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Abstract

Exploring the intersection of generative design and structural
topology optimization has been a popular research area re-
cently. Existing structural optimization methods have been
shown to generate high-performance and aesthetically pleas-
ing structures, but at a tremendous computational cost. The
rapidly advancing field of deep learning, particularly genera-
tive modeling, has substantial potential to tackle the structural
generative design problem. Previous works have utilized deep
generative models for highly specific cases, ranging from a
small set of loading conditions to heavily relying on super-
vised loss functions for training. We propose a new method
targeted at generating near-optimal structures over a wide vari-
ety of initial conditions in a completely unsupervised manner.
We accomplish this by implementing a novel Generative Ad-
versarial Network (GAN) framework to generate densities that
match our given target distribution and encode extremely effi-
cient latent representations of the initial physical conditions
of the sample. The target distribution used in this work comes
from data generated via the solid isotropic material condition
with penalization (SIMP) topology optimization algorithm.
Our results show that the proposed framework can generate
similar structures to those found using the SIMP optimization
algorithm, which consequently demonstrates the potential vari-
ability in solution spaces for arbitrary problems in generative
design.

Introduction
Topology Optimization refers to optimizing the structure with
regards to various constraints such as weight, structural ca-
pacity, etc., from an initial geometry along with physical
boundary conditions. Currently, there are reliable and effi-
cient, performance-wise, algorithms available and frequently
used in practice (Bendsøe 1989).

Formally, topology optimization is represented as:

minimize: C(U)

subject to: KU = F

gi(U) ≤ 0.

(1)

Here, C(U) refers to the objective function of topology opti-
mization. In the case of structural topology optimization, this
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is the compliance of the system,

C =

∫
Ω∈S

bu dΩ +

∫
τ∈dS

tu dτ (2)

where b represents the body forces, u displacements, t surface
traction, and Ω and τ are volume and surface representations
of solid. The constraint gi(U) includes a volume fraction
constraint, gi = (v/v0) − vf . Since this optimization is
performed for every element in the mesh, the combinatorial
optimization is computationally intractable. Naturally, an
alternative solution is to represent the same set of equations
above as a function of density ρ for every element.

Minimize: C(ρ, U)

subject to: K(ρ)U = F

gi(ρ,U) ≤ 0

0 < ρ ≤ 1

(3)

This design problem is relaxed using solid isotropic mate-
rial condition with penalization (often called SIMP (Bendsøe
1989)), where the stiffness for each element may be described
as, E = Emin+ρp(Emax−Emin). Here, p is the parameter
used for penalizing the element density to be closer to 1.0.
Structural topology optimization methods, SIMP, in partic-
ular, are still subject to multiple computationally expensive
finite element calls during the optimization process. Addi-
tionally, these optimization methods all produce comparable
but different structures. This shows that there may be a larger
solution space for optimal structures than one would assume.

The downside is that traditional topology optimization al-
gorithms can be extremely computationally expensive. There
has been significant interest in utilizing deep learning algo-
rithms to achieve similar performance with drastically less
computational costs. Using deep learning techniques for solv-
ing topology optimization has been pursued aggressively.
Direct supervised approaches to predict the final optimized
topology when given the initial conditions, i.e., the initial
strain energy and the design constraint, referred to in this
paper as initial volume fraction, have produced exceptional
results (Abueidda, Koric, and Sobh 2020). Other approaches
have taken a more iterative approach that attempts to model
an optimization trajectory similar to the SIMP method. These
approaches have also produced great results that extend to
3D structures. The authors used the initial strain energy and



volume fraction to predict an optimized topology in this work.
Additionally, they utilized a separate network to predict that
optimized topology’s corresponding strain energy, thus train-
ing a surrogate model to a Finite Element Analysis algorithm.
The predicted topology and corresponding strain energy are
then fed back through the network in a cyclic fashion to
predict the final density more accurately (Rade et al. 2021).
Another approach of data-driven topology optimization meth-
ods is the use of generative modeling. While there exist works
that attempt to use generative modeling for topology opti-
mization, most of them are still applied to very targeted ar-
eas (Rawat and Shen 2019b,a). Hence, there is a need for a
general and robust generative design algorithm that is unsu-
pervised and does not use data directly. On the other extreme,
data-free machine learning-based topology optimization ap-
proaches explore the design space using a neural network by
iteratively evaluating the objective function and training the
neural network to predict optimal densities (Chandrasekhar
and Suresh 2021). However, these approaches do not displace
the repeated Finite Element evaluation, thus resulting in high
computational cost.

