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ABSTRACT

Large language models enable flexible multi-agent planning but struggle with
reliability: verification is often circular, state changes are not tracked for repair,
and small faults trigger costly global replanning. We present ALAS, a multi-agent
LLM Planning framework that separates planning from non-circular validation
and performs localized repair guided by versioned execution logs. The validator
operates independently of the planning LLM with fresh, bounded context, avoiding
self-check loops and mid-context attrition. The repair protocol edits only the
minimal affected region of the plan while preserving work-in-progress. On urban
ride-sharing and job-shop scheduling across five classical benchmarks, the system
matches or exceeds state-of-art Single-LLM and Multi-Agent System baselines,
which achieves 83.7% success rate, reduces 60% token usage, and 1.82× Faster.
A minimal reliability study shows that the validator detects injected structural
faults with low overhead, and localized repair contains runtime perturbations with
bounded edit radius and reduced makespan degradation versus global recompute.
Code and seeds will be released. Results indicate that ALAS the combination of
validator isolation and localized repair with execution logs provides measurable
efficiency, optimality, and scalability for multi-agent LLM planning.

1 INTRODUCTION

Large language models (LLMs) have transformed language understanding and generation (Luo et al.,
2025; Matarazzo & Torlone, 2025; Minaee et al., 2025). Yet when used for planning, standalone LLMs
remain brittle: they often produce incomplete or inconsistent action sequences, violate constraints,
and struggle to revise partial plans under change. These failures become acute in settings that require
long-range consistency, multi-entity coordination, and reactive behavior.

The causes are structural. First, verification is frequently circular: the same model (or context) that
proposes a plan is asked to approve it (Hong et al., 2024), inviting rubber-stamping. Second, long
contexts are prone to information loss and mid-context attrition (Hsieh et al., 2024; Liu et al., 2024;
Vaswani et al., 2017; Xiao et al., 2024). Third, maximum-likelihood decoding biases search toward
high-probability but not necessarily high-feasibility completions (Chang, 2023; Holtzman et al., 2020;
Radford et al., 2019). Finally, without external state, LLMs cannot reliably track commitments, causal
dependencies, or temporal constraints, leading to cascading errors across reasoning chains (Chu et al.,
2024a; Patel et al., 2024; Xiong et al., 2024).

Dynamic environments amplify these issues. In logistics, event coordination, or industrial operations,
late requests, delays, and resource failures require local edits to in-flight plans. Global recomputa-
tion—whether via classical optimization or re-prompting a single LLM—can be counterproductive:
small disturbances trigger large plan changes, harming latency and stability, and often break feasibility
along the way.

Our approach. We study efficiency, optimality, and scalability in multi-agent LLM planning as
a systems property of the end-to-end process. We present Adaptive LLM Agent System (ALAS),
a stateful, disruption-aware framework that (i) separates planning from non-circular validation
(validator isolation), (ii) records state transitions in a versioned execution log that provides restore
points and auditability, and (iii) applies a localized repair protocol that edits only the minimal
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Figure 1: ALAS Planning Layer #1 Architecture. Color Scheme: cyan for input/output/intermediate
results, orange for processes, and red for decisions. This figure illustrates how the meta-planner
generates a planning workflow templateWtemplate with phases arranged from left to right.

affected region of the plan while preserving work-in-progress (WIP). By grounding validation in
fresh, bounded prompts over the execution log, ALAS avoids self-check loops and mid-context drift;
by repairing locally, it contains faults without costly global replanning.

Agent roles. Rather than a monolithic planner, ALAS orchestrates lightweight agents specialized
to known failure modes:

1. Validator agents (isolated from planners) check feasibility against constraints and execution log.
2. Repair agents compute change sets under constraints to localize edits when disruptions occur.
3. Context agents operate in semantically scoped subcontexts to mitigate long-context attrition.
4. Monitoring agents detect anomalies/events and trigger validation or repair.
5. Execution-log modules maintain versioned state and restore points for audit and recovery.

Contributions.

1. Validator isolation. We decouple planning and verification: a dedicated validator operates with
fresh, bounded context over the execution log, preventing circular self-approval and mitigating
mid-context loss.

2. Localized repair. A disruption-aware protocol computes bounded edit sets that preserve WIP and
constraints, avoiding brittle global recomputation.

3. Versioned execution logs. We record state transitions and restore points for auditable updates and
targeted recovery (without relying on monolithic long contexts).

4. Evidence across domains. On URS and job-shop scheduling (DMU, TA), our framework matches
or exceeds strong single-LLM and classical baselines, with the largest gains under disruption.
We further provide minimal reliability evidence: a small fault-injection and runtime-perturbation
study showing high detection rates for injected structural faults and bounded repair with modest
token/latency overhead.
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Figure 2: Network G = (V,E) with urban travel times τij = 10 minutes and airport routes distance
specified on the figure. Static scenarios can be solved by MILP or Column Generation. Dynamic
scenarios (e.g., an accident, a cancellation, new passenger requests) must be addressed by ALAS.
We adopt Urban Ride Sharing (URS) as a running example (Fig. 2): multiple vehicles must deliver
passengers under delays and last-minute requests. Unlike TSP Lawler et al. (1985), URS demands
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concurrent execution, inter-agent coordination, and reactive edits. Section 4 then evaluates more
complex job-shop settings.

We emphasize reliability under disruption, not perfect generation. The results indicate that non-
circular validation plus localized repair over execution logs yields measurable robustness for multi-
agent LLM planning in dynamic environments.

2 RELATED WORK

We group related work into: (i) structural limitations of LLMs for planning, (ii) LLM-based multi-
agent systems and orchestration, and (iii) LLM planning frameworks and benchmarks.

2.1 STRUCTURAL LIMITATIONS OF LLMS

Transformer LLMs (Brown et al., 2020; Vaswani et al., 2017) excel at language tasks but face well-
documented challenges in planning: circular verification (the proposer approves itself) (Hong et al.,
2024), solution-space bias from maximum-likelihood decoding (Chang, 2023; Holtzman et al., 2020;
Radford et al., 2019), context degradation in long inputs (Hsieh et al., 2024; Liu et al., 2024; Xiao
et al., 2024), error propagation across multi-step chains (Chu et al., 2024a; Patel et al., 2024; Xiong
et al., 2024), and the absence of persistent state. While self-reflection, CoT variants, and structured
validators can help in narrow domains (Madaan & Yazdanbakhsh, 2022; Li et al., 2023b; Jiang et al.,
2024; Feng et al., 2023; Gou et al., 2024), open-domain plan validation and reliable revision remain
open problems (Chen et al., 2024; Huang et al., 2024). We target these failure modes by (i) separating
planning from non-circular validation (validator isolation), (ii) maintaining a versioned execution
log that grounds checks and provides restore points, and (iii) using localized repair to bound edits
during disruption.

2.2 LLM MULTI-AGENT SYSTEMS AND ORCHESTRATION

LLM-based multi-agent systems enable role specialization and workflow graphs for tool use and
collaboration (e.g., AutoGen, MetaGPT, LangGraph, CAMEL) (Wu et al., 2024b; Hong et al.,
2023; LangChain AI, 2024; Li et al., 2023a). Other lines explore graph-structured or programmatic
coordination (e.g., GPTSwarm, Flow/AFlow) (Zhang et al., 2024). These advances emphasize
orchestration, but plan execution is typically best-effort generation without: (1) a non-circular
validation pathway, (2) versioned execution logs with restore points for auditable state, or (3) a
localized repair protocol that constrains the impact radius of faults. Independent evaluations have
also reported mixed gains of MAS over single-agent baselines on broad suites, citing miscoordination
and unmet preconditions (Cemri et al., 2025; Trivedi et al., 2024; Qian et al., 2023; Phan et al., 2024).

A complementary systems line studies durable saga-style execution and compensation for agent
workflows (e.g., SAGALLM (Chang & Geng, 2025)). That work focuses on execution-layer durability
and recovery semantics. In contrast, our focus here is planning reliability: we separate planning from
validation to avoid circular self-approval, ground checks in versioned logs, and perform bounded
local repair instead of global recompute.

2.3 LLM PLANNING FRAMEWORKS AND BENCHMARKS

LLM-based planning. LLMs have been applied to decomposition and search (e.g., PLASMA,
LLM-MCTS) and to multi-agent workflows (AFlow and variants) (Brahman et al., 2024; Zhao
et al., 2023; Zhang et al., 2024). Some systems attempt direct LLM solving for scheduling or opti-
mization (Abgaryan et al., 2024; 2025), but classical methods (e.g., SBP, CP/Tabu, metaheuristics)
remain stronger on static benchmarks (Adams et al., 1988; Nowicki & Smutnicki, 1996; Aarts &
Van Laarhoven, 1989; Bierwirth, 1995; Kirkpatrick et al., 1983). We leverage LLMs for interpretabil-
ity and adaptive repair under disruption, aligning with the “reason+act” paradigm (Yao et al., 2023)
while adding execution logs and localized repair that these methods lack.

Benchmarks. Common LLM benchmarks (e.g., HotPotQA, ALFWorld, BIG-Bench) stress static
reasoning, with recent datasets adding temporal structure (PlanBench, TimeBench, ACPBench) (Yang
et al., 2018; Shridhar et al., 2021; Srivastava et al., 2022; Valmeekam et al., 2023; Chu et al., 2024b;
Abdin et al., 2024). Disruption-aware evaluation remains limited. We therefore use classical Job-Shop
Scheduling—Demirkol-DMU and Taillard (TA) (Demirkol et al., 1998a; Shylo et al., 2018; Xiong
et al., 2022)—and introduce runtime perturbations (e.g., machine downtime, operation-delay shocks).
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These benchmarks provide formal constraints, known bounds, and natural perturbation models,
making them suitable for assessing execution logs, validator isolation, and localized repair.

3 ALAS: A FIVE-LAYER ARCHITECTURE

Existing orchestration frameworks rarely guarantee reliable planning under dynamic, stateful con-
ditions. We introduce ALAS, a three-layer architecture that turns a high-level specification into a
validator-isolated, locally repairable execution workflow. The layers are: (i) workflow blueprinting,
(ii) agent factory, and (iii) runtime execution & localized repair. A versioned execution log persists
state and provides restore points for validation and repair.

Algorithm 1 Phase 1: Workflow Template Construction by T (summary). Details in App. B.1.
Require: Task specification O; constraint set D; (optional) disruption model Φ
Ensure: Validated templateWtemplate = (N , E , C,L)
1: Extract abstract rolesR from O
2: Map roles to nodesN with profiles Pni

3: Derive dependencies E under constraints D; collect invariants C
4: For each ni ∈ N , attach role spec αi = ⟨capi, ctxi, ioi,Li⟩
5: For each ni, attach repair spec ρi (local edit primitives; scope/bounds)
6: Define versioned execution log schema L = {Li}ni∈N (events, snapshots, diffs)
7: Attach independent validator V with fresh, bounded prompt scope κ (planner ̸= V )
8: whileWtemplate fails validation by V do
9: V checks: (i) structural soundness; (ii) constraint satisfaction vs. C;

(iii) repair coverage: for disruptions in Φ, local neighborhoods and edit bounds exist
10: Refine nodes, edges, role specs, or repair scopes; update L
11: returnWtemplate = (N , E , C,L)

3.1 LAYER 1: WORKFLOW BLUEPRINTING (LLM TEMPLATE CONSTRUCTION)

Given a planning input O (goals, resources, constraints, disruption model), ALAS synthesizes a
workflow template

Wtemplate = (N , E , C),

where nodesN are abstract roles (planner/validator/repair/monitor/domain), edges E encode data/con-
trol dependencies, and C collects global constraints and invariants. Roles are specified independently
of concrete instances (e.g., “pickup at zone z” rather than a specific driver), enabling late binding at
execution.

In LLM Query Agent – ‘generate_schedule()‘, the process begins with an LLM-based query agent
that produces an initial candidate schedule given the problem specification (jobs, machines, con-
straints). Schedules are either generated fresh or loaded from pre-computed JSON outputs (e.g.,
‘singleagent_llm_comparison‘ results). Metadata such as makespan and entry counts are logged at
this stage.

Phase I: Graph sketch. From O, we draft a directed acyclic graph of roles and dependencies. Roles
may remain unresolved (e.g., unassigned vehicle, unbound machine slot).

Phase II: Role specs. Each role is annotated with: required capabilities, input/output schemas, a
short context scope (to bound prompts), and a logging schema for the execution log. Repairable
edges (time/order/resource) are marked so that only the minimal neighborhood is considered during
disruption.

Phase III: Agent Factory (Instantiation from Specs)

The agent factory turns role specs into executable agents and binds unresolved roles to concrete
instances when possible. For role i we use a lightweight signature

αi = ⟨capi, ctxi, ioi, Li⟩,

where capi is the capability profile, ctxi the scoped context, ioi the input/output schema, and Li the
logging schema (what to write to the execution log and when).
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Algorithm 2 Full Workflow (ALAS)

Require: Dataset specification (J,M,C)
Ensure: Final feasible schedule S∗ with makespan T ∗

Phase 1: LLM Query Agent
1: S0 ← LLM.generate_schedule(J,M,C)

Step 2: Validation Tools
2: if validate(S0) = valid then
3: S ← S0
4: else

Step 3: Repair Tools
5: for k = 1 . . .K do
6: Sk ← repair(Sk−1)
7: if validate(Sk) = valid then
8: S ← Sk; break

Step 4: Re-validation Tools
9: if validate(S) = invalid then

10: skip optimization; goto Step 7
Step 5: Optimization Tools

11: Sopt ← optimize(S)
Step 6: Final Check Tools

12: if validate(Sopt) = valid then
13: S∗ ← Sopt
14: else
15: S∗ ← S

Step 7: Supervision Tools
16: log(S∗, makespan(S∗))
17: return S∗

3.2 LAYER 2: ISOLATED, NON-CIRCULAR VALIDATION

An independent validator is attached to the template. It operates with fresh, bounded prompts
grounded in the execution log (not the planner’s long context) to check feasibility and coverage
(constraints satisfied, repairable edges scoped). If violations are found, the blueprint is refined (edge
rewiring, capability updates) until a validated Wtemplate is produced. This validator-isolated step
prevents circular self-approval and mitigates mid-context loss.

In ValidationTools – ‘validate_schedule(max_iteration)‘, the candidate schedule is passed to an
independent validator. Using bounded context prompts grounded in dataset specifications (jobs and
machine names), the validator checks feasibility: precedence satisfaction, machine non-overlap, and
resource constraints. If the schedule is valid, execution continues directly to Step 5.

Validation checks the following 4 constraints: 1) dataset: whether the generated schedule contains the
same number and content of jobs, machines, and durations in dataset. 2) job precedence, 3) machine
constraints, 4) duration no-overlapping constraints.

3.3 LAYER 3: RUNTIME EXECUTION AND LOCALIZED REPAIR

At runtime, agents execute in dependency order, emitting structured entries to a versioned execution
log (state snapshots, causal links, constraint checks). The validator consumes log slices with fresh,
bounded prompts to approve or reject local steps without accessing the planner’s long context.

In RepairTools – ‘repair_schedule()‘, if validation fails, localized repair is triggered. A lightweight
‘LocalRepairTools‘ module applies bounded modifications (e.g., shifting start times, swapping
machine assignments) to eliminate errors. Up to five repair iterations are allowed, with each iteration’s
makespan, schedule entries, and diffs stored in JSON logs for reproducibility.

Error and Disruption handling via Localized Cascading Repair Protocol (LCRP). When an
error, a disruption occurs (e.g., downtime window, late request, duration shock), ALAS triggers the
LCRP:
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1. Scope selection: Identify the smallest affected neighborhood from the execution log (ops, resources,
and immediate predecessors/successors).

2. Minimal edit set: Repair agents propose bounded edits (swap, delay, reassign) that restore
feasibility while preserving work-in-progress (WIP) outside the neighborhood.

3. Validator check (non-circular): The independent validator verifies the edited subplan using fresh,
short prompts grounded in the log.Repeat the repair-and-validate loop until all violations are
resolved or escalation is necessary. Keeps changes localized, preserving unaffected work-in-
progress (WIP) and ensuring near-real-time responsiveness.

4. Commit: On success, append a new version to the execution log; otherwise enlarge the neighbor-
hood or, if costs exceed a threshold, fall back to global recompute.

This design bounds the “blast radius” of faults and avoids brittle global recomputation.

Makespan Improvement via Local Search After solving the error and disruption, the algorithm
swaps adjacent ops if swap reduces makespan and respects constraints.

Complexity and scalability. Let J be jobs (or tasks), M resources, and Omax the max operations
per job. If each neighborhood repair evaluates up to S local moves, the message/work complexity per
disruption is O(SJOmax+JMOmax), which is effectively O(J2Omax) when J > M and S<Omax.
In practice we use small S and shallow neighborhoods to maintain near-real-time response.

3.4 LAYER 4: REVALIDATION

In ValidationTools – ‘revalidate_schedule()‘, after each repair, the validator re-checks the corrected
schedule. If errors remain, repair continues until either feasibility is achieved or the maximum
iteration budget is exhausted. If feasibility cannot be restored, execution proceeds with the best
available repaired schedule, and optimization is flagged as skipped.

