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Abstract

Semi-Supervised Semantic Segmentation aims at training the segmentation model
with limited labeled data and a large amount of unlabeled data. To effectively lever-
age the unlabeled data, pseudo labeling, along with the teacher-student framework,
is widely adopted in semi-supervised semantic segmentation. Though proved to
be effective, this paradigm suffers from incorrect pseudo labels which inevitably
exist and are taken as auxiliary training data. To alleviate the negative impact
of incorrect pseudo labels, we delve into the current Semi-Supervised Semantic
Segmentation frameworks. We argue that the unlabeled data with pseudo labels
can facilitate the learning of representative features in the feature extractor, but
it is unreliable to supervise the mask predictor. Motivated by this consideration,
we propose a novel framework, Gentle Teaching Assistant (GTA-Seg) to disen-
tangle the effects of pseudo labels on feature extractor and mask predictor of the
student model. Specifically, in addition to the original teacher-student framework,
our method introduces a teaching assistant network which directly learns from
pseudo labels generated by the teacher network. The gentle teaching assistant
(GTA) is coined gentle since it only transfers the beneficial feature representation
knowledge in the feature extractor to the student model in an Exponential Moving
Average (EMA) manner, protecting the student model from the negative influences
caused by unreliable pseudo labels in the mask predictor. The student model is
also supervised by reliable labeled data to train an accurate mask predictor, further
facilitating feature representation. Extensive experiment results on benchmark
datasets validate that our method shows competitive performance against previous
methods. Code is available at https://github.com/Jin-Ying/GTA-Seg.

1 Introduction

The rapid development in deep learning has brought significant advances to semantic segmentation [29,
5, 52] which is one of the most fundamental tasks in computer vision. Existing methods often heavily
rely on numerous pixel-wise annotated data, which is labor-exhausting and expensive. Towards
this burden, great interests have been aroused in Semi-Supervised Semantic Segmentation, which
attempts to train a semantic segmentation model with limited labeled data and a large amount of
unlabeled data.

The key challenge in semi-supervised learning is to effectively leverage the abundant unlabeled data.
One widely adopted strategy is pseudo labeling [27]. As shown in Figure 1, the model assigns pseudo
labels to unlabeled data based on the model predictions on-the-fly. These data with pseudo labels
will be taken as auxiliary supervision during training to boost performance. To further facilitate
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Figure 1: Comparison with previous frameworks. (a) The vanilla pseudo labeling framework.
The model generates pseudo labels by itself and in turn, learns from them. (b) The pseudo labeling
with the teacher-student framework. The teacher model is responsible for generating pseudo labels
while the student model learns from the pseudo labels and the ground-truth labels simultaneously.
Knowledge Transmission is conducted between the two models via Exponential Moving Average
(EMA) of all parameters. (c) Our method attaches a gentle teaching assistant (GTA) module to
the teacher-student framework. Different from the original one in (b), the gentle teaching assistant
(GTA) learns from the pseudo labels while the student model only learns from ground-truth labels.
We design the representation knowledge transmission between the GTA and student to mitigate the
negative influence caused by unreliable pseudo labels.

semi-supervised learning, the teacher-student framework [42, 46, 43] is incorporated. The teacher
model, which is the Exponential Moving Average (EMA) of the student model, is responsible for
generating smoothly updated pseudo labels. Via jointly supervised by limited data with ground-truth
labels and abundant data with pseudo labels, the student model can learn more representative features,
leading to significant performance gains.

Although shown to be effective, the pseudo labeling paradigm suffers from unreliable pseudo labels,
leading to inaccurate mask predictions. Previous research work alleviates this problem by filtering
out predictions that are lower than a threshold of classification scores [3, 39, 50]. However, this
mechanism can not perfectly filter out wrong predictions, because some wrong predictions may have
high classification scores, named over-confidence or mis-calibration [17] phenomenon. Moreover, a
high threshold will heavily reduce the number of generated pseudo labels, limiting the effectiveness
of semi-supervised learning.