In this work, we explore the generative modeling approach.
Specifically, we study the trade-offs associated with using
a variant of Generative Adversarial Network (GAN (Good-
fellow et al. 2014)) trained strictly using adversarial losses
in an unsupervised manner. Generative modeling entails tak-
ing some noise from a predetermined random distribution
and transforming it into some target (and potentially high-
dimensional) distribution. In GANs, the framework com-
prises two networks (a generator and a discriminator) that
compete in a zero-sum game. The generator takes random
noise as input and generates some data or images in the con-
text of this work. The generated images are passed to the
discriminator and are assigned the probabilities of the gen-
erated images being sampled from the target distribution. In
essence, the generator tries to fool the discriminator by gen-
erating images that resemble the target distribution, while
the discriminator tries to differentiate between the generated
images and images sampled from the target distribution. For
this work, the variant of GAN that we used is the Wasserstein
GAN (WGAN) (Arjovsky, Chintala, and Bottou 2017; Gulra-
jani et al. 2017). A WGAN measures the differences between
the true and generated data distributions via the Wasserstein
Distance, commonly referred to as the Earth Mover’s Dis-
tance (EM). Unlike the Jensen-Shannon divergence used in
GANs, we can use the EM distance over disjoint distributions
since it measures the energy required to turn one distribution
into the other.

GANs have been shown to be successful in accomplishing
restricted tasks in topology optimization (Oh et al. 2019).
These restrictive tasks constrain the problem by either using
a dataset composed of very similar structures or slightly edit-
ing a given topology such as the iterative design exploration
method. GANs have also been used to generate optimal struc-
tures given variable physical initial conditions, albeit with
a reconstruction loss (Nie et al. 2020). In summary, while
GANs have shown great potential for topology optimization,
they are still hindered by their relatively uncontrollable ad-
versarial training scheme. This is particularly evident while

training GANs for topology optimization, where the data is
heavily constrained by the underlying physical conditions of
the structure. This work explores the solution space for given
samples’ initial physical conditions irrespective of the design
constraints. In doing so, we leverage the potential “creativity”
of a generator trained strictly off of adversarial losses, op-
posed to generators explicitly influenced via reconstruction
losses.

In summary, our key contributions in this paper are as
follows:
1. We propose an unsupervised Wasserstein GAN approach

for developing a generative design framework to predict
near-optimal structural shapes.

2. We generate a total of 90,000 structures obtained using
the traditional SIMP-based topology process.

3. We qualitatively compare our unsupervised Wasserstein
GAN approach with the conventional approach in generat-
ing shapes in terms of “out-of-distribution” and its ability
to satisfy the loads and boundary conditions.

Now, we will cover the details of our method and then show
the results.

Methods
The following section outlines a novel framework for unsuper-
vised generative topology optimization, visualized in Fig. 1,
followed by network architectures and loss functions used
during training. For comparison, we also trained a vanilla
WGAN as a baseline to qualitatively compare our results.
Additional background and training details of the baseline
framework are in the Appendix.

