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Abstract

Self-attributing neural networks (SANNs) present
a potential path towards interpretable models for
high-dimensional problems, but often face sig-
nificant trade-offs in performance. In this work,
we formally prove a lower bound on errors of per-
feature SANNs, whereas group-based SANNs can
achieve zero error and thus high performance. Mo-
tivated by these insights, we propose Sum-of-Parts
(SOP), a framework that transforms any differen-
tiable model into a group-based SANN, where fea-
ture groups are learned end-to-end without group
supervision. SOP achieves state-of-the-art perfor-
mance for SANNs on vision and language tasks,
and we validate that the groups are interpretable
on a range of quantitative and semantic metrics.
We further validate the utility of SOP explanations
in model debugging and cosmological scientific
discovery. 1

1 Introduction
Machine learning (ML) models are powerful at complex
tasks, but also notoriously opaque. In high-stakes domains
such as science (Li et al., 2021; Zednik & Boelsen, 2022)
and medicine (Reyes et al., 2020; Tjoa & Guan, 2021),
experts need explanations to trust the models’ decisions. For
instance, physicists use interpretable coefficients to validate
an ML model’s rediscovery of Kepler’s first law (Li et al.,
2021), while physicians require explanations to trust ML-
driven diagnostic decisions (Klauschen et al., 2024).
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Figure 1. Sum-of-Parts (SOP) linearly aggregates outputs from
multiple feature groups. This maintains performance while en-
suring interpretability. SOP first generates groups using a group
generator Γ, predicts with a pre-trained backbone h, and aggre-
gates the group predictions with a group selector θ.

Self-explaining neural networks (SENNs) were proposed as
a way to create neural networks with guaranteed linear inter-
pretations (Alvarez Melis & Jaakkola, 2018). Specifically,
SENNs express predictions as linear combinations of inter-
pretable atoms scaled by learnable coefficients, a natural
generalization of the statistical interpretation of the classic
linear model. These interpretable atoms represent semantic
notions such as object segments in images or example image
prototypes (Alvarez Melis & Jaakkola, 2018).

A common class of self-explaining neural networks, which
we refer to as Self-Attributing Neural Networks (SANNs),
use embedded feature subsets as interpretable atoms (Bren-
del & Bethge, 2019; Jain et al., 2020; Agarwal et al., 2021).
SANNs have predictions faithfully decomposable as linear
combinations of feature subset contributions. On the other
hand, post-hoc feature attributions fail to pass the sanity
checks for faithfulness (Sundararajan et al., 2017; Adebayo
et al., 2018).

However, SANNs often exhibit performance trade-offs and
rely on specific components such as per-feature modules in
NAM (Agarwal et al., 2021), convolutional layers in Bag-
Net (Brendel & Bethge, 2019), or attention mechanisms
in FRESH (Jain et al., 2020). This architecture require-
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ment hinders SANN from leveraging pre-trained models
that achieve high performance on target tasks.

To understand these limitations, we first analyze a theoreti-
cal barrier that limits SANN’s performance. Specifically, we
prove a lower bound on the error of a class of self-attributing
neural networks that we refer to as per-feature SANNs. This
result shows that it is impossible for per-feature SANNs to
achieve high performance when features are highly corre-
lated, a critical limitation in high-dimensional vision and lan-
guage data. In contrast, we further prove that group-based
SANNs can achieve high performance in these settings, but
require a careful selection of feature groups.

To overcome these provable limitations for per-feature
SANNs and inflexible group-based SANNs, we propose
Sum-of-Parts (SOP), a flexible framework that transforms
any differentiable model into a group-based SANN (Fig-
ure 1). Specifically, given a backbone model and an input,
the framework (1) identifies feature groups with a learned
attention module, (2) encodes each group using a model-
agnostic backbone, and (3) aggregates predictions with a
second sparse attention module. This framework can then
be learned end-to-end with only the final prediction labels,
notably without the direct supervision of feature groups.
Learned feature groups can capture the dynamic correla-
tions in high-dimensional data, enabling SOP to overcome
the theoretical limitations of per-feature and fixed-group-
based SANNs.

Our main contributions are as follows:

1. We propose Sum-of-Parts (SOP), a model-agnostic
framework which transforms any model into a group-
based SANN. The groups in SOP are end-to-end learn-
able without the need for group label supervision.

2. We formally prove that groups are essential for SANNs
to achieve low errors for highly correlated features.
In contrast, we prove a lower bound on per-feature
SANNs’ errors, which grows as the number of features
increases.

3. We show that SOP achieves state-of-the-art perfor-
mance among SANNs on vision and language tasks
as informed by the theory, with learned interpretable
groups validated on a range of quantitative and seman-
tic metrics.

4. We validate the utility of SOP in debugging if cor-
rect/incorrect model predictions rely more on the back-
ground/objects, as well as a scientific discovery setting
within cosmology by using the groups and scores to
uncover new insights about galaxy formation.

2 Overcoming Self-Attributing Neural
Networks’ Limitations with Groups

In this section, we first review self-attributing neural net-
works (Section 2.1), and prove that the poor performance
of previously explored per-feature SANNs is theoretically
limited due to correlated features in high dimensional data
(Section 2.2). In contrast, we further prove that group-based
SANNs can overcome these fundamental limitations, moti-
vating our proposed framework for learnable group-based
SANNs (Section 2.3).

2.1 Self-Attributing Neural Networks

Self explaining neural networks model predictions as a lin-
ear combination f(x) =

∑
i θ(x)ih(x)i, where θ(x) are

linear coefficients and h(x) are referred to as interpretable
atoms (Alvarez Melis & Jaakkola, 2018). A common strat-
egy for creating self-explaining neural networks is to use
feature subsets as interpretable atoms. For example, Bag-
Net (Brendel & Bethge, 2019) or Neural Additive Mod-
els (Agarwal et al., 2021) decompose predictions into a
linear combination of terms, where each term is directly
computed from and attributed to a subset of input features.
We denote such models, which combine the interpretability
of linearity with guaranteed attributions to input features, as
Self-Attributing Neural Networks (SANNs).

Definition 2.1. A self-attributing neural network f : Rd →
R given input x ∈ Rd decomposes predictions as follows:

f(x) =

m∑
i=1

θ(x)ih(xGi
) (1)

where θ(x) ∈ Rm are linear coefficients, and h(xGi
) ∈ Rm

are embeddings of the feature subset xGi
corresponding to

the subset Gi ⊆ [d]. Note that m can be different from the
number of raw features d.

The resulting linear combination constitutes a faithful-
by-construction explanation for the decision process of
the model (Lyu et al., 2024). SANNs are only as inter-
pretable as the underlying feature subsets (Alvarez Melis &
Jaakkola, 2018; Zytek et al., 2022), and different SANNs
have explored various feature subsets xGi

. For example,
NAM (Agarwal et al., 2021) uses individual features, Bag-
Net (Brendel & Bethge, 2019) relies on large patches, and
FRESH (Jain et al., 2020) selects a single subset using at-
tention scores. However, across these subsets, SANNs have
consistently exhibit significant trade-offs in performance in
exchange for interpretability. In this section, we theoreti-
cally analyze the underlying cause for this trade-off and how
SANNs can overcome these barriers.
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(b) Minimum total deletion error for monomials.

Figure 2. Errors for per-feature SANNs grow fast unavoidably. The minimum (a) total insertion error of monomials of size d and (b) total
deletion errors of binomials of size d are the minima over all possible per-feature self-explaining models. The dots are the lower bounds
computed by the solver, while the line is a best-fit exponential function.

2.2 Lower Bounds on the Error of Per-feature SANNs

One class of SANNs uses individual features as interpretable
atoms (Agarwal et al., 2021), where each feature sub-
set Gi = {i} and the corresponding interpretable atom
h(xGi

) = h(xi) is the encoding of exactly one feature xi.
We begin by analyzing the error of per-feature SANNs.

In order for such models to be accurate, the contribution
of a feature to the true label should match the change in
prediction when the feature is removed or added. Similarly,
the contribution of a subset,

∑
Gi⊆S αi, should capture the

change in prediction when the subset S is excluded or in-
cluded. We formalize this difference between a SANN
prediction and the ground truth when inserting or deleting
subsets of features as insertion and deletion errors, respec-
tively.
Definition 2.2. (Insertion Error) Let αi = θ(x)ih(xGi

) be
the total contribution of the ith feature group to the predic-
tion of a SANN. Then, the insertion error of a self attribut-
ing neural network f(x) =

∑m
i=1 θ(x)ih(xGi) =

∑
i αi

for a target function f∗ : Rd → R when inserting a subset
of features S to an input x is

InsErr(G,α, S) =

∣∣∣∣f∗(xS)− f∗(0d)−
∑
Gi⊆S

αi

∣∣∣∣
where (xS)j =

{
xj if j ∈ S

0 otherwise

The total insertion error over all possible insertions is∑
S⊆[d] InsErr(G,α, S).

The insertion error captures the difference between the
ground truth effect of inserting a subset of features S and the
corresponding change in the SANN. If these two quantities
are close, then the error is low. The insertion error of a per-
feature SANN is a special case where G = {{1}, . . . , {d}}.

For brevity of presentation, in this section we focus on
insertion, and present analogous definitions and theorems
for deletion to Appendix A. We note that the insertion and
deletion procedures are analogous to insertion and deletion
tests for post-hoc explanations (Petsiuk et al., 2018; Samek
et al., 2017), but used here to capture the error of a SANN.

Error Lower Bounds for Data with Correlated Features.
We now prove that it is impossible for per-feature SANNs
to perform well when the data contains correlated features.
Specifically, in Theorem 2.3, we show that when estimating
polynomials function with correlated features, per-feature
SANNs have a non-trivial lower bound on the total insertion
error.

Theorem 2.3 (Lower Bound on Insertion Error for Bino-
mials). Let p : {0, 1}d → {0, 1, 2} be a multilinear bi-
nomial polynomial function. Furthermore suppose that
the features can be partitioned into (S1, S2, S3) of equal
sizes where p(x) =

∏
i∈S1∪S2

xi +
∏

j∈S2∪S3
xj . Then,∑

S⊆[d] InsErr(G,α, S) ≥ Dins(λ̂), where Dins(λ̂) =

(λ̂1 − λ̂2)
⊤c is the lower bound, λ̂ is a dual feasible point,

and c is a constant as defined in (16).

To derive this lower bound, we formulated the minimum
total error of any SANN as a linear program, and used a
dual feasible point to compute a lower bound. The proof
and an analogous theorem for deletion error on monomials
(Theorem A.2) are presented in Appendix A.

Lower Bounds Grow Rapidly with Dimension. In Fig-
ure 2, we calculate the lower bound using ECOS (Domahidi
et al., 2013) and plot the lower bound for total insertion and
deletion errors as the feature dimension grows (Figure 2),
and observe that these errors increase exponentially with
d. Altogether, these theoretical lower bounds and empirical
trends suggest that per-feature SANNs are fundamentally in-
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Algorithm 1 The Sum-of-Parts Framework

Require: Backbone Pred h, Backbone Encoder hh, Embedding Model he, Class Weights Ch

Require: GroupGen Γ, GroupSelect θ, Number of Groups m, Input x

(g1, . . . , gm)← Γ(x)← SoftSelfAttnτ=0.2 (he(x)) {Group Generating (trained)}

for i = 1→ m do
yi ← h(gi ⊙ x) {Predicting with frozen Backbone}

end for

z ← (hh(g1 ⊙ x), . . . , hh(gm ⊙ x))

(c1, . . . , cm)← θ(Γ(x), x)← SparseCrossAttn (Ch, z) {GroupSelect (trained)}

y ←
∑m

i=1 ciyi

capable of modeling high-dimensional data, as they cannot
model even simple polynomials.

2.3 Group-based Self-Attributing Neural Networks
Can Overcome the Performance Barrier

The fundamental limitation of per-feature SANNs comes
from its choice of interpretable atom: individual features are
unable to capture correlations between multiple features. If
we allow SANNs to use more expressive interpretable atoms
composed of feature groups, can we get past this limitation?
To answer this question, we carry out an analogous analysis
for more general, group-based SANNs.

In this section, we summarize our main theoretical result in
Theorem 2.4: we prove that there exist group-based SANNs
that can not only perfectly capture the earlier settings in
Theorem 2.3 (and Theorem A.2 in the appendix), but also
far more complex, general polynomials with zero error. In
other words, the right groups can enable SANNs to capture
correlated signals and overcome the performance barrier.
Theorem 2.4 (Informal: Zero Group Insertion and Dele-
tion Error). For any general m-nomial polynomial p, hav-
ing at most m groups is sufficient for a group-based self-
attributing neural network to achieve zero insertion and
deletion error. See Theorem A.5 for full theorem and proof.

Intuitively, a SANN can achieve low error if its groups
align with the correlations in the data. Specifically, con-
sider data generated from a polynomial with multiple terms
p(x) = q1(xG′

1
) + . . . qm(xG′

m
), where each qi(xG′

i
) is a

multiplicative term that depends on the group of features
in G′

i. Then, a group-based SANN can achieve low error
if each correlated feature group G′

i aligns with a SANN
group Gi. On the other hand, misaligned or insufficiently
many groups lead to nonzero errors, highlighting how group-
alignment is key to SANN performance.

While this theorem demonstrates that SANNs can model
highly complex polynomials, it also provides insight into
why existing SANNs have suffered major performance trade-

offs. For example, SANNs that rely on rigid patterns (Bren-
del & Bethge, 2019), use groups that are too small (Agarwal
et al., 2021) or use too few groups (Jain et al., 2020) are un-
likely to align with the ground truth correlations. In contrast,
a high-performing SANN requires the ability to use many
groups of flexible patterns to capture the diverse signals in
high-dimensional data. These criteria motivate a new type
of SANN that can overcome this theoretical performance
barrier: the Sum-of-Parts framework.

3 The Sum-of-Parts Framework
In this section, we introduce our main technical contribution
Sum-of-Parts (SOP), a framework that transforms any dif-
ferentiable model into a group-based self-attributing model.

Suppose we have an input x ∈ Rd and a backbone model h :
Rd → R that makes a prediction with the input, and we hope
to convert h to a SANN. A SANN requires components to
generate and encode feature subsets and another component
to assign them coefficients.

SOP therefore naturally consists of three parts: a group
generator Γ : Rd → {0, 1}m×d that generates groups
g1, . . . , gm ∈ {0, 1}d, a backbone predictor h : Rd → R
that makes a prediction with each group of features, and a
group selector θ : {0, 1}m×d × Rd → [0, 1]m that assigns
scores to the groups:

f(x) =

m∑
i=1

θ(Γ(x), x)i︸ ︷︷ ︸
group

selector
(trained)

· h(gi ⊙ x),︸ ︷︷ ︸
backbone
predictor

(frozen)

where gi ∈ Γ(x).︸ ︷︷ ︸
group

generator
(trained)

Here we consider a single predicted logit, while the process
can be repeated in batch for multiple logits or classes. Our
algorithm is illustrated in Figure 1 and Algorithm 1.

Group Generator Γ : Rd → {0, 1}m×d takes in an input
x ∈ Rd and outputs m binary group masks g1, . . . , gm ∈
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{0, 1}d, where gij = 1 if and only if the feature j is included
in group gi.2 It uses a multi-headed self-attention mod-
ule (Vaswani et al., 2017) to assign scores to features, and
threshold each attention distribution to include top τ = 20%
features to each group.

Γ(x) = (g1, . . . , gm) = SoftSelfAttnτ=20% (he(x))

where the encoder he : Rd → Rd×e, which we typically
take up to the penultimate layer of the backbone model,
embeds each feature xi into a vector with embedding di-
mension e. The learnable group generator dynamically
creates feature groups for each input, enabling better corre-
lation compared to fixed groups (e.g., patches). Moreover,
it has no specific architectural constraints on the backbone
such as attention mechanisms.