Towards the aforementioned challenge, it is necessary to propose a new pseudo labeling paradigm
that can learn representative features from unlabeled data as well as avoid negative influences caused
by unreliable pseudo labels. Delving into the semantic segmentation framework, it is composed
of a feature extractor and a mask predictor. Previous works ask the feature extractor and the mask
predictor to learn from both ground-truth labels and pseudo labels simultaneously. As a result, the
accuracy of the model is harmed by incorrect pseudo labels. To better leverage the unlabeled data
with pseudo labels, a viable solution is to let the feature extractor learn feature representation from
both ground-truth labels and pseudo labels, while the mask predictor only learns from ground-truth
labels to predict accurate segmentation results.

Accordingly, we propose a novel framework, Semi-Supervised Semantic Segmentation via Gen-
tle Teaching Assitant (GTA-Seg), which attaches an additional gentle teaching assistant (GTA)
module to the original teacher-student framework. Figure 1 compares our method with previous
frameworks. In our method, the teacher model generates pseudo labels for unlabeled data and the
gentle teaching assistant (GTA) learns from these unlabeled data. Only knowledge of the feature
extractor in the gentle teacher assistant (GTA) is conveyed to the feature extractor of the student
model via Exponential Moving Average (EMA). We coin this process as representation knowledge
transmission. Meanwhile, the student model also learns from the reliable ground-truth labels to
optimize both the feature extractor and mask predictor. The gentle teaching assistant (GTA) is called
gentle since it not only transfers the beneficial feature representation knowledge to the student model,
but also protects the student model from the negative influences caused by unreliable pseudo labels in
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the mask predictor. Furthermore, a re-weighting mechanism is further adopted for pseudo labels to
suppress unreliable pixels.

Extensive experiments have validated that our method shows competitive performance on mainstream
benchmarks, proving that it can make better utilization of unlabeled data. In addition, we can observe
from the visualization results that our method boasts clearer contour and more accurate classification
for objects, which indicates better segmentation performance.

2 Related Work

Semantic Segmentation Semantic Segmentation, aiming at predicting the label of each pixel in
the image, is one of the most fundamental tasks in computer vision. In order to obtain the dense
predictions, FCN [29] replaces the original fully-connected layer in the classification model with
convolution layers. The famous encoder-decoder structure is borrowed to further refine the pixel-level
outputs [34, 2]. Meanwhile, intensive efforts have been made to design network components that are
suitable for semantic segmentation. Among them, dilated convolution [48] is proposed to enhance
receptive fields, global and pyramid pooling [28, 5, 52] are shown to be effective in modeling context
information, and various attention modules [51, 53, 14, 21, 41] are adopted to capture the pixel
relations in images. These works mark milestones in this important computer vision task, but they
pay rare attention to the data-scarce scenarios.

Semi-Supervised Learning Mainstream methods in Semi-Supervised Learning [55] (SSL) fall
into two lines of work, self-training [16, 27] and consistency reguralization [26, 38, 33, 45, 42]. The
core spirit of self-training is to utilize the model predictions to learn from unlabeled data. Pseudo
Labeling [27], which converts model predictions on unlabeled data to one-hot labels, is a widely-used
technique [3, 39, 50] in semi-supervised learning. Another variant of self-training, entropy minimiza-
tion [37], is also proved to be effective both theoretically [44] and empirically [16]. Consistency
Regularization [38, 45] forces the model to obtain consistent predictions when perturbations are
imposed on the unlabeled data. Some recent works unveil that self-training and consistency regulariza-
tion can cooperate harmoniously. MixMatch [3] is a pioneering holistic method and boasts remarkable
performance. On the basis of MixMatch, Fixmatch [39] further simplify the learning process while
FlexMatch [50] introduces a class-wise confidence threshold to boost model performance.