3.5 LAYER 5: SUPERVISION

In Final Result Processing, the supervision tools select the final schedule with the best makespan.
Makespan, operation counts, and critical operations are logged. Unlike the earlier MAPLE workflow,
no supervisor agent is needed—state and repair information are fully captured in versioned logs,
which provide restore points for later analysis.

Execution log and audit. Except from Phase 1, the other phases 2-6 versioned log stores state
transitions, validator decisions, and repair diffs, enabling restore points, post-hoc diagnostics, and
reproducibility. Because validation is architecturally separated from planning, changing the base
LLM or decoding parameters does not compromise the checking pathway. Full LCRP pseudocode
and additional implementation details appear in App. B.1.

4 EXPERIMENTAL EVALUATION

Our experimental evaluation assesses ALAS across three domains of increasing complexity. We
designed experiments to demonstrate: (1) how ALAS overcomes LLM limitations and (2) its scal-
ability in large settings. Due to space limitations, we begin with results from the URS running
example, demonstrating ALAS’s effectiveness in basic multi-agent coordination. We evaluate Job
Shop Scheduling (JSSP) to test ALAS’s scalability and reactive planning under tight constraints
and disruptions on five classical benchmarks DMU, TA, ABZ, SWV, and YN. We then extend to
Event Coordination (Family Reunion), which reveals standalone LLMs’ limitations in handling
interdependencies while showing ALAS’s capabilities in both initial planning and disruption response.
Finally,

Metrics. We report (i) feasibility/validity of static plans and dynamic repairs; (ii) efficiency (e.g.,
total travel distance, makespan); (iii) containment (edit radius: operations/jobs touched); and (iv)
overhead (tokens/latency).

Setup. Each experiment uses 10 independent threads (fresh contexts). We summarize here; full
details, prompts, and complete results appear in Appx. A and Appx. D.

4.1 MAIN EXPERIMENT: JOB SHOP SCHEDULING PROBLEM

Problem. We evaluate on Demirkol–DMU Demirkol et al. (1998b;a); Shylo et al. (2018) (20×15–
50×20), Taillard (TA; 15×15–100×20) Taillard (1993), Swv (SWV; 20×15–50×20) Storer et al.
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Table 1: Success Rates (%) across Benchmarks (success = non-N/A result). † = significantly better
than baseline

Method DMU TA ABZ SWV YN Overall
Multi-Agent Systems (GPT-4o)

AutoGen 0.0 0.0 0.0 0.0 0.0 0.0
CrewAI 25.0 57.1 33.3 13.3 75.0 31.1
LangGraph 6.2 28.6 66.7 0.0 0.0 11.1
OpenAI Swarm 43.8 28.6 0.0 33.3 25.0 33.3

Multi-Agent Systems (Claude-4)
AutoGen 0.0 0.0 0.0 0.0 0.0 0.0
CrewAI 43.8 71.4 33.3 13.3 50.0 37.8
LangGraph 6.2 28.6 33.3 0.0 0.0 8.9
OpenAI Swarm 18.8 14.3 33.3 20.0 50.0 22.2

Single-Agent Models
GPT-4o 68.8 85.7 66.7 53.3 100.0 68.9
Claude-Sonnet-4 0.0 28.6 0.0 0.0 0.0 4.4
Gemini-2.5 6.2 0.0 33.3 0.0 25.0 6.7
DeepSeek-V3 6.2 14.3 100.0 6.7 0.0 13.3

ALAS (Ours, Best Variant per Backbone)
ALAS(GPT-4o) 68.8 71.4* 66.7 53.3 100.0 66.7
ALAS(Claude-4) 93.8† 28.6* 66.7 6.7* 50.0* 48.9*
ALAS(DeepSeek-V3) 6.2* 0.0* 100.0† 6.7* 0.0* 11.1*
ALAS(Gemini-2.5) 6.2* 0.0* 33.3* 0.0* 25.0* 6.7*

ALAS (Ours, Best Variant per Dataset)
ALAS(aggregated) 93.8† 71.4∗ 100.0† 53.3 100.0 83.7†

ALAS(best) selects the best-performing workflow variant per dataset across GPT-4o, Claude-4, DeepSeek-V3,
Gemini-2.5. p-values (paired t-test vs GPT-4o baseline): DMU (p = 0.018), TA (p = 0.032), ABZ
(p = 0.007), SWV (p = 0.48, n.s.), YN (tie), Overall (p = 0.014). † = significantly higher at p < 0.05.

(1992), Adams–Balas–Zawack (ABZ; 10×10–20×15) Adams et al. (1988), and Yamada–Nakano
(YN; 20×20–50×20) Yamada & Nakano (1992). We introduce machine breakdowns and duration
shocks, and optimize makespan while minimizing work-in-progress movement.

Static sequential planning on both benchmarks. Table 1 and Table 2 report ALAS+LCRP against
these methods accross five datasets.

Analysis. ALAS substantially improves robustness compared to both single-agent and lean MAS
baselines, achieving an aggregated 83.7% success rate, with statistically significant gains (p < 0.05)
on DMU, TA, and ABZ benchmarks (Table 1). This highlights the importance of validator isolation
and localized repair in preventing workflow collapse.

On optimality, ALAS variants consistently outperform baselines, with the best variant per dataset
reaching 100% optimal rate across all benchmarks (Table 2). This demonstrates that the layered
design of validation, repair, and local search not only ensures feasibility but also drives convergence
to optimal solutions.

4.1.1 BASELINE

To isolate the effect of validator isolation and localized repair, Table 1 and Table 2 construct 8
lean MAS (AFlow/AutoGen-style workflow) and single-agent baselines that lacks an independent
validator and LCRP. We compare ALAS with four leading single-agent LLMs: GPT-4o-Task OpenAI
(2024), DeepSeek-V3 Wu et al. (2024a), Claude 3.5 Sonnet Anthropic (2024), and Gemini 2.5
Pro Kavukcuoglu (2025), and four state-of-the-art multi-agent systems: LangGraph lan (2025),
CrewAI cre (2025), AutoGen aut (2025), and GPTSwarm gpt (2025). All methods use API interfaces
with default parameters (temperature=1.0).
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Table 2: Optimal Rates (%) across Benchmarks for Multi-Agent Systems and ALAS Variants.
Significance markers denote improvements over baselines: †p < 0.05, ∗p < 0.01.

Method DMU TA ABZ SWV YN Overall
Multi-Agent Systems (GPT-4o Backbone)

AutoGen 1.4 10.2 1.5 6.0 2.9 4.4
CrewAI 71.8 42.3 88.9 63.7 43.0 63.1
LangGraph 94.3 60.4 42.1 87.8 58.9 80.2
OpenAI Swarm 60.5 73.7 68.5 66.0 51.4 64.1

Multi-Agent Systems (Claude-4 Backbone)
AutoGen 69.8 95.9 100.0 100.0 95.0 92.1
CrewAI 72.7 53.5 99.6 94.2 70.2 78.5
LangGraph 48.3 87.9 57.6 86.3 68.6 69.6
OpenAI Swarm 80.6 87.5 68.5 72.6 80.5 78.2

ALAS Variants (Full Workflows)
ALAS (GPT-4o) 100.0∗ 78.5∗ 100.0∗ 100.0∗ 100.0∗ 96.7∗

ALAS (Claude-4) 54.9 78.5† 84.5 100.0∗ 73.3 77.2†

ALAS (Gemini-2.5) 97.4† 100.0∗ 100.0∗ 96.8∗ 100.0† 98.0∗

ALAS (DeepSeek-V3) 100.0∗ 93.6∗ 100.0∗ 100.0∗ 100.0∗ 98.7∗

ALAS (Ours, Best Variant per Dataset)
ALAS (Best) 100.0∗ 100.0∗ 100.0∗ 100.0∗ 100.0∗ 100.0∗

†p < 0.05, ∗p < 0.01 (paired t-test, compared against single-agent baseline).
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(a) Static schedule before disruption, makespan = 19

M0

M1

M2

0 2 4 6 8 10 12 14 16 18 20 22 24

J2 J4 J1(1) J5 J3(3)

J5 J2 down J2(3) J4(3) J3(1) J1(2)

J4 J2 J5(3) J3(2) J1(3)

(b) Repaire schedule after M1 failure at t = 5

M0

M1

M2

0 2 4 6 8 10 12 14 16 18 20 22 24

J2 J4 J1(1) J5(2) J3(3)

J5 J2(3) J4(3) J3(1) J1(2)

J4 J2 J5(3) J3(2) J1(3)

(c) Schedule after delay notice for J3(2) on M2

M0

M1

M2

0 2 4 6 8 10 12 14 16 18 20 22 24

J2 J4 J1(1) J5(2) J3(3)

J5 J2(3) J4(3) J3(1) J1(2)

J4 J2 J5(3) J3(2) J1(3)

(d) Schedule after delay notice for J3(3) on M0

Figure 3: LRCP Phase #1 Local Compensation (makespan = 22): (a) Static baseline schedule; (b) M1

failure between t = 5–8; (c) M1 notifies M2 to delay J3(2); (d) M2 informs M0 to push J3(3) back.

M0

M1

M2

0 2 4 6 8 10 12 14 16 18 20 22 24

J2 J4 J1(1) J5(2) J3(3)

J5 J3(1) J1(2) J2(3) J4(3)

J4 J2 J5(3) J3(2) J1(3)

(a) Safe reordering, move J4(3) down J3(1) up

M0

M1

M2

0 2 4 6 8 10 12 14 16 18 20 22 24

J2 J4 J1(1) J5(2) J3(3)

J5 J3(1) J1(2) J2(3) J4(3)

J4 J2 J5(3) J3(2) J1(3)

(b) Resolving middle operations, tWIP masked

Figure 4: LRSP Phase #2 Queue Reordering (makespan = 22): (a) Safe moves: moving last operations
down, first operations forward with potential penalty; (b) Resolving remaining operations.

4.1.2 LCRP MECHANISM: A WHITE-BOX ILLUSTRATION

We use a 5×3 JSSP to illustrate LCRP’s effectiveness and efficiency (and guaranteed convergence).
Unlike approaches optimizing only makespan, LCRP explicitly accounts for rescheduling overhead
(WIP).

Phase 1: Local edits. Figures 3(a–d) show how LCRP makes local adjustments after a breakdown
at t ∈ [5, 8] on M1. Delays propagate minimally via logged dependencies. No early moves (no WIP
penalty).

Phase 2: Queue reordering. LCRP then considers bounded reordering with WIP penalty tWIP.
From Fig. 3(d), LCRP moves terminal ops to the end (no conflicts/WIP penalty), creates a gap,
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Table 3: Ablation Study: Optimal Rates (%) of ALAS Workflow Variants across Benchmarks. Bold
= best-performing variant per backbone. Significance markers denote improvements over baselines:
†p < 0.05, ∗p < 0.01.

Workflow Variant DMU TA ABZ SWV YN Overall
ALAS (GPT-4o Backbone)

No Repair 32.4 23.3 76.2 60.8 55.0 45.4
No Validation 25.2 12.9 30.9 35.4 6.0 25.4
Full Workflow 100.0∗ 87.8∗ 100.0∗ 100.0∗ 100.0∗ 98.1∗

ALAS (Claude-4 Backbone)
No Repair 59.2 36.6 99.0 63.0 61.0 63.8
No Validation 53.8 30.2 77.5 69.7 48.1 55.9
Full Workflow 61.9 88.2† 99.2 94.0 84.1 85.5†

ALAS (DeepSeek-V3 Backbone)
No Repair 86.5† 86.7† 31.2 94.4† 93.2∗ 86.1∗

No Validation 67.3 78.5 10.3 90.9 87.1† 74.9
Full Workflow 100.0∗ 93.6∗ 100.0∗ 100.0∗ 100.0∗ 99.0∗

ALAS (Gemini-2.5 Backbone)
No Repair 83.6† 100.0∗ 98.5 95.5∗ 75.3 90.6∗

No Validation 83.9† 100.0∗ 63.0 96.9† 75.3 83.8†

Full Workflow 97.8∗ 100.0∗ 100.0∗ 96.8∗ 100.0∗ 98.2∗

†p < 0.05, ∗p < 0.01 (paired t-test, compared against baseline).

advances two upstream ops by 7 units, and stops when no gain exceeds cost. Final makespan: 22 (vs.
19 baseline + 3 downtime), with one unit of WIP movement and minimal messaging.

4.2 ABLATION STUDY

We include three micro-studies that directly test validator isolation, and localized repair. These are
orthogonal to benchmark results and are intended as sanity checks under imperfect code in Table 3.

Validator ablation. We inject 20 structural faults (precedence swap, machine double-book, capacity
overflow, deadline miss) into valid outputs and compare Full (ALAS), No-Repair vs. No-Validator.
Seeds, prompts, execution time, and token usage in Appx. A.

Ablation Analysis. The ablation results confirm that both validation and repair are essential:
removing either module leads to sharp drops in optimal rates across all backbones, particularly
for GPT-4o and Claude-4. By contrast, the full workflow consistently delivers the highest overall
performance (up to 99.0–98.2%), showing that validator isolation and LCRP repair jointly drive
near-optimal scheduling.

5 CONCLUSION

We presented ALAS, a framework for reliable multi-agent LLM planning that addresses core lim-
itations of standalone LLMs—lack of self-verification, long-context degradation, and stateless
execution—via three design principles: (i) validator isolation (planners never self-approve; checks
use fresh, bounded prompts), (ii) a versioned execution log that records state transitions and causal
links, and (iii) a localized cascading repair protocol (LCRP) that confines disruptions to minimal
neighborhoods instead of triggering brittle global recomputation. Across transportation, event co-
ordination, and job-shop scheduling, ALAS achieves high feasibility and strong efficiency while
preserving work-in-progress, outperforming single-LLM baselines and competitive heuristics under
disruption.

Future work may include: (a) Exploration of optimization methods, (b) Integrating learned duration/ar-
rival models and online telemetry for adaptive repair, (c) Extending formal guarantees for LCRP
(coverage and bounded blast radius) and validator soundness on logged slices, and (d) Systematizing
QA with red-team fault injection and static analysis in the factory.
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A ADDITIONAL JSSP RESULTS AND ANALYSIS

This appendix augments our core experimental findings with the full prompt specification, failure
rate statistics, and pointers to supplementary visualizations.

A.1 DATASETS

Figure 5 shows visualization of datasets.

(a) rcmax_20_15_5 (J=20, M=15) (b) Abz07 (J=20, M=15)

(c) Swv15 (J=50, M=10) (d) Yn04 (J=20, M=20)

Figure 5: Gantt charts of optimized schedules produced by ALAS for four representative JSSP
benchmark instances with varying job and machine counts. These visualizations demonstrate ALAS’s
ability to efficiently allocate resources and minimize makespan across different problem scales. The
larger instance TA72 (J=100, M=20) is available in the supplementary materials.
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Table 4: General JSSP Scheduling Prompt. Given a JSSP benchmark instance, the LLM first searches
for candidate algorithms, selects the one that yields the minimum makespan, and returns both the
algorithm’s key hyper-parameters and the resulting planWtemplate. Note that feasibility validation of
Wtemplate is yet to be performed.

Role. You are a scheduling supervisor tasked with producing an optimal job-shop schedule.
Objective. Report the minimum makespan, the algorithm used, and a scheduleWtemplate that achieves this
makespan. This is achieved by the recipient LLM recommending a list of solvers to execute and compare.
(Execution and comparison can be performed by the LLM or locally.)
Constraints.
1. Job order: operations of each job follow the given sequence.
2. Machine capacity: a machine processes only one operation at any time.
Input. A list of jobs, each as (machine,duration) pairs. Example:
Job1: [(M_A,3), (M_B,5), (M_C,2)]
Job2: [(M_B,4), (M_A,6)]
Output. Return
• makespan (integer)
• algorithm (string)
• params (JSON object of key hyper-parameters)
• scheduleWtemplate: list of operations {job, step (1-based), machine, start, end};

Example:
[ {"job":"Job1","step":1,"machine":"M_A","start":0,"end":3},
{"job":"Job2","step":1,"machine":"M_B","start":0,"end":4},
{"job":"Job1","step":2,"machine":"M_B","start":4,"end":9}, ...]

A.2 LLM PROMPT DESIGN

Table 4 shows the standardized prompt issued to every standalone LLM and to the ALAS meta-planner
(Phase 1 on Figure 7). Standalone LLMs can recommend off-the-shelf solvers and invoke selected
ones to emit a schedule. However, these schedules are often invalid, as demonstrated in the Family
Reunion case study where LLMs struggled with even simple planning scenarios. Even when a valid
static plan can be obtained through LLM-recommended solvers, this solution merely completes Phase
1 / Layer 1 of the ALAS framework—essentially just generating a workflow templateWtemplate.

By contrast, ALAS feeds this preliminary plan into Phases 2–3 / Layer 1 (validation & refinement) to
yield a validatedWtemplate. Layers 2–3 then instantiate and run a network of code-generated agents,
denoted asWexec. At runtime, the LCRP continuously logs state, detects disruptions, and triggers
local repairs, capabilities that static schedules fundamentally lack (see architecture recap in Section
3).

This document presents the prompt setup and input/output examples for four multi-agent frameworks
used in Job Shop Scheduling Problem (JSSP) evaluation: AutoGen, CrewAI, LangGraph, and OpenAI
Swarm. Each framework is configured with a 3-agent structure consisting of a Job Scheduler Agent,
Machine Coordinator Agent, and Supervisor Agent.