Backbone Predictor h : Rd → R then makes a predic-
tion with the input x masked by each binary group mask
gi:

yi = h(gi ⊙ x), i = 1, . . . ,m

where yi ∈ R is the output logit and⊙ is Hadamard product.
The backbone predictor can be arbitrary high-performing
pre-trained model.

Group Selector θ : {0, 1}m×d × Rd → [0, 1]m then
takes in the encoding of each group and uses a sparse cross-
attention module to assign each group a score.

θ(Γ(x), x) = (c1, . . . , cm) = SparseCrossAttn (Ch, z)

where the query Ch ∈ Rk is initialized using the tar-
get class’s weights with k hidden dimensions and the key
z = (hh(g1⊙x), . . . , hh(gm⊙x)) ∈ Rm×k are last hidden
states of all groups. As using a sparse number of groups
avoids overloading human users, we replace the softmax in
the cross attention with a sparse variant, the sparsemax op-
erator (Martins & Astudillo, 2016). Dynamically assigning
scores allows the model to choose the most helpful groups
for prediction, while the sparse number of groups ensures
easy human interpretability.

The final prediction is made by aggregating predictions
from each group gi with its assigned score ci.

f(x) = y = c1y1 + · · ·+ cmym

To address the gradient flow issue caused by binarized
groups, we incorporate a scaling factor based on the at-
tention score in the final loss, as detailed in Appendix B.3.
Additional details on self-attention, cross-attention, and em-
bedding models are provided in Appendix B.

2We use binary groups to avoid leaking information resulting
in unfaithful explanations.

In summary, the learnable group generator dynamically cre-
ates correlated groups needed for high-performing SANNs,
the model-agnostic framework supports arbitrary backbone
predictors, and the sparse group selector assigns contribu-
tions for a small number of groups. Together, these compo-
nents are essential for SOP to be a high-performing SANN,
as informed by theory in Section 2.

4 Empirical Evaluations of Sum-of-Parts
We conduct experiments using our framework on image and
text tasks to see if our theory-informed framework actually
uses the learned groups for (RQ1) high performance. Next,
we quantitatively measure the interpretability of SOP with
(RQ2) the performance at different inference-time spar-
sity levels, (RQ3) various faithfulness metrics, and (RQ4)
whether the group masks are leaking predictive signals.

Then, we measure the interpretability of SOP semantically
using (RQ5) semantic coherence of the groups. Finally,
we validate SOP’s utility on (RQ6) model debugging for
unwanted behaviors in correct and incorrect predictions and
(RQ7) scientific discovery in cosmology.

Experiment Setups. We evaluate on two vision and one
language datasets: ImageNet-S (Gao et al., 2022) image
classification using Vision Transformer (Dosovitskiy et al.,
2021) backbone, CosmoGrid (Kacprzak et al., 2023) cos-
mology image regression using CNN (Matilla et al., 2020),
and MultiRC (Khashabi et al., 2018) text classification us-
ing BERT (Devlin et al., 2019). We use patches as im-
age features and tokens as text features. For baselines, we
compare with other SANNs including XDNN (Hesse et al.,
2021), BagNet (Brendel & Bethge, 2019), and FRESH (Jain
et al., 2020). Additionally, we convert post-hoc feature at-
tribution methods to self-attributing models by using top
20% scored features as single groups and denote with “-F”
(e.g. “LIME-F”), including LIME (Ribeiro et al., 2016),
SHAP (Lundberg & Lee, 2017), IG (Sundararajan et al.,
2017), GC (Selvaraju et al., 2016), FG (Srinivas & Fleuret,
2019), RISE (Petsiuk et al., 2018), Archipelago (Tsang et al.,
2020), MFABA (Zhu et al., 2024), AGI (Pan et al., 2021),
AMPE (Zhu et al., 2023) and BCos (Böhle et al., 2022). We
use a maximum of 20 groups for SOP and the same 20 for-
ward passes for all controllable baselines (Table 2). Details
for datasets, models and baselines are in Appendix C.

4.1 Performance

(RQ1) How Well Does SOP Perform? As the theory
suggests, SANNs can only perform well with groups of
features that align with underlying correlations. We evalu-
ate whether the learned groups allow SOP to achieve lower
errors comparing to previous SANNs which rely on fixed
or limited feature groups. Table 1 shows that SOP achieves
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Category Method Model-
Agnostic

ImageNet-S - ViT CosmoGrid - CNN MultiRC - BERT
Err.↓ IOU↑ MSE.↓ Pur.↑ Err.↓ IOU↑

- Backbone - 0.097 ± 0.011 - 0.009 ± 0.001 - 0.682 ± 0.021 -

Post-hoc-
Converted

LIME-F Yes 0.327 ± 0.014 0.360 ± 0.012 0.049 ± 0.003 0.375 ± 0.018 0.475 ± 0.031 0.177 ± 0.012
SHAP-F Yes 0.306 ± 0.027 0.391 ± 0.011 0.028 ± 0.002 0.397 ± 0.016 0.455 ± 0.032 0.135 ± 0.020

IG-F Yes 0.581 ± 0.013 0.324 ± 0.003 0.042 ± 0.003 0.391 ± 0.011 0.485 ± 0.027 0.119 ± 0.008
GC-F Yes 0.455 ± 0.016 0.398 ± 0.015 0.036 ± 0.002 0.438 ± 0.019 0.485 ± 0.015 0.099 ± 0.001
FG-F Yes 0.448 ± 0.024 0.511 ± 0.018 0.036 ± 0.002 0.529 ± 0.016 0.396 ± 0.011 0.107 ± 0.005

RISE-F Yes 0.732 ± 0.009 0.131 ± 0.009 0.036 ± 0.003 0.342 ± 0.006 0.366 ± 0.025 0.150 ± 0.018
Archi-F Yes 0.526 ± 0.016 0.290 ± 0.010 0.069 ± 0.002 0.487 ± 0.004 0.515 ± 0.011 0.098 ± 0.002

MFABA-F Yes 0.493 ± 0.016 0.383 ± 0.010 0.035 ± 0.003 0.498 ± 0.014 0.426 ± 0.023 0.113 ± 0.006
AGI-F Yes 0.407 ± 0.011 0.439 ± 0.012 0.040 ± 0.002 0.522 ± 0.010 0.446 ± 0.019 0.147 ± 0.012

AMPE-F Yes 0.484 ± 0.016 0.417 ± 0.012 0.037 ± 0.002 0.366 ± 0.037 0.475 ± 0.028 0.116 ± 0.011
BCos-F3 No 0.954 ± 0.006 0.234 ± 0.003 - - - -

Self-Attributing

XDNN3 No 0.871 ± 0.007 0.332 ± 0.004 - - - -
BagNet3 No 0.501 ± 0.011 0.314 ± 0.016 - - - -
FRESH4 No 0.537 ± 0.020 0.464 ± 0.015 - - 0.386 ± 0.039 0.176 ± 0.016

SOP (ours) Yes 0.267 ± 0.017 0.630 ± 0.006 0.025 ± 0.002 0.647 ± 0.011 0.366 ± 0.021 0.176 ± 0.008

Table 1. (Main Results: Error vs. Purity) This table presents error rate/MSE and IOU/purity metrics results comparing self-explaining
models on ImageNet, CosmoGrid and MultiRC. We find that SOP achieves state-of-the-art performance comparing with all 14 baselines.
The best result for each metric is bolded, and the second-best is underlined. For non-model-agnostic baselines, we only include for
ImageNet-S where specialized pretrained models readily exist. Details of the metrics are explained in Appendix C.

Computation Cost Methods

1× forward pass IG-F, GC-F, FG-F, BCos-F, XDNN, BagNet, FRESH
20× forward passes LIME-F, SHAP-F, RISE-F, MFABA-F, AGI-F, AMPE-F, SOP
O(d2) forward passes Archipelago-F (due to pairwise interaction testing)

Table 2. Computation cost of different attribution methods in terms of number of forward passes. SOP uses 20x forward passes, and we
use the same number of forward passes for perturbation-based baselines that we compare with.

the lowest errors and MSE for all tasks. SHAP-F is the
second best on vision tasks but lags on MultiRC. No other
SANN consistently performs well on all tasks, demonstrat-
ing that SOP’s learnable groups do enable state-of-the-art
performance across diverse settings.

4.2 Quantitative Measures for Interpretability

(RQ2) Can SOP Perform Well at Different Sparsity Lev-
els? Sparser explanations are easier to understand for hu-
mans (Lombrozo, 2007; Poursabzi-Sangdeh et al., 2021),
but the best sparsity level is often unknown at training time.
SOP’s group generator learns to generate groups at a spe-
cific sparsity, and we test whether it performs well across
other sparsity levels without retraining. Figure 3 shows
that as sparsity increases (≥ 80%, keeping ≤ 20% fea-
tures per group), SOP’s error grows more slowly than other
SANNs, maintaining much lower errors at extreme sparsity.
Similar trends are observed in CosmoGrid and MultiRC
(Appendix C.4.2). For MultiRC, FRESH slightly outper-
forms SOP for untrained sparsity levels, as it is optimized
for language tasks. Overall, SOP trained on one sparsity
also performs well on other sparsity levels at inference time.

3Requires specialized architectures and thus only included for
ImageNet-S where pre-trained models exist.
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Figure 3. (ImageNet Sparsity vs. Error ↓) We report how error
increases when sparsity increases (fewer input features are included
in each group), where SOP’s slowest increase is the most desired.

Beyond group size, we examine how the total number of
groups affects performance. Ablation studies on ImageNet-
S using 1, 2, 5, 10, 20 groups show that performance im-
proves with more groups but saturates at 5 groups. Us-
ing only 2 groups increases the error rate by 6 percentage
points compared to 5 groups, suggesting SOP can achieve

4Requires Transformer backbone and not applicable to CNN.
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approximately 4x greater computational efficiency while
maintaining comparable performance.

(RQ3) How Faithful Is SOP with Respect to Classic Met-
rics? While self-attributing neural networks ensure faith-
fulness by construction through linear aggregation, we check
how well SOP performs on classic faithfulness metrics: fi-
delity (Yu & Varshney, 2017; Chen et al., 2019), insertion,
and deletion (Petsiuk et al., 2018; Samek et al., 2017). Fi-
delity measures how well summed explanations match the
model’s prediction using KL-divergence, while insertion
and deletion evaluate the impact of high-scoring features
via perturbations and area-under-curve (AUC) computation.
Definitions and results are in Appendix C.4.3, C.4.4.

All SANNs, including SOP, achieve a perfect fidelity score
of 0, while no post-hoc method does (Table A5), indicating
only SANNs faithfully match predictions. SOP outperforms
all baselines on insertion across all tasks, and on deletion
for ImageNet, while methods like Archipelago, LIME, and
FRESH perform better on deletion in some cases (Tables 3
and A6). In fact, as deletion score measures how fast the
predicted probability drops when the most scored features
are deleted, it biases towards models that use a small number
of features, regardless of how faithful the model is. SOP
which relies on signals from multiple groups then naturally
performs better on insertion than deletion. Ablations using
smaller step sizes and occlusion values (Table A7) show
consistent and thus robust results. In summary, SOP per-
forms strong on most classic faithfulness metrics in addition
to its built-in faithfulness.

(RQ4) Do SOP’s Attributions Contain Predictive Sig-
nals? The SANN’s claim of linear interpretability relies
on the assumption that feature groups (which form the in-
terpretable atoms) do not inherently encode label informa-
tion. If these groups already contain predictive signals, the
backbone model—not the coefficients—would drive predic-
tions, rendering the coefficients uninformative. To validate
this, we train probing models to predict labels solely from
group masks: high accuracy indicates that label information
is pre-encoded in the groups. Figure 4 shows that group
masks from SOP achieves random accuracy (0.10%) on
ImageNet-S using a CNN probing model. In comparison,
probing models for groups from other SANNs achieve sig-
nificantly higher accuracies, such as FG-F (13.40%) and
AGI-F (10.66%). Thus SOP’s generated groups do not leak
information about the label compared to other SANNs, and
the model’s interpretablity is not weakened.

4.3 Semantic Measures for Interpretability

(RQ5) How Semantically Coherent are SOP Groups?
Explanations need to be semantically coherent such as re-
lating to object segments or human-understandable con-

Category Method ImageNet
Ins.↑ Del.↓

Post-Hoc-Converted

LIME-F 0.859 ± 0.005 0.476 ± 0.004
SHAP-F 0.878 ± 0.007 0.421 ± 0.008

IG-F 0.661 ± 0.006 0.664 ± 0.008
GC-F 0.817 ± 0.007 0.416 ± 0.007
FG-F 0.805 ± 0.006 0.430 ± 0.004

RISE-F 0.635 ± 0.007 0.708 ± 0.003
Archi.-F 0.719 ± 0.004 0.548 ± 0.004

MFABA-F 0.720 ± 0.005 0.547 ± 0.010
AGI-F 0.781 ± 0.007 0.509 ± 0.007

AMPE-F 0.723 ± 0.006 0.581 ± 0.005
BCos-F 0.308 ± 0.005 0.339 ± 0.009

Self-Attributing

XDNN 0.251 ± 0.007 0.210 ± 0.003
BagNet 0.626 ± 0.014 0.595 ± 0.009
FRESH 0.759 ± 0.003 0.417 ± 0.004

SOP 0.930 ± 0.003 0.109 ± 0.000

Table 3. (ImageNet Insertion/Deletion) We evaluate inser-
tion/deletion metrics on ImageNet, and find that SOP achieves best
insertion and deletion scores. This table reports percent insertion
and deletion scores for ImageNet with interval of 10%. The best
result for each metric is bolded, and the second-best is italicized.
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Figure 4. (ImageNet Group Probing Accuracy) The powerful
group generator in SOP is not doing all the work and not com-
promising SOP’s interpretability. A CNN model trained on group
masks from SOP is unable to obtain accuracies more than random
(0.1% accuracy), while MFABA-F, AMPE-F, IG-F etc. do. RISE
and Archipelago is omitted for the significant computational cost.
Results for linear and ViT probing models are in Appendix C.4.5.

cepts. We thus ask how semantically coherent are the group
explanations generated by SOP compared to other mod-
els? To evaluate this, we compute intersection-over-union
(IOU) for ImageNet-S and MultiRC where ground-truth
annotations exist, and threshold-based purity for Cosmo-
Grid using expert-informed metrics for cosmological struc-
tures (Matilla et al., 2020). Table 1 shows that SOP has the
best semantic coherency on two vision tasks and a close
second on the language task. Figure 5 illustrates an example
of an image displaying a beagle, where SOP learns more
semantically coherent groups than other methods without di-
rect supervision. The exact formulations for IOU and purity,
threshold ablations for CosmoGrid, and additional examples
can be found in Appendix C.4.1. Additional experiments
for human evaluation can be found in Appendix C.4.6.
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(a) Image: Beagle (b) LIME-F
(Ribeiro et al.,

2016)

(c) SHAP-F
(Lundberg & Lee,

2017)

(d) IG-F
(Sundararajan et al.,

2017)

(e) GC-F
(Selvaraju et al.,

2016)

(f) FG-F
(Srinivas & Fleuret,

2019)

(g) RISE-F
(Petsiuk et al.,

2018)

(h) Archi.-F
(Tsang et al., 2020)

(i) MFABA-F
(Zhu et al., 2024)

(j) AGI-F
(Pan et al., 2021)

(k) AMPE-F
(Zhu et al., 2023)

(l) BCos-F
(Böhle et al., 2022)

(m) XDNN
(Hesse et al., 2021)

(n) BagNet
(Brendel & Bethge,

2019)

(o) FRESH
(Jain et al., 2020)

(p) SOP (Ours)

Figure 5. We show example groups from different SANNs for a Beagle in ImageNet, and find that SOP learns to generate groups more
semantically coherent than other SANNs. “-F” indicates self-attributing models converted from post-hoc methods. The highlights show
the groups selected by each method for ImageNet, with unused patches hatched-out. Each group has 20% features.