Semi-Supervised Semantic Segmentation Semi-Supervised Semantic Segmentation aims at pixel-
level classification. Borrowing the spirit of Semi-Supervised Learning, self-training and consistency
regularization gives birth to various methods. One line of work [56, 7, 20, 43] applies pseudo
labeling in self-training to acquire auxiliary supervision, while methods based on consistency [32]
pursue stable outputs at both feature [25, 54] and prediction level [36]. Apart from them, Generative
Adversarial Networks (GANs) [15] or adversarial learning are often leveraged to provide additional
supervision in relatively early methods [40, 22, 31, 24]. Various recent methods tackles this problem
from other perspectives, such as self-correcting networks [23] and contrastive learning [1]. Among
them, some works [49] unveil another interesting phenomenon that the most fundamental training
paradigm, equipped with strong data augmentations, can serve as a simple yet effective baseline. In
this paper, we shed light on semi-supervised semantic segmentation based on pseudo labeling and
strives to alleviate the negative influence caused by noisy pseudo labels.

3 Method

3.1 Preliminaries

Semi-Supervised Semantic Segmentation In Semi-Supervised Semantic Segmentation, we
train a model with limited labeled data Dl = {xl

i, y
l
i}

N l

i=1 and a large amount of unlabeled data
Du = {xu

i }
Nu

i=1, where Nu is often much larger than N l. The semantic segmentation network is
composed of the feature extractor f and the mask predictor g. The key challenge of Semi-Supervised
Semantic Segmentation is to make good use of the numerous unlabeled data. And one common
solution is pseudo labeling [27, 47].
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Pseudo Labeling Pseudo Labeling is a widely adopted technique for semi-supervised segmentation,
which assigns pseudo labels to unlabeled data according to model predictions on-the-fly. Assuming
there are K categories, considering the jth pixel on the ith image, the model prediction puij and the
corresponding confidence cuij will be

puij = g(f(xu
ij)), c

u
ij = max

k
puij , with k 2 K, (1)

where k denotes the k � th category, larger cuij indicates that the model is more certain on this pixel,
which is consequently, more suitable for generating pseudo labels. Specifically, we often keep the
pixels whose confidence value is greater than one threshold, and generate pseudo labels as

ŷuij =

⇢
argmaxk puij , cuij > �t
ignore, otherwise

, (2)

where �t is the confidence threshold at the t iteration. We note that �t can be a constant or a varied
value during training. The jth pixel on ith image with a confidence value larger than �t will be
assigned with pseudo label ŷuij . The unlabeled data that are assigned with pseudo labels will be taken
as auxiliary training data, while the other unlabeled data will be ignored.

Teacher-Student Framework Teacher-Student [9, 42, 43] framework is a currently widely applied
paradigm in Semi-Supervised Segmentation, which consists of one teacher model and one student
model. The teacher model is responsible for generating pseudo labels while the student model learns
from both the ground-truth labels and pseudo labels. Therefore, the loss for the student model is

L = Ll + µLu, Lu =
X

i

X

j

Lce(p
u
ij , ŷ

u
ij) (3)

In Semi-Supervised Semantic Segmentation, Ll and Lu are the cross-entropy loss on labeled data
and unlabeled data with pseudo labels, respectively [43], and µ is a loss weight to adjust the trade-off
between them. The optimization of the student model can be formulated as

✓student := ✓student � �
@L

@✓student
, (4)

where � denotes the learning rate. In the Teacher-Student framework, after the parameters of the
student model are updated, the parameters of the teacher model will be updated by the student
parameters in an Exponential Moving Average (EMA) manner.

✓teacher(t) = ↵✓teacher(t� 1) + (1� ↵)✓student(t), (5)

where ✓teacher(t) and ✓student(t) denote the parameters of the teacher and student model at t-th
iteration, respectively. ↵ is a hyper-parameter in EMA, where ↵ 2 [0, 1] .