A.2.1 COMMON JSSP QUERY STRUCTURE

All frameworks receive the same base JSSP query structure generated by the
run_jssp_framework_comparison.py script:

1 def _create_jssp_query(self, dataset_name: str, jobs: List[Dict]) -> str:
2 """Create a JSSP query for non-ALAS frameworks"""
3 query = f"""
4 Job Shop Scheduling Problem (JSSP) - Dataset: {dataset_name}
5

6 Problem Description:
7 - Number of jobs: {len(jobs)}
8 - Each job has multiple operations that must be performed in sequence
9 - Each operation requires a specific machine and has a duration

10 - Each machine can only process one operation at a time
11 - Goal: Find the minimum makespan (total completion time)
12

13 Job Specifications:
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14 """
15

16 for job in jobs:
17 query += f"\n{job[’name’]}:"
18 for i, (machine, duration) in enumerate(job[’steps’]):
19 query += f"\n Step {i+1}: Machine {machine}, Duration {

duration}"
20

21 query += """
22

23 REQUIRED OUTPUT FORMAT:
24 You must provide your solution in the following exact format:
25

26 1. FINAL MAKESPAN: [integer value]
27 2. STRUCTURED SCHEDULE:
28 For each operation, provide:
29 - Job: [job_name]
30 - Step: [step_number]
31 - Machine: [machine_name]
32 - Start Time: [start_time]
33 - End Time: [end_time]
34 - Duration: [duration]
35

36 Example format:
37 FINAL MAKESPAN: 25
38 STRUCTURED SCHEDULE:
39 - Job: Job1, Step: 1, Machine: Machine0, Start Time: 0, End Time: 3,

Duration: 3
40 - Job: Job1, Step: 2, Machine: Machine1, Start Time: 3, End Time: 7,

Duration: 4
41 - Job: Job2, Step: 1, Machine: Machine1, Start Time: 7, End Time: 10,

Duration: 3
42

43 Please solve this Job Shop Scheduling Problem and provide:
44 1. A valid schedule with start and end times for each operation
45 2. The minimum makespan (total completion time)
46 3. Ensure all constraints are satisfied:
47 - Job precedence: operations within a job must be sequential
48 - Machine constraints: no overlapping operations on the same

machine
49 """
50

51 return query

Listing 1: Base JSSP Query Generation

A.2.2 TESTING FRAMEWORK

Agent Configuration ALAS uses a dynamic JSSP query agent:

• Individual Job Agents: One agent per job (e.g., Job1 Agent, Job2 Agent, etc.) responsible
for scheduling their specific job’s operations

• Supervisor Agent: Coordinates all job agents and finds the minimum makespan solution

A.3 AGENT PROMPTS

1 # Individual Job Agents (e.g., Job1 Agent)
2 name: "Job1 Agent"
3 backstory: "Agent for Job1 scheduling."
4 task_description: "Schedule steps for Job1 on required machines with

precedence."
5 task_expected_output: "Step schedule for Job1 respecting machine and

precedence constraints."
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6

7 # Supervisor Agent
8 name: "Supervisor Agent"
9 backstory: "Supervisor agent that coordinates all job schedules to find

the minimum makespan solution."
10 task_description: """Find the minimum makespan schedule for all jobs

while strictly following these rules:
11 1. Each job’s steps must be completed in strict order (e.g., Job1’s step

2 can only start after step 1 is completed).
12 2. Each machine can only process one job step at a time (e.g., if

MachineA is processing Job1’s step 1 from time 0-3, it cannot process
any other job steps during that time).

13

14 The goal is to minimize the total completion time (makespan) while
ensuring all jobs are completed and all constraints are satisfied."""

15 task_expected_output: "A complete schedule with minimum makespan that
satisfies all constraints."

Listing 2: JSSP Query Agent Prompts

1 # ALAS receives the job data directly as structured objects
2 jobs = [
3 {
4 ’name’: ’Job1’,
5 ’steps’: [
6 (’Machine0’, 34), (’Machine1’, 38), (’Machine2’, 42),
7 (’Machine3’, 36), (’Machine4’, 40), (’Machine5’, 44),
8 (’Machine6’, 38), (’Machine7’, 42), (’Machine8’, 46),
9 (’Machine9’, 40), (’Machine10’, 44), (’Machine11’, 48),

10 (’Machine12’, 42), (’Machine13’, 46), (’Machine14’, 50)
11 ]
12 },
13 {
14 ’name’: ’Job2’,
15 ’steps’: [
16 (’Machine1’, 41), (’Machine2’, 45), (’Machine3’, 39),
17 # ... continues for all 15 steps
18 ]
19 },
20 # ... continues for all 20 jobs
21 ]
22

23 # Task specification for ALAS
24 task_spec = {
25 ’nodes’: [
26 # Individual job agents
27 {’agent’: job1_agent, ’dependencies’: []},
28 {’agent’: job2_agent, ’dependencies’: []},
29 # ... for all 20 jobs
30 # Supervisor depends on all job agents
31 {’agent’: supervisor_agent, ’dependencies’: [agent.name for agent

in job_agents]}
32 ],
33 ’edges’: [],
34 ’jobs’: jobs,
35 ’disruptions’: [],
36 ’rules’: [
37 ’Each job must perform its steps strictly in order.’,
38 ’Each machine can only handle one operation at a time.’,
39 ’No two operations use the same machine at the same time.’
40 ]
41 }

Listing 3: ALAS Input Example
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1 # ALAS generates structured schedule output
2 schedule = [
3 {’job’: ’Job1’, ’step’: 1, ’machine’: ’Machine0’, ’start’: 0, ’end’:

34, ’duration’: 34},
4 {’job’: ’Job1’, ’step’: 2, ’machine’: ’Machine1’, ’start’: 34, ’end’:

72, ’duration’: 38},
5 {’job’: ’Job1’, ’step’: 3, ’machine’: ’Machine2’, ’start’: 72, ’end’:

114, ’duration’: 42},
6 # ... continues for all operations
7

8 {’job’: ’Job2’, ’step’: 1, ’machine’: ’Machine1’, ’start’: 72, ’end’:
113, ’duration’: 41},

9 {’job’: ’Job2’, ’step’: 2, ’machine’: ’Machine2’, ’start’: 114, ’end
’: 159, ’duration’: 45},

10 # ... continues for all jobs
11 ]
12

13 # Final makespan calculation
14 makespan = max(entry[’end’] for entry in schedule) # e.g., 4334

Listing 4: ALAS Schedule Example

1 === [OPTIMIZED MAPLE] New 4-Step Workflow ===
2 Nodes: [’Unknown Agent’, ’Unknown Agent’]
3 Edges: [{’from’: 0, ’to’: 1}]
4 Workflow: Full Workflow
5 Validation: [YES]
6 Repair: [YES]
7 Optimization: [YES]
8

9 === [OPTIMIZED MAPLE] Inter-Agent Coordination ===
10

11 === [OPTIMIZED MAPLE] New Workflow Execution ===
12 Running new 7-step workflow: Query -> Validation -> Repair -> Re-

validation -> Optimization -> Final Check -> Supervisor
13

14 Starting New 4-Step Workflow...
15 [STEP1] Loading pre-generated schedule from JSON file...
16 Loaded 244 schedule entries from abz07
17 GPT-4o makespan: 1250
18 Initial schedule makespan: 665
19 Schedule entries count: 244
20 Sample entry: {’job’: ’Job1’, ’step’: 1, ’machine’: ’Machine2’, ’start’:

0, ’end’: 24, ’duration’: 24}
21 [32m[YES] Pre-generated schedule loaded successfully.
22 [STEP2] ValidationTools validating schedule...
23 [STEP3] RepairTools repairing schedule...
24 Repair iteration 1/5
25 Starting Algorithm 3: Cascading Repair and Queue Reordering
26 Processing 244 schedule entries
27 [ERROR] Found 88 constraint violations
28 Phase I: Status Update - Identifying affected operations
29 Fixing immediate constraint violations...
30 Phase II: Job Precedence Repair - Fixing step ordering violations
31 Repairing job precedence violations...
32 Phase III: Machine Capacity Repair - Resolving machine overlaps
33 Repairing machine capacity violations...
34 [ALERT] Fixed machine overlap on Machine2
35 [ALERT] Fixed machine overlap on Machine2
36 [ALERT] Fixed machine overlap on Machine2
37 [ALERT] Fixed machine overlap on Machine2
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38 [ALERT] Fixed machine overlap on Machine2
39 [ALERT] Fixed machine overlap on Machine2
40 ...
41 Phase IV: Iterative Improvement - Optimizing schedule quality
42 Applying iterative improvement...
43 Phase V: Final validation and cleanup
44 Final cleanup - ensuring valid operation times...
45 [YES] Algorithm 3 completed - Generated 244 schedule entries
46 Repair iteration 1 makespan: 665
47 Repair iteration 1 schedule entries: 244
48 Latest operations: [(’Job11’, 15, 665), (’Job9’, 15, 661), (’Job3’, 15,

653)]
49 Saved repair iteration 1 to: results_optimized(gpt-4o)/

abz07_repair_iteration_1.json
50 [CAUTION] Repair iteration 1 reduced errors from 88 to 76 (makespan: 665)
51 Repair iteration 2/5
52 Starting Algorithm 3: Cascading Repair and Queue Reordering
53 Processing 244 schedule entries
54 [ERROR] Found 76 constraint violations
55 Phase I: Status Update - Identifying affected operations
56 Fixing immediate constraint violations...
57 Phase II: Job Precedence Repair - Fixing step ordering violations
58 Repairing job precedence violations...
59 Phase III: Machine Capacity Repair - Resolving machine overlaps
60 Repairing machine capacity violations...
61 [ALERT] Fixed machine overlap on Machine2
62 [ALERT] Fixed machine overlap on Machine2
63 [ALERT] Fixed machine overlap on Machine2
64 [ALERT] Fixed machine overlap on Machine2
65 [ALERT] Fixed machine overlap on Machine2
66 [ALERT] Fixed machine overlap on Machine2
67 [ALERT] Fixed machine overlap on Machine11
68 [ALERT] Fixed machine overlap on Machine11
69 [ALERT] Fixed machine overlap on Machine11
70 [ALERT] Fixed machine overlap on Machine8
71 [ALERT] Fixed machine overlap on Machine8
72 [ALERT] Fixed machine overlap on Machine8
73 [ALERT] Fixed machine overlap on Machine8
74 [ALERT] Fixed machine overlap on Machine13
75 [ALERT] Fixed machine overlap on Machine0
76 [ALERT] Fixed machine overlap on Machine0
77 [ALERT] Fixed machine overlap on Machine0
78 [ALERT] Fixed machine overlap on Machine7
79 Phase IV: Iterative Improvement - Optimizing schedule quality
80 Applying iterative improvement...
81 Phase V: Final validation and cleanup
82 Final cleanup - ensuring valid operation times...
83 [ALERT] Fixed invalid times for Job6 step 3
84 [ALERT] Fixed invalid times for Job11 step 6
85 [ALERT] Fixed invalid times for Job7 step 8
86 [ALERT] Fixed invalid times for Job10 step 9
87 [ALERT] Fixed invalid times for Job15 step 9
88 [ALERT] Fixed invalid times for Job9 step 6
89 [ALERT] Fixed invalid times for Job1 step 15
90 [ALERT] Fixed invalid times for Job14 step 7
91 [ALERT] Fixed invalid times for Job3 step 4
92 [ALERT] Fixed invalid times for Job3 step 6
93 [ALERT] Fixed invalid times for Job16 step 10
94 [ALERT] Fixed invalid times for Job2 step 11
95 [ALERT] Fixed invalid times for Job6 step 14
96 [ALERT] Fixed invalid times for Job16 step 12
97 [ALERT] Fixed invalid times for Job8 step 11
98 [ALERT] Fixed invalid times for Job8 step 12
99 [ALERT] Fixed invalid times for Job3 step 10

100 [ALERT] Fixed invalid times for Job15 step 13
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101 [ALERT] Fixed invalid times for Job9 step 12
102 [ALERT] Fixed invalid times for Job13 step 15
103 [ALERT] Fixed invalid times for Job14 step 15
104 [ALERT] Fixed invalid times for Job3 step 13
105 [YES] Algorithm 3 completed - Generated 244 schedule entries
106 Repair iteration 2 makespan: 665
107 Repair iteration 2 schedule entries: 244
108 Latest operations: [(’Job11’, 15, 665), (’Job9’, 15, 661), (’Job3’, 15,

653)]
109 Saved repair iteration 2 to: results_optimized(gpt-4o)/

abz07_repair_iteration_2.json
110 [CAUTION] Repair iteration 2 reduced errors from 76 to 28 (makespan: 665)
111 Repair iteration 3/5
112 Starting Algorithm 3: Cascading Repair and Queue Reordering
113 Processing 244 schedule entries
114 [ERROR] Found 28 constraint violations
115 Phase I: Status Update - Identifying affected operations
116 Fixing immediate constraint violations...
117 Phase II: Job Precedence Repair - Fixing step ordering violations
118 Repairing job precedence violations...
119 Phase III: Machine Capacity Repair - Resolving machine overlaps
120 Repairing machine capacity violations...
121 [ALERT] Fixed machine overlap on Machine6
122 [ALERT] Fixed machine overlap on Machine0
123 [ALERT] Fixed machine overlap on Machine0
124 [ALERT] Fixed machine overlap on Machine0
125 [ALERT] Fixed machine overlap on Machine1
126 Phase IV: Iterative Improvement - Optimizing schedule quality
127 Applying iterative improvement...
128 Phase V: Final validation and cleanup
129 Final cleanup - ensuring valid operation times...
130 [ALERT] Fixed invalid times for Job11 step 7
131 [ALERT] Fixed invalid times for Job7 step 9
132 [ALERT] Fixed invalid times for Job14 step 10
133 [ALERT] Fixed invalid times for Job3 step 7
134 [ALERT] Fixed invalid times for Job16 step 13
135 [ALERT] Fixed invalid times for Job16 step 12
136 [ALERT] Fixed invalid times for Job8 step 12
137 [ALERT] Fixed invalid times for Job8 step 11
138 [ALERT] Fixed invalid times for Job3 step 11
139 [ALERT] Fixed invalid times for Job9 step 12
140 [YES] Algorithm 3 completed - Generated 244 schedule entries
141 Repair iteration 3 makespan: 665
142 Repair iteration 3 schedule entries: 244
143 Latest operations: [(’Job11’, 15, 665), (’Job9’, 15, 661), (’Job3’, 15,

653)]
144 Saved repair iteration 3 to: results_optimized(gpt-4o)/

abz07_repair_iteration_3.json
145 [CAUTION] Repair iteration 3 reduced errors from 28 to 10 (makespan: 665)
146 Repair iteration 4/5
147 Starting Algorithm 3: Cascading Repair and Queue Reordering
148 Processing 244 schedule entries
149 [ERROR] Found 10 constraint violations
150 Phase I: Status Update - Identifying affected operations
151 Fixing immediate constraint violations...
152 Phase II: Job Precedence Repair - Fixing step ordering violations
153 Repairing job precedence violations...
154 Phase III: Machine Capacity Repair - Resolving machine overlaps
155 Repairing machine capacity violations...
156 Phase IV: Iterative Improvement - Optimizing schedule quality
157 Applying iterative improvement...
158 Phase V: Final validation and cleanup
159 Final cleanup - ensuring valid operation times...
160 [ALERT] Fixed invalid times for Job7 step 14
161 [ALERT] Fixed invalid times for Job14 step 11
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162 [ALERT] Fixed invalid times for Job2 step 12
163 [ALERT] Fixed invalid times for Job14 step 10
164 [ALERT] Fixed invalid times for Job16 step 13
165 [ALERT] Fixed invalid times for Job8 step 12
166 [ALERT] Fixed invalid times for Job11 step 14
167 [YES] Algorithm 3 completed - Generated 244 schedule entries
168 Repair iteration 4 makespan: 665
169 Repair iteration 4 schedule entries: 244
170 Latest operations: [(’Job11’, 15, 665), (’Job9’, 15, 661), (’Job3’, 15,

653)]
171 Saved repair iteration 4 to: results_optimized(gpt-4o)/

abz07_repair_iteration_4.json
172 [CAUTION] Repair iteration 4 reduced errors from 10 to 6 (makespan: 665)
173 Repair iteration 5/5
174 Starting Algorithm 3: Cascading Repair and Queue Reordering
175 Processing 244 schedule entries
176 [ERROR] Found 6 constraint violations
177 Phase I: Status Update - Identifying affected operations
178 Fixing immediate constraint violations...
179 Phase II: Job Precedence Repair - Fixing step ordering violations
180 Repairing job precedence violations...
181 Phase III: Machine Capacity Repair - Resolving machine overlaps
182 Repairing machine capacity violations...
183 [ALERT] Fixed machine overlap on Machine14
184 Phase IV: Iterative Improvement - Optimizing schedule quality
185 Applying iterative improvement...
186 Phase V: Final validation and cleanup
187 Final cleanup - ensuring valid operation times...
188 [ALERT] Fixed invalid times for Job14 step 11
189 [YES] Algorithm 3 completed - Generated 244 schedule entries
190 Repair iteration 5 makespan: 665
191 Repair iteration 5 schedule entries: 244
192 Latest operations: [(’Job11’, 15, 665), (’Job9’, 15, 661), (’Job3’, 15,

653)]
193 Saved repair iteration 5 to: results_optimized(gpt-4o)/

abz07_repair_iteration_5.json
194 [CAUTION] Repair iteration 5 reduced errors from 6 to 2 (makespan: 665)
195 [CAUTION] Repair completed after 5 iterations with remaining errors
196 [STEP4] ValidationTools revalidating schedule...
197 [ERROR] Revalidation failed: [’Job Job2: Step 14 starts before step 13

ends’, "Missing jobs in schedule: [’Job18’, ’Job20’, ’Job19’]"]
198 [31m[ERROR] ERROR in workflow: Schedule validation failed after repair
199 Disruption detected in Unknown Agent: Schedule validation failed

after repair
200 Initiating global replanning...
201 [CAUTION] Global replanning completed. Manual intervention may be

required.
202 [31m Workflow execution halted due to error.
203 [ERROR] New 4-step workflow failed
204 Found 5 repair iterations
205 Iteration 1: makespan=665, entries=244
206 Iteration 2: makespan=665, entries=244
207 Iteration 3: makespan=665, entries=244
208 Iteration 4: makespan=665, entries=244
209 Iteration 5: makespan=665, entries=244

Listing 5: ALAS Output Example

A.3.1 AUTOGEN FRAMEWORK

Agent Configuration AutoGen uses a 3-agent structure with the following configuration:
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• Job Scheduler Agent: Analyzes job requirements and creates initial schedules

• Machine Coordinator Agent: Coordinates machine usage and resolves conflicts

• Supervisor Agent: Final coordination and optimization

1 # Job Scheduler Agent
2 system_message: "You are a Job Scheduler Agent responsible for analyzing

job requirements and creating initial schedules."
3

4 # Machine Coordinator Agent
5 system_message: "You are a Machine Coordinator Agent responsible for

coordinating machine usage and resolving conflicts."
6

7 # Supervisor Agent
8 system_message: "You are a Supervisor Agent responsible for final

coordination and optimization."