4.4 Utility of SOP Explanations

(RQ6) Can We Use SOP Explanations to Debug Models?
As SOP explanations directly compose the final prediction,
we want to see if we can use the group explanations to
identify undesirable model behaviors. One such behavior
is overly relying on background features for correct predic-
tions, indicating potential spurious correlations. We analyze
SOP’s explanations to check which feature groups the model
use to make correct and incorrect predictions. We find that
SOP uses more objects in correct (64.9%) than incorrect
(57.3%) examples. Figure 6 shows similar behavior for other
SANN baselines. We conjecture that using objects, instead
of relying on spurious background correlations, helps the
model make correct predictions. Thus, explanations from
SOP and other SANNs can help illuminate the reasoning
behind model behaviors.

(RQ7) Can SOP Explanations Assist Scientific Discov-
ery? The ultimate goal of interpretability methods is for
domain experts to use these tools and explanations in real
settings. To validate the usability of our approach, we col-
laborate with cosmologists and use SOP to discover new
knowledge about the expansion of the universe and the
growth of the cosmic structure.

Problem Formulation. Cosmologists hope to understand
the relations of cosmological structures with two cosmolog-
ical parameters related to the initial state of the universe:
Ωm and σ8. The parameter Ωm captures the average energy
density of all matter in the universe, while σ8 describes the
fluctuation of matter distribution (Abbott et al., 2022). How-
ever, these parameters are not directly measurable. What
we can obtain are weak lensing mass maps, which are spa-
tial distribution of matter density in the universe calculated
using precise measurements of the shapes of ∼ 100 million
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Figure 6. (ImageNet-S Percent of Groups that are Objects) We
analyze the proportion of groups that are objects on ImageNet-S,
and find that groups consistently consist more of objects when
predicting correctly. This trend is consistently across methods.

galaxies (Gatti et al., 2021). While the direct relation from
weak lensing maps to Ωm and σ8 is unknown, cosmologists
create simulated weak lensing maps from different Ωm and
σ8 values and train CNNs (Ribli et al., 2019; Matilla et al.,
2020; Fluri et al., 2022) to reversely predict Ωm and σ8 from
the mass maps. An open question in cosmology remains:

What structures from weak lensing maps drive the inference
of the cosmological parameters Ωm and σ8?

As validated in Section 4.3 (RQ5), the groups from SOP cor-
respond to more cosmological structures–voids and clusters–
than other self-attributing models. Voids are large regions
under-dense relative to the mean density (pixel intensity
< 0σ) and appear as dark regions in the mass maps, whereas
clusters are areas of concentrated high density (pixel inten-
sity > 3σ) and appear as bright dots, as shown in Figure 7.
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Cosmological Findings. We then use the groups automati-
cally generated by SOP and find the following new findings
related to voids/clusters and Ωm/σ8:

1. Figure 8a shows that for both voids and clusters, when
they are used in the prediction, they weigh higher when
predicting Ωm than σ8.

2. Figure 8b shows that a lot of voids contribute 100% to
the prediction, while most clusters contribute partially.
This finding is consistent with previous work (Matilla
et al., 2020) that found that voids are the most impor-
tant feature in prediction for low noise maps, as when
the model does use voids, it relies on them more.

Therefore, we are able to obtain explanations meaningful
to expert cosmologists from SOP, which is a promising
step towards meaningful scientific discovery. We include
additional cosmology background in Appendix D.

5 Related Works
Self-attributing neural networks uses feature-based in-
terpretable atoms and include per-feature models such as
NAM (Agarwal et al., 2021), and group-based models such
as BagNet (Brendel & Bethge, 2019) and FRESH (Jain et al.,
2020). While previous works did use per-feature SANNs
mainly in tabular data domains (Agarwal et al., 2021) and
group-based SANNs in image and text domains (Brendel &
Bethge, 2019; Jain et al., 2020), they did not formalize the
problem of growing error in per-feature SANNs. Also, pre-
vious models rely on specific architectures while our frame-
work allows the use of arbitrary pre-trained models (Li,
2023; Jo & Kim, 2023). Other self-explaining neural net-
works include prototype-based (Ma et al., 2024; Wen et al.,
2024) and concept-based (Koh et al., 2020; Yang et al., 2023;
Lai et al., 2024; Yang et al., 2024) models, which explain
with prototypical examples or concepts instead of input fea-
tures. Self-attributing models that we use have attributions
to input features, it is not directly comparable to prototypes
and concepts. Program-execution models (Lyu et al., 2023)
provide faithful reasoning but do not attribute to features.

For evaluating SANNs, Nauta et al. (2023) advocates prior-
itizing performance over faithfulness as the primary metric;
we adopt this approach in our evaluation. Coherence (Nauta
et al., 2023) is also proposed to evaluate how well the expla-
nation aligns with domain knowledge ground truth, using
metrics such as Intersection over Union (Bau et al., 2017;
Wang & Vasconcelos, 2020), outside-inside relevanace ra-
tio (Nam et al., 2020), and pointing game accuracy (Du et al.,
2018; Huang & Li, 2020). We thus use IOU when there is
ground truth (Gao et al., 2022; DeYoung et al., 2020) and
an expert-informed threshold-based purity when the ground
truth is not available (Matilla et al., 2020). Human evalua-

(a) Weak
Lensing Map 1

(b) Void
(< 0σ: 76%)

(c) Weak
Lensing Map 2

(d) Cluster
(> 3σ: 6.4%)

Figure 7. (a) and (b) show one weak lensing map with void (under-
dense region) found by SOP. (c) and (d) show another map with
cluster (areas of concentrated high density) found.
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Figure 8. (a) Ωm relies more on cosmological structures than σ8,
as shown by box plots of group weights from SOP for predicting
Ωm and σ8. Voids on average contribute 50.7% to Ωm and 41.5%
to σ8, and clusters contribute 34.0% to Ωm and 28.5% to σ8. (b)
Many voids contribute 100% to the predictions, while clusters are
weighted less, as shown by the density plot.

tions are used to validate utilities (Kim et al., 2022; Akula
et al., 2020; Hase & Bansal, 2020). We are using a standard
human distinction task from the HIVE protocol (Kim et al.,
2022). Matilla et al. (2020) attempted to use post-hoc ex-
planations in scientific discovery for cosmology. Our work
uses a self-attributing model to validate the same results.

6 Conclusion
We propose Sum-of-Parts (SOP), a new framework for con-
verting an arbitrary pre-trained model to a self-attributing
neural network. Our framework is model-agnostic and uses
end-to-end learned groups without supervision, overcoming
theoretical performance limitations of per-feature or fixed-
group SANNs. SOP empirically achieves state-of-the-art
performance among SANNs across multiple datasets, and
is shown to be useful for model debugging and uncovering
insights in cosmological discovery. We hope this general
framework allows people to build their own self-attributing
models more easily and use the resulting explanations to
extract meaningful insights from complex patterns.
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Impact Statement
This paper presents work aimed at providing interpretable
explanations for machine learning models that are impor-
tantly, true to the model’s reasoning process. We show
that the groups of features learned in our model-agnostic
framework for group-based self-attributing models provide
insights in scientific discovery such as cosmology. The
groups generated by our model can also be trustworthy ref-
erences for decisions in other high-stakes domains such as
medicine, law, and automation. We hope our work can help
improve the state of explainable and trustworthy machine
learning models.
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Poole, J., Everett, S., Ferté, A., Giannini, G., Gruen, D.,
Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K.,
Huff, E. M., Huterer, D., Kuropatkin, N., Jarvis, M.,
Leget, P. F., MacCrann, N., McCullough, J., Muir, J.,
Myles, J., Navarro-Alsina, A., Pandey, S., Prat, J., Raveri,
M., Rollins, R. P., Ross, A. J., Rykoff, E. S., Sánchez,
C., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T.,
Troxel, M. A., Tutusaus, I., Varga, T. N., Yanny, B., Yin,
B., Zhang, Y., Zuntz, J., Abbott, T. M. C., Aguena, M.,
Allam, S., Andrade-Oliveira, F., Becker, M. R., Bertin, E.,
Bhargava, S., Brooks, D., Burke, D. L., Carretero, J., Ca-
stander, F. J., Conselice, C., Costanzi, M., Crocce, M., da
Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S.,
Diehl, H. T., Dietrich, J. P., Doel, P., Ferrero, I., Flaugher,
B., Fosalba, P., Garcı́a-Bellido, J., Gaztanaga, E., Gerdes,
D. W., Giannantonio, T., Gschwend, J., Gutierrez, G.,
Hinton, S. R., Hollowood, D. L., Hoyle, B., Jain, B.,
James, D. J., Lima, M., Maia, M. A. G., March, M.,
Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R.,
Mohr, J. J., Morgan, R., Ogando, R. L. C., Palmese, A.,
Paz-Chinchón, F., Plazas, A. A., Rodriguez-Monroy, M.,
Roodman, A., Sanchez, E., Scarpine, V., Serrano, S.,
Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G.,
Thomas, D., To, C., Weller, J., and DES Collaboration.
Dark Energy Survey Year 3 results: Curved-sky weak

lensing mass map reconstruction. MNRAS, 505(3):4626–
4645, August 2021. doi: 10.1093/mnras/stab1495.

Jethani, N., Sudarshan, M., Covert, I. C., Lee, S.-I., and Ran-
ganath, R. Fastshap: Real-time shapley value estimation.
In International conference on learning representations,
2021.

Jo, W. and Kim, D. Neural additive time-series models: Ex-
plainable deep learning for multivariate time-series pre-
diction. Expert Systems with Applications, 228:120307,
2023. ISSN 0957-4174. doi: https://doi.org/10.1016/j.
eswa.2023.120307.

Kacprzak, T., Fluri, J., Schneider, A., Refregier, A., and
Stadel, J. CosmoGridV1: a simulated LambdaCDM
theory prediction for map-level cosmological inference.
JCAP, 2023(2):050, February 2023. doi: 10.1088/
1475-7516/2023/02/050.

Khashabi, D., Chaturvedi, S., Roth, M., Upadhyay, S., and
Roth, D. Looking beyond the surface: A challenge set
for reading comprehension over multiple sentences. In
Walker, M., Ji, H., and Stent, A. (eds.), Proceedings of
the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pp. 252–
262, New Orleans, Louisiana, June 2018. Association for
Computational Linguistics. doi: 10.18653/v1/N18-1023.

Kim, S. S. Y., Meister, N., Ramaswamy, V. V., Fong, R.,
and Russakovsky, O. HIVE: Evaluating the human inter-
pretability of visual explanations. In European Confer-
ence on Computer Vision (ECCV), 2022.

Klauschen, F., Dippel, J., Keyl, P., Jurmeister, P., Bockmayr,
M., Mock, A., Buchstab, O., Alber, M., Ruff, L., Mon-
tavon, G., et al. Toward explainable artificial intelligence
for precision pathology. Annual Review of Pathology:
Mechanisms of Disease, 19(1):541–570, 2024.

Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson,
E., Kim, B., and Liang, P. Concept bottleneck models. In
III, H. D. and Singh, A. (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp.
5338–5348. PMLR, July 2020.

Lai, S., Hu, L., Wang, J., Berti-Equille, L., and Wang, D.
Faithful vision-language interpretation via concept bot-
tleneck models. In The Twelfth International Conference
on Learning Representations, 2024.

Li, Q. A novel approach for balancing accuracy and inter-
pretability in neural networks. 2023 3rd International
Conference on Electronic Information Engineering and
Computer (EIECT), pp. 464–470, 2023.

12



Sum-of-Parts: Self-Attributing Neural Networks with End-to-End Learning of Feature Groups

Li, Z., Ji, J., and Zhang, Y. From kepler to newton: Explain-
able ai for science, 2021.

Lombrozo, T. Simplicity and probability in causal explana-
tion. Cognitive Psychology, 55(3):232–257, 2007. ISSN
0010-0285. doi: https://doi.org/10.1016/j.cogpsych.2006.
09.006.

Lundberg, S. M. and Lee, S.-I. A unified approach to inter-
preting model predictions. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing
Systems, NIPS’17, pp. 4768–4777, Red Hook, NY, USA,
2017. Curran Associates Inc. ISBN 9781510860964.

Lyu, Q., Havaldar, S., Stein, A., Zhang, L., Rao, D., Wong,
E., Apidianaki, M., and Callison-Burch, C. Faithful
chain-of-thought reasoning. In Park, J. C., Arase, Y.,
Hu, B., Lu, W., Wijaya, D., Purwarianti, A., and Kris-
nadhi, A. A. (eds.), Proceedings of the 13th International
Joint Conference on Natural Language Processing and
the 3rd Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics (Volume 1:
Long Papers), pp. 305–329, Nusa Dua, Bali, November
2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.ijcnlp-main.20.

Lyu, Q., Apidianaki, M., and Callison-Burch, C. Towards
faithful model explanation in NLP: A survey. Compu-
tational Linguistics, 50(2):657–723, June 2024. doi:
10.1162/coli a 00511.

Ma, C., Donnelly, J., Liu, W., Vosoughi, S., Rudin, C., and
Chen, C. Interpretable image classification with adaptive
prototype-based vision transformers. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024.

Martins, A. and Astudillo, R. From softmax to sparsemax: A
sparse model of attention and multi-label classification. In
Balcan, M. F. and Weinberger, K. Q. (eds.), Proceedings
of The 33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning Re-
search, pp. 1614–1623, New York, New York, USA, June
2016. PMLR.

Matilla, J. M. Z., Sharma, M., Hsu, D., and Haiman, Z. Inter-
preting deep learning models for weak lensing. Physical
Review D, 102(12), December 2020. ISSN 2470-0029.
doi: 10.1103/physrevd.102.123506.

MTurk. Amazon mechanical turk. https://www.
mturk.com/. Accessed: 2024-01-28.

Nam, W., Gur, S., Choi, J., Wolf, L., and Lee, S.-W.
Relative attributing propagation: Interpreting the com-
parative contributions of individual units in deep neu-
ral networks. Proceedings of the AAAI Conference on

Artificial Intelligence, 34:2501–2508, 04 2020. doi:
10.1609/aaai.v34i03.5632.

Nauta, M., Trienes, J., Pathak, S., Nguyen, E., Peters, M.,
Schmitt, Y., Schlötterer, J., van Keulen, M., and Seifert,
C. From anecdotal evidence to quantitative evaluation
methods: A systematic review on evaluating explainable
ai. ACM Computing Surveys, 55(13s):1–42, July 2023.
ISSN 1557-7341. doi: 10.1145/3583558.

Pan, D., Li, X., and Zhu, D. Explaining deep neural net-
work models with adversarial gradient integration. In
International Joint Conference on Artificial Intelligence,
2021.

Petsiuk, V., Das, A., and Saenko, K. Rise: Randomized
input sampling for explanation of black-box models. In
British Machine Vision Conference, 2018.

Poursabzi-Sangdeh, F., Goldstein, D. G., Hofman, J. M.,
Wortman Vaughan, J. W., and Wallach, H. Manipulating
and measuring model interpretability. In Proceedings of
the 2021 CHI Conference on Human Factors in Comput-
ing Systems, CHI ’21, New York, NY, USA, 2021. Asso-
ciation for Computing Machinery. ISBN 9781450380966.
doi: 10.1145/3411764.3445315.

Reyes, M., Meier, R., Pereira, S., Silva, C. A., Dahlweid,
F.-M., von Tengg-Kobligk, H., Summers, R. M., and
Wiest, R. On the interpretability of artificial intelligence
in radiology: Challenges and opportunities. Radiology:
Artificial Intelligence, 2(3):e190043, 2020. doi: 10.1148/
ryai.2020190043.

Ribeiro, M. T., Singh, S., and Guestrin, C. “why should i
trust you?”: Explaining the predictions of any classifier.
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
2016.