3.2 Gentle Teaching Assistant

In this section, we will introduce our Gentle Teaching Assistant framework for semi-supervised
semantic segmentation (GTA-Seg), as shown in Figure 2, which consists of the following three steps.

Step 1: Pseudo Label Generation and Re-weighting. Similar to previous work [43], the teacher
model is responsible for generating pseudo labels. A confidence threshold is also adopted to filter out
the pseudo labels with low confidence. For the kept pixels, instead of treating all of them equally, we
propose a re-weighting mechanism according to the confidence of each pixel as follows,

wu
ij =

(cuij + ⌧) · 1(cuij > �t)P
i

P
j(c

u
ij + ⌧) · 1(cuij > �t)

·
X

i

X

j

1(cuij > �t). (6)
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Figure 2: Method Overview. Our Gentle Teaching Assistant (GTA) framework can be divided into
three steps. Step 1: The teacher model generates pseudo labels and then the gentle teaching assistant
can learn from them. One re-weighting strategy is incorporated to assign importance weights to the
generated pseudo labels. Step 2: The gentle teaching assistant model learns from the pseudo labels
and performs representation knowledge transmission, which only conveys the learned knowledge in
the feature extractor to the student model via Exponential Moving Average (EMA). Step 3: After
absorbing the knowledge from our gentle teaching assistant, the student model learns from ground-
truth labels and optimizes all parameters. Finally, the parameters of the teacher model will also be
updated according to the student model via EMA at the end of each training iteration.

In our re-weighting strategy, the pixel with higher confidence will be highlighted while the other will
be suppressed. As a result, the negative influence caused by unreliable pseudo labels can be further
alleviated. We adopt Laplace Smoothing [30] to avoid over penalization where ⌧ is a predefined
coefficient. With this re-weighting mechanism, the unsupervised loss on unlabeled data becomes

Lu =
X

i

X

j

wu
ijLce(p

u
ij , ŷ

u
ij). (7)

Step 2: Representation Knowledge Transmission via Gentle Teaching Assistant (GTA). Gentle
Teaching Assistant (GTA) plays a crucial role in our framework. Previous works force the student
model to learn from both labeled and unlabeled data simultaneously. We argue that it is dangerous to
treat ground-truth labels and pseudo labels equally since the incorrect pseudo labels will mislead the
mask prediction. Therefore, we want to disentangle the effects of pseudo labels on feature extractor
and mask predictor of the student model. Concretely, our solution is to introduce one additional
gentle teaching assistant, which learns from the unlabeled data and only transfers the beneficial
feature representation knowledge to the student model, protecting the student model from the negative
influences caused by unreliable pseudo labels.

After optimized on unlabeled data with pseudo labels as in Eq. 8, the gentle teaching assistant model
is required to convey the learned representation knowledge in feature extractor to the student model
via Exponential Moving Average (EMA) as in Eq. 9,

✓gta := ✓gta � �
@Lu

@✓gta
. (8)

✓studentf (t) = ↵✓studentf (t� 1) + (1� ↵)✓gtaf (t), (9)
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Algorithm 1: Gentle Teaching Assistant for Semi-Supervised Semantic Segmentation (GTA-Seg).

Input :Labeled data Dl = {xl
i, y

l
i}

N l

i=1, unlabeled data Du = {xu
i }

Nu

i=1, batch size B
Output :Teacher Model

1 Initialization;
2 for minibatch {xl, yl}, {xu} 2 {Dl, Du} do
3 Step 1:
4 Teacher model generates pseudo labels on xu samples by Eq. (2);
5 Re-weight pseudo labels by Eq. (6) and compute unsupervised loss Lu by Eq. (7);
6 Step 2:
7 Update Gentle Teaching Assistant (GTA) by unlabeled data Eq. (8);
8 Representation knowledge Transmission from GTA to student by Eq. (9);
9 Step 3:

10 Compute supervised loss on {xl, yl} by Eq. (10) ;
11 Update student model by labeled data via Eq. (11) ;
12 Update teacher model by Eq. (12) ;
13 end

where ✓gta(t) is the parameters of the gentle teaching assistant model at t-th iteration, ✓student(t) is
the parameters of the student model at t-th iteration, and ✓f denotes the parameters of the feature
extractor. Through our representation knowledge transmission, the unlabeled data is leveraged to
facilitate feature representation of the student model, but it will not train the mask predictor.