Listing 6: AutoGen Agent Prompts

1 Job Shop Scheduling Problem (JSSP) - Dataset: abz07
2

3 Problem Description:
4 - Number of jobs: 20
5 - Each job has multiple operations that must be performed in sequence
6 - Each operation requires a specific machine and has a duration
7 - Each machine can only process one operation at a time
8 - Goal: Find the minimum makespan (total completion time)
9

10 Job Specifications:
11

12 Job1:
13 Step 1: Machine Machine2, Duration 24
14 Step 2: Machine Machine3, Duration 12
15 Step 3: Machine Machine9, Duration 17
16 Step 4: Machine Machine4, Duration 27
17 Step 5: Machine Machine0, Duration 21
18 Step 6: Machine Machine6, Duration 25
19 Step 7: Machine Machine8, Duration 27
20 Step 8: Machine Machine7, Duration 26
21 Step 9: Machine Machine1, Duration 30
22 Step 10: Machine Machine5, Duration 31
23 Step 11: Machine Machine11, Duration 18
24 Step 12: Machine Machine14, Duration 16
25 Step 13: Machine Machine13, Duration 39
26 Step 14: Machine Machine10, Duration 19
27 Step 15: Machine Machine12, Duration 26
28

29 [... continues for all 20 jobs ...]
30

31 REQUIRED OUTPUT FORMAT:
32 You must provide your solution in the following exact format:
33

34 1. FINAL MAKESPAN: [integer value]
35 2. STRUCTURED SCHEDULE:
36 For each operation, provide:
37 - Job: [job_name]
38 - Step: [step_number]
39 - Machine: [machine_name]
40 - Start Time: [start_time]
41 - End Time: [end_time]
42 - Duration: [duration]

Listing 7: AutoGen Input Example
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1 Job Scheduler Agent Output:
2 To effectively coordinate machine schedules and ensure no overlapping

operations while optimizing machine utilization, follow these steps:
3

4 1. **Data Collection**: Gather all necessary information about machine
operations, including machine availability, job requirements, start
and end times, and priority of tasks.

5

6 2. **Job Prioritization**: Prioritize jobs based on deadlines, importance
, and resource requirements. This will help in scheduling critical
tasks first.

7

8 3. **Machine Availability**: List all available machines and their
operational capabilities. Ensure that each machine is suitable for
the tasks assigned to it.

9

10 4. **Conflict Detection**: Check for overlapping schedules where a
machine is double-booked. Identify conflicts by examining start and
end times of scheduled tasks.

11

12 5. **Conflict Resolution**:
13 - **Reschedule**: Adjust the timing of conflicting jobs to eliminate

overlaps.
14 - **Reassign Tasks**: If rescheduling is not feasible, consider moving

tasks to different machines that are compatible with the operations.
15 - **Prioritize Tasks**: Focus on completing high-priority jobs within

their deadlines while adjusting lower-priority tasks as needed.
16

17 [... detailed coordination strategy ...]
18

19 ### Solution for abz07 Dataset
20

21 #### FINAL MAKESPAN
22 The optimized makespan value is determined based on the integration of

job scheduling and machine coordination, but due to the complexity of
explicitly listing each job’s sequence, I’m summarizing the strategy
and example timeline as applied heuristics and machine coordination

data show:
23

24 1. **Makespan**: Calculated based on the complete scheduling and
optimization of machine operations. Though not specified in exact
final numeric form without further computational analysis directly
from the in-depth schedule provided by advanced tools, the
methodology indicates a near-optimal alignment according to the
processes described.

25

26 #### STRUCTURED SCHEDULE:
27

28 Here’s a structured schedule format for visualization. Key operations are
coordinated with attention to machine non-conflict and sequence

according to job precedence.
29

30 - **Job1**:
31 - Step 1: Machine Machine2, Start Time: 0, End Time: 24, Duration: 24
32 - Step 2: Machine Machine3, Start Time: 25, End Time: 37, Duration: 12
33 - (Further steps continue similarly, coordinated by machine

availability)
34

35 - **Job2**:
36 - Step 1: Machine Machine6, Start Time: 0, End Time: 30, Duration: 30
37 - Step 2: Machine Machine3, Start Time: 31, End Time: 46, Duration: 15
38 - (Next steps adapted similarly to job requirements and resource

availability)
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39

40 [... continues for all jobs ...]

Listing 8: AutoGen Output Example

A.3.2 CREWAI FRAMEWORK

Agent Configuration CrewAI uses a 3-agent structure with role-based configuration:

• Job Scheduler Agent: Role-based agent for job scheduling

• Machine Coordinator Agent: Role-based agent for machine coordination

• Supervisor Agent: Role-based supervisor for final coordination

1 # Job Scheduler Agent
2 role: ’Job Scheduler’
3 goal: ’Analyze job requirements and create initial schedules for all jobs

.’
4 backstory: ’You are an expert job scheduler responsible for analyzing job

requirements and creating initial schedules.’
5

6 # Machine Coordinator Agent
7 role: ’Machine Coordinator’
8 goal: ’Coordinate machine usage and resolve conflicts between jobs.’
9 backstory: ’You are an expert machine coordinator responsible for

optimizing machine usage and resolving conflicts.’
10

11 # Supervisor Agent
12 role: ’JSSP Supervisor’
13 goal: ’Aggregate all job schedules and produce the overall JSSP schedule.

Coordinate between all job agents to find the optimal solution.’
14 backstory: ’You are a supervisor with expertise in Job Shop Scheduling

Problems and can coordinate multiple agents to find optimal solutions
.’

Listing 9: CrewAI Agent Prompts

1 \nThought: The Machine Coordinator has analyzed the initial schedule for
machine conflicts and provided suggestions for resolving overlaps and
optimizing machine utilization. Combining this with the initial

sequence from the Job Scheduler, I can now calculate the final
makespan and structured schedule.\nAction: Calculate optimized
makespan and finalize structured schedule based on resolved conflicts
and optimal sequencing.

Listing 10: CrewAI Output Example

A.3.3 LANGGRAPH FRAMEWORK

Agent Configuration LangGraph uses a 3-agent structure with system prompts:

• Job Scheduler Agent: LangGraph workflow agent for job scheduling

• Machine Coordinator Agent: LangGraph workflow agent for machine coordination

• Supervisor Agent: LangGraph workflow agent for supervision
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1 # Job Scheduler Agent
2 system_prompt: ’You are a Job Scheduler Agent using LangGraph workflow.

Analyze job requirements and create initial schedules for all jobs.’
3

4 # Machine Coordinator Agent
5 system_prompt: ’You are a Machine Coordinator Agent using LangGraph

workflow. Coordinate machine usage and resolve conflicts between jobs
.’

6

7 # Supervisor Agent
8 system_prompt: ’You are a Supervisor Agent using LangGraph workflow.

Aggregate all job schedules and produce the overall JSSP schedule.
Coordinate between all job agents to find the optimal solution.’

Listing 11: LangGraph Agent Prompts

1 Job Scheduler Agent Output:
2 === LANGGRAPH REAL AGENTS ===
3

4 Job Scheduler Agent: To solve the Job Shop Scheduling Problem (JSSP) for
the given dataset (abz07), we need to create a schedule that
minimizes the makespan while satisfying all constraints. This
involves determining the start and end times for each operation
across all jobs, ensuring that no two operations overlap on the same
machine and that operations within a job are performed sequentially.

5

6 Given the complexity of the problem and the constraints, a heuristic or
optimization algorithm such as Genetic Algorithm, Tabu Search, or
Simulated Annealing is typically used to find a near-optimal solution
. However, due to the constraints of this environment, I will provide
a conceptual approach to how this can be achieved, along with a

simplified example of a possible schedule.
7

8 ### Conceptual Approach:
9 1. **Initialize**: Start with an initial feasible schedule where

operations are scheduled sequentially based on job order and machine
availability.

10 2. **Iterate**: Use a heuristic or optimization algorithm to iteratively
improve the schedule by exploring different sequences and machine
assignments.

11 3. **Evaluate**: Calculate the makespan for each schedule and keep track
of the best (minimum) makespan found.

12 4. **Constraints**: Ensure that all job precedence and machine
constraints are satisfied in each iteration.

13

14 ### Simplified Example Schedule:
15 Below is a simplified example of how the schedule might look. Note that

this is a conceptual representation and not the actual solution due
to the complexity of the problem.

16

17 ‘‘‘
18 FINAL MAKESPAN: 1000
19 STRUCTURED SCHEDULE:
20 - Job: Job1, Step: 1, Machine: Machine2, Start Time: 0, End Time: 24,

Duration: 24
21 - Job: Job1, Step: 2, Machine: Machine3, Start Time: 24, End Time: 36,

Duration: 12
22 - Job: Job1, Step: 3, Machine: Machine9, Start Time: 36, End Time: 53,

Duration: 17
23 - Job: Job2, Step: 1, Machine: Machine6, Start Time: 0, End Time: 30,

Duration: 30
24 - Job: Job2, Step: 2, Machine: Machine3, Start Time: 36, End Time: 51,

Duration: 15

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

25 [... continues for all operations ...]
26 ‘‘‘

Listing 12: LangGraph Output Example

A.3.4 OPENAI SWARM FRAMEWORK

Agent Configuration OpenAI Swarm uses a 3-agent structure with detailed role specifications:

• Job Scheduler Agent: Creates initial schedules considering precedence constraints
• Machine Coordinator Agent: Resolves machine conflicts and optimizes utilization
• Supervisor Agent: Coordinates all agents and provides final JSSP solution

1 # Job Scheduler Agent
2 role: ’Job Scheduler’
3 goal: ’Create initial schedules for all jobs considering precedence

constraints.’
4 backstory: ’You are a job scheduling agent responsible for creating

initial schedules for all jobs in Job Shop Scheduling Problems.’
5 query: ’Create initial schedules for 20 jobs with their respective steps.
6

7 Dataset: abz07
8 Number of jobs: 20
9 Number of machines: 15

10

11 Job Specifications:
12 Job1:
13 Step 1: Machine Machine2, Duration 24
14 Step 2: Machine Machine3, Duration 12
15 [... continues for all jobs ...]
16

17 You must analyze each job’s operations and create a detailed schedule
with start and end times for each operation.’

18

19 # Machine Coordinator Agent
20 role: ’Machine Coordinator’
21 goal: ’Resolve machine conflicts and optimize machine utilization.’
22 backstory: ’You are a machine coordination agent responsible for

resolving machine conflicts and optimizing machine utilization.’
23 query: ’Resolve machine conflicts and optimize machine utilization across

all machines.
24

25 Dataset: abz07
26 Number of jobs: 20
27 Number of machines: 15
28

29 Job Specifications:
30 [... job details ...]
31

32 You must identify machine conflicts and provide specific solutions with
start/end times for each operation.’

33

34 # Supervisor Agent
35 role: ’JSSP Supervisor’
36 goal: ’Coordinate all agents and provide final JSSP solution with minimum

makespan.’
37 backstory: ’You are the supervisor agent for Job Shop Scheduling Problems

. Coordinate with all agents to find the optimal solution.’
38 query: ’Aggregate schedules from all agents and optimize for minimum

makespan.
39
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40 Dataset: abz07
41 Number of jobs: 20
42 Number of machines: 15
43

44 Job Specifications:
45 [... job details ...]
46

47 You must provide a final schedule with specific start/end times and
calculate the actual makespan.’

Listing 13: OpenAI Swarm Agent Prompts

1 Job Scheduler Agent Output:
2 Job Scheduler Analysis:
3 We’ve now shared the operation details with the Machine Coordinator to

ensure that machine availability is accounted for properly. This
coordination will allow us to develop an optimized schedule adhering
to both machine and job constraints.

4

5 I will work on calculating a detailed schedule based on optimized machine
sequences and provide the resulting makespan. Please hold on.

6

7 ---Compute Step---
8

9 To begin scheduling, each operation must have its start and end time
determined. Here’s a step-by-step approach to construct the schedule
while managing machine usages:

10

11 1. Identify all the operations and dependencies.
12 2. Ensure that operations are sequenced both per job and per machine.
13 3. Mark out machine availability to prevent conflicts by maintaining

machine calendars.
14

15 ### Calculating the Schedule
16 We will take a sequential approach, placing each operation at the

earliest opportunity that satisfies both job precedence and machine
availability constraints.

17

18 **Job1 Example:**
19 - **Step 1**: Machine 2, Duration 24: Starts at time 0 and ends at time

24.
20 - **Step 2**: Machine 3, Duration 12: Starts after Step 1 ends, from time

24 to 36.
21

22 ### Finalizing Schedule for All Jobs
23

24 Following the above step-by-step planning, detailed scheduling for each
job’s operations will be systematically calculated. This includes
preparing a calendar of machine usage:

25

26 1. **Machine Conflicts**: Avoiding overlaps by mapping operation times on
each machine.

27 2. **Dependency Fulfillment**: Start the subsequent operation after the
previous operation finishes for each job.

28 3. **Makespan Calculation**: The latest end time recorded for any
operation is the makespan.

29

30 ### Final Makespan:
31 **Example:**
32 - Let’s assume preliminary calculations give us a makespan of 1200 time

units once all operations and machine schedules are plotted out.
33

34 ### Final Output Structure:
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35 ‘‘‘plaintext
36 FINAL MAKESPAN: 1200
37 STRUCTURED SCHEDULE:
38 - Job: Job1, Step: 1, Machine: Machine2, Start Time: 0, End Time: 24,

Duration: 24
39 - Job: Job1, Step: 2, Machine: Machine3, Start Time: 24, End Time: 36,

Duration: 12
40 [... continues for all operations ...]
41 ‘‘‘

Listing 14: OpenAI Swarm Output Example

Output Format Requirements All frameworks are required to provide output in the following
standardized format:

1 FINAL MAKESPAN: [integer value]
2 STRUCTURED SCHEDULE:
3 - Job: [job_name], Step: [step_number], Machine: [machine_name], Start

Time: [start_time], End Time: [end_time], Duration: [duration]
4 - Job: [job_name], Step: [step_number], Machine: [machine_name], Start

Time: [start_time], End Time: [end_time], Duration: [duration]
5 [... continues for all operations ...]

Listing 15: Required Output Format

A.4 LLM HEURISTIC BASELINES (SAMPLED)

For each benchmark instance we asked every standalone LLM to choose an off-the-shelf optimization
method, list key hyperparameters (when provided), and report the makespan it expected to achieve.
Table 5 shows a five-instance sample per LLM; the full tables appear in the supplemental material.
From ALAS’s perspective this delivers only Phase 1 of Layer 1 (see Fig. 7): a static schedule
Wtemplate. Phases 2–3 (validation & refinement) and Layers 2–3 (agent instantiation and runtime
adaptation) must still execute before an executable, disruption-aware plan exists.

Table 5: Sampled LLM-proposed heuristics (5 rows per model).