Ribli, D., Pataki, B. A., Zorrilla Matilla, J. M., Hsu, D.,
Haiman, Z., and Csabai, I. Weak lensing cosmology with
convolutional neural networks on noisy data. Monthly
Notices of the Royal Astronomical Society, 490(2):1843–
1860, 09 2019. ISSN 0035-8711. doi: 10.1093/mnras/
stz2610.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Samek, W., Binder, A., Montavon, G., Lapuschkin, S., and
Müller, K.-R. Evaluating the visualization of what a deep
neural network has learned. IEEE Transactions on Neural

13

https://www.mturk.com/
https://www.mturk.com/


Sum-of-Parts: Self-Attributing Neural Networks with End-to-End Learning of Feature Groups

Networks and Learning Systems, 28:2660–2673, 11 2017.
doi: 10.1109/TNNLS.2016.2599820.

Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M.,
Parikh, D., and Batra, D. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In-
ternational Journal of Computer Vision, 128:336–359,
2016.

Srinivas, S. and Fleuret, F. Full-gradient representation
for neural network visualization. In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-
tion for deep networks. In International Conference on
Machine Learning, 2017.

Tjoa, E. and Guan, C. A survey on explainable artificial
intelligence (xai): Toward medical xai. IEEE transac-
tions on neural networks and learning systems, 32(11):
4793—4813, November 2021. ISSN 2162-237X. doi:
10.1109/tnnls.2020.3027314.

Tsang, M., Rambhatla, S., and Liu, Y. How does this in-
teraction affect me? interpretable attribution for feature
interactions. In Advances in Neural Information Process-
ing Systems, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. At-
tention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Wang, P. and Vasconcelos, N. Scout: Self-aware discrim-
inant counterfactual explanations. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 8978–8987, 2020. doi: 10.1109/
CVPR42600.2020.00900.

Wang, S., Tang, H., Wang, M., Zhang, H., Liu, X., Li,
W., Hu, X., and Zhang, L. Gnothi seauton: Empow-
ering faithful self-interpretability in black-box models.
In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=UvMSKonce8.

Wen, X., Tan, W., and Weber, R. O. Gaprotonet: A multi-
head graph attention-based prototypical network for in-
terpretable text classification, 2024.

Wu, J., Kang, W., Tang, H., Hong, Y., and Yan, Y. On the
faithfulness of vision transformer explanations. In 2024
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 10936–10945, Los Alamitos,
CA, USA, June 2024. IEEE Computer Society. doi: 10.
1109/CVPR52733.2024.01040.

Yang, Y., Panagopoulou, A., Zhou, S., Jin, D., Callison-
Burch, C., and Yatskar, M. Language in a bottle: Lan-
guage model guided concept bottlenecks for interpretable
image classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 19187–19197, 2023.

Yang, Y., Gandhi, M., Wang, Y., Wu, Y., Yao, M. S.,
Callison-Burch, C., Gee, J. C., and Yatskar, M. A text-
book remedy for domain shifts: Knowledge priors for
medical image analysis. In Globerson, A., Mackey, L.,
Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang,
C. (eds.), Advances in Neural Information Processing Sys-
tems, volume 37, pp. 90683–90713. Curran Associates,
Inc., 2024.

Yu, H. and Varshney, L. R. Towards deep interpretability
(MUS-ROVER II): Learning hierarchical representations
of tonal music. In International Conference on Learning
Representations, 2017.

Zednik, C. and Boelsen, H. Scientific exploration and ex-
plainable artificial intelligence. Minds and Machines, 32
(1):219–239, 2022.

Zhu, Z., Chen, H., Zhang, J., Wang, X., Jin, Z., Xue, J.,
and Salim, F. D. Attexplore: Attribution for explana-
tion with model parameters exploration. In The Twelfth
International Conference on Learning Representations,
2023.

Zhu, Z., Chen, H., Zhang, J., Wang, X., Jin, Z., Xue, M.,
Zhu, D., and Choo, K.-K. R. Mfaba: A more faithful and
accelerated boundary-based attribution method for deep
neural networks. Proceedings of the AAAI Conference on
Artificial Intelligence, 38(15):17228–17236, March 2024.
doi: 10.1609/aaai.v38i15.29669.

Zytek, A., Arnaldo, I., Liu, D., Berti-Equille, L., and Veera-
machaneni, K. The need for interpretable features: Mo-
tivation and taxonomy. ACM SIGKDD Explorations
Newsletter, 24(1):1–13, 2022.

14

https://openreview.net/forum?id=UvMSKonce8
https://openreview.net/forum?id=UvMSKonce8


Sum-of-Parts: Self-Attributing Neural Networks with End-to-End Learning of Feature Groups

A Theory Details and Proofs
In addition to the insertion error, we can define the deletion error for a SANN and a target true function when excluding a
subset.

Definition A.1. (Deletion Error) Let αi = θ(x)ih(xGi) be the total contribution of the ith feature group to the prediction
of a SANN. Then the deletion error of a self-attributing neural network f(x) =

∑m
i=1 θ(x)ih(xGi) =

∑
i αi for a target

function f∗ : Rd → R when removing a subset of features S from an input x is

DelErr(G,α, S) =

∣∣∣∣f∗(x)− f∗(x¬S)−
∑

S∩Gi ̸=∅

αi

∣∣∣∣
where (x¬S)j =

{
xj if j ̸∈ S

0 otherwise

Let [d] = {1, . . . , d}. Then the total deletion error over all possible deletions is
∑

S⊆[d] DelErr(G,α, S).

We can solve the exact total deletion error for multilinear monomials with linear programs. These lowerbounds are then the
minimum error in performance of SANNs attempting to learn the simple monomials.

Theorem A.2 (Lower Bound on Deletion Error for Monomials). Let p : {0, 1}d → {0, 1} be a multilinear monomial
function of d variables, p(x) =

∏d
i=1 xi. Then,

∑
S⊆[d] DelErr(G,α, S) ≥ Ddel(λ̂), where Ddel(λ̂) = (λ̂1 − λ̂2)

⊤c is the

lower bound, λ̂ is a dual feasible point, and c is a constant as defined in (9).

Proof. Let x = 1d, and let f(x) =
∑d

i=1 αi with α ∈ Rd be any per-feature self-attributing neural network. Consider
the set of all possible perturbations to the input, or the power set of all features P([d]), We can write the error of the
self-attributing neural network under a given perturbation S ∈ P (or S ⊆ [d]) as

error(α, S) =

∣∣∣∣∣1[S ̸= ∅]−∑
i∈S

αi

∣∣∣∣∣ = ∣∣cS −M⊤
S α

∣∣ (2)

where (MS , cS) are defined as (MS)i =

{
1 if i ∈ S

0 otherwise,
and cS contains the remaining constant terms.

This captures the faithfulness notion that αi is faithful if it reflects a contribution of xi to the prediction of the target function.
Then, the self-attributing neural network f(x) =

∑d
i=1 α

∗
i with α∗ that achieves the lowest possible faithfulness error over

all possible subsets is
α∗ = argmin

α

∑
S∈P

error(α, S) (3)

This can be more compactly written as
α∗ = argmin

α
1⊤ |c−Mα| (4)

The minimum total deletion error can then be solved by the following linear program

Pins(α, β) = min
α,β

M⊤β

β ≥ c−Mα

β ≥Mα− c

(5)

To obtain the lower bound for total deletion error, we can solve the dual of this linear program. Given the above primal
linear program, we can find the Lagrangian

L(α, β, λ1, λ2) = 1⊤β + λ⊤
1 (c−Mα− β) + λ⊤

2 (Mα− c− β)

= 1⊤β − λ⊤
1 β − λ⊤

2 β + λ⊤
1 (c−Mα) + λ⊤

2 (Mα− c)

= 1⊤β − (λ1 + λ2)
⊤β + λ⊤

1 c− λ⊤
1 Mα+ λ⊤

2 Mα− λ⊤
2 c

= (1− λ1 − λ2)
⊤β + (λ1 − λ2)

⊤Mα+ (λ⊤
1 − λ⊤

2 )c.

(6)
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For the dual function to be bounded below, the coefficients of α and β must be zero:

∂L

∂α
= M⊤(λ2 − λ1) = 0

∂L

∂β
1− λ1 − λ2 = 0⇒ λ1 + λ2 = 1

(7)

Since we are minimizing over α, β, the dual objective is to maximize

(λ⊤
1 − λ⊤

2 )c

subject to: λ1 + λ2 = 1,M⊤(λ2 − λ1) = 0, λ1, λ2 ≥ 0.
(8)

In summary, the dual problem is

Ddel(λ̂) = max
λ1,λ2

(λ1 − λ2)
⊤c

subject to: λ1 + λ2 = 1,M⊤(λ2 − λ1) = 0, λ1, λ2 ≥ 0.
(9)

Let λ̂ be feasible, then Dins(λ̂) = (λ1 − λ2)
⊤c ≤

∑
S∈P InsErr(α, S). We can then maximize the lower bound to the

primal program (5) in linear programming solvers such as CVXPY which maximizes the dual program (9).

Conjecture A.1 (Deletion Error for Monomials Grows Exponentially with Dimension). Let p : {0, 1}d → {0, 1} be
a multilinear monomial function, p(x) =

∏d
i=1 xi. Then, the lower bound of total deletion error for p follows an

exponential trend as dimension d grows, where the lower bound is approximately γ0 + eγ1+γ2d, where (γ0, γ1, γ2) =
(−1.030,−1.171, 0.665).

We solve for α∗ in (5) using ECOS in the cvxpy library for d ∈ {2, . . . , 20}. To fit the exponential function, we fit a linear
model to the log transform of the output which has high degree of fit (with a relative absolute error of 0.012), with the
resulting exponential function shown in Figure 2b.

In other words, Theorem A.2 states that we can find the exact lower bound of the total deletion error of a monomial,
and Conjecture A.1 posits that lower bound of the total deletion error of any feature attribution of a monomial grows
exponentially with respect to the dimension, as visualized in Figure 2b

For high-dimensional problems, this suggests that there does not exist a feature attribution that satisfies all possible deletion
tests. On the other hand, monomials can easily achieve low insertion error, as formalized in Theorem A.3.
Theorem A.3 (Insertion Error for Monomials). Let p : {0, 1}d → {0, 1} be a multilinear monomial function of d variables,
p(x) =

∏d
i=1 xi. Then, for all x, there exists a self-attributing neural network f(x) =

∑d
i=1 αi for p at x that incurs at

most 1 total insertion error.

Proof. Consider α = 0d. If x ̸= 1d then this achieves 0 insertion error. Otherwise, suppose x = 1d. Then, for all subsets
S ̸= [d], p(xS) = 0 =

∑
i∈S αi so α incurs no insertion error for all but one subset. For the last subset S = [d], the

insertion error is 1. Therefore, the total insertion error is at most 1 for α = 0d.

However, once we slightly increase the function complexity to binomials, we find that the total insertion error of any feature
attribution likely follows an exponential trend with respect to d, as shown in Figure 2a.
Theorem 2.3 (Lower Bound on Insertion Error for Binomials). Let p : {0, 1}d → {0, 1, 2} be a multilinear binomial
polynomial function. Furthermore suppose that the features can be partitioned into (S1, S2, S3) of equal sizes where
p(x) =

∏
i∈S1∪S2

xi +
∏

j∈S2∪S3
xj . Then,

∑
S⊆[d] InsErr(G,α, S) ≥ Dins(λ̂), where Dins(λ̂) = (λ̂1 − λ̂2)

⊤c is the

lower bound, λ̂ is a dual feasible point, and c is a constant as defined in (16).

Proof. Consider x = 1d. The addition error for a binomial function can be written as

error(α, S) =

∣∣∣∣∣∑
i∈S

αi − 1[S1 ∪ S2 ⊆ S]− 1[S2 ∪ S3 ⊆ S]

∣∣∣∣∣ = |M⊤
S α− cS | (10)
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where (MS , cS) are defined as (MS)i =

{
1 if i ∈ S

0 otherwise,
and cS contains the remaining constant terms. Then, the least

possible insertion error that any attribution can achieve is

α∗ = argmin
α

∑
S∈P

error(α, S) = argmin
α

1⊤|c−Mα| (11)

The minimum total insertion error can then be solved by the following linear program

Pins(α, β) = min
α,β

M⊤β

β ≥ c−Mα

β ≥Mα− c

(12)

To obtain the lower bound for total insertion error, we can solve the dual of this linear program. Given the above primal
linear program, we can find the Lagrangian

L(α, β, λ1, λ2) = 1⊤β + λ⊤
1 (c−Mα− β) + λ⊤

2 (Mα− c− β)

= 1⊤β − λ⊤
1 β − λ⊤

2 β + λ⊤
1 (c−Mα) + λ⊤

2 (Mα− c)

= 1⊤β − (λ1 + λ2)
⊤β + λ⊤

1 c− λ⊤
1 Mα+ λ⊤

2 Mα− λ⊤
2 c

= (1− λ1 − λ2)
⊤β + (λ1 − λ2)

⊤Mα+ (λ⊤
1 − λ⊤

2 )c.

(13)

For the dual function to be bounded below, the coefficients of α and β must be zero:

∂L

∂α
= M⊤(λ2 − λ1) = 0

∂L

∂β
1− λ1 − λ2 = 0⇒ λ1 + λ2 = 1

(14)

Since we are minimizing over α, β, the dual objective is to maximize

(λ⊤
1 − λ⊤

2 )c

subject to: λ1 + λ2 = 1,M⊤(λ2 − λ1) = 0, λ1, λ2 ≥ 0.
(15)

In summary, the dual problem is

Dins(λ̂) = max
λ1,λ2

(λ1 − λ2)
⊤c

subject to: λ1 + λ2 = 1,M⊤(λ2 − λ1) = 0, λ1, λ2 ≥ 0.
(16)

Let λ̂ be feasible, then Dins(λ̂) = (λ1 − λ2)
⊤c ≤

∑
S∈P InsErr(α, S). We can then maximize the lower bound to the

primal program (12) in linear programming solvers such as CVXPY which maximizes the dual program (16).

Conjecture A.2 (Insertion Error for Binomials Grows Exponentially with Dimension). Let p be a multilinear binomial
function of d variables as defined in Theorem 2.3. Then, the lower bound of total insertion error for p follows an
exponential trend as dimension d grows, where the lower bound is approximately λ0 + eλ1+λ2d, where (λ0, λ1, λ2) =
(4.778, 1.332, 0.198).

We maximize the lower bound by solving the dual linear program in (16) using ECOS in the cvxpy library for d ∈
{2, . . . , 20}. To get the exponential function, we fit a linear model to the log transform of the output, doing a grid search
over the auxiliary bias term. The resulting function has a high degree of fit (with a relative absolute error of 0.188), with the
resulting exponential function shown in Figure 2a.
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A.1 Groups

Theorem A.4 (Insertion and Deletion Error for Groups). Consider p1 and p2, the polynomials from Conjecture A.1 and
Conjecture A.2. Then, there exists a group-based self-attributing neural network with zero deletion and insertion error for
both polynomials.

Proof. Let [d] denote {1, . . . , d}. First let p1(x) =
∏

i xi and consider a self-attributing neural network with one group,
f(x) =

∑1
i=1 θ(x)ih(x[d]) =

∑1
i=1 1 has one group G = {[d]} with contribution α = {1}. If S = ∅,

DelErr(G,α, S) =

∣∣∣∣∣∣f∗(x)− f∗(x¬S)−
∑

i:S∩Gi ̸=∅

αi

∣∣∣∣∣∣ = |1− 1− 0| = 0

Otherwise, no matter what subset S is being tested, S ⊆ [d] is always true, thus:

DelErr(G,α, S) =

∣∣∣∣∣∣f∗(x)− f∗(x¬S)−
∑

i:S∩Gi ̸=∅

αi

∣∣∣∣∣∣ = |1− 0− 1| = 0

Therefore the total grouped deletion error for p1 is 0. Next let p2(x) =
∏

i∈S1∪S2
xi +

∏
j∈S2∪S3

xj and consider a
self-attributing neural network with two groups, G = {S1 ∪ S2, S2 ∪ S3} with contributions α = {1, 1}. If S = [d], then

InsErr(G,α, S) =

∣∣∣∣∣∣f∗(xS)− f∗(0)−
∑

i:Gi⊆S

αi

∣∣∣∣∣∣ = 2− 0− (1 + 1) = 0

If S empty, then the insertion error is trivially 0. Otherwise suppose S is missing an element from one of S1 or S3. WLOG
suppose it is from S1 but not S2 or S3. Then,

InsErr(G,α, S) =

∣∣∣∣∣∣f∗(xS)− f∗(0)−
∑

i:Gi⊆S

αi

∣∣∣∣∣∣ = 1− 0− (1) = 0

Otherwise, suppose we are missing elements from both S1 and S3. Then,

InsErr(G,α, S) =

∣∣∣∣∣∣f∗(xS)− f∗(0)−
∑

i:Gi⊆S

αi

∣∣∣∣∣∣ = 0− 0− (0) = 0

Lastly, suppose we are missing elements from S2. Then,

InsErr(G,α, S) =

∣∣∣∣∣∣f∗(xS)− f∗(0)−
∑

i:Gi⊆S

αi

∣∣∣∣∣∣ = 0− 0 = 0

Thus by exhaustively checking all cases, p2 has zero grouped insertion error. Therefore the total grouped insertion error for
p2 is 0.