Step 3: Optimize student model with ground truth labels and update teacher model. With the
gentle teaching assistant module, the student model in our framework is only required to learn from
the labeled data,

Ll =
X

i

X

j

Lce(p
l
ij , y

l
ij), (10)

✓student := ✓student � �
@Ll

@✓student
. (11)

Here, the whole model, including the feature extractor as well as the mask predictor, is updated
according to the supervised loss computed by the ground-truth labels of labeled data.

Then the teacher model is updated by taking the EMA of the student model according to the traditional
paradigm in the teacher-student framework.

✓teacherf (t) = ↵✓teacherf (t� 1) + (1� ↵)✓studentf (t),

✓teacherg (t) = ↵✓teacherg (t� 1) + (1� ↵)✓studentg (t).
(12)

Finally, the teacher model, which absorbs the knowledge of both labeled and unlabeled data from the
student model, will be taken as the final model for inference.

4 Experiment

4.1 Datasets

We evaluate our method on 1) PASCAL VOC 2012 [11]: a widely-used benchmark dataset for
semantic segmentation, with 1464 images for training and 1449 images for validation. Some
researches [7, 47] augment the training set by incorporating the 9118 coarsely annotated images
in SBD [18] to the original training set, obtaining 10582 labeled training images, which is called
the augmented training set. In our experiments, we consider both the original training set and the
augmented training set, taking 92, 183, 366, 732, and 1464 images from the 1464 labeled images in
the original training set, and 662, 1323 and 2645 images from the 10582 labeled training images in
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Table 1: Results on PASCAL VOC 2012, original training set. We have 1464 labeled images in total
and sample different proportions of them as labeled training samples. SupOnly means training the
model merely on the labeled data, with all the other unlabeled data abandoned. All the other images
in the training set (including images in the augmented training set) are used as unlabeled data. We
use ResNet-101 as the backbone and DeepLabv3+ as the decoder.

Method 92 183 366 732 1464

SupOnly 45.77 54.92 65.88 71.69 72.50
MT [42] 51.72 58.93 63.86 69.51 70.96
CutMix [13] 52.16 63.47 69.46 73.73 76.54
PseudoSeg [56] 57.60 65.50 69.14 72.41 73.23
PC2Seg [54] 57.00 66.28 69.78 73.05 74.15
ST++ [47] 65.23 71.01 74.59 77.33 79.12
U2PL [43] 67.98 69.15 73.66 76.16 79.49

GTA-Seg (Ours) 70.02 ± 0.53 73.16 ± 0.45 75.57 ± 0.48 78.37 ± 0.33 80.47 ± 0.35

Table 2: Results on PASCAL VOC 2012, aug-
mented training set. We have 10582 labeled
images in total and sample different propor-
tions of them as labeled training samples. All
the other images in the training set are used
as unlabeled data. The notations and network
architecture are the same as in Table 1.

Method 662 1323 2645 5291

MT [42] 70.51 71.53 73.02 76.58
CutMix [13] 71.66 75.51 77.33 78.21
CCT [36] 71.86 73.68 76.51 77.40
GCT [24] 70.90 73.29 76.66 77.98
CPS [7] 74.48 76.44 77.68 78.64
AEL [20] 77.20 77.57 78.06 80.29

GTA-Seg (Ours) 77.82 ± 0.31 80.47 ± 0.28 80.57 ± 0.33 81.01 ± 0.24

Table 3: Results on Cityscapes dataset. We have
2975 labeled images in total and sample different
proportions of them as labeled training samples.
The notations and network architecture are the
same as in Table 1. * means that we reimplement
the method with ResNet-101 backbone for a fair
comparison.