Model Dataset Heuristic Strategy / Parameters

Claude 3.7 rcmax_20_15_5 Tabu Search + critical-path analysis
rcmax_20_15_8 Tabu Search + shift-based neighbourhood
rcmax_20_20_7 Genetic Alg. + critical-path optimisation
rcmax_30_15_5 Constraint Prog. (precedence relaxation)
rcmax_40_15_8 Tabu Search + job-insertion strategy

Gemini 2.5 rcmax_20_15_5 “Gemini-optimised” Tabu Search
rcmax_20_20_7 Gemini-guided Simulated Annealing
rcmax_30_15_5 Gemini Constraint-Programming heuristic
rcmax_40_15_10 Gemini Shifting-Bottleneck dispatch
rcmax_50_20_6 Gemini Hybrid GA–Tabu

GPT-4o rcmax_20_15_5 Genetic Alg. + adaptive mutation
rcmax_20_20_8 Particle Swarm Opt. (inertia weight=0.7)
rcmax_30_15_5 Ant Colony Opt. (pheromone α=1.0)
rcmax_40_15_10 Bee Algorithm + neighbourhood search
rcmax_50_15_4 Simulated Annealing (adaptive T )

DeepSeek-R1 rcmax_20_15_5 GA + priority rules (pop.=50, iters=200)
rcmax_20_20_8 Simulated Annealing (T0=100, cool=0.95)
rcmax_30_15_4 Ant Colony Opt. (ants=40, ρ=0.1)
rcmax_40_15_10 Iterated Greedy (destroy=30%)
rcmax_50_20_9 Adaptive Large-Neighbourhood Search

A.5 ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

Execution time, token usage, and cost breakdown. We report response wall time, token usage
and cost average across five benchmarks in Table 6., Table 7, and Table 8.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Table 6: Appendix: Execution Time (s) across Benchmarks for Multi-Agent Systems and ALAS
Variants. Values are reported as mean ± std. deviation. Gray = fastest average per block, Red =
slowest average.

Framework / Model DMU TA ABZ SWV YN Overall
Multi-Agent Systems (GPT-4o Backbone)

AutoGen 33.4±12.8 29.6±7.5 24.7±10.3 33.0±12.1 23.4±5.6 31.20
CrewAI 45.6±11.5 35.6±4.6 43.5±19.6 38.7±9.4 46.4±15.7 41.67
LangGraph 210.5±114.0 183.4±179.9 157.8±107.4 145.6±108.8 201.2±128.4 180.32
OpenAI Swarm 29.1±13.6 24.5±3.6 26.9±12.2 32.3±12.1 24.0±7.7 28.86
MAS (Average) 79.7 68.3 63.2 62.4 73.8 70.51

Multi-Agent Systems (Claude-4 Backbone)
AutoGen 225.1±90.6 218.8±74.0 262.5±77.5 201.1±73.6 184.9±56.7 215.04
CrewAI 168.3±54.3 134.6±71.5 208.0±131.3 147.1±68.1 189.4±79.0 160.50
LangGraph 193.6±33.7 194.2±65.6 208.7±27.4 150.1±52.9 141.9±94.8 175.58
OpenAI Swarm 30.3±19.4 76.2±91.4 43.0±6.1 42.5±13.6 50.1±33.1 44.10
MAS (Average) 154.3 155.9 180.6 135.2 141.6 148.81

ALAS (Variants)
ALAS (GPT-4o) 57.6±77.1 31.5±8.0 152.5±184.4 92.7±100.8 35.5±16.7 69.59
ALAS (Claude-4) 83.9±13.4 73.2±19.4 81.9±7.7 85.9±19.2 83.9±9.5 82.78
ALAS (Gemini-2.5) 39.6±9.1 33.9±13.5 34.1±11.2 36.6±8.2 37.4±8.0 37.17
ALAS (DeepSeek-V3) 61.7±95.6 70.2±76.5 38.4±11.5 72.0±102.1 102.4±166.0 68.52
ALAS (Average) 60.7 52.2 76.7 71.8 64.8 64.52

Table 7: Appendix: Token Usage across Benchmarks for Multi-Agent Systems and ALAS Variants.
Values are reported as average token counts per dataset category.

Framework / Model DMU TA ABZ SWV YN Overall
Multi-Agent Systems (GPT-4o Backbone)

AutoGen 49850 39159 26091 36483 37864 41082
CrewAI 302 283 261 401 622 358
LangGraph 12996 8731 4566 12279 13216 11551
OpenAI Swarm 2038 2335 2176 3036 2671 2482

Multi-Agent Systems (Claude-4 Backbone)
AutoGen 89690 80242 94033 64920 56079 77266
CrewAI 715 882 622 661 609 708
LangGraph 7734 7133 6134 7414 7152 7375
OpenAI Swarm 1608 3432 2565 2408 2237 2278
MAS (Average) 21054 18384 17306 16190 14847 17577

ALAS Variants (Full Workflows)
ALAS (GPT-4o) 8498 6774 6004 5832 5634 6920
ALAS (Claude-4) 12208 10033 8926 8872 9980 10341
ALAS (Gemini-2.5) 11719 9927 7991 8524 9657 9943
ALAS (DeepSeek-V3) 7762 6543 4305 5184 6227 6346
ALAS (Average) 10047 8319 6806 7103 7875 8393

Table 8: Appendix: Token Cost Summary for Multi-Agent Systems and ALAS Variants. Values are
aggregated totals, with cost estimated from provider pricing.

Source Total Tokens Total Cost Avg Cost/Instance
MAS-GPT4o 2,496,295 $74.89 $0.4160
MAS-Claude4 3,943,206 $118.30 $0.6572
MAS (Average) 3,219,751 $96.60 $0.5366
ALAS-GPT4o 1,038,000 $31.14 $0.1730
ALAS-Claude4 1,551,150 $46.53 $0.2590
ALAS-DeepSeek-V3 951,900 $28.55 $0.1590
ALAS-Gemini-2.5 1,491,450 $44.74 $0.2490
ALAS (Average) 1,258,625 $37.74 $0.2100

Table 9: Appendix: Summary Comparison of Multi-Agent Systems (MAS) vs ALAS. Values are
averages across all datasets. Red = MAS baseline, Gray = ALAS improvement.

Metric MAS (Average) ALAS (Average) Improvement
Token Usage 17,577 8,393 -52.3%
Token Cost $0.5366 $0.2100 -60.9%
Execution Time (s) 117.6 64.5 1.82× Faster
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Figure 6: Error rate for each repair iteration.

A.6 ALAS’S VALIDATION REPLAN ITERATIONS

Given the initialWtemplate, ALAS completes its Layer 1 operation by executing a validation-replan
iteration cycle until a valid plan is obtained. In our experiments, this convergence typically requires
up to 5 iterations on all benchmark datasets, as depicted in Figure 6.

B SUPPLEMENTAL INFORMATION FOR SECTION 3

This appendix presents detailed information that could not fit in the main paper due to space limitations.
Figure 7 depicts the three-layer architecture of ALAS. In the conclusion of Phase 1, the specifications
of all agents are prepared for implementation in the second phase, which can be coded by an advanced
LLM. Finally, the third phase instantiates these agents from code to real-time processes.

For detailed descriptions of each figure, please refer to the main phase 1 to phase 6.

B.1 COMPLETE META-PLANNER ALGORITHM FOR WORKFLOW GENERATION

Template Layer
T : Roles & Constraints

Factory Layer
F : Agent Instantiation

Runtime Layer
R: Execution & Repair

Persistent Memory
Logs, State, Rollback, Validation

Problem Specification

Figure 7: ALAS architecture: a lightweight LLM-driven planner with layered decomposition.
Persistent memory supports all layers by storing state, validating constraints, and enabling recovery.
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Algorithm 3 Phase 1: Workflow TemplateWtemplate Generation (ALAS)
Require: Problem specification O; constraints D =

DG ∪ DI ∪ DN ; performance metrics M; (op-
tional) disruption model Φ

Local variables:
1: RolesR; NodesN ; Edges E ; Invariants C
2: Log schemas Lni ,Leij ; global log schema L
3: Agent specs αni , αeij ; repair specs ρni , ρeij
4: Independent validator V with bounded prompt

scope κ
Ensure: ValidatedWtemplate = (N , E , C,L)

Phase 1: Network Construction (Blueprinting)
(Sec. 3.1)

5: R← ExtractRoles(O)
6: {(ni,Pni)} ← MapRolesToNodes(O,R)
7: N ← {ni}, E ← MapDependencies(N , D)
8: C ← CollectInvariants(D,O)
9: Wtemplate ← (N , E , C)

Phase 2: Role & Agent Specs (Factory Prep)
(Sec. 3.1)

10: for all ni ∈ N do

11: Lni ← DefineLogSchema(ni,Pni) // events,
snapshots, diffs

12: αni ← DefineAgent(ni,Pni ,Lni) //
cap/ctx/io/log

13: ρni ← DefineRepairSpec(ni, local moves, scope bounds)
14: for all eij ∈ E do
15: Leij ← DefineLogSchema(eij ,Peij )
16: αeij ← DefineEdgeAgent(eij ,Leij )
17: ρeij ← DefineRepairSpec(eij , local moves, scope bounds)
18: L ← AssembleGlobalLogSchema({Lni}, {Leij})
19: V ← AttachValidator(κ, C,L) // planner ̸= V

(non-circular)

Phase 3: Validation and Refinement (Sec. 3.3)
20: Wtemplate ← UpdateWorkflow(N , E , α, ρ, C,L)
21: while not ValidateBy(V,Wtemplate,M) do
22: V.CheckStructure(Wtemplate)
23: V.CheckConstraints(Wtemplate, C)
24: V.CheckRepairCoverage(Wtemplate,Φ, ρ) //

local neighborhoods exist/bounded
25: Wtemplate ← RefineWorkflow(Wtemplate,M)

26: returnWtemplate = (N , E , C,L)

Algorithm 4 Phase 2/4: ValidationTools.validate_schedule

Require: Candidate schedule S (list or dict)
Ensure: Validation result {valid, errors}

1: Parse S into entries {ei}
2: if {ei} = ∅ then return {valid = False, errors = {“empty schedule”}}
3: for each ei ∈ {ei} do
4: Check required fields: job, step, machine, start, end
5: Check numeric type: start, end
6: Check time ordering: ei.start < ei.end

7: Compute makespan T = maxi ei.end
8: if T ≤ 0 or T > threshold then
9: Add makespan error

10: Validate job precedence:
11: for each job j do
12: Ensure step(k + 1).start ≥ step(k).end
13: Validate machine capacity:
14: for each machine m do
15: Ensure no overlapping intervals {(start, end)}
16: if dataset info available then
17: Check all jobs ∈ dataset appear
18: Check all machines ∈ dataset appear
19: if no errors then return {valid = True, errors = ∅}
20: elsereturn {valid = False, errors}

B.2 AGENT FACTORY IMPLEMENTATION DETAILS

This appendix provides detailed information on the Agent Factory component of the ALAS architec-
ture, expanding on the summary provided in the main paper.
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Algorithm 5 Phase 3: LocalRepairTools.fix_schedule (Planning with Cascading Repair and Opti-
mization)

Require: Invalid schedule S, error set E
Ensure: Repaired schedule S ′

1: Parse S into entries {ei}
Phase I: Immediate Fixes

2: for each error e ∈ E do
3: if job precedence violated then
4: Delay current op until previous ends
5: else if time consistency violated then
6: Adjust end← start + duration

Phase II: Job Precedence Repair
7: for each job j do
8: Sort ops by step
9: Enforce startk+1 ≥ endk

Phase III: Machine Capacity Repair
10: for each machine m do
11: Sort ops by start
12: If opi+1.start < opi.end: delay opi+1

Phase IV: Iterative Improvement
13: for iteration = 1 . . .K do
14: for each machine m do
15: Try swapping adjacent ops
16: if swap reduces makespan & respects precedence then
17: Commit swap

Phase V: Final Cleanup
18: for each ei do
19: if start ≥ end then
20: end← start+ 1
21: if start < 0 then
22: start← 0
23:
24: Return repaired schedule S ′

B.2.1 AGENT FACTORY OVERVIEW

The Agent Factory translates formal agent specifications from the meta-planner into executable imple-
mentations. It employs a two-stage approach: first attempting to discover existing implementations,
and then generating custom implementations when necessary.

B.2.2 AGENT DISCOVERY PROCESS

The discovery process systematically searches for existing agent implementations that match specifi-
cations from phase #1. For each agent specification αi, the discovery mechanism:

1. Extracts the capability profile ci and constructs a search query to identify potential implementations
2. Retrieves candidate implementations from:

- Public agent repositories (e.g., GitHub, HuggingFace)
- API directories and marketplaces
- Pre-validated component libraries
- Domain-specific collections

3. Evaluates candidate suitability using multiple criteria:
- Capability matching: Verifies that all required capabilities in ci are supported
- Protocol compatibility: Ensures compatibility with the specified protocol buffer βi

- Efficiency compliance: Validates performance against efficiency requirements ei
- Context sizing: Confirms the implementation can operate within context window wi
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- Logging support: Verifies support for the required logging schema Li

4. Ranks candidates using a weighted scoring function S(αi, Ij) where Ij is a candidate:

S(αi, Ij) =
∑
k

wk · fk(αi, Ij) (1)

where wk is the weight assigned to criterion k, and fk is an evaluation function for that criterion.

When a suitable implementation is identified, it undergoes verification testing to confirm operational
compatibility with the workflow requirements. Upon successful verification, the implementation is
registered in the agent repository with appropriate metadata linking it to the specification.

The discovery mechanism employs both exact and approximate matching techniques. Exact matching
requires all specification parameters to be satisfied precisely, while approximate matching allows for
partial capability matching when accompanied by adaptation mechanisms.

B.2.3 AGENT CODING MECHANISM

When discovery fails to locate suitable implementations, the Agent Factory switches to its coding
mechanism, which uses LLMs to generate custom implementations. The coding process follows a
structured methodology:

1. Specification Translation: The formal agent specification is translated into a natural language
implementation brief that serves as the prompt for the LLM. This translation preserves all critical
requirements while expressing them in a form that maximizes LLM comprehension.

2. LLM Selection: An appropriate LLM is selected based on:
- Domain expertise matching capability requirements in ci
- Demonstrated proficiency in generating the required implementation type
- Context window compatibility with the complexity of the specification
- Robustness against hallucination for critical components

3. Implementation Generation: The selected LLM generates implementation code with:
- Embedded logging that conforms to schema Li

- Protocol handling for buffer βi

- Optimizations for efficiency parameters ei
- Adaptation to context window constraints wi

4. Implementation Validation: The generated implementation undergoes validation to ensure:
- Functional correctness against specification requirements
- Proper integration with the compensation mechanisms defined in αcomp

i

- Robustness against edge cases and exceptional conditions
- Compliance with system-wide constraints and protocols

For particularly complex agents, the coding process may employ a multi-stage approach where the
implementation is generated iteratively, with each iteration refining the previous version based on
validation feedback.

B.2.4 COMPENSATION AGENT GENERATION

Special attention is given to the generation of compensation agents, which require precise under-
standing of the primary agent’s operations to ensure proper reversal or mitigation. The generation of
compensation agents follows these additional steps:

1. Extraction of the primary agent’s state-modifying operations
2. Analysis of operation dependencies and sequencing constraints
3. Determination of appropriate compensation strategies (e.g., undo, retry, escalate)
4. Generation of the recovery sequence Γi that defines the steps for returning to a consistent state

The Factory ensures that compensation agents maintain strict operational correspondence with their
primary counterparts, guaranteeing every state-modifying operation has a reversal mechanism defined.
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B.2.5 DEPLOYMENT ARTIFACT PRODUCTION

The output of the Agent Factory is a deployable artifact that encapsulates the agent’s logic and inter-
action patterns. These artifacts take several forms, depending on the agent type and implementation
approach:

- Code Snippets: Executable code implementing the agent’s functionality, typically for computa-
tionally intensive or specialized tasks

- Prompt Templates: Structured prompts that guide LLMs to implement the specified behavior at
runtime, used for cognitively complex or reasoning-intensive tasks

- API Configurations: Parameter sets and endpoint specifications for interacting with external
services or pre-existing agents

- Hybrid Implementations: Combined approaches that leverage both code and LLM prompting for
different aspects of the agent’s functionality

Each artifact is accompanied by metadata that defines its:

- Execution requirements (e.g., runtime environment, dependencies)
- Interface specifications for input/output handling
- State persistence requirements and mechanisms
- Monitoring hooks for runtime observation
- Recovery points for compensation handling

B.2.6 FACTORY DESIGN PATTERN IMPLEMENTATION

The Agent Factory implements the classic Factory design pattern, providing a standardized interface
for agent instantiation while encapsulating the complexity of implementation selection, generation,
and validation. This pattern enables:

- Decoupling of agent specifications from implementation details
- Support for heterogeneous implementation technologies
- Runtime substitution of agents when needed for recovery or optimization
- Maintenance of a growing repository of reusable components

The Factory pattern allows the ALAS system to evolve its agent implementation strategies over
time without requiring changes to the meta-planning or runtime components, creating a flexible
architecture that can adapt to new implementation technologies and approaches.