WGAN with optimized latent representations
The proposed WGAN with Optimized Latent Representations
(WGAN-OLR) framework comprises of two encoder-decoder
models and two discriminator models. First, we explain the
parts of the network comprising the traditional WGAN and
then explain the additional parts added to enhance the perfor-
mance. The WGAN in this framework is an encoder-decoder
model. The encoder of the model takes the initial physical
conditions and obtains a latent representation. The noise is
drawn from a Gaussian distribution centered at 0 with a vari-
ance of 1. The decoder generates a near-optimal density using
the noise and the latent representation as input. The entire
generator, consisting of the encoder and decoder, is then op-
timized to generate densities that decrease the Wasserstein
distance value output by the discriminator. The standalone
WGAN architecture is also shown in the Appendix. In ad-
dition to WGAN, WGAN-OLR aims to optimize the latent
representations of the initial physical conditions to facilitate
a more robust understanding of the potential solution space.
For this, we add another encoder-decoder model, shown at the
bottom of Fig. 1. This model is trained alongside the WGAN
(represented by the encoderR–decoderR model) in a super-
vised manner. This supervised encoder-decoder model takes
in the initial physical conditions and predicts a density. This
model is then optimized via the mean-squared error over the
predicted density and the SIMP-optimized density. The en-
coder component of the generator is optimized to decrease the
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Figure 1: Overall framework for the proposed WGAN with optimized latent representations. Data within maroon boxes denote
the input, and the data within the gold box denotes the output. Additionally, black dotted lines denote the forward pass, and
salmon-colored dotted lines denote the backward pass during training. During inference, only the components connected by the
solid black lines are used to generate new densities.

Wasserstein distance value output by the latent representation
discriminator. On the other hand, the density discriminator
is optimized to increase the Wasserstein distances between
corresponding generated densities and SIMP-optimized den-
sities. Finally, the latent representation discriminator is also
optimized to increase the Wasserstein distance between the
latent representations produced by the generator’s encoder
and the supervised model’s encoder. The latent representa-
tion from the supervised model’s encoder is used as the target
distribution for the generator’s encoder.

To train the proposed WGAN-OLR, we used the RM-
Sprop optimizer with a learning rate of 1e-5. We opted for
a variable optimization scheme instead of implementing a
single update to the generator for a single loss function by
utilizing Lagrangian multipliers. The WGAN’s generator was
updated every third batch, discriminators were updated every
single batch, and the supervised model was updated every
sixth batch. During experimentation, a variable optimization
scheme was shown to be more efficient. We formalize the
proposed framework’s objective functions below.

min
G,GEnc

max
D,DLR

Ex∼Pr
[D(x)]− Ex̂∼Pg

[D(x̂)]

+El∼PR
[DLR(l)]− El̂∼Plr

[DLR(l̂)]
(4)

where D is the discriminator, G is the generator and Pg is the
model distribution implicitly defined by x̂ = G(lr, z), where
lr is the latent representation of the initial physical conditions
and z ∼ p(z). GEnc is the generator’s encoder, DLR is the
discriminator for the latent representations and Plr is the
distribution implicitly defined by l̂ = GEnc(SE). PR is then
the probability distribution implicitly defined by REnc(SE),
the latent representation from the supervised model R.

LI(R) = ESE,x[‖x−R(SE)‖2] (5)

The final supervised loss, LI(R), is defined as the mean
squared error between the density predicted, R(SE), and the
true SIMP-optimized density x. Here the additional super-
vised encoder-decoder model is defined as R.

The encoder and decoder structures used in both frame-
works are composed of three levels of down-sampling and
three levels of up-sampling, respectively. The density discrim-
inator consists of four down-sampling convolution blocks,
each consisting of a 2D convolution operation, followed by
2D instance normalization and leaky ReLU. The discrimina-
tor then uses three additional convolution blocks to reduce the
number of channels acquired during down-sampling. These
convolution blocks are composed of the same operations but
with smaller strides to eliminate further down-sampling of
the image. The architecture of the Latent Representation Dis-
criminator is composed of two convolution layers and four
linear layers, all utilizing a leaky ReLU activation function.

Data
The training and validation datasets are generated by perform-
ing 150 iterations of the SIMP optimization. Each iteration
of the SIMP algorithm produces two meshes, one containing
that iteration’s density and the corresponding mesh repre-
senting the compliance. We only require the 2D mesh rep-
resenting the initial raw compliance and the final optimized
density during training. Given that the nodes in each 2D mesh
form a regular grid, we can represent those meshes as im-
ages, with node values now being pixel values. In total, we
generated ∼ 90,000 structures, each with different randomly
generated load values, loading directions, load locations, and
a randomly generated set of nodes with fixed displacements.
For training, we used 72,000 samples with the remaining
∼17,000 samples used for validation. Each raw compliance
image undergoes a log normalization pre-processing opera-
tion before being used as input to a network.
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Figure 2: Sample results arbitrarily divided into three sections. Each section consists of four columns, listed from left to right;
Initial strain energy, SIMP-optimized density, baseline WGAN generated density, WGAN-OLR generated density.