Theorem A.5 (Detailed Statement: Insertion and Deletion Error for Groups for General m-nomial Polynomials). Let
p : Rd → R be any general m-nomial polynomial function of order d with m terms, p(x) =

∑m
i=1

∑
k∈Ki

aik
∏

j∈Gi
x
bijk
j ,

where (G1, . . . , Gm) ⊆ [d], Gi ̸= Gi′∀i, i′ ∈ {1, . . . ,m}, Ki ∈ Z+ is the set of indices for terms associated with group
Gi, and bijk ∈ Z+ is the exponent for feature j in subset i in the term indexed by k ∈ Ki. Then, a self-attributing neural
network needs at most m groups to achieve zero deletion and insertion error for polynomial p.

Proof. Let [d] denote {1, . . . , d}. Let qi(x) =
∑

k∈Ki
aik

∏
j∈Gi

x
bijk
j be the ith polynomial with Ki terms, and then we

can rewrite p(x) = q1(x) + · · · + qm(x). We prove by induction that we can have a self-attributing neural network of
m groups G = {G1, . . . , Gm} with contributions α = {q1(x), . . . , qm(x)} to achieve zero deletion and insertion error
for polynomial p. For groups and contribution scores for up to m groups, we denote with G(m) and α(m), and omit the
superscripts when the context is clear.
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Insertion. Base Case: Suppose m = 1, then p1(x) =
∑

k∈K1
a1k

∏
j∈G1

x
b1jk
j = q1(x) and consider a self-attributing

neural network with one group, G(1) = {G1} with contribtuions α(1) = {q1(x)}. As there are no other input features,
G1 = [d]. If S is empty, then the insertion error is trivially 0. If S = [d], then G1 ⊆ S,

InsErr(G(1), α(1), S) =

∣∣∣∣∣∣f∗(xS)− f∗(0)−
∑

i:Gi⊆S

αi

∣∣∣∣∣∣ = |q1(x)− 0− q1(x)| = 0

Otherwise, S ⊂ [d] = G1, then G1 ⊈ S,

InsErr(G(1), α(1), S) =

∣∣∣∣∣∣f∗(xS)− f∗(0)−
∑

i:Gi⊆S

αi

∣∣∣∣∣∣ = |0− 0− 0| = 0

We proved that we can have a self-attributing neural network with groups G(1) = {G1} and group contributions α(1) =
{q1(x)} for polynomial p1(x) = q1(x), which only has one group. Therefore, we can need at most one group to achieve
zero grouped insertion error for monomial p1.

Inductive Step: Assume that it holds for (m− 1)-nomial polynomial pm−1(x) = q1(x) + · · ·+ qm−1(x) that we need
at most (m − 1) groups to achieve zero insertion error, where the groups are G(m−1) = {G1, . . . , Gm−1} with group
contributions α(m−1) = {q1(x), . . . , qm−1(x)} which means that

InsErr(G(m−1), α(m−1), S) =

∣∣∣∣∣∣f∗(xS)− f∗(0)−
∑

i:Gi⊆S

αi

∣∣∣∣∣∣ =
∣∣∣∣∣∣pm−1(xS)− 0−

∑
i:Gi⊆S

∧
i ̸=m

qi(x)

∣∣∣∣∣∣ = 0 (17)

This holds for all S ⊆ [d].

Now, we prove it for m-nomial polynomial pm(x) = q1(x) + · · ·+ qm(x). There are two cases. First, if Gm ⊈ S, meaning
that not all Gm features are in S, but there are some parts of Gm in ¬S. Then f∗(xS) does not contain the polynomial term
qm(x) that uses Gm. Thus,

InsErr(G(m), α(m), S) =

∣∣∣∣∣∣f∗(xS)− f∗(0)−
∑

i:Gi⊆S

αi

∣∣∣∣∣∣ =
∣∣∣∣∣∣pm−1(xS)− 0−

∑
i:Gi⊆S

∧
i ̸=m

qi(x)

∣∣∣∣∣∣
= InsErr(G(m−1), α(m−1), S) = 0

Otherwise, if Gm ⊆ S, meaning that all Gm features are in S, and no features that are in Gm are contained in S, then
f∗(xS) contains the polynomial term qm(x) that uses Gm. Thus,

InsErr(G(m), α(m), S) =

∣∣∣∣∣∣f∗(xS)− f∗(0)−
∑

i:Gi⊆S

αi

∣∣∣∣∣∣
=

∣∣∣∣∣∣(qm(xS) + pm−1(xS))− 0−
∑

i:Gi⊆S

qi(x)

∣∣∣∣∣∣
=

∣∣∣∣∣ (qm(xS) + pm−1(xS))− 0−

qm(xS) +
∑

i:Gi⊆S
∧

i̸=m

qi(x)

∣∣∣∣∣
=

∣∣∣∣∣ (qm(xS)− qm(xS)) +

pm−1(xS)− 0−
∑

i:Gi⊆S
∧

i̸=m

qi(x)

∣∣∣∣∣
= InsErr(G(m−1), α(m−1), S) = 0

The last steps of the above derivations use the induction from (17). Thus by exhaustively checking all cases, pm has zero
group insertion error with self-attributing neural networks with groups G(m) and group contributions α(m)
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Deletion. Base Case: Suppose m = 1, then p1(x) =
∑

k∈K1
a1k

∏
j∈S1

x
b1jk
j = q1(x) and consider a self-attributing

neural network with one group G(1) = {G1} and contribution α(1) = {q1(x)}. As there are no other input features,
G1 = [d]. If S is empty, then

DelErr(G(1), α(1), S) =

∣∣∣∣∣∣f∗(x)− f∗(x¬S)−
∑

i:S∩Gi ̸=∅

αi

∣∣∣∣∣∣ = |q1(x)− q1(x)− 0| = 0

Otherwise, no matter what subset S is being tested, S ⊆ [d] = S1 is always true, thus S ∩ Si ̸= ∅:

DelErr(G(1), α(1), S) =

∣∣∣∣∣∣f∗(x)− f∗(x¬S)−
∑

i:S∩Gi ̸=∅

αi

∣∣∣∣∣∣ = |q1(x)− 0− q1(x)| = 0

We proved that we can have a self-attributing neural network f(x) = θ(x)ih(x[d]) = q1(x) with groups G(1) = {G1} and
group contributions α(1) = {q1(x)} for polynomial p1(x) = q1(x), which only has one group. Therefore, we can need at
most one group to achieve zero grouped deletion error for monomial p1.

Inductive Step: Assume that it holds for (m− 1)-nomial polynomial pm−1(x) = q1(x) + · · ·+ qm−1(x) that we need at
most (m− 1) groups to achieve zero grouped deletion error, which means that

DelErr(G(m−1), α(m−1), S) =

∣∣∣∣∣∣f∗(x)− f∗(x¬S)−
∑

i:S∩Gi ̸=∅

αi

∣∣∣∣∣∣
=

∣∣∣∣∣∣pm−1(x)− pm−1(x¬S)−
∑

i:S∩Gi ̸=∅
∧

i̸=m

qi(x)

∣∣∣∣∣∣ = 0

(18)

This holds for all S ⊆ [d].

Now, we prove it for m-nomial polynomial pm(x) = q1(x) + · · · + qm(x). There are two cases. First, if Gm ⊈ ¬S,
meaning that not all Gm features are in ¬S, but there are some parts of Gm in S. Then f∗(x¬S) does not contain the
polynomial term qm(x) that uses Sm, and S ∩Gi ̸= ∅. Thus,

DelErr(G(m), α(m), S) =

∣∣∣∣∣∣f∗(x)− f∗(x¬S)−
∑

i:S∩Gi ̸=∅

αi

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m∑
i=1

qi(x)− pm−1(x¬S)−

qm(x) +
∑

i:S∩Gi ̸=∅
∧

i ̸=m

qi(x)

∣∣∣∣∣∣
=

∣∣∣∣∣(qm(x) +

m−1∑
i=1

qi(x))− pm−1(x¬S)−

qm(x) +
∑

i:S∩Gi ̸=∅
∧

i ̸=m

qi(x)

∣∣∣∣∣
=

∣∣∣∣∣ (qm(x) + pm−1(x))− pm−1(x¬S)−

qm(x) +
∑

i:S∩Gi ̸=∅
∧

i ̸=m

qi(x)

∣∣∣∣∣
=

∣∣∣∣∣ (qm(x)− qm(x)) +

pm−1(x)− pm−1(x¬S)−
∑

i:S∩Gi ̸=∅
∧

i ̸=m

qi(x)

∣∣∣∣∣
= DelErr(G(m−1), α(m−1), S) = 0
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(b) Minimum total mean square deletion error for monomials.

Figure A9. Errors for per-feature SANNs grow fast unavoidably. The minimum (a) total mean square insertion error of monomials of size
d and (b) total mean square deletion errors of binomials of size d are the minima over all possible per-feature self-explaining models. The
dots are the exact minima computed analytically, while the line is a best-fit exponential function.

Otherwise, if Gm ⊆ ¬S, meaning that all Sm features are in ¬S, and no features that are in Gm are contained in S, then
f∗(x¬S) contains the polynomial term qm(x) that uses Gm, and S ∩Gi = ∅. Thus,

DelErr(G(m), α(m), S) =

∣∣∣∣∣∣f∗(x)− f∗(x¬S)−
∑

i:S∩Gi ̸=∅

αi

∣∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

qi(x)− (qm(x) + pm−1(x¬S))−
∑

i:S∩Gi ̸=∅
∧

i̸=m

qi(x)

∣∣∣∣∣
=

∣∣∣∣∣(qm(x) + pm−1(x))− (qm(x) + pm−1(x¬S))−
∑

i:S∩Gi ̸=∅
∧

i ̸=m

qi(x)

∣∣∣∣∣
=

∣∣∣∣∣(qm(x)− qm(x)) +

pm−1(x)− pm−1(x¬S)−
∑

i:S∩Gi ̸=∅
∧

i̸=m

qi(x)

∣∣∣∣∣
=DelErr(G(m−1), α(m−1), S) = 0

The last steps of the above derivations use the induction from (18). Thus by exhaustively checking all cases, pm has zero
grouped deletion error with self-attributing neural network with groups G(m) and group contributions α(m).

A.2 Alternative Mean Square Error Insertion/Deletion Errors

In the main paper, we use mean absolute error for Insertion Error and Deletion Error. Here we also compute the exact
Deletion Errors for monomials and Insertion Errors for binomials up to d = 20. We conjecture that the two errors will also
follow an exponential growth.
Definition A.6. (Mean Square Deletion Error) Let αiθ(x)ih(xGi) be the total contribution of the ith feature group to the pre-
diction of a SANN. Then the mean square deletion error of a self-attributing neural network f(x) =

∑m
i=1 θ(x)ih(xGi) =∑

i αi for a target function f∗ : Rd → R when removing a subset of features S from an input x is

DelErrMSE(G,α, S) =

∥∥∥∥∥∥f∗(x)− f∗(x¬S)−
∑

S∩Gi ̸=∅

αi

∥∥∥∥∥∥
2

where (x¬S)j =

{
xj if j ̸∈ S

0 otherwise
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Let [d] = {1, . . . , d}. Then the total mean square deletion error over all possible deletions is
∑

S⊆[d] DelErr(G,α, S).

Theorem A.7 (Lower Bound on Mean Square Deletion Error for Monomials). Let p : {0, 1}d → {0, 1} be a
multilinear monomial function of d variables, p(x) =

∏d
i=1 xi. Then,

∑
S⊆[d] DelErrMSE(G,α, S) ≥ α∗, where

α∗
del = (M⊤M)−1M⊤c is the lower bound, and M and c are constants as defined in (28).

Proof. Let x = 1d, and let α ∈ Rd be any feature attribution. Consider the set of all possible perturbations to the input, or
the power set of all features P , We can write the error of the attribution under a given perturbation S ∈ P as

error(α, S) =

∥∥∥∥∥1[S ̸= ∅]−∑
i∈S

αi

∥∥∥∥∥
2

=
∥∥cS −M⊤

S α
∥∥2 (19)

where (MS , cS) are defined as (MS)i =

{
1 if i ∈ S

0 otherwise,
and cS contains the remaining constant terms.

This captures the faithfulness notion that αi is faithful if it reflects a contribution of αi to the prediction. Then, the feature
attribution α∗ that achieves the lowest possible faithfulness error over all possible subsets is

α∗ = argmin
α

∑
S∈P

error(α, S) = argmin
α

1⊤ ∥c−Mα∥2 (20)

where Mij =

{
1 if j ∈ Si

0 otherwise
for an enumeration of all elements Si ∈ P .

This is a quadratic function without constraint, and thus we can analytically solve the exact minimum by finding where the
gradient is zero.

To solve
min
α

1⊤ ∥c−Mα∥2 (21)

We first expand the squared norm as
∥c−Mα∥2 = (c−Mα)⊤(c−Mα) (22)

Substituting into the objective function:
min
α

1⊤(c−Mα)⊤(c−Mα) (23)

Since 1⊤ is a summation operator over all elements, this simplifies to:

min
α

∑
i

∥ci − (Mα)i∥2 (24)

Then, we compute the gradient. We define

f(α) =
∑
i

∥ci − (Mα)i∥2 (25)

Taking the derivative with respect to α:
∇f(α) = −2M⊤(c−Mα) (26)

Setting the gradient to zero:
M⊤Mα = M⊤c (27)

Finally, we can solve for α. If M⊤M is invertible, we obtain the optimal solution:

α∗
del = (M⊤M)−1M⊤c. (28)

22



Sum-of-Parts: Self-Attributing Neural Networks with End-to-End Learning of Feature Groups

As M is the enumeration of all elements Si ∈ P , the columns in M are linearly independent to each other, and thus
M ∈ {0, 1}2d×d is invertible with column rank d.

rank(M) = d. (29)

By the fundamental rank theorem,
rank(M⊤M) = rank(M) = d (30)

Since M⊤M ∈ Zd×d, it is then invertible.

Thus we prove that we can solve the optimal solution with (28).

Conjecture A.3 (Mean Square Deletion Error for Monomials Grows Exponentially with Dimension). Let p : {0, 1}d →
{0, 1} be a multilinear monomial function of d ≤ 20 variables, p(x) =

∏d
i=1 xi. Then, the lower bound of the total mean

square deletion error for p follows an exponential trend as dimension d grows, where the lower bound of total mean square
deletion error is approximately γ0 + eγ1+γ2d, where (γ0, γ1, γ2) = (−1.104,−1.720, 0.626).

We solve for α∗ in (20) using (28) for d ∈ {2, . . . , 20}. To fit the exponential function, we fit a linear model to the log
transform of the output which has high degree of fit (with a relative square error of -0.293), with the resulting exponential
function shown in Figure A9b.