B.2.7 IMPLEMENTATION EFFICIENCY CONSIDERATIONS

To maximize system efficiency, the Agent Factory implements several optimization strategies:

1. Caching: Previously generated implementations are cached and indexed by their specifications to
avoid redundant generation

2. Component Reuse: Complex implementations are decomposed into reusable components that
can be shared across multiple agents

3. Incremental Refinement: When similar agents have been previously implemented, the Factory
uses delta-based generation to create variants rather than generating entirely new implementations

4. Resource Scaling: Implementation generation resources are allocated proportionally to the
complexity and criticality of the agent

These optimizations significantly reduce the computational overhead of agent generation, particularly
in scenarios where multiple similar agents are required or when the system executes recurring
workflow patterns.

B.2.8 THEORETICAL FOUNDATIONS

The Agent Factory design is grounded in several theoretical frameworks:

- Program Synthesis: Formal methods for generating programs from specifications
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- Component-Based Software Engineering: Principles of component composition and reuse
- LLM Prompt Engineering: Techniques for directing LLM behavior through structured prompts
- Agent-Oriented Software Engineering: Methodologies for developing autonomous software agents

These foundations provide a rigorous basis for the Factory’s approach to transforming abstract agent
specifications into concrete, executable implementations.

C ALGORITHM, LEMMA, AND THEORY PROOFS

Lemma 1 (Generalized LCRP Complexity).
For a system with:

• J jobs

• M machines

• At most Omax operations per job

• S average swap evaluations per queue (1 ≤ S ≤ J)

The worst-case time complexity is:

O
(
J2O2

max

M
+ JMOmax

)
(2)

Proof. The complexity derives from four components:

1. Status Update: O(JOmax)
Must check all operations of all jobs

2. Delay Propagation: O(JOmax)
Each job’s operation chain may have Omax elements

3. Queue Optimization:

• Full analysis: O
(

J2O2
max

M

)
All operation pairs on all machines

• Practical bound: O(SJOmax)
When swaps are limited to S evaluations

4. Cascading Delay: O(JMOmax)
Worst-case propagation through all machines

The dominant terms combine to give the final complexity:

J2O2
max

M︸ ︷︷ ︸
queue optimization

+ JMOmax︸ ︷︷ ︸
cascading delays

Corollary 1 (Special Cases). • Single-operation jobs (Omax = 1): O(J2/M + JM)

• Fully parallel systems (M ≈ J): O(JO2
max + J2Omax)

• Swap-limited implementations: O(SJOmax + JMOmax)

Key Observations:

• Complexity is quadratic in job count and operations
• Machine count appears both in numerator (delays) and denominator (parallelization)
• Practical implementations can achieve better bounds through swap heuristics
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Definition 1 (LCRP-Repair Decision Problem).
Instance: A job-shop instance I = (J,M, {Oj}j∈J) with processing times and machine require-
ments, an initial (possibly infeasible) schedule σ0, a repair budget R ∈ N, and a makespan bound
K ∈ N.
Question: Does there exist a repaired schedule σ obtained from σ0 by at most R local edits (in-
sert/move/swap/reassign) such that σ is feasible (no machine overlap, precedence respected) and
Cmax(σ) ≤ K?

Theorem 1 (LCRP is NP-hard (in fact, strongly NP-hard)). The decision problem in Def. 1 is NP-hard.
Moreover, it is strongly NP-hard.

Proof sketch. We reduce from the standard Job-Shop Scheduling (JSSP) decision problem: given
I = (J,M, {Oj}) and bound K, decide whether a feasible schedule with makespan ≤ K exists.
This problem is well known to be NP-hard and, in fact, strongly NP-hard.

Reduction (polynomial time). Given a JSSP instance (I,K), construct an LCRP instance as
follows:

• Use the same set of jobs, machines, operation orders, and processing times.

• Let the initial schedule be σ0 := ∅ (no operations placed) or any trivially infeasible “dummy”
placement.

• Set the repair budget R to a value ≥ the number of operations (e.g., R =
∑

j∈J |Oj |), so that any
feasible arrangement can be reached by a sequence of local edits permitted by the repair model
(insert/move/swap/reassign).

• Keep the same makespan bound K.

This mapping is clearly polynomial in input size.

Correctness. We show (I,K) is a “yes” instance of JSSP iff the constructed LCRP instance is a
“yes” instance.

(⇒) If JSSP admits a feasible schedule σ⋆ with Cmax(σ
⋆) ≤ K, then starting from σ0 we can obtain

σ⋆ via at most
∑

j |Oj | local edits (insert each operation in its position or move/swaps to match σ⋆).
Since R was chosen at least that large, a valid repair sequence exists. Thus LCRP answers “yes”.

(⇐) Conversely, suppose the LCRP instance admits a repaired schedule σ̂ within budget R that is
feasible and satisfies Cmax(σ̂) ≤ K. Then σ̂ is a feasible JSSP schedule for I of makespan at most
K, so JSSP answers “yes”.

Membership in NP. A certificate consists of the repaired schedule σ (start/end times and machine
assignments for all operations) and, optionally, the edit sequence (bounded by R). Using the standard
feasibility checks (no machine overlaps, precedence respected) and a single pass to compute Cmax,
verification runs in polynomial time in the input size (cf. your ValidationTools: precedence, machine
capacity, and makespan checks).

Strong NP-hardness. The reduction preserves numeric parameters essentially verbatim (no pseudo-
polynomial blowup) and embeds JSSP as the special case “repair from empty/infeasible seed with
large R”. Since JSSP is strongly NP-hard, the LCRP decision problem is strongly NP-hard as well.

Remark C.1 (Bounded-edit variants remain NP-hard). Even if the budget R is part of the input and
small, NP-hardness persists by embedding feasibility into a bounded number of edit operations (e.g.,
composing each operation placement as one edit), or by initializing σ0 to be “nearly empty” so that
R equals the number of to-be-placed operations. Hence hardness is robust to common repair-budget
formulations.

Remark C.2 (Relation to the complexity bound). The operational bound O
(

J2O2
max

M + JMOmax

)
captures worst-case per-run effort of LCRP (status update, local queue optimization, and cascading
delay handling). The NP-hardness result shows that, independent of such polynomial per-iteration
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costs, deciding the existence of a repair achieving a global makespan target is computationally
intractable in general (unless P = NP).

D APPLICATION 1: URBAN RIDE ASSIGNMENT PROBLEM

The goal is to optimally assign ride requests to a fleet of autonomous or human-driven vehicles in a
city, while satisfying various constraints and objectives. The key elements are the following.

* City Map: A graph G = (V,E) where V is the set of locations and E is the set of roads connecting
them, with associated distances and travel times.

* Ride Requests: A set of requests R, where each request ri ∈ R is characterized by:
- Passenger ID pi
- Pickup location vpi

∈ V
- Drop-off location vdi ∈ V
- Desired pickup time window [tmin

pi
, tmax

pi
]

- Desired drop-off time window [tmin
di

, tmax
di

]

* Vehicles: A set of vehicles K, where each vehicle kj ∈ K has:
- Vehicle ID kj
- Current location vkj

∈ V
- Battery/fuel level bkj ∈ [0, 1]

- Passenger capacity ckj
∈ Z+

- Speed skj
∈ R+

D.1 A SIMPLIFIED URS PROBLEM STATEMENT

Table 24 in the main text depicts a URS problem with three drivers and four passengers. Using this
problem, we walk through how ALAS works.

D.2 GENERATING PLANNER W* WALKTHROUGH

Given the problem statement of URS, ALAS generates a planning templateWtemplate.

D.2.1 STATE-SPACE ANALYSIS

Our Urban Ride-Sharing (URS) problem presents a complex transportation scheduling challenge
that we must first understand through systematic state-space analysis. The system involves seven
locations (A through G), where G represents Boston Logan Airport, with urban locations forming a
mesh network of 10km distances and airport routes ranging from 31-36km. Four passengers require
airport transportation with specific arrival deadlines, while three vehicles, each capable of carrying
two passengers, must be coordinated to meet these demands efficiently.

Each dimension of our state space reveals crucial aspects of the planning challenge. In the Who
dimension, we track four passenger requests (r1 through r4) and three vehicles (k1 through k3).
These passengers require arrivals at BOS between 08:45 and 09:00, with each vehicle qualified for
airport routes and positioned initially at locations A, C, and E.

The Where dimension maps our network topology, distinguishing between urban segments with uni-
form 10km distances and airport routes varying from 31-36km. This spatial arrangement, combined
with the When dimension’s speed constraints (60km/h urban, 100km/h airport routes), creates our
fundamental timing framework. Simple calculations reveal urban segments require 10 minutes of
travel time, while airport routes need 19-22 minutes depending on origin.

Our What dimension monitors vehicle resources throughout plan execution, ensuring we respect
the two-passenger capacity limit while maximizing sharing opportunities. The Why dimension
establishes our optimization objectives: ensuring on-time airport arrivals while minimizing total
distance traveled. The How dimension defines our execution protocols, including pickup sequencing
and route navigation strategies.
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Table 10: Agent Specifications and Protocols

Agent Type Input Protocol Output Protocol Key Functions
Task-Specific Agents

Route
Planning

- Location map G(V,E)
- Travel times matrix
- Vehicle positions

- Optimized routes
- Distance calculations
- Path sequences

- Path optimization
- Distance minimization
- Route feasibility checks

Scheduling - Required arrival times
- Travel duration estimates
- Vehicle availability

- Pickup schedule
- Timing constraints
- Buffer allocations

- Schedule generation
- Timing verification
- Buffer management

Capacity
Management

- Passenger requests
- Vehicle capacities
- Route timing

- Passenger groupings
- Vehicle
- Capacity utilization

- Group optimization
- Capacity verification
- Load balancing

Common Agents
Temporal
Constraint

- Schedule requirements
- Time windows
- Buffer needs

- Timing validations
- Constraint satisfaction
- Buffer adequacy

- Time verification
- Constraint checking
- Buffer analysis

Resource
Allocation

- Vehicle inventory
- Request demands
- Location data

- Resource assignments
- Utilization plans
- Coverage maps

- Resource optimization
- Coverage verification
- Efficiency analysis

Distance
Optimization

- Route options
- Distance matrix
- Time constraints

- Optimized paths
- Distance metrics
- Efficiency scores

- Path optimization
- Distance reduction
- Efficiency maximization

Validation Agents
Plan Validator - Complete plan

- System constraints
- Quality metrics

- Validation results
- Constraint checks
- Performance scores

- Plan verification
- Constraint validation
- Quality assessment

Refinement
Agent

- Validation results
- Improvement options
- Performance metrics

- Refinement suggestions
- Update priorities
- Optimization paths

- Plan improvement
- Update sequencing
- Performance optimization

D.2.2 PHASE 1: NETWORK CONSTRUCTION

Building upon our state-space analysis, we construct our planning network by first identifying critical
nodes and dependencies. Our node set N comprises:

Passenger Nodes: Each request ri becomes a node with attributes: - r1: Location A, BOS arrival
08:45 - r2: Location B, BOS arrival 08:50 - r3: Location C, BOS arrival 08:55 - r4: Location D,
BOS arrival 09:00

Vehicle Nodes: Each vehicle ki forms a node with position and capacity: - k1: Starting at A, capacity
2 - k2: Starting at C, capacity 2 - k3: Starting at E, capacity 2

Location Nodes: Each physical location becomes a node with attributes including distance to other
locations and travel time calculations.

Our dependency set E captures relationships between these nodes through several categories:

Temporal Dependencies: We establish feasible pickup windows by working backward from required
arrival times. For example, r1 requires 22 minutes for the airport route plus 10 minutes for each
urban segment traversed, creating timing constraints for vehicle assignment.

Spatial Dependencies: We map possible routes between nodes, considering both direct airport routes
and potential shared-ride combinations through urban segments.

Capacity Dependencies: We create edges representing feasible passenger groupings within vehicle
capacity limits.

D.2.3 PHASE 2: AGENT ASSIGNMENT

With our network structure defined, we assign specialized agents to manage different aspects of the
solution:
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Task-Specific Agents: The Route Planning Agent optimizes paths using the distance matrix and
travel speeds, calculating optimal routes for both single and shared rides. The Scheduling Agent
determines precise pickup times, working backward from airport deadlines and incorporating travel
time calculations. The Capacity Management Agent identifies feasible passenger groupings based on
timing and location proximity.

Common Agents: The Temporal Constraint Agent ensures all timing requirements are met, maintain-
ing a master schedule that accounts for all dependencies. The Resource Allocation Agent assigns
vehicles to routes, optimizing the distribution of available capacity. The Distance Optimization Agent
works to minimize total travel distance while respecting all constraints.

Edge Agents: These agents manage the relationships between different aspects of the plan. For
example, the Passenger Grouping Agent evaluates potential shared rides by analyzing proximity of
pickup locations and compatibility of arrival times.

D.2.4 PHASE 3: VALIDATION AND REFINEMENT

In our final phase, we implement a comprehensive validation and refinement process:

Initial Validation: We verify temporal feasibility by checking that all calculated pickup times allow
sufficient travel time to meet airport deadlines. We confirm capacity constraints are respected
throughout all vehicle routes. We validate that all passengers are served and all required resources
are properly allocated.

Iterative Refinement: We identify optimization opportunities, such as grouping passengers with
compatible timing and locations. For example, passengers r2 and r3 might share a ride if their pickup
locations are close and arrival times are within 5 minutes. We adjust vehicle assignments to minimize
empty travel distance while maintaining service guarantees.

Final Plan Generation: The resulting plan specifies exact pickup times, vehicle assignments, and
routes, with built-in buffers for potential delays. The plan includes contingency protocols for common
disruptions such as traffic delays or passenger late arrivals.

This systematic approach ensures we generate a robust, efficient solution to our URS problem while
maintaining clear documentation of our planning process and decisions.

D.2.5 OUTPUT

Table 10 the list of required agents and their functional specifications and protocols.

Table 11: Agent Placement in the Urban Ride Sharing Network

Location Type Agents and Their Responsibilities
A–F Nodes Resource Allocation Agent: Manages vehicle assignments and

passenger pickups at urban locations
G (Airport) Node Plan Validator Agent: Verifies arrival times and plan feasibility

Temporal Constraint Agent: Ensures all arrival deadlines met
A–F edges Urban Routes Route Planning Agent: Optimizes urban route segments (10

min travel time)
Scheduling Agent: Coordinates pickup sequences and timing

(A,...,F)–G Airport Routes Capacity Management Agent: Ensures vehicle capacity con-
straints during airport trips
Distance Optimization Agent: Minimizes total travel distance

Network-wide Global Refinement Agent: Iteratively improves solutions based on
validation results
Monitors and adjusts both urban and airport route segments

D.3 FROM WORKFLOW TEMPLATE TO EXECUTION WORKFLOW

Once the templateWtemplate is defined, it serves as a structured blueprint that outlines how the problem
should be approached. However, a high-level plan alone is insufficient for real-world execution. The
next step is to transform the planning workflow into a real execution workflowWexec, where abstract
roles and dependencies are resolved into concrete actionable tasks based on real-world data.
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To clarify this transition, consider the difference between Wtemplate and Wexec in our ride-sharing
scenario. In the planning phase, roles such as Driver and Passenger are defined as abstract
entities. The template workflowWtemplate specifies how these entities interact, matching drivers with
passengers, optimizing routes, and scheduling pickups, without assigning real-world counterparts yet.

In contrast, the execution workflowWexec performs role resolution, mapping abstract roles to real-
world instances. This means assigning an actual driver to a specific vehicle, matching a real passenger
to a ride request, and computing precise travel distances based on real-time geo-coordinates. In
addition, the execution workflow must dynamically adapt to real-world constraints, such as traffic
conditions, vehicle availability, and passenger delays.

In this process, the meta-planner generates Wexec, a directed graph where nodes correspond to
concrete actions (e.g., “Driver John departs from location A”), and edges represent dependencies
and constraints (e.g., “Driver John must reach location B before 10:30 AM”). This execution graph
integrates real-time data and updates continuously, allowing agents to make informed decisions as
conditions evolve.

Thus, the template workflowWtemplate structures how to plan, while the execution workflowWexec
governs how real-world actions are performed. Transformation from one to the other is a critical step
in Alas, ensuring that strategic reasoning is translated into actionable real-time operations.

Now, based on the URS problem specified in Table 24 of Section 4 in the main text, the list of agents
required and their functional specifications and protocols in Table 10, Alas proceeds generating an
execution workflowWexec.

D.3.1 OBSERVATION ON SEQUENTIAL PLANNING

Let us explain the value of using agents in this problem, even though we have shown that simpler
solvers can handle the computational aspects. This discussion touches on key principles of system
design and real-world implementation.

While our Monte Carlo solver effectively found good solutions for this specific instance, Alas offers
several advantages that become particularly valuable in real-world ride-sharing systems.

First, Alas helps manage complexity in dynamic environments. In our exercise, we worked with a
static problem where all passenger requests and constraints were known in advance. However, in
reality, ride-sharing systems must handle continuous updates—new ride requests arrive at unpre-
dictable times, vehicles experience delays, and road conditions constantly change. With Alas, each
agent operates independently, monitoring and reacting to changes in its own domain. For example,
the Route Planning Agent can dynamically adjust routes in response to traffic updates, while the
Capacity Management Agent ensures new passenger requests are accommodated efficiently.

Second, Alas enables distributed decision-making and parallel processing. Instead of relying on
a centralized solver, different agents specialize in handling specific tasks simultaneously. While
the Scheduling Agent optimizes pickup times, the Resource Allocation Agent manages vehicle
assignments in parallel. This decentralized structure is crucial for scalability—when the system
expands to hundreds of vehicles and thousands of passengers, distributing computational workload
prevents bottlenecks and ensures efficient operations.

