queris. Tab. 8 shows the effect of the number of query times (i.e., the value of q in Eq. (5)) on
the meta testing accuracy. The results in Tab. 8 are consistent with Fig. 6. As we can see, more query times can lead to
more accurate zero-order gradient estimation, thus leading to more accurate data recovery results and better meta-learning
performance. Considering the time cost shown in Fig. 6, we set q = 100 in practice with comparable performance and
tolerable time cost compared with the unfair performance bound of white-box DFML.

Table 8. Effect of the number of queries in API-SS scenario.
API-SS Queries 1-shot 5-shot

CIFAR-FS
5-way

10 31.39 ± 0.66 43.84 ± 0.74
50 33.08 ± 0.68 44.43 ± 0.74
100 35.48 ± 0.67 47.58 ± 0.74
150 35.06 ± 0.77 48.23 ± 0.81
200 36.32 ± 0.77 48.87 ± 0.81

Effect of the number of training classes for each task. To evaluate the effect of the number of training class for each
black-box API, we conduct the experiments in API-SS scenario, where each API trains for a 10-way classification problem.
During meta-testing, we construct several 10-way meta testing tasks for evaluation. As shown in Tab. 9, for CIFAR-FS,
ours outperforms the best baseline by 9.45% and 20.45% for 1-shot learning and 5-shot learning, respectively. Compared
to 5-way classification (Tab. 1), the meta testing accuracy of 10-way classification is relatively lower because it is more
challenging. Ours consistently outperforms all baselines in both 5-way and 10-way classification problems.

Table 9. Effect of the number of training classes for each task.
API-SS Method 1-shot 5-shot

CIFAR-FS
10-way

Random 10.12 ± 0.30 10.20 ± 0.26
Best-API 9.86 ± 0.62 9.94 ± 0.63
Single-DFKD 10.02 ± 0.60 10.08 ± 0.64
Distill-Avg 11.70 ± 0.21 12.22 ± 0.24
Ours 21.15 ± 0.37 32.67 ± 0.41
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Hyperparameter sensitivity. In Tab. 10, we evaluate the performance sensitivity of our BiDf-MKD framework for different
values of λQ (0.1, 1.0 and 10.0) in Eq. (9). The meta testing accuracy is stable and not sensitive to λQ value variations for
both 1-shot and 5-shot learning, which verifies the consistent superiority with different λQ values. This advantage also
makes it easy to apply our BiDf-MKD framework in practice.

Table 10. Hyperparameter sensitivity on CIFAR-FS 5-way classification in API-SS scenario.
λQ 5-way 1-shot 5-way 5-shot

λQ = 0.1 35.32 ± 0.78 47.72 ± 0.76
λQ = 1.0 35.48 ± 0.67 47.58 ± 0.74
λQ = 10.0 35.06 ± 0.78 47.02± 0.74

Larger-shot comparisons. We further investigate the meta-learning performance of our BiDf-MKD framework in the
setting where there are more shots (i.e., the value of K) in the support set for the meta testing tasks (i.e., during meta-testing).
In Fig. 9, we conduct 5-way classification experiments on CIFAR-FS in API-SS scenario under different numbers of shots
of meta testing tasks. We consider K = {1, 5, 10, 20, 30, 40}. Note that K = {1, 5} is relatively larger than the common
meta-learning setting where K = {10, 20, 30, 40}, but is smaller than the traditional supervised learning to train a complex
neural network. For meta training, we set the same K value for task memory replay. We consider the strong baseline
“Distill-Avg” discussed in Sec. 5.1 considering its relatively better performance shown in Tabs. 1 to 3. As shown in Fig. 9, we
can obtain a higher meta testing accuracy when K increases for all methods and our BiDf-MKD framework outperforms the
baseline at all the different shot settings. Simply averaging all surrogate models (i.e., Distill-Avg) lacking the meta-learning
objective, leading to the bad performance in the low-shot setting (i.e., K = {1, 5}). Besides, Distill-Avg also does not
perform well in the larger-shot setting (i.e., K = {10, 20, 30, 40}) because all surrogate models train on different tasks, thus
lacking precise correspondence among them. In contrast, our BiDf-MKD framework outperforms the baseline at every K
value, showing its effectiveness across a broad spectrum of K values.

Figure 9. Larger-shot comparisons.
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