Definition A.8. (Mean Square Insertion Error) Let αi = θ(x)ih(xGi
) be the total contribution of the ith feature

group to the prediction of a SANN. Then, the mean square insertion error of a self attributing neural network
f(x) =

∑m
i=1 θ(x)ih(xGi

) =
∑

i αi for a target function f∗ : Rd → R when inserting a subset of features S from
an input x is

InsErrMSE(G,α, S) =

∥∥∥∥∥∥f∗(xS)− f∗(0d)−
∑
Gi⊆S

αi

∥∥∥∥∥∥
2

where (xS)j =

{
xj if j ∈ S

0 otherwise

The total mean square insertion error over all possible insertions is
∑

S⊆[d] InsErr(G,α, S).

Theorem A.9 (Lower Bound on Mean Square Insertion Error for Binomials). Let p : {0, 1}d → {0, 1, 2} be a multilinear
binomial polynomial function of d variables. Furthermore suppose that the features can be partitioned into (S1, S2, S3)
of equal sizes where p(x) =

∏
i∈S1∪S2

xi +
∏

j∈S2∪S3
xj . Then,

∑
S⊆[d] InsErrMSE(G,α, S) ≥ α∗, where α∗

del =

(M⊤M)−1M⊤c is the lower bound, and M and c are constants as defined in (40).

Proof. Consider x = 1d. The addition error for a binomial function can be written as

error(α, S) =

∥∥∥∥∥∑
i∈S

αi − 1[S1 ∪ S2 ⊆ S]− 1[S2 ∪ S3 ⊆ S]

∥∥∥∥∥
2

=
∥∥M⊤

S α− cS
∥∥2 (31)

where (MS , cS) are defined as (MS)i =

{
1 if i ∈ S

0 otherwise,
and cS contains the remaining constant terms. Then, the least

possible insertion error that any attribution can achieve is

α∗ = argmin
α

∑
S∈P

error(α, S) = argmin
α

1⊤ ∥c−Mα∥2 (32)

where (M, c) are constructed by stacking (MS , cS) for some enumeration of S ∈ P .

This is a quadratic function without constraint, and thus we can analytically solve the exact minimum by finding where the
gradient is zero.
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To solve
min
α

1⊤ ∥c−Mα∥2 (33)

We first expand the squared norm as
∥c−Mα∥2 = (c−Mα)⊤(c−Mα) (34)

Substituting into the objective function:
min
α

1⊤(c−Mα)⊤(c−Mα) (35)

Since 1⊤ is a summation operator over all elements, this simplifies to:

min
α

∑
i

∥ci − (Mα)i∥2 (36)

Then, we compute the gradient. We define

f(α) =
∑
i

∥ci − (Mα)i∥2 (37)

Taking the derivative with respect to α:
∇f(α) = −2M⊤(c−Mα) (38)

Setting the gradient to zero:
M⊤Mα = M⊤c (39)

Finally, we can solve for α. If M⊤M is invertible, we obtain the optimal solution:

α∗
ins = (M⊤M)−1M⊤c. (40)

As M is the enumeration of all elements Si ∈ P , the columns in M are linearly independent to each other, and thus
M ∈ {0, 1}2d×d is invertible with column rank d.

rank(M) = d. (41)

By the fundamental rank theorem,
rank(M⊤M) = rank(M) = d (42)

Since M⊤M ∈ Zd×d, it is then invertible.

Thus we prove that we can solve the optimal solution with (40).

Conjecture A.4 (Mean Square Insertion Error for Binomials Grows Exponentially with Dimension). Let p : {0, 1}d →
{0, 1, 2} be a multilinear binomial polynomial function of d ≤ 20 variables. Furthermore suppose that the features can be
partitioned into (S1, S2, S3) of equal sizes where p(x) =

∏
i∈S1∪S2

xi+
∏

j∈S2∪S3
xj . Then, the lower bound of total mean

square insertion error for p follows an exponential trend as dimension d grows, where the lower bound is approximately
λ0 + exp(λ1 + λ2d) total insertion error, where (λ0, λ1, λ2) = (6.451, 1.457, 0.192).

We solve for α∗ in (32) using (40) for d ∈ {2, . . . , 20}. To fit the exponential function, we fit a linear model to the log
transform of the output which has high degree of fit (with a relative square error of -0.110), with the resulting exponential
function shown in Figure A9a.

Additionally, the coefficients for the most critical exponential terms γ2 and λ2 are very close between mean absolute error
and mean square error. This shows that with both definitions of insertion/deletion errors we have consistent results.
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A.3 Discussion on Theoretical Proofs

While our theorems and that of Bilodeau et al. (2024) both present impossibility results for feature attributions, the
assumptions and resulting theorem are different.

Bilodeau et al. (2024) put forth a result that says (put simply) that linear models cannot accurately capture complex models,
where complexity is measured by having a large number of piece-wise linear components. Indeed, if we had shown that a
linear model is not a good approximation of a highly non-linear model, then this would not be a novel contribution. This is
also an unsurprising result (it is not surprising that a linear model cannot approximate a highly non-linear model).

However, our result paints a significantly bleaker picture: we show that a linear feature attribution is unable to model the
extremely simple functions in our theorems. Our examples distill the problem to the fundamental issue in its purest form:
correlated features. Specifically, we show feature attribution is impossible with only one group of correlated features. This
is the polar opposite assumption than that of Bilodeau et al. (2024), and we argue that it is more surprising for feature
attribution to be impossible for simpler functions than for complex functions.

Second, we provide not only a negative impossibility result for standard feature attributions, but also a positive result for
grouped feature attributions that provides a path forward and motivates the approach in our submission. This is in contrast
to Bilodeau et al. (2024), which only presents negative impossibility results in standard feature attributions without clear
suggestions on where to go.

In summary, our theoretical results differ in Assumption (we assume simple functions with a single correlation whereas
Bilodeau et al. (2024) assume complex functions with many piece-wise linearities) Theoretical results (we show both
positive and negative results, whereas Bilodeau et al. (2024) only show negative results).

B Method Details

B.1 Group Generator Details

The group generator Γ : Rd → {0, 1}m×d takes in an input x ∈ Rd and outputs m groups (g1, . . . , gm), Each gi ∈ {0, 1}d
is a binary mask such that if the feature j is included in group gi, then gij = 1, otherwise 0.

Γ(x) = (g1, . . . , gm) (43)

To generate these groups, we first project the input x into embedding dimension e with embedding function he : Rd → Rd×k.
In our experiments, we typically use up to the second to last layer in the backbone model as the embedding function to
obtain the contextualized embedding of each feature, and we finetune this copy of projection layer while keeping the original
backbone model unchanged.

Soft Multiheaded Self-Attention. Then, we use a self-attention mechanism a : Rd×e → [0, 1]d×d (Vaswani et al., 2017)
to parameterize a probability distributions over features.

a(x) = softmax
(
α · he(x)WQ(he(x)WK)⊤

)
(44)

where WQ,WK ∈ Rk are learned parameters, and α is a temperature scaling hyperparameter. In practice, one might not
need that many groups and can use m < d groups, resulting in a(x) ∈ [0, 1]m×d. However, the outputs of self-attention are
continuous and dense. To make groups sparse, we binarize the attention by taking top τ = 0.2 features for each group. Each
group gi is then the binarized a(x) where gij = 1 if jth feature is within top τ according to a(x), and otherwise gij = 0.

Input Embedding Encoder. In practice, the embedding function he is initialized with parts of the backbone predictor h.
The embedding function he can be finetuned as part of the group generator while not changing the backbone predictor.

Binary Groups and the Risk of Out-of-Distribution Data. The groups (i.e. the image patch subsets or language token
subsets) are binary. However, the scores for each group are real valued. Since we are using discrete groups of features for
making each prediction, the group masks need to be binarized. Nonbinary groups (i.e. close to zero but non-zero) will have
information leakage from the nonzero input features.

A potential risk of blacking out pixels is that it will create Out-of-Distribution (OOD) data. However, modern Transformers
are not significantly affected by this bias due to the significant data augmentations used during pretraining. For example,
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Jain et al. (2022) show that ResNet suffers more from masking out tokens while ViT mostly is able to maintain its original
prediction even when some parts are blacked out. In our ImageNet and MultiRC experiments, we use these transformer
based models, and all baselines use the same transformer in fairness, except XDNN, BCos and BagNet which do not have
Transformer counterparts. For CosmoGrid, though we are using a CNN-based model, the data form is very different from
natural images, and zeroing parts of the map is not as OOD as it would be for natural images.

B.2 Group Selector Details

Sparse Multiheaded Cross-Attention. The group selector θ : {0, 1}m×d × Rd → [0, 1]m then assigns a weight to each
group such that a sparse subset of the groups get nonzero weights. The scores (c1, . . . , cm) are produced by a cross attention
using the target class’s weights Ch ∈ Rk as the query and all groups’ hidden states z = (hh(g1 ⊙ x), . . . , hh(gm ⊙ x)) ∈
Rm×k as the key, where hh : Rd → Rk is usually the same backbone as h but outputs the hidden states with hidden
dimension k:

θ(Γ(x), x) = (c1, . . . , cm) = sparsemax
(
β · ChWQ′(zWK′)⊤

)
(45)

where WQ′ ,WK′ ∈ Rk×k and Ch ∈ Rk are learned parameters, and β is a temperature scaling factor.

Having scores on a sparse subset of groups helps avoid overloading human users. As the outputs of softmax are continuous
and dense, we use a sparse variant, the sparsemax operator (Martins & Astudillo, 2016), to assign scores to the groups. The
sparsemax operator uses a simplex projection to make the attention weights sparse and only assigns nonzero scores to a few
groups.

In practice, we can initialize the query Ch to a row of the weight matrix in the linear classifier of the pretrained model h,
and WQ′ and WK′ to the identity matrix, since the pretrained model already learns a relation between the hidden states z
and class weights Ch.

Hidden State Encoder. In practice, the embedding function he, and encoder for hidden states hh are both initialized as
parts of the backbone predictor h. The embedding function he can be finetuned as part of the group generator, while the
hidden state encoder hh is always kept frozen and computed at the same time of making the prediction with h. Therefore,
hh does not incur additional forward passes.

B.3 Scaling the Loss

Since the gradient cannot pass through the thresholded binary mask, we use a scale λ ∈ [−1, 1] that is the difference between
sums of attention weights of selected and unselected features and multiply that to the logits for optimization.

λi =

d∑
j=1

a(x)top τ
ij −

d∑
j=1

a(x)¬top τ
ij , i = 1, . . . ,m (46)

The gradient-passing scales (λ1, . . . , λm), the group scores (c1, . . . , cm), and predictions (y1, . . . , ym) are then combined
with a weighted average to make the final prediction

f(x) = y = λ1c1y1 + · · ·+ λmcmym (47)

Classification. For classification, we multiply the scaler λ on the logits. If the prediction from group i is prefered, then λi

will also increase and thus up-weigh the selected features in the group. Conversely, if the prediction from group i is not
prefered, then λi will decrease and thus down-weigh the selected features and up-weigh other features in the group.

Scaled CrossEntropyLoss(y⃗, y∗, c⃗, λ⃗) = CrossEntropyLoss(

d∑
i=1

λiciyi, y
∗) (48)

where yi is the predicted logit from each group and y∗ is the ground truth label.

Regression. For regression, we multiply the negated scaler on the loss instead of the logits because we need to scale the
loss instead of the absolute value.

Scaled MSELoss(y⃗, y∗, c⃗, λ⃗) = min(
∑∑

i

ci(yi − y∗)(−λi))
2 (49)
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C Experiments Details

C.1 Datasets

We evaluate SOP on two vision tasks and one language task. For vision, we use ImageNet for image classification and
CosmoGrid for image regression. For language, we use MultiRC for reading comprehension framed as binary classification.

C.1.1 IMAGENET AND IMAGENET-S

ImageNet (Russakovsky et al., 2015) is a standard image classification benchmark with 1000 classes.

• Task: Image classification.

• Backbone Model: We use a Vision Transformer (ViT) (Dosovitskiy et al., 2021) (“google/vit-base-patch16-224”)5

pretrained on ImageNet 21k and finetuned on ImageNet 1k. For the projection layer in the group generator, we use the
second-to-last layer of this ViT model.

• Input Features: We use patches of size 3× 16× 16.

• Ground-Truth Segmentation for Purity: We use ImageNet-S (Gao et al., 2022), which contains ground-truth object
segment annotations for 919 classes of ImageNet. Purity scores are computed using a subset of the ImageNet validation
set, with experiments on ImageNet-S done with one example for each class.

• License: ImageNet permits non-commercial use.

C.1.2 COSMOGRID

CosmoGridV1 (Kacprzak et al., 2023) is an image regression dataset for predicting two cosmological parameters related to
the initial state of the universe: Ωm (related to energy density) and σ8 (related to matter fluctuation) (Abbott et al., 2022).
The task uses weak lensing maps, which are projected distributions of galaxy masses onto a 2D image (Gatti et al., 2021;
Jeffrey et al., 2021).

The underlying data comes from the CosmoGridV1 suite, a set of cosmological N-body simulations produced with
PKDGRAV3, a high-performance N-body treecode for self-gravitating astrophysical simulations. These simulations span
different cosmological parameters, including Ωm and σ8. The output of the simulations are snapshots representing the
distribution of matter particles as a function of position on the sky at different cosmic times (representing different distances
from the observer). These simulation outputs are then post-processed to produce weak lensing mass maps, which are
weighted, projected maps of the mass distribution that can be estimated from current weak lensing observations (e.g., (Jeffrey
et al., 2021)). The data we use follows the post-processing from Jeffrey et al. (2021), and we refer to it as CosmoGrid.

• Task: Image regression to predict cosmological parameters Ωm and σ8. Input size: (1× 66× 66), output size: 2.

• Backbone Model: We use a CNN (Matilla et al., 2020) trained on the CosmoGrid training set. We use the second to
last layer’s output as hidden states, which has the dimension 14× 14× 32, meaning that the image of size 66× 66 is
divided into 14× 14 grids, each grid with approximately 5× 5 or 4× 4 pixels.

• License: CosmoGrid (Kacprzak et al., 2023)6 has a CC BY 4.0 DEED license.

C.1.3 MULTIRC

MultiRC (Khashabi et al., 2018), sourced from the ERASER benchmark (DeYoung et al., 2020), is a reading comprehension
dataset adapted for binary classification. Each example consists of a passage, a question, and an answer; the task is to predict
if the answer is correct (True or False) based on the passage.

• Task: Binary classification for reading comprehension.

5https://huggingface.co/google/vit-base-patch16-224
6http://www.cosmogrid.ai/
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Method Abbr Model-Agnostic Self-Attributing Learnable Groups Self-Attributing Ver.

LIME (Ribeiro et al., 2016) LIME ✓ ✗ ✗ LIME-F
SHAP (Lundberg & Lee, 2017) SHAP ✓ ✗ ✗ SHAP-F
IntGrad (Sundararajan et al., 2017) IG ✓ ✗ ✗ IG-F
GradCAM (Selvaraju et al., 2016) GC ✓ ✗ ✗ GC-F
FullGrad (Srinivas & Fleuret, 2019) FG ✓ ✗ ✗ FG-F
RISE (Petsiuk et al., 2018) RISE ✓ ✗ ✗ RISE-F
Archipelago (Tsang et al., 2020) Archi. ✓ ✗ ✗ Archi.-F
MFABA (Zhu et al., 2024) MFABA ✓ ✗ ✗ MFABA-F
AGI (Pan et al., 2021) AGI ✓ ✗ ✗ AGI-F
AMPE (Zhu et al., 2023) AMPE ✓ ✗ ✗ AMPE-F
BCos (Böhle et al., 2022) BCos ✗ ✗ ✗ BCos-F
XDNN (Hesse et al., 2021) XDNN ✗ ✓ ✗ XDNN
BagNet (Brendel & Bethge, 2019) BagNet ✗ ✓ ✗ BagNet
FRESH (Jain et al., 2020) FRESH ✗ ✓ ✗ FRESH
SOP (ours) SOP ✓ ✓ ✓ SOP

Table A4. Properties of all post-hoc feature attributions and self-attributing neural networks we use. SOP is the only attribution method
that is both model agnostic and self-attributing and has learnable groups.