Method 100 186 372 744

DMT [12] 54.82 - 63.01 -
CutMix [13] 55.73 60.06 65.82 68.33
ClassMix [35] - 59.98 61.41 63.58
Pseudo-Seg [56] 60.97 65.75 69.77 72.42
DCC* [25] 61.15 67.74 70.45 73.89

GTA-Seg (Ours) 62.95 ± 0.32 69.38 ± 0.24 72.02 ± 0.32 76.08 ± 0.25

the augmented training set. 2) Cityscapes [8], a urban scene dataset with 2975 images for training
and 500 images for validation. We sample 100, 186, 372, 744 images from the 2975 labeled images
in the training set. We take the split in [56] and report all the performances in a fair comparison.

4.2 Implementation Details

We take ResNet-101 [19] pre-trained on ImageNet [10] as the network backbone and DeepLabv3+ [6]
as the decoder. The segmentation head maps the 512-dim features into pixel-wise class predictions.

We take SGD as the optimizer, with an initial learning rate of 0.001 and a weight decay of 0.0001 for
PASCAL VOC. The learning rate of the decoder is 10 times of the network backbone. On Cityscapes,
the initial learning rate is 0.01 and the weight decay is 0.0005. Poly scheduling is applied to the
learning rate with lr = lrinit · (1 � t

T )
0.9, where lrinit is the initial learning rate, t is the current

iteration and T is the total iteration. We take 4 GPUs to train the model on PASCAL VOC, and 8
GPUs on Cityscapes. We set the trade-off between the loss of labeled and unlabeled data µ = 1.0,
the hyper-parameter ⌧ = 1.0 in our re-weighting strategy and the EMA hyper-parameter ↵ = 0.99
in all of our experiments. At the beginning of training, we train all three components (the gentle
teaching assistant, the student and the teacher) on labeled data for one epoch as a warm-up following
conventions [42], which enables a fair comparison with previous methods. Then we continue to train
the model with our method. For pseudo labels, we abandon the 20% data with lower confidence. We
run each experiment 3 times with random seed = 0, 1, 2 and report the average results. Following
previous works, input images are center cropped in PASCAL VOC during evaluation, while on
Cityscapes, sliding window evaluation is adopted. The mean of Intersection over Union (mIoU)
measured on the validation set serves as the evaluation metric.
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Table 4: Ablation Study on the components in our
method, on the original training set of PASCAL VOC
2012, with 183 labeled samples.

Teacher-Student Gentle Teaching Assistant Re-weighted mIoU

% % % 54.92
! % % 58.93
! ! % 72.10
! ! ! 73.16

Table 5: Comparison of knowledge
transmission mechanisms. The ex-
periment settings follow Table 4.

Method mIoU

SupOnly 54.92
Original EMA (all parameters) 64.07

Unbiased ST [4] 65.92
EMA (Encoder) (Ours) 72.10

4.3 Experimental Results

PASCAL VOC 2012 We first evaluate our method on the original training set of PASCAL VOC
2012. The results in Table 1 validate that our method surpasses previous methods by a large margin.
Specifically, our method improves the supervised-only (SupOnly) model by 24.25, 18.24, 9.69, 6.68,
7.97 in mIoU when 0.9%, 1.7%, 3.4%, 7.0%, 13.9% of the data is labeled, respectively. When
compared to the readily strong semi-supervised semantic segmentation method, our method still
surpasses it by 13.02, 6.88, 5.79, 5.32, 6.32 respectively. We note that in the original training set, the
ratio of labeled data is relatively low (0.9% to 13.9%). Therefore, the results verify that our method
is effective in utilizing unlabeled data in semi-supervised semantic segmentation.