Third, Alas provides modularity, allowing the system to evolve naturally. Ride-sharing services
frequently introduce new features, such as surge pricing or specialized vehicle categories. With an
agent-based design, we can integrate a Pricing Agent or a Vehicle Specialization Agent without
modifying the core routing logic. Likewise, if we develop a more advanced routing algorithm, we
can upgrade the Route Planning Agent without disrupting other system components.

The separation of concerns through agents also enhances system resilience. If one agent encounters
issues—say, the Distance Optimization Agent fails to compute an optimal route—other agents con-
tinue operating with fallback strategies. The Plan Validator Agent can detect suboptimal assignments
and trigger refinements through the Refinement Agent, ensuring that the system adapts to unforeseen
challenges.

We can think of this like a well-organized team working on a complex project. While a single
individual might handle everything, a structured team of specialists—each with clear roles and
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defined communication protocols—is often more effective, robust, and scalable. In this way, while
our Monte Carlo solver demonstrates what is mathematically possible, the agent-based architecture
of Alas shows how we can implement it reliably in real-world systems.

D.4 REACTIVE PLANNING UNDER DISRUPTIONS

The value of multi-agent reactive planning becomes clear in dynamic environments. For example,
consider a sudden road closure between locations B and C. While a monolithic solver would need
to halt and recompute an entirely new plan from scratch, a modular agent-based approach enables
localized, parallel adaptation. A Route Planning Agent can immediately update affected paths, while
a Scheduling Agent adjusts arrival estimates, and a Resource Allocation Agent reallocates vehicles,
all operating concurrently while preserving system stability. This distributed replanning minimizes
disruption impact and maintains overall workflow coherence.

The following case study illustrates these principles in an Urban Ride Sharing (URS) scenario
involving ride cancellation and new request insertion.

URS Disruption Handling. To evaluate adaptation capabilities, we introduce a disruption where
passenger r2 cancels the ride request at 8:05, and a new request r5 at location F arrives at 8:10. Alas
replans dynamically, adjusting vehicle assignments while preserving all passenger deadlines. In
contrast, baseline LLMs fail to track vehicle states after partial execution and lose consistency with
the initial plan, leading to infeasible or incoherent schedules.

E APPLICATION 2: FAMILY REUNION PLANNING PROBLEM

Table 12 presents the specification of the problem. The participating LLMs and their configurations
are depicted in Section F.2 of the main text.

Table 12: Thanksgiving Dinner Coordination Problem

Objective: Coordinate family arrivals and dinner preparation for 6:00
PM dinner in Boston
Family Members and Arrivals:
- Sarah (Mom): Host, at home
- James (Dad): Lands at BOS 1:00 PM from SF
- Emily (Sister): Lands at BOS 2:30 PM from Chicago
- Michael (Brother): Driving, arrives 3:00 PM from NY
- Grandma: Needs pickup from suburban Boston
Cooking Requirements:
- Turkey: 4 hours cooking time
- Side dishes: 2 hours preparation
- Someone must stay home during cooking
Transportation Constraints:
- James must rent car after landing
- Emily requires airport pickup
- Travel times:

– Home to BOS Airport: 60 min
– BOS Airport to Grandma’s: 60 min
– Home to Grandma’s: 30 min

Key Requirements:
- All family members at home for 6:00 PM dinner
- Turkey and sides ready by dinner time
- All pickups completed with available drivers
- Cooking supervision maintained
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E.1 PHASE 1: NETWORK CONSTRUCTION

E.1.1 NODE (ROLE) SPECIFICATIONS

First, meta-plannerMP of ALAS extracts roles (N ) with their required qualifications:
• ncook: capability to prepare dinner
• ndriver1: capability to drive, pick up from airport
• ndriver2: capability to drive, pick up grandma
• nsupervisor: capability to monitor oven

E.1.2 EDGE (DEPENDENCY) SPECIFICATIONS

Next,MP identifies dependencies (E) between roles:

E = {etemporal, espatial, esafety} (3)

The critical dependencies include:
• etemporal: - Turkey (4 hours) must finish by 6:00 PM - Side dishes (2 hours) must finish by 6:00

PM - Airport pickups must align with landing times
• espatial: - Driver-passenger location matching - Travel time constraints between locations
• esafety: - Continuous oven supervision requirement

E.2 PHASE 2: AGENT ASSIGNMENTS

After constructing the network structure,MP selects and assigns agents to monitor both the roles
and dependencies.

E.2.1 NODE (ROLE) AGENT ASSIGNMENT

For each role,MP selects monitoring agents with the required capabilities:

frole : N → A (4)

The role monitoring agents include:
• Cook Monitor: Tracks cooking timeline, coordinates meal components
• Driver Monitor: Validates driver availability
• Supervisor Monitor: Ensures oven supervision
• Resource Monitor: Manages vehicle assignments and actor schedules

E.2.2 EDGE (DEPENDENCY) AGENT ASSIGNMENT

For the identified dependencies,MP assigns specialized monitoring agents:

fedge : E → A (5)

Dependencies require these monitoring agents:
• Temporal Agent: Manages timing constraints (cooking durations, travel times, arrival schedules)
• Spatial Agent: Tracks location constraints (airport-home-grandma routes)
• Safety Agent: Ensures oven supervision constraint remains satisfied

The resulting agent assignments create a complete monitoring system where:
• Role agents track individual actor assignments and qualifications
• Edge agents monitor interactions and dependencies between roles
• All agents coordinate to maintain global constraint satisfaction
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Table 13: Node and Edge Monitoring Agent Requirements

(a) Node (Role) Monitoring Agent

Agent Input Protocol Output Protocol

Cook
Monitor

Role: cook
Qualifications: skills
Time: prep and cook

Status: progress
Alerts: timing issues!
Updates: completed?

Driver
Monitor

Role: driver
Qs: license, rest
Where: current GPS

Status: availability
Alerts: fatigue warnings
Updates: new GPS

Supervisor
Monitor

Role: supervisor
Location: house
Duration: cover time

Status: covered?
Alerts: coverage gaps!
Updates: role transitions

(b) Edge (Dependency) Monitoring Agent

Agent Input Protocol Output Protocol

Temporal Start times
Durations
Deadlines

Schedule conflicts
Timing violations
Schedule updates

Spatial Locations
Routes
Travel time (variations)

Route violations
Location conflicts
Path updates

Safety Critical constraints
Resource states
Coverage requirements

Safety violations
Resource conflicts
Mitigation plans

E.2.3 COMMON SENSE CONSTRAINT ANALYSIS (PERFORMED BY AN LLM)

A common sense agent identifies the following implicit constraints that can affect Thanksgiving
dinner planning. This list is generated by Claude given the problem statement.

• Physical Processing Times:
– Airport luggage claim: 30 minutes
– Car rental procedures: 30 minutes
– Holiday traffic variations
– Winter weather considerations

• Human Factors:
– Driver fatigue after long trips
– Cooking preparation overhead
– Optimal turkey baking tips (non-disruptive baking and ready 30 minutes before eating)
– Task switching delays
– Required rest periods

• Resource Dependencies:
– Vehicle passenger capacity
– Oven temperature management
– Kitchen workspace limits
– Shared resource coordination

• Social Considerations:
– Personal preferences for interactions
– Family dynamics in assignments
– Post-travel guest comfort
– Host preparation requirements

E.2.4 COMMON SENSE CONSTRAINT ANALYSIS AND VERIFICATION (HUMAN IN THE LOOP)

The common sense constraints identified above require different verification approaches:

Agent-Required Information These constraints need specialized agents to verify and quantify:
• Airport Operations

– United Airlines’ average luggage delivery time at BOS Terminal B
– Terminal B to rental car center: shuttle schedule, walking options
– Historical flight delay patterns for November at BOS

• Weather and Traffic
– Boston weather forecast for the event date
– Historical traffic patterns on Thanksgiving days
– Impact on airport-city-suburb travel times

• Task Dependencies
– Kitchen workflow analysis for parallel cooking tasks
– Resource contention in meal preparation
– Critical path identification in cooking timeline
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Table 14: Complete Workflow Specification: Nodes, Edges, and Agent Assignments

Type Component Requirements Agent Protocol Dependencies
Node Components (Roles)
Node Cook Role

(Sarah)
- Turkey (4hr)
- Side dishes (2hr)
- Kitchen management
- Time management

Input: schedule, resources, recipes
Output: task progress, completion
Monitor: kitchen_state() → status
Validate: cooking_constraints()

Connected to:
- Supervisor
- Resource edges

Node Driver1
(James/Michael)

- Valid license
- Airport navigation
- Car rental capable
- Rest state adequate

Input: flight times, routes
Output: location, ETA
Monitor: driver_state() → status
Validate: driver_constraints()

Connected to:
- Airport pickup
- Travel edges

Node Driver2
(Flexible)

- Valid license
- Local navigation
- Availability window
- Rest state adequate

Input: pickup schedule, route
Output: location, ETA
Monitor: driver_state() → status
Validate: driver_constraints()

Connected to:
- Grandma pickup
- Travel edges

Node Supervisor
(Flexible)

- Home presence
- Oven monitoring
- Safety awareness
- Time commitment

Input: cooking schedule, rules
Output: supervision status
Monitor: safety_state() → status
Validate: safety_constraints()

Connected to:
- Cook role
- Safety edges

Edge Components (Dependencies)
Edge Temporal - Schedule tracking

- Buffer management
- Sequence logic
- Critical path

Input: timestamps, durations
Output: schedule conflicts
Monitor: schedule_state() → alerts
Optimize: timeline_adjust()

Connects:
- All roles
- All activities

Edge Spatial - Location tracking
- Route optimization
- Traffic updates
- Distance constraints

Input: locations, routes
Output: travel updates
Monitor: location_state() → alerts
Optimize: route_adjust()

Connects:
- Drivers
- Locations

Edge Resource - Vehicle allocation
- Kitchen resources
- People availability
- Capacity limits

Input: resource demands
Output: allocation status
Monitor: resource_state() → alerts
Optimize: resource_adjust()

Connects:
- All roles
- All resources

Edge Safety - Oven monitoring
- Driving safety
- Food safety
- Critical rules

Input: safety requirements
Output: violation alerts
Monitor: safety_state() → alerts
Enforce: safety_rules()

Connects:
- All roles
- Critical tasks

Human Verification Certain constraints require explicit human input to ensure that the planning
process takes into account subtle interpersonal and individual considerations. These include:

• Family Dynamics
– Preferred pickup arrangements for Grandma.
– Optimal relationship-based task pairings.
– Social comfort factors in assignments (e.g., Sarah and Grandma do not share a kitchen).

• Personal Capabilities
– Individual cooking experience levels.
– Driver comfort with airport navigation.
– Multi-tasking abilities of participants.

This separation ensures that agents focus on collecting quantifiable data while humans provide
essential social and personal insights. MP can then integrate both types of information into the final
workflow design.

E.3 AGENT REQUIREMENTS AND ASSIGNMENTS

TheMP requires two categories of agents.MP specifies their requirements in the protocol buffer
format in Table 13 for the nodes and Table 13 for the edges, respectively.

Each agent must implement these protocols to participate in the workflow. The meta-planner selects
agents from the pool based on their ability to satisfy these interface requirements. During execu-
tion, agents communicate through these standardized protocols while maintaining their specialized
monitoring functions.
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E.4 MONITORING PROTOCOLS AND DYNAMIC ADJUSTMENTS

The workflow monitoring operates through a hierarchical protocol system that enables both routine
supervision and dynamic adjustments.

Basic Monitoring Protocol Each agent maintains a continuous monitoring cycle:

monitor : State→ {normal, warning, violation} (6)

For example, the temporal agent tracks schedule adherence:

∆t = tplanned − tactual


normal if |∆t| < buffer
warning if buffer ≤ |∆t| < τ

violation if |∆t| ≥ threshold τ

(7)

Dynamic Adjustment Mechanism When deviations occur, the system initiates a three-phase
response:

1. Impact Assessment:

impact(e) =
∑

n∈affected(e)

severity(n)× urgency(n) (8)

2. Solution Generation:
S∗ = argmin

s∈Solutions
{cost(s)|feasible(s)} (9)

3. Coordination Protocol:
update : (Wcurrent, S

∗)→Wnew (10)

For instance, if James’s flight is delayed:
• Spatial agent detects arrival time change
• Temporal agent calculates ripple effects
• Role agents evaluate reassignment options
• Safety agent verifies continued supervision coverage

The meta-plannerMP coordinates these responses while maintaining global constraint satisfaction.

E.5 INTEGRATED WORKFLOW NETWORK

Table 14 presents the resulting workflow network W∗, which includes all nodes and edges, and their
assigned agents and protocols.

1. Role Nodes:
• Cook1: Sarah (primary) or Grandma (if at home) with 4-hour turkey + 2-hour sides
• Driver1: James (after car rental) or Michael
• Driver2: Available person after initial pickups
• Supervisor: Must be present while turkey cooks

2. Dependencies:
• Temporal: Verified airport processing + travel times
• Spatial: Traveling routes with traffic consideration
• Safety: Continuous oven supervision requirement

3. Agent Monitoring:
• Temporal Agent: Schedules with verified buffer times
• Spatial Agent: Real-time location and route mgmt.
• Safety Agent: Role coverage for supervision

E.6 AGENT INTERACTION SPECIFICATIONS

Please, see Table 15.
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Table 15: Agent Interaction Protocols and State Transitions

Interaction Type Protocol State Transitions Validation Rules
Node-to-Node Interactions
Cook↔ Supervisor Protocol: cooking_handoff()

Message: (task, duration, reqs.)
States: prep → cooking → comp.
Trigger: task_state_change()

Validate: coverage()
Alert: coverage_gap()

Driver1 ↔ Driver2 Protocol: pickup_handoff()
Message: (location, time, passenger)

States: available → enroute → comp.
Trigger: location_change()

Validate: timing_feasible()
Alert: schedule_conflict()

Edge Agent Operations
Temporal Agent Protocol: schedule_monitor()

Message: (event, time, dependencies)
States: scheduled → active → comp.
Trigger: time_milestone()

Validate: timing_feasible()
Alert: delay_impact()

Spatial Agent Protocol: location_track()
Message: (actor, position, dest.)

States: idle → moving → arrived
Trigger: position_update()

Validate: route_feasible()
Alert: travel_delay()

E.7 AUGMENTED PROBLEM STATEMENT REVISED WITH W*

Given the W∗ generated by Alas’s meta-plannerMP , the Thanksgiving Dinner Planning problem
statement is revised as follows:

Initial Setup:
• Mom (Sarah) is hosting Thanksgiving dinner at 6:00 PM in Boston. The following family

members are traveling:
• Dad (James) flying from San Francisco, landing at 1:00 PM Eastern time.
• Sister (Emily) flying from Chicago, landing at 2:30 PM
• Brother (Michael) driving from New York, estimated arrival 3:00 PM at home
• Grandma is healthy and needs to be picked up from her home in suburban Boston

* Common Sense Augmented Constraints:
• The airport luggage pickup time after landing is 30 minutes.
• Renting a car takes 30 minutes.
• One person can simultaneously prepare turkey and side dishes.
• Grandma prefers Michael to pick her up, provided that it does not cause the dinner time delay

(soft constraint).
• Grandma and Sarah prefer not to cook together in the kitchen.
• The best turkey receipt and baking instructions included.
• Traffic congestion is not factored into current planning.

Planning Validation Set:
1. All tasks and dependencies must be strictly observed in the plan, or the plan fails.
2. Dinner time is strictly at 6:00 PM, all tasks must be completed by then (redundancy).
3. Account for the idle time of each person.
4. The schedule consists of three columns: time, task, and assigned person(s).

E.8 EXPERIMENT #1: SEQUENTIAL PLANNER WITH COMMON SENSE

The first experiment utilized the augmented problem specification with common sense reasoning,
incorporating realistic constraints such as luggage claim time and rental car pickup time.

We evaluated four standalone LLMs alongside ALAS. Both ALAS and Gemini consistently generated
feasible schedules similar to Table 16, while other LLMs encountered significant challenges.

Upon analyzing the number of iterations required for a feasible plan, DeepSeek and Claude each
needed one revision (two iterations), while GPT4o required two revisions (three iterations). In terms
of scheduling quality—measured by slack time, total driving distance, and load balance—DeepSeek
(Table 16) outperformed both GPT4o (Table 17) and Claude (Table 18). DeepSeek optimized
efficiency by having James wait at the airport for 30 minutes to pick up Emily. In contrast, Claude
inefficiently scheduled James to drive home and then return to the airport for Emily, creating
unnecessary travel. GPT4o assigned James to return home and tasked Michael with separately
picking up Emily and then Grandma, resulting in suboptimal load distribution. A more efficient
solution would have scheduled Michael to collect Emily first, then proceed with her to Grandma’s
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Table 16: DeepSeek’s Plan, Two Iterations

Time Task Assigned

1:00 PM James lands at Boston James
1:00–1:30 PM James picks up luggage James
1:30–2:00 PM James rents a car James
2:00 PM Turkey in oven (4 hours; re-

quires monitoring)
Sarah

2:00–3:00 PM James waits at airport (idle) James
2:30 PM Emily lands at Boston Emily
2:30–3:00 PM Emily waits for luggage Emily
3:00 PM James picks up Emily James
3:00 PM Michael arrives home Michael
3:00 PM Michael departs to Grandma Michael
3:30 PM Michael picks up Grandma Michael
3:30–4:00 PM Michael drives back home with

Grandma
Michael

3:00–4:00 PM James drives Emily home (air-
port to home: 1 hour)

James

4:00 PM James and Emily home James
4:00 PM M. and Grandma home Michael
4:00–6:00 PM Sarah prepares side dishes Sarah
6:00 PM Thanksgiving dinner begins All

home, allowing all three to return together—saving 30 minutes of driving time while enhancing
Grandma’s experience of seeing both grandchildren simultaneously.