• Input Features: We use tokens as individual features.

• Ground-Truth Annotations for Purity: For text experiments, we use annotations from the ERASER benchmark (DeY-
oung et al., 2020) for purity computation.

C.2 Model Training

C.2.1 BACKBONE MODELS

We use Vision Transformer (Dosovitskiy et al., 2021) (google/vit-base-patch16-224) for the ImageNet backbone. For
CosmoGrid experiments, we use postprocessed data from Jeffrey et al. (2021) and a CNN (Matilla et al., 2020) trained on
the training set of the CosmoGrid backbone. We use BERT (Devlin et al., 2019) (bert-base-uncased) finetuned on MultiRC
for the text backbone.

C.2.2 SOP MODELS

For SOP model training, we use learning rate of 5e-6 for all experiments. For ImageNet-S and MultiRC, we use one head in
the attention in the group generator. For CosmoGrid, we use four heads. We observe that using more heads result in more
diverse groups, while the groups generated based on queries from the same head are similar. For all experiments, we select
only 20 groups from all the possible groups, by choosing attentions created by queries spaced out evenly. We find that we do
not need more than 20 groups for good performance. For ImageNet, we train for 1 epoch, but taking the checkpoint at 0.5
epoch as it already converges, while we train for 3 epochs for CosmoGrid and 20 epochs for MultiRC. For ImageNet, we
use Gaussian blurring of kernel size 5 on the patches, and kernel size 15 on MultiRC, so that we obtain more contiguous
groups. For CosmoGrid though, we do not use Gaussian blur because we do not assume that connected groups are better for
weak lensing maps.

C.2.3 COMPUTE RESOURCES

We use NVIDIA A100 with 80G memory and NVIDIA A6000 with 48G memory on our internal cluster for experiments.
Typically, one training for ImageNet finish in a day with one epoch. The training for CosmoGrid finish in 2 hours and
converge in one epoch. The training for MultiRC also converges in one epoch. The evaluation takes around 5 minutes for
each method. There were preliminary experiments that take more time to debug and modify the architecture.

C.3 Baselines

As we are building a new type of self-attributing neural networks, we compare with self-attributing neural networks that
attribute to input features for all main experiments. The baselines we compare with are either already self-attributing neural
networks, or converted from post-hoc attributions. The models that already fall under the class of self-attributing neural
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networks are XDNN (Hesse et al., 2021), BagNet (Brendel & Bethge, 2019), FRESH (Jain et al., 2020) and SOP (ours). For
post-hoc baselines, we construct a self-explaining version by passing thresholded post-hoc attributions into the backbone
model to make predictions, following the framework of FRESH (Jain et al., 2020). We show all the methods we use in
Table A4. We can see that SOP is the only method that is both model-agnostic and a self-attributing neural network.

Self-Attributing Neural Networks. For faithful baseline, the closest previous work we can compare with is FRESH
(Jain et al., 2020). FRESH builds a two-stage system for faithful explanations for text. It takes the attention output from a
pretrained transformer, and binarize it by taking top τ = 0.2, select the input tokens based on the binary mask, and then
train another transformer to take the selected group of input tokens and make prediction only based on the group.

In FRESH, they train a separate model to predict with the selected group, while we freeze the pretrained backbone and train
the group generator and group selector end-to-end for prediction. Since we build attentions outside the backbone model,
we are able to extract groups with any pretrained backbone model (such as both transformer and CNN), instead of only
transformer-based models. FRESH (Jain et al., 2020) trains two separate components for group generation and the backbone.
We assume that we don’t change the backbone model, thus we only compare with a similar version to FRESH where we
take the attention from the Vision Transformer and pass directly into the backbone model.

Although NAM (Agarwal et al., 2021) and other faithful models also have faithful attributions to individual features, they
require a separately trained submodule for each feature. For example, BagNet (Brendel & Bethge, 2019) uses group
attribution on fixed patches, while XDNN (Hesse et al., 2021) attributes to pixels. When there are existing trained specialized
models for a dataset (e.g. ImageNet), then we compare with them. However, when there is no such trained model for a
new dataset (e.g. CosmoGrid), we only compare with methods that can utilize already trained models. This is because it is
infeasible to train a separate model from scratch for all different tasks.

Post-hoc-converted Faithful Model. We then compile a series of FRESH-like baselines, which take the attribution scores
from different post-hoc methods, including attention, and take top τ = 0.2 following Jain et al. (2020), and convert them
into faithful explanations by making the prediction only based on these groups. The post-hoc attributions are from LIME
(Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017), IntGrad (Sundararajan et al., 2017), GradCAM (Selvaraju et al.,
2016), FullGrad (Srinivas & Fleuret, 2019), RISE (Petsiuk et al., 2018), Archipelago (Tsang et al., 2020), MFABA (Zhu
et al., 2024), AGI (Pan et al., 2021), AMPE (Zhu et al., 2023), among which Archipelago already produces group attribution
and we take the top predicted groups. We add “-F” after the name of each baseline to indicate that this is the faithful version
using only the attributions for prediction, to differentiate with the original post-hoc methods. For SOP, we also take top
τ = 0.2 for each group.

Other Baseline Details. The baselines BCos, XDNN, and BagNet all depend on specific models and cannot be applied
to any model backbone directly. For BCos, we use the simple vit b patch16 224 model that is a Vision Transformer
model with the linear transformations replaced by their B-cos transformation. For XDNN, they remove the bias turn in
AlexNet, VGG16 and ResNet50. As they do not have available version for Vision Transformers, we use their trained
xfixup resnet50 model for ResNet50 for our experiments. FRESH also depends on the attention mechanism inside the
Transformer architecture, requiring the model backbone to be a Transformer model, and thus we use the attention from
Vision Transformer for ImageNet experiments. BagNet also depends on its specific CNN and cannot be applied to existing
trained models. Therefore, we only compare with BCos, XDNN, BagNet and FRESH for ImageNet and only compare with
other model-agnostic baselines for CosmoGrid experiment.

C.4 Evaluation

C.4.1 SEMANTIC COHERENCE

Intersection-over-Union (IOU) for ImageNet-S. and MultiRC For ImageNet-S (Gao et al., 2022), there are ground
truth segmentations for a subset of images in ImageNet. For MultiRC (Khashabi et al., 2018), there are ground truth human
annotated explanations. We measure intersection-over-union (IOU) of the group with the ground truth annotations (object for
ImageNet-S and explanation for MultiRC). Purity of a group gi ∈ {0, 1}d with respect to the ground truth group φ ∈ {0, 1}d
is then

PurityMultiRC(gi, φ) = 1− |gi ∩ φ|
|gi ∪ φ|

) (50)
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Threshold-based Purity for CosmoGrid. In our collaboration with cosmologists, we identified two cosmological
structures learned in our group attributions: voids and clusters. Voids are large regions that are under-dense relative to the
mean density and appear as dark regions in the weak lensing mass maps, whereas clusters are areas of concentrated high
density and appear as bright dots. As there are no ground-truth segments for voids and clusters, we use a proxy function
from our collaborator cosmologists to compute how much of a void or cluster a certain group is. In this section, we describe
how we extracted void and cluster labels from the group attributions.

Let S be a group from SOP when making predictions for an input x. Previous work (Matilla et al., 2020) defined a cluster as
a region with a mean intensity of greater than +3σ, where σ is the standard deviation of the intensity for each weak lensing
map. This provides a natural threshold for our groups: we can identify groups containing clusters as those whose features
have a mean intensity of +3σ. Specifically, we calculate

Intensity(x, S) =
1

|S|
∑

i:Si>0

xi

Then, a group S is labeled as a void if Intensity(x, S) ≥ 3σ. Similarly, Matilla et al. (2020) define a void as a region with
mean intensity less than 0. Then, a group S is labeled as a cluster if Intensity(x, S) < 0.

In consultation with our cosmologists collaborators, we refine the criteria in the main paper to not just use the mean intensity.

The alignment of a group gi to void is the percentage of pixels in the group that are below 0, given the mass g⊤i x is below 0.
The alignment of a group gi to cluster is the percentage of pixels in the group that are above 3 standard deviation of x’s pixel
values.

Alignvoid(gi, x) =
|gi ⊙ x < 0|
|gi|

· 1[g⊤i x < 0],

Aligncluster(gi, x) =
|gi ⊙ x > 3σ(x)|

|gi|

(51)

The purity is computed as the mean of void alignment and cluster alignment scores that are above thresholds τv and τc and
averaged for the two predictions Ωm and σ8.

PurityCosmoGrid(gi, x) = 1[Alignvoid(gi, x) > τv]

+ 1[Aligncluster(gi, x) > τc]
(52)

CosmoGrid Purity Threshold Ablations. In Table 1, we evaluate CosmoGrid purity with τv = 0.6 and τc = 0.015, so
that we say a group is a void if more than 60% of its pixels are below 0 and the total mass is below 0, and a group is a cluster
if more than 1.5% of its pixels are above 3σ(x).

We show more ablation of how changing the hyperparameters in CosmoGrid purity affects the results in Figure A10. The
result is that SOP consistently has better purity and performance trade-off than other baselines across all varying levels of τc
and τv .

Additional Examples We show additional examples in Figure A11, A12, A13, A14, A15. The groups obtained by SOP
are the most semantically localized and coherent, and thus easy to interpret.

C.4.2 SPARSITY

Additional plots comparing how different sparsities in groups affect errors for CosmoGrid and MultiRC are shown in
Figure A19. We can see that for CosmoGrid, SOP has the lowest MSE on average, and the best at sparsity 0.8 (keeping
top 20% features) where it is trained. For MultiRC, SOP is competitive with FRESH while being better at the sparsity it is
trained (sparsity 0.8).

C.4.3 FIDELITY

Fidelity assesses if attributions sum up to be the same as the model’s prediction (Nauta et al., 2023). Faithful attributions
should have low fidelity for the attributions of each feature to accurately represent the contribution from the feature.
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Figure A10. (CosmoGrid Purity Threshold Ablation) Ablation of void/cluster thresholds τv and τc for MSE Loss vs Purity. The first four
plots show that when we fix the τc = 0.015, SOP has better purity until τv = 0.8, and the later four plots show that when we fix the
τv = 0.6, SOP consistently have the best pareto frontier than all baselines. SOP is the best on average.
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Figure A11. Example groups from different feature attribution methods for an image of Tench. “-F” indicates self-attributing models
converted from post-hoc methods. The highlights show the groups selected by each method (top 20% attributed patches), with unused
patches hatched-out.

Fidelity can be measured by the KL-Divergence between the model predicted probabilities p̂(x) ∈ [0, 1]k for all k classes
and the probability using summed attributions p̃(x) ∈ [0, 1]k for all k classes (Yu & Varshney, 2017; Chen et al., 2019;
Anders et al., 2020).

Fidelity = Ex∼D[KL(p̂(x) || p̃(x))] (53)

where p̂ = softmax(f(x)) is the predicted probability of the model, and p̃ = softmax(
∑

i αi) is the probability of
summed attribution scores for data x in distribution D. As self-attributing neural networks all follow the design f(x) =∑m

i=1 θ(x)ih(x)i and the attribution scores αi = θ(x)ih(x)i, self-attributing neural networks by design achieve 0 fidelity.
We report fidelity of post-hoc models in Table A5 and show that self-attributing neural networks are the only ones that
achieve perfect fidelity.

For SOP, the sum of attribution scores is the sum of group predictions weighted by the group selector scores
∑

i αi =
∑

i ciyi.
For FRESH (Jain et al., 2020), they only have one group, so the score for each class is the same as the prediction from that
one group. All the self-attributing neural networks achieves fidelity of 0 by construction.

For most post-hoc baselines, the sum of attribution scores is simply the sum of all the scores for each feature. We report the
fidelity scores for post-hoc methods in Table A5. We can see that no post-hoc method achieves perfect fidelity of 0.
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Figure A12. Example groups from different feature attribution methods for an image of Grocery store. “-F” indicates self-attributing
models converted from post-hoc methods. The highlights show the groups selected by each method (top 20% attributed patches), with
unused patches hatched-out.
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Figure A13. Example groups from different feature attribution methods for an image of Cassette tape. “-F” indicates self-attributing
models converted from post-hoc methods. The highlights show the groups selected by each method (top 20% attributed patches), with
unused patches hatched-out.

C.4.4 INSERTION AND DELETION

Original Insertion and Deletion. Intuitively, if we add features from the most important to the least important one-by-one
starting with a blank image, the probability for the predicted class should go up quickly. Conversely, if we delete them from
the most to least important, the probability should ideally drop instantly. The mainstream insertion and deletion metrics
(Samek et al., 2017; Petsiuk et al., 2018) intend to evaluate if the features are actually important by inserting or deleting
them one-by-one and computing the area-under-the-curve (AUC).

As insertion and deletion criteria are designed for pixel-level instead of groups of features, we consider a modified version
of insertion and deletion for groups, which grow or shrink the groups instead of adding pixels to the model. We report
the percentage probability AUC instead of the absolute, to accommodate the difference in accuracy when the models are
different. We use step size of 10% following previous work (Wu et al., 2024). Table 3 shows that SOP performs the best for
both insertion and deletion on ImageNet. Among other methods, the perturbation-based methods such as SHAP and LIME
perform better than gradient-based methods. Table A6 shows that SOP performs the best for insertion on Cosmogrid and
MultiRC.
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Figure A14. Example groups from different feature attribution methods for an image of Cassette player. “-F” indicates self-attributing
models converted from post-hoc methods. The highlights show the groups selected by each method (top 20% attributed patches), with
unused patches hatched-out.
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Figure A15. Example groups from different feature attribution methods for an image of Castle. “-F” indicates self-attributing models
converted from post-hoc methods. The highlights show the groups selected by each method (top 20% attributed patches), with unused
patches hatched-out.

The mainstream insertion and deletion metrics (Samek et al., 2017; Petsiuk et al., 2018) are approximations intended to
evaluate the faithfulness of post-hoc methods (Nauta et al., 2023). Nevertheless, we include results for insertion and deletion
for completeness.

Adapting Insertion and Deletion for Groups. The mainstream insertion and deletion criteria has a problem when directly
used to evaluate group attribution. When inserting a single group of features, it is unclear what order one should use to insert
individual features. In images, inserting pixels by row versus randomly can result in very different results. As a result, it is
not immediately obvious how to directly apply the standard insertion and deletion criteria to the group setting. Nevertheless,
we can consider a modified version of insertion criteria for groups, where instead of adding a single pixel at a time, we
instead gradually grow the size of all groups simultaneously. This procedure is equivalent to the classic insertion criteria
when there is a single group. Specifically, we grow the size of the groups gradually from with an interval of 10% of all
features (approximately around 5017 pixels), and compute the AUCs of the highest predicted probability of the faithful
models.

For deletion, we perform a similar procedure by shrinking the groups gradually with the same interval of 10% pixels and
computing the AUCs on the highest predicted probability of the faithful models. Because each faithful model’s prediction
start with a different value, it is hard to compare the deletion score. Therefore, we make a small modification to the original
deletion metric and penalize the cases where the prediction is wrong by setting the score of that point to 1.
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Method ImageNet CosmoGrid MultiRC
Fidelity↓ Fidelity↓ Fidelity↓

LIME 3.866 ± 0.244 0.100 ± 0.000 1.550 ± 0.271
SHAP 0.015 ± 0.006 0.100 ± 0.000 1.628 ± 0.283
IG 7.161 ± 0.212 0.100 ± 0.000 1.921 ± 0.276
GC 10.406 ± 1.098 1.697 ± 0.277 1.697 ± 0.277
FG 13.567 ± 0.158 1.921 ± 0.277 1.921 ± 0.277
RISE 0.884 ± 0.533 0.100 ± 0.000 2.771 ± 0.231
Archi. 10.850 ± 0.354 1.684 ± 0.277 1.684 ± 0.277
MFABA 6.674 ± 0.166 1.690 ± 0.267 1.690 ± 0.267
AGI 5.416 ± 0.549 1.665 ± 0.254 1.665 ± 0.254
AMPE 13.671 ± 0.326 2.532 ± 0.493 2.532 ± 0.493
BCos 13.372 ± 0.373 – –

Table A5. Fidelity scores for post-hoc methods on ImageNet, CosmoGrid, and MultiRC. Lower values indicate better fidelity. We omit
numbers for self-explaining models as they by design achieve fidelity of 0. Post-hoc attribution methods are not able to achieve fidelity of
0, which empirically shows that they are not faithful to the model prediction. For CosmoGrid, to compute KL-divergence for fidelity, an
additional softmax operation is applied on top of the CNN predicted logits as KL-divergence only works on probability distributions.