Results and Discussion
We proposed a new generative modeling framework that aims
to generate structurally near-optimal densities utilizing the
initial physical conditions and without the explicit use of
a reconstruction loss. With that being said, evaluating our
model off basic distance metrics, i.e., mean absolute and
mean squared errors, would not provide meaningful informa-
tion. Instead, we evaluate our model on the plausibility and
uniqueness of designs. In other words, we observe whether
the generated densities appears to satisfy the initial physi-
cal conditions and, if so, whether it differs from the SIMP-
optimized structures. We start by comparing the baseline
WGAN generated densities with the SIMP-optimized den-
sities. The WGAN can generate similar densities broadly
but typically fails to capture finer regions of each structure.
The WGAN either allocates substantially more density or
produces disconnected sections at these finer regions of the
SIMP-optimized structures. This may be attributed to the
learning capacity of the generator itself, or it may allude to
the idea that these portions of the solution space are not as
integral and may have multiple optimal solutions.

The WGAN-OLR consistently outperforms the baseline
WGAN by generating densities that are substantially more re-
fined and comparable to the SIMP-optimized densities. This
may be attributed to the more robust latent representations
the WGAN-OLR’s encoder can produce. When comparing
the generated densities from both proposed methods, the
additional blurriness or noise is not completely unexpected.
This may be because both of the proposed methods generate
densities in a single shot, whereas the SIMP optimization

algorithm takes 150 iterations to incrementally adjust density
placement, providing more opportunities to create smoother
structures. Since both proposed methods were trained to learn
the distribution of SIMP-optimized structures, there will be
an upper bound to the uniqueness of each model’s generated
densities, which we can also observe from the results.

Conclusions
In this paper, we introduced completely unsupervised gen-
erative models for the generative design/structural topology
optimization problem. We proposed a novel method to encode
efficient latent representations of given initial physical condi-
tions. This methodology was shown to assist the generator in
generating quality alternative solutions to those found via the
SIMP optimization algorithm. This work sets a foundation
for future works towards more robust structural generative de-
sign algorithms. Our future work looks to generate additional
data over the same randomly generated initial conditions, i.e.,
generated load values, loading directions, load locations, and
a randomly generated set of nodes with fixed displacements,
but utilize different structural topology optimization meth-
ods such as level sets or evolutionary algorithms. Doing so
would allow the networks to learn a more robust solution
space for each set of initial conditions and, in turn, allow the
network to generate more unique designs. We also look to
incorporate a more quantitative evaluation metric than the
qualitative assessment given above. We may accomplish this
by incorporating in-the-loop finite methods to evaluate the
total compliance of the generated densities.
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Appendix
Baseline WGAN
The baseline framework uses a traditional WGAN with a
single generator neural network and a single discriminator
neural network. The generator network takes in a tuple con-
sisting of the initial physical conditions in the form of an
image and random noise from a Gaussian distribution with
a mean of 0 and a variance of 1. The discriminator takes in
the generated density, or a known SIMP-optimized density,
as input and produces a scalar value as output. The genera-
tor is then optimized by the Wasserstein distance, the scalar
output by the discriminator. The discriminator is optimized
to increase the distance between the Wasserstein distances
of a corresponding generated density and SIMP-optimized
density. The following equations formalize each objective
function.
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Figure 3: Overall framework for the baseline WGAN.

min
G

max
D

Ex∼Pr
[D(x)]− Ex̂∼Pg

[D(x̂)] (6)

where D is the discriminator, G is the generator and Pg is
the model distribution implicitly defined by x̂ = G(SE, z),
where SE are the initial physical conditions and z ∼ p(z).
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