We further compare our method with previous methods on the augmented training set of PASCAL
VOC 2012, where the annotations are relatively low in quality since some of labeled images come
from SBD [18] dataset with coarse annotations. We can observe from Table 2, our method consistently
outperforms the previous methods in a fair comparsion.

Cityscapes For Cityscapes, as shown in Table 3, our method still shows competitive performance
among previous methods, improving the existing state-of-the-art method by 1.80, 1.64, 1.57, 2.19 in
mIoU when 3.3%, 6.25%, 12.5%, 25.0% of the data is labeled.

4.4 Analyses

Component Analysis We analyze the effectiveness of different components in our method, i.e., the
original teacher-student framework, gentle teaching assistant and re-weighted pseudo labeling as in
Table 4. According to the results in Table 4, the carefully designed gentle teaching assistant mecha-
nism (the third row) helps our method outperform the previous methods, pushing the performance
about 13.1 higher than the original teacher-student model (the second row). Further, the re-weighted
pseudo labeling brings about 1.1 performance improvements. With all of these components, our
method outperforms the teacher-student model by over 14.0 and SupOnly by over 18.0 in mIoU.

Gentle Teaching Assistant As mentioned in Table 4, our proposed gentle teaching assistant
framework brings about remarkable performance gains. Inspired by this, we delve deeper into the
gentle teaching assistant model in our framework. We first consider the representation knowledge
transmission mechanism. In Table 5, we compare our mechanism with other methods such as the
original EMA [42] that updates all of the parameters via EMA and Unbiased ST [4] that introduces
an additional agent to convey representation knowledge. We can observe that all these mechanisms
boost SupOnly remarkably, while our mechanism is superior to other methods.

We next pay attention to the three models in our framework, i.e. gentle teaching assistant model,
student model, and teacher model. Table 6 reports the evaluation performance of them. All of them
show relatively competitive performance. For the teacher assistant model, it is inferior to the student
model. This is reasonable since it is only trained on pseudo labels, while the student model inherits
the representation knowledge of unlabeled data from the gentle teaching assistant as well as trained
on labeled data. In addition, the teacher model performs best, which agrees with previous works [42].

Method Design In our method, we train GTA with pseudo labels and the student model with
labeled data. It is interesting to explore the model performance of other designs. Table 9 shows that
1) training the student model with pseudo labels will cause significant performance drop, which is
consistent with our statement that the student model shall not learn from the pseudo labels directly. 2)
Incorporating labeled data in training GTA is not beneficial to model performance. We conjecture

8



Table 6: Results of the three models on
the original PASCAL VOC 2012. The
experiment settings follow Table 4.

Method mIoU

Gentle Teaching Assistant 70.10
Student Model 72.71
Teacher Model 73.16

Table 7: Ablation study on our method design on the origi-
nal PASCAL VOC 2012. The experiment settings follow
Table 4.

Gentle Teaching Assistant Student mIoU

Labeled Data Pseudo Labels 66.71
Labeled Data + Pseudo Labels Labeled Data 72.28

Pseudo Labels Labeled Data 73.16

Table 8: Performance under different EMA
hyper-parameters and warmup epochs.
The experiment settings follow Table 4.

↵ mIoU warmup mIoU

0.99 (Reported) 73.16 1 (Reported) 73.16
0.999 73.44 2 73.58
0.9999 73.57 3 73.39

Table 9: Ablation study on our re-weighting strategy
for pseudo labeling on the original PASCAL VOC
2012. The experiment settings follow Table 4.

Confidence-based Re-weighting Laplace Smoothing mIoU

% % 72.10
! % 70.67
! ! 73.16

that when we transmit the knowledge of labeled data from GTA to the student model, as well as
supervise the student model with labeled data, the limited labels overwhelm the updating of the
student model, which possibly leads to overfitting and harms the student model’s performance. Then
since the teacher model is purely updated by the student model via EMA, the performance of the
teacher model is also harmed. Considering the ultimate goal is a higher performance of the teacher
model, we choose to train GTA with pseudo labels alone.