Category Method MultiRC CosmoGrid
Ins.↑ Del.↓ Ins.↓ Del.↑

Post-Hoc-Converted

LIME 0.869 ± 0.020 0.778 ± 0.005 0.028 ± 0.001 0.028 ± 0.001
SHAP 0.840 ± 0.016 0.839 ± 0.017 0.023 ± 0.001 0.023 ± 0.001

IG 0.878 ± 0.009 0.852 ± 0.019 0.027 ± 0.001 0.027 ± 0.001
GC 0.882 ± 0.011 0.876 ± 0.014 0.026 ± 0.001 0.026 ± 0.001
FG 0.928 ± 0.009 0.834 ± 0.014 0.025 ± 0.001 0.025 ± 0.001

RISE 0.961 ± 0.017 0.832 ± 0.016 0.027 ± 0.001 0.027 ± 0.001
Archi. 0.669 ± 0.021 0.920 ± 0.015 0.036 ± 0.002 0.036 ± 0.002

MFABA 0.863 ± 0.011 0.873 ± 0.007 0.023 ± 0.004 0.023 ± 0.004
AGI 0.929 ± 0.013 0.901 ± 0.007 0.024 ± 0.004 0.024 ± 0.004

AMPE 0.868 ± 0.007 0.892 ± 0.018 0.027 ± 0.004 0.027 ± 0.004

Self-Attributing FRESH 0.937 ± 0.013 0.710 ± 0.028 – –
SOP 1.018 ± 0.022 0.949 ± 0.007 0.020 ± 0.001 0.027 ± 0.002

Table A6. Insertion/Deletion metrics for MultiRC and CosmoGrid. For MultiRC (left columns), higher insertion (Ins.↑) and lower deletion
(Del.↓) are better. Best result is bolded, second-best is italicized. As FRESH is designed for text, it is unsurprising that it achieves better
results on some metrics in text. We compute percent insertion/deletion scores as discussed in Appendix C.4.4, which is why it is possible
for SOP to obtain an insertion score larger than 1. For CosmoGrid (right columns), lower insertion (Ins.↓) and higher deletion (Del.↑) are
better due to MSE loss. Best result is bolded, second-best is underlined. All tables report percent insertion and deletion scores with an
interval of 10%. FRESH is not applicable to CosmoGrid.

Also, as we are using different self-attributing neural networks, the base prediction can be different, making it unfair when
comparing the insertion and deletion scores. We thus use the percent probability comparing with using all the input instead
of the raw probability.

For self-attributing neural networks that select groups by thresholding attention, such as SOP and FRESH, we grow the size
of the group according to the attention scores. For models that have fixed group sizes, such as XDNN which uses groups of
single pixels, and BagNet which uses groups of fixed patches, we perform insertion/deletion by adding/removing patches
from the aggregation, following the same percentage for step sizes. Similar things are performed when evaluating accuracy
for different sparsity levels.

Different Step Sizes. Here in the Appendix, we also report more finegrained insertion and deletion scores using step sizes
of 16× 16 patches (which equals 256 pixels) in Table A7. The result is very similar and SOP still achieves the best insertion
and deletion scores.

Different Occlusion Strategies. There can be different occlusion values to use when masking out the groups. To test if
the choice of feature deletion values affects the results, we ran additional insertion/deletion experiments using an alternative
deletion value as used in Bluecher et al. (2024) (specifically, randomly sampled color from the image). The results in
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Category Method
ImageNet - ViT

Step size 256 pix. Occlusion w. Colors
Ins.↑ Del.↓ Ins.↑ Del.↓

Post-Hoc-Converted

LIME-F 0.815 ± 0.005 0.428 ± 0.004 0.797 ± 0.007 0.555 ± 0.023
SHAP-F 0.831 ± 0.006 0.373 ± 0.008 0.909 ± 0.018 0.524 ± 0.023

IG-F 0.611 ± 0.006 0.617 ± 0.008 0.679 ± 0.030 0.786 ± 0.059
GC-F 0.772 ± 0.007 0.366 ± 0.007 0.789 ± 0.021 0.540 ± 0.031
FG-F 0.759 ± 0.005 0.383 ± 0.004 0.830 ± 0.029 0.447 ± 0.026

RISE-F 0.590 ± 0.008 0.661 ± 0.004 0.652 ± 0.043 0.776 ± 0.019
Archi.-F 0.676 ± 0.003 0.501 ± 0.004 0.824 ± 0.058 0.608 ± 0.025

MFABA-F 0.674 ± 0.006 0.499 ± 0.010 0.855 ± 0.048 0.610 ± 0.085
AGI-F 0.735 ± 0.006 0.462 ± 0.008 0.875 ± 0.048 0.585 ± 0.050

AMPE-F 0.675 ± 0.007 0.534 ± 0.005 0.738 ± 0.078 0.645 ± 0.041
BCos-F 0.257 ± 0.005 0.288 ± 0.008 0.574 ± 0.175 0.380 ± 0.032

Self-Explaining

XDNN 0.199 ± 0.007 0.156 ± 0.003 0.245 ± 0.038 0.254 ± 0.044
BagNet 0.560 ± 0.006 0.417 ± 0.007 0.878 ± 0.023 0.228 ± 0.022
FRESH 0.713 ± 0.002 0.369 ± 0.004 0.746 ± 0.033 0.512 ± 0.046

SOP 0.890 ± 0.004 0.014 ± 0.000 0.910 ± 0.010 0.106 ± 0.000

Table A7. ImageNet Insertion (Ins.↑) and Deletion (Del.↓) metrics. Higher Ins. and lower Del. are better. Best results are bolded,
second-best are italicized. Step size results use 16× 16 patches (256 pixels, 5% of image). Occlusion uses a random color. All tables
report percent scores with an interval of 10%.

Table A7 aligns with our previous results of replacing the deletion value with 0 and SOP still performs the best for both
insertion and deletion on ImageNet. This shows that the evaluation is consistent with other feature deletion values.

Discussion: Biases in Insertion and Deletion Tests. SOP performs well on the insertion test for all tasks, while being
only the best on deletion task for one task. We notice a bias in the deletion test. As the deletion test favors SANNs such that
deleting the most important feature results in a sharp performance drop, it biases towards models that rely primarily on a
small number of features. On the other hand, if a model distributes its dependence to multiple different groups of features,
removing the new most important features will not lead to a large performance drop. While deletion test is initially designed
to evaluate post-hoc feature attributions that attempt to explain the same backbone model, it is not well-suited to evaluate
self-attributing models, as it will score models that depend on a few features more, regardless of the underlying faithfulness
of the explanation.

For example, if there are multiple flowers in an image, and the model only looks at the upper left corner, while ignoring all
other parts of the image, then removing the flower in the upper left corner will reduce the model predicted probability for the
flower to 0. However, if the model averages the prediction from different parts of the image, its predicted probability for the
flower will only drop a little bit if its most used flower is removed. This doesn’t mean that the second model’s explanation is
any less faithful than the first one. On the other hand, the model’s score for the one flower could be a smaller number that
faithfully reflects the small amount of confidence reduced.

Figure A16 shows average deletion curves for SOP. We see that even as we delete features from groups, SOP is able to
maintain relatively high performance, resulting in a worse deletion score. Such behavior is natural because the training
objective in SOP encourages the group selector to select highly predictive groups, and multiple groups can compensate for
the information missing in another group.

Insertion/Deletion Results for CosmoGrid and MultiRC. Table A6 shows insertion and deletion results for MultiRC and
CosmoGrid. We see that SOP is consistently good on the insertion metric while LIME is better at deletion. We conjecture
that this is due to different groups in SOP compensating for each other.

C.4.5 INFORMATION LEAK FROM THE GROUP GENERATOR

We show all the results for probing if the groups contain the labels in Table A8. We can see that models trained on the
SOP groups are not able to predict the labels well. While results from linear and ViT models are not differentiating
different methods, CNN probing models show that the groups from other methods like FG-F and AGI-F are leaking a lot of
information. Archipelago is omitted because of the significant computational cost. to generate explanations for training
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Figure A16. Deletion curves across datasets. SOP’s multi-group approach allows it to maintain low loss when only a few input features
are preserved. Other methods show unstable behavior, especially in CosmoGrid.

LIME-F SHAP-F IG-F GC-F FG-F MFABA-F AGI-F AMPE-F BCos-F XDNN BagNet FRESH SOP
Model

CNN 0.10 0.17 9.38 2.96 13.40 8.27 10.66 6.67 0.12 0.14 0.06 2.55 0.10
Linear 2.58 0.15 3.41 3.46 2.95 2.95 3.06 3.28 2.32 3.14 0.15 3.61 2.62
ViT 0.13 0.11 0.10 0.07 0.16 0.11 0.08 0.12 0.13 0.09 0.28 0.08 0.07

Table A8. (ImageNet Group Probing Model Accuracy) A model trained on group masks from SOP is unable to obtain accuracies much
more than random. This indicates that the powerful group generator in SOP is not doing all the work and not compromising SOP’s
interpretability. RISE and Archipelago are omitted because of the significant computational cost to generate explanations for training
examples.

examples, while the experiments with all other baselines already demonstrate the interpretability of linear combination in
SOP.

C.4.6 HUMAN DISTICTION TEST

SOP learns to use predictions from feature groups for the final prediction. However, if the group explanations are the same
for different classes, they are not semantically relevant to the classes. We follow the HIVE protocol (Kim et al., 2022) and
conduct a human distinction task on ImageNet-S to assess if people can predict which class the model predicts based solely
on the group explanations for the classes. In the study, human evaluators are shown an image with group explanations for
four classes and asked to guess the model prediction. Figure A18 shows a bar plot of human distinction task accuracies,
where explanations from SOP is among the ones having most distinctive explanation for the predicted class. The large
error bars do not declare a single winner, while being consistent with original experiments in HIVE (Kim et al., 2022). 7

Nevertheless, SOP groups for different classes are distinctive enough to provide meaningful explanations.

We follow HIVE (Kim et al., 2022) for constructing our distinction task for a human simulation test. Figure A18 shows
the accuracy of the human distinction task and its standard deviation bootstrapped 1000 times. This human evaluation is
conducted on Amazon Mechanical Turk (MTurk) on 100 examples each evaluated by 3 mturk users.

The large standard deviation is consistent with the literature and thus there is no one absolute winner method for human
simulation (Kim et al., 2022). Figure A17 show the interface we display to the human evaluators.

7Here we show the attributions for different classes from the original post-hoc methods, since the converted SANNs only uses one
group explanation–one for the highest predicted classes.
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Figure A17. Human Distinction Task MTurk Interface. Each worker was shown the original image with four copies that have explanations
for four classes highlighted. The predicted class is one of the four classes. The worker is asked to select the class that they think is correct
based on the explanations for each class.

Method Error IoU Insertion Deletion

FastShap-F 0.8270 0.0705 0.4556 0.7974
ViT-Shapley-F 0.7323 0.2447 0.5329 0.5715
AutoGnothi-F 0.7095 0.2229 0.5758 0.5337

Table A9. (ImageNet-S) Comparison of methods by error, IoU, insertion, and deletion metrics for Additional Baselines.

We pay each worker 0.05 per task, totaling 7.5 dollars per hour. For each task, we have three workers to evaluate. We show
100 images from 100 different classes (one image per class) for each explanation.

C.5 Computation Cost

Table 2 shows the computation cost of SOP and other models. All the baseline attribution methods whose extra number
of forward passes can be controlled use at most 20 forward passes—the same number as SOP . We can see that other
perturbation-based baselines also require multiple forward passes. Gradient-based methods use one forward pass and we
keep them that way. For Archipelago-F, it requires pairwise comparison and thus incurs a higher cost of O(d2).

C.6 Additional Baselines

Table A9 shows results of three additional baselines on ImageNet-S: FastShap-F (Jethani et al., 2021), ViT-Shapley-F (Covert
et al., 2023), AutoGnothi-F (Wang et al., 2025). They are all post-hoc methods that attempt to approximate Shapley values
faster, and we convert them as other post-hoc methods to a self-attributing version. However, as they are approximations of
Shapley values, they still fall short against SOP.
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Figure A18. (ImageNet Human Distinction Task) We report humans distinction task accuracy for predicting which of four classes is the
model prediction by looking at the attribution for each class (Kim et al., 2022). Most methods are similar in the accuracy of human
predicting the correct class based solely on the explanation, and the error bars are high, which is consistent with prior work HIVE while
using a larger sample size than the original HIVE.
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Figure A19. (Sparsity vs Error) for CosmoGrid and MultiRC

D Additional Cosmology Background
While outperforming other methods on standard metrics shows the advantage of our group attributions, the ultimate goal
of interpretability methods is for domain experts to use these tools and be able to use the explanations in real settings. To
validate the usability of our approach, we collaborated with domain experts and used SOP to discover new cosmological
knowledge about the expansion of the universe and the growth of cosmic structure. We find that the groups generated with
SOP contain semantically meaningful structures to cosmologists. The resulting scores of these groups led to findings linking
certain cosmological structures to the initial state of the universe, some of which were surprising and previously not known.

Weak lensing maps in cosmology calculate the spatial distribution of matter density in the universe using precise mea-
surements of the shapes of ∼100 million galaxies (Gatti et al., 2021). The shape of each galaxy is distorted (sheared and
magnified) due to the curvature of spacetime induced by mass inhomogenities as light travels towards us. Cosmologists
have techniques that can infer the distribution of mass in the universe from these distortions, resulting in a weak lensing map
(Jeffrey et al., 2021).

Problem Formulation. Cosmologists hope to use weak lensing maps to predict two key parameters related to the initial
state of the universe: Ωm and σ8. Ωm captures the average energy density of all matter in the universe (relative to the total
energy density which includes radiation and dark energy), while σ8 describes the fluctuation of matter distribution (see e.g.
(Abbott et al., 2022)). From these parameters, a cosmologist can simulate how cosmological structures, such as galaxies,
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superclusters and voids, develop throughout cosmic history. However, Ωm and σ8 are not directly measurable, and the
inverse relation from cosmological structures in the weak lensing map to Ωm and σ8 is unknown.

One approach to inferring Ωm and σ8 from weak lensing maps, as demonstrated for example by Ribli et al. (2019); Matilla
et al. (2020); Fluri et al. (2022), is to apply deep learning models that can compare measurements to simulated weak lensing
maps. Even though these models have high performance, we do not fully understand how they predict Ωm and σ8. As a
result, the following remains an open question in cosmology:

What structures from weak lensing maps drive the inference of the cosmological parameters Ωm and σ8?

In collaboration with expert cosmologists, we use convolutional networks trained to predict Ωm and σ8 as the backbone
of an SOP model to get accurate predictions with faithful group attributions. Crucially, the guarantee of faithfulness in
SOP provides confidence that the attributions reflect how the model makes its prediction, as opposed to possibly being
a red herring. We then interpret and analyze these attributions and understand how structures in weak lensing maps of
CosmoGridV1 (Kacprzak et al., 2023) influence Ωm and σ8.

It will be interesting to explore how these results change as we mimic realistic data by adding noise and measurement
artifacts. Other aspects worth exploring are the role of “super-clusters” that contain multiple clusters, and how to account for
the fact that voids occupy much larger areas on the sky than clusters (i.e., should we be surprised that they perform better?).
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