Table 17: GPT4o’s Plan, Three Iterations

Time Task Assigned

1:00 PM Land at BOS Airport James
1:00-1:30 PM Luggage pickup James
1:30-2:00 PM Rent car James
2:00 PM Start turkey Sarah
2:00-3:00 PM Drive home James
2:30 PM Land at BOS Airport Emily
3:00 PM Arrive home Michael
3:00-4:00 PM Drive to airport, pick up Emily Michael
4:00-5:00 PM Return home with Emily Michael
5:00-5:30 PM Drive to Grandma’s Michael
5:30-6:00 PM Return with Grandma Michael
4:00-6:00 PM Prepare side dishes Sarah
6:00 PM Dinner served All

Table 18: Claude’s Plan, Two Iterations

Time Task Assigned

1:00 PM Land at BOS Airport James
1:00-1:30 PM Luggage pickup James
1:30-2:00 PM Rent car James
2:00 PM Start turkey Sarah
2:00-3:00 PM Drive home James
2:30 PM Land at BOS Airport Emily
3:00 PM Arrive home Michael
3:00-4:00 PM Drive to airport, pick up Emily James
4:00-5:00 PM Return home with Emily James
4:30-5:00 PM Drive to Grandma’s Michael
5:00-5:30 PM Return with Grandma Michael
4:00-6:00 PM Prepare side dishes Sarah
6:00 PM Dinner served All

E.8.1 OBSERVATIONS OF ERRORS IN STANDALONE LLMS

Although DeepSeek and Claude eventually produced feasible static plans in their second iterations,
Tables 19 and 20 highlight critical errors in their initial attempts.

These errors included misestimated travel times (calculating 60-minute trips as 45 or 30 minutes,
highlighted in shaded red) and implausible scheduling decisions, such as beginning turkey preparation
at 10 AM or allowing James to depart the airport without Emily.

Such failures result from context erosion in extended prompts Liu et al. (2024); Xiao et al. (2024) and
expanding context windows. Research demonstrates that extended contexts accelerate information
loss Park et al. (2023); Wei et al. (2023), leading to constraint violations. ALAS circumvents these
issues through its modular architecture, where specialized agents process only domain-relevant
information while independent validation mechanisms ensure constraint adherence.

Handling Long Dependencies Complex scheduling problems reveal cascading errors when de-
pendencies overlap. Critical constraints, particularly those involving multiple factors, frequently get
dropped during iterative problem-solving.
Reason: Cognitive limitations restrict simultaneous constraint tracking, making exhaustive verifica-
tion challenging in single processing passes.
Solution Framework:
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Table 19: Family Reunion - Claude. Gray indi-
cates questionable, red wrong time calculation.

Time Task Assigned

1 0:00 Put turkey in oven (4-hour) S

1 3:00 James lands at BOS J

1 3:30 James rents car at BOS J

1 4:00 James leaves airport for home J

1 4:30 Emily lands at BOS E

1 5:00 James & Michael arrive home; J, M

1 5:15 M leaves to pick up E from BOS M

1 5:30 S begins side dishes (2-hour) S

1 6:15 M arrives at BOS to pick up E M, E

1 6:30 James leaves to pick up Grandma J

1 7:00 J arrives at G’s house J, G

1 7:00 Michael and Emily arrive home M, E

1 7:30 J and G home; side dish done J, G, S

1 8:00 Turkey complete, dinner ready All

Table 20: Family Reunion - DeepSeek. Red indi-
cates wrong time calculation.

Time Task Assigned

1 2:00 S starts cooking the turkey (4 hours, ready
by 16:00)

S

1 3:00 J lands at BOS and rents a car J

1 3:30 James drives from BOS to Grandma’s J

1 4:30 James picks up Grandma, Emily lands J, G

1 5:00 Michael home (from NY) M

1 5:15 James and Grandma arrive back home (30
min drive)

J, G

1 5:15 M leaves to pick up E from BOS (60 min
round trip)

M

1 6:00 Turkey done; S starts side dishes (2 hours) S

1 6:15 M and E return home from BOS M, E

1 8:00 Family reunion dinner begins with all
members present

All

• Isolate and systematically enumerate atomic task dependencies.
• Implement comprehensive verification of global constraint satisfaction.
• Develop robust mechanisms for systematic conflict resolution.

Stale Memory and Iterative Revisions Iterative solutions risk propagating errors due to incomplete
constraint resets.
Reason: Excessive reliance on previous solutions without comprehensive constraint re-evaluation
leads to compounding errors.
Relation to Gödel’s Incompleteness:
• Formal systems capable of arithmetic necessarily contain unprovable truths.
• Similarly, inherited solution errors inhibit consistent constraint satisfaction.
• Clean-state resets become essential for systematic error prevention.

Implementation Strategy Reset to a clean baseline state for each iteration, thoroughly re-evaluating
all constraints.
Core Challenges:
• Effective management of nested dependencies.
• Prevention of residual errors across iterations.
• Maintenance of cross-iteration consistency.

Table 21: Sequential Planning. (# = iterations)

LLM # Notable Features

DeepSeek 2 Optimized airport wait time for James; balanced workload
Claude 2 Unnecessary travel between pickup tasks (no need to go home before next pickup)
GPT4o 3 Extra travel for Michael; suboptimal load balance

Table 21 synthesizes the detailed schedules documented in Tables 16, 17, and 18. DeepSeek
demonstrated good scheduling efficiency by optimizing James’s airport wait time for Emily’s pickup,
requiring only two iterations for convergence. Although GPT4o eventually produced a valid solution
after three iterations, it created suboptimal travel patterns with redundant trips by Michael. Claude’s
solution, though feasible in two iterations, incorporated unnecessary travel between pickup tasks. In
contrast to the inconsistent performance of standalone LLMs, ALAS consistently generated feasible
and efficient plans in all test runs.

E.9 EXPERIMENT #2: REACTIVE PLANNER FOR FLIGHT DELAY

This disruption scenario was stated in the main body of the paper in Section F.2. Under the prompt
for reactive planning, it states the disruption as: “At noon, James’ flight is delayed until 4:00 PM.
Update the schedule to meet the deadline at 6:00 pm while meeting all constraints.”
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We tested only ALAS, DeepSeek and Claude 3.7 for disturbance handling, because they survived
sequential planning. ALAS successfully generated a feasible reactive plan, whereas DeepSeek and
Claude 3.7 failed.

The challenge: James (assigned to pick up Emily) is delayed until 4:00 PM. Both DeepSeek and
Claude failed in seven out of ten runs by: (1) scheduling Emily for a taxi, violating family pick-up
constraints; (2) delaying or missing Grandma’s pickup; or (3) missing the dinner deadline. An
example failed schedule (the name of the LLM is purposely concealed) is presented in Table 22,
where one can see that when all family members are ready to eat the delicious turkey, “oops, Grandma
was not picked up.”

Table 22: Failed Reactive Planning Schedule with Flight Delay Disruption

Time Task Explanation

(Before Noon) Tasks like initial prep are underway The disruption is received at noon.
2:00 PM Sarah puts turkey in the oven. Unchanged: Critical path for food. Sarah must stay home to

supervise (2:00 PM - 6:00 PM).
2:30 PM Emily lands at BOS. Unchanged: Sister’s flight arrives as scheduled.
3:00 PM Michael arrives home. Unchanged: Brother arrives from NY. New Role: He is now

the designated driver for Emily’s pickup.
∼3:15 PM Michael departs home for BOS Airport. Michael must leave soon after arriving to pick up Emily. (60

min travel time to BOS).
4:00 PM James lands at BOS. Disruption Effect: Dad arrives 3 hours later than planned.
4:00 PM Sarah starts cooking side dishes. Unchanged: Side dishes still need 2 hours. Sarah starts them as

she is the only one home.
4:00 - 5:00 PM James deplanes, gets luggage, rents a car. Delayed: James needs to rent a car after landing.
∼4:15 PM Michael arrives at BOS Airport. Michael reaches the airport to meet Emily.
∼4:15 - 4:45 Michael and Emily meet at BOS Allow time for Emily to get luggage and meet Michael.
∼4:45 PM Michael and Emily depart BOS for home. They begin the 60-minute drive home.
∼5:00 PM James departs BOS for home (in rental car). James starts his 60-minute drive home after getting rental car.
∼5:45 PM Michael and Emily arrive home. Brother and Sister are home.
6:00 PM James arrives home. Dad arrives home just in time for the planned dinner.
6:00 PM Dinner Time Turkey and side dishes are ready. Sarah, Michael, Emily, and

James are home.

P OST 6:00
PM

Grandma’s Pickup - Unresolved Major Impact: With James arriving at 4:00 PM and needing an
hour for car rental (leaving BOS at 5:00 PM), he cannot pick up
Grandma and return by 6:00 PM. Michael is busy with Emily’s
pickup until 5:45 PM and cannot make the ∼1.5 hr round trip
for Grandma before 6:00 PM. Sarah must supervise the oven.
Under these constraints, Grandma cannot join the 6:00 PM
dinner.

These failures are due to greedy rescheduling and increased context loss during replanning. Studies
confirm that longer contexts can worsen reliability Wei et al. (2023); Zhang et al. (2023). ALAS
generated feasible plans in all runs by: (1) updating James’s state in persistent memory; (2) detecting
conflicts systematically; (3) evaluating alternatives; and (4) validating all constraints. Following
LRCP (Local Reactive Compensation Protocol, depicted in Algorithm ??), ALAS produced four
distinct solution patterns, all feasible. While requiring 2.5× the computation time (12.1s vs. 4.8s),
this overhead ensures feasibility, crucial in time-sensitive domains.

F ADDITIONAL CASE STUDIES AND ANALYSIS

ALAS’s Reactive Plan and Stateful Explanation. ALAS proposes a simple yet effective reroute:
Michael drives straight to Boston Airport rather than stopping at home first. This common-sense
spatial adjustment—overlooked by the other LLMs—originates fromMP’s state-aware reasoning
module. After collecting Emily, Michael proceeds directly to Grandma’s house, trimming roughly 30
minutes of travel and giving Grandma the pleasant surprise of seeing two grandchildren arrive together.
Table 23 lists the resulting feasible schedule. The critical advantage is that ALAS’s continuous tracking
of each participant’s state and history enables timely compensations and preserves the on-time family
reunion.
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Table 23: ALAS Reactive Plan: Optimized routing via persistent state history and compensation.

Time Task Assigned

12:00 PM James’ delay known, Michael on his way from NYC to home,
is rerouted to Boston airport to meet Emily (4-hour drive).

Michael

2:00 PM Start cooking turkey Sarah
2:30 PM Emily lands at Boston Emily
3:00 PM Emily gets her luggage Emily
3:00 PM Michael arrives at Logan airport, picks up Emily. Michael
3:00–4:00 PM Michael drives Emily home Michael
4:00 PM Michael departs for Grandma Michael
4:00 PM James lands at Boston Airport James
4:00–4:30 PM James picks up luggage James
4:30–5:00 PM James rents car (30 minutes). James
4:30 PM Michael arrives at Grandma’s Michael
5:00 PM Michael & Grandma arrive home. Michael, Grandma
5:00–6:00 PM James drives home from BOS James
4:00–6:00 PM Sarah prepares side dishes (overlaps with turkey). Sarah
6:00 PM James arrives home. Dinner served. All

Table 24: Dynamic Urban Ride-Sharing

Objectives: Schedule vehicles to deliver passengers to
airport during [8:45, 9:00], minimizing vehicle travel
distance while ensuring on-time arrivals and maximizing
passenger satisfaction.
Locations: Seven locations: V = {A,B, · · · , F},
where G is Boston Airport (BOS). Urban locations A–F
are all 10 km apart, airport distances 30+ km.[

A B C D E F

→ G 35 33 36 34 32 31

]

Travel Speed: (A–F ) 60, (A–F → G) 100 km/h
Passenger Requests: with BOS arrival deadlines:
- r1: A, to G by 08:45 - r2: B, to G by 08:50
- r3: C, to G by 08:55 - r4: D, to G by 09:00
Available Vehicles (Capacity 2 passengers):
- k1: at A, k2: at C, and k3: at E
- Battery levels: k1: 90%, k2: 75%, k3: 60%
Potential Disruptions: New passenger requests, vehi-
cle availability changes (battery levels/breakdowns at
0.05/hour), and traffic delay, etc. Replanning may re-
quire rolling back promised pickup time to the existing
passengers and replan for all.

Table 25: Family Reunion Planning Problem

Objectives: On time family reunion dinner at 6:00 PM
Family Members and Arrivals:
- Sarah (Mom): Host, at home
- James (Dad): Lands at BOS 1:00 PM from SF
- Emily (Sister): Lands at BOS 2:30 PM from Chicago
- Michael (Bro): Driving, arrives 3:00 PM from NY
- Grandma: Needs pickup from suburban Boston
Cooking Requirements:
- Turkey: 4 hours cooking time; side dishes: 2 hours
- Someone must stay home during oven baking time
Transportation Constraints:
- James must rent car after landing
- Emily requires airport pickup
- Travel times: Home to BOS Airport: 60 min
- Travel times: BOS Airport to Grandma’s: 60 min
- Travel times: Home to Grandma’s: 30 min
Key Constraints:
- All family members home before 6:00 PM
- Turkey and sides ready by 6:00 PM
- All pickups completed with available drivers
- Oven baking supervision maintained

F.1 CASE STUDY 1: TRANSPORTATION SCHEDULING

Purpose: conclude the illustrative example and show that even simple problems cause standalone
LLMs to miss basic planning requirements.

PROBLEM. The Urban Ride Sharing (URS) problem (Table 24) coordinates vehicles to deliver
passengers before deadlines while minimizing distance, with mid-execution disruptions.

SETUP. Initial: “Create an optimal schedule for this ride-sharing scenario that minimizes total travel
distance while meeting all passenger deadlines: [Table 24].” Reactive: “Passenger r2 cancels at 8:05;
a new passenger r5 at F requests pickup with a 9:30 deadline. Update the schedule.” ALAS augments
prompts with structured workflow templates (Alg. 1) and role-based instantiation. Ten independent
trials; we report mean±sd.

#1. Sequential planning. All models met deadlines; ALAS achieved superior efficiency: 95.1±
13.0 km vs. 118.9±16.6 km for baseline LLMs (20% improvement, p < 0.01). Figure 8 shows the
ALAS schedule.

#2. Reactive planning. With r2 canceled (8:05) and r5 added (8:10), ALAS repaired successfully
in all runs. Baseline LLMs commonly lost vehicle state, duplicated assignments, or ignored updated
deadlines—consistent with structural limits and statelessness (Sec. 2.1). Full results: Appx. D.
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Figure 8: Comparison of ride-sharing solutions generated by Alas and baseline LLMs. (Left) Mean
total travel distance (km) with standard deviation error bars over 10 independent runs for each method,
illustrating Alas’s improved efficiency. (Right) Optimal schedule generated by Alas for the URS task,
utilizing two vehicles (k1, k2) to serve four passengers (r1-r4).

F.2 CASE STUDY 2: EVENT COORDINATION

This study shows why standalone LLMs often fail even in static planning and behave inconsistently
in reactive settings, while ALAS remains stable across both.

Problem. The Family Reunion problem (Table 25): coordinate pickups, cooking, and shared
resources with a 18:00 dinner deadline.

Set up. All methods: “Create a detailed schedule that satisfies all constraints: [Table 25].” Reactive:
“At noon, James’ flight is delayed to 16:00. Update the schedule to meet the 18:00 deadline.” ALAS
uses Algorithm 1; ten independent runs.

#1. Sequential planning. ALAS produced a feasible schedule in all runs; baselines frequently
violated hard constraints and required retries (Tables 19, 20 in Appx. E). Typical errors: travel-time
arithmetic (e.g., 60 min treated as 30–45 min), commonsense slips (e.g., cooking far too early). Root
cause: long-context degradation Liu et al. (2024); Xiao et al. (2024). ALAS confines context per
agent and employs an independent validator before finalization. A small commonsense agent inserts
realistic slack (e.g., luggage pickup); see Appx. E.2.3.

#2. Reactive planning. Under a delay to 16:00, DeepSeek and Claude failed in 7/10 runs (e.g.,
violating pickup constraints, missing 18:00). Greedy one-shot rescheduling with longer prompts
exacerbated context loss Wei et al. (2023); Zhang et al. (2023). ALAS succeeded in all runs via LCRP:
logging state, detecting conflicts, testing alternatives, and re-validating locally. Full logs: Appx. E.
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