Re-weighting strategy In our method, we design the re-weighting strategy for pseudo labels as
Eq. 6, which contains 1) confidence-based re-weighting, 2) Laplace Smoothing. Here we conduct
further ablation study on our design. Table 9 shows that though effective in other tasks such as
semi-supervised object detection [46], in our framework, adopting confidence-base re-weighting is
harmful, dropping the performance from 72.10 to 70.67. On the contrary, our strategy, with the help
of Laplace Smoothing [30] which alleviates over-penalization, pushes the readily strong performance
to a higher level.

Hyper-parameter sensitivity We evaluate the performance of our method under different EMA
hyper-parameters and various warmup epochs. Results in Table 8 demonstrates that our method
performs steadily under different hyper-parameters. In addition, the performance can still be slightly
enhanced if the hyper-parameters are tuned carefully.

Visualization Besides quantitative results, we present the visualization results to further analyze
our method. We note that the model is trained on as few as 183 labeled samples and about 10400
unlabeled samples. As shown in Figure 3, facing such limited labeled data, training the model
merely in the supervised manner (SupOnly) appears to be vulnerable. Under some circumstances,
the model is even ignorant of the given images (the third and the fourth row). While methods that
utilize unlabeled data (teacher-student model and our method), show stronger performance. Further,
compared with the original teacher-student model, our method shows a stronger ability in determining
a clear contour of objects (the first row) and recognizing the corresponding categories (the second
row). Our method is also superior to previous methods in distinguishing objects from the background
(the third and fourth row).

In addition, we present more visualization results about our designed re-weighting strategy. We can
observe from Figure 4 that incorporating the re-weighting strategy into our method leads to better
performance on contour or ambiguous regions.

Limitations One limitation of our method is that it brings about more training costs since it
incorporates an extra gentle teaching assistant model. Fortunately, the inference efficiency is not
influenced since only the teacher model is taken for inference. On the other hand, our method only
attempts at making better use of the unlabeled data, but little attention has been paid to the labeled
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Image Teacher-Student Ours Ground TruthSupOnly

Figure 3: Visualization Results on PASCAL VOC 2012, with the original training set. We train the
model with 183 labeled data, the other settings are the same as Table 1. From left to right, we show
the raw images, results on SupOnly (the model trained merely on labeled data), Teacher-Student
model, and our method, as well as the ground truth respectively.

Image No Re-weighting Ours Ground Truth

Figure 4: Visualization Results on PASCAL VOC 2012, with the original training set. We train the
model with 183 labeled data, the other settings are the same as Table 1. From left to right, we show
the raw images, our method without our re-weighting mechanism, and our method with re-weighting,
as well as the ground truth respectively.

data. We consider it promising to conduct research on how to better leverage the labeled data in
semi-supervised semantic segmentation.

5 Conclusion

In this paper, we propose a novel framework, Gentle Teaching Assistant, for semi-supervised semantic
segmentation (GTA-Seg). Concretely, we attach an additional teaching assistant module to disentangle
the effects of pseudo labels on the feature extractor and the mask predictor. GTA learns representation
knowledge from unlabeled data and conveys it to the student model via our carefully designed
representation knowledge transmission. Through this framework, the model optimizes representation
with unlabeled data, as well as prevents it from overfitting on limited labeled data. A confidence-
based pseudo label re-weighting mechanism is applied to further boost the performance. Extensive
experiment results prove the effectiveness of our method.

Acknowledgements. This work is supported by GRF 14205719, TRS T41-603/20-R, Centre for
Perceptual and Interactive Intelligence, CUHK Interdisciplinary AI Research Institute, and Shanghai
AI Laboratory.
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