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Abstract

Despite the significant achievements of Vision Transformers (ViTs) in various vi-
sion tasks, they are constrained by the quadratic complexity. Recently, State Space
Models (SSMs) have garnered widespread attention due to their global receptive
field and linear complexity with respect to the input length, demonstrating sub-
stantial potential across fields including natural language processing and computer
vision. To improve the performance of SSMs in vision tasks, a multi-scan strategy
is widely adopted, which leads to significant redundancy of SSMs. For a better
trade-off between efficiency and performance, we analyze the underlying reasons
behind the success of the multi-scan strategy, where long-range dependency plays
an important role. Based on the analysis, we introduce Multi-Scale Vision Mamba
(MSVMamba) to preserve the superiority of SSMs in vision tasks with limited
parameters. It employs a multi-scale 2D scanning technique on both original
and downsampled feature maps, which not only benefits long-range dependency
learning but also reduces computational costs. Additionally, we integrate a Convo-
lutional Feed-Forward Network (ConvFFN) to address the lack of channel mixing.
Our experiments demonstrate that MSVMamba is highly competitive, with the
MSVMamba-Tiny model achieving 83.0% top-1 accuracy on ImageNet, 46.9%
box mAP, and 42.5% instance mAP with the Mask R-CNN framework, 1x training
schedule on COCO, and 47.9% mIoU with single-scale testing on ADE20K. Code
is available at https://github.com/YuHengsss/MSVMamba.

1 Introduction

In the domain of computer vision, the extraction of features plays a pivotal role in the performance
of various tasks, ranging from image classification to more complex applications like detection and
segmentation. Traditionally, Convolutional Neural Networks (CNNs) [25, 40, 18, 21, 33] have been
the backbone of feature extraction methodologies, prized for their linear scaling complexity and
proficiency in capturing local patterns. However, CNNs often fall short in encapsulating global context,
a limitation that becomes increasingly apparent in tasks requiring a comprehensive understanding
of the entire visual field. In contrast, Vision Transformers (ViTs) [6, 32, 50, 43] have emerged
as a compelling alternative, boasting an inherent global receptive field that allows for the direct
capture of long-range dependencies within an image. Despite their advantages, ViTs are hampered
by their quadratic scaling complexity concerning the input size, which significantly constrains their
applicability to downstream tasks such as object detection and segmentation, where efficiency is
paramount. Recently, State Space Model (SSM)-based approaches [11, 41, 8] have garnered attention
for their ability to combine the best of both worlds: a global receptive field and linear scaling
complexity. Notably, Mamba [9] introduces a hardware-aware and input-dependent algorithm that
significantly enhances the performance and efficiency of SSMs. Inspired by Mamba’s success, a
burgeoning body of work has sought to leverage its advantages for vision tasks, pioneering efforts
such as ViM [60] and VMamba [30].
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Figure 1: FLOPs and latency comparison on ImageNet. The latency was tested on a RTX 4090 GPU
with a batch size of 128 using FP32 precision at an image resolution of 224.

The S6 block, developed by Mamba [9], was originally designed for NLP tasks. To adapt S6 for
vision tasks, images are first divided into patches and then flattened into a patch sequence along
the scanning path. To accommodate the non-causal nature of image data, the multi-scan strategy
is widely adopted for vision tasks, such as ViM [60] which enhances the sequence by summing it
in both forward and reverse directions, and VMamba [30] which integrates horizontal and vertical
scans. However, unlike NLP models, which can have up to billions of parameters, current vision
backbones always take computational costs into consideration, i.e., the trade-off between accuracy
and efficiency. This constraint on model size inherently limits the long-range modeling capabilities
of SSMs in vision tasks. Taking ViM-Tiny [60] as an example, placing the cls token in the middle of
the sequence yields markedly better results than positioning it at the ends. This suggests that central
placement compensates for the model’s limited ability to integrate distant information, highlighting
the difficulties of handling long-range dependencies in parameter-constrained vision models. We refer
to this as the long-range forgetting problem. In this work, we analyze how the multi-scan strategy
in [60, 30] helps to alleviate this problem. Compared to the single-scan strategy, the multi-scan one
allows long-range decay to manifest in various directions within 2D images. However, the increased
scanning routes bring multiples of computations, significantly increasing redundancy and limiting
efficiency. Thus, we aim to pursue a better trade-off between the performance and efficiency of
Mamba in vision tasks.

The most direct and effective method to address the long-range forgetting problem is to shorten the
sequence length, which can be achieved by downsampling the feature map. However, placing all
scanning routes on a downsampled feature map could result in the loss of fine-grained features and
the downstream task performance. Through the visualization of different scans, we show that the
decay rates could vary for different scanning routes, which motivates us to develop a hierarchical
design of multi-scan. In this work, we propose a Multi-Scale 2D (MS2D) scanning strategy to
alleviate the long-range forgetting problem with limited computational costs. Specifically, we divide
the scanning directions of SS2D [30] into two groups: one retains the original resolution and is
processed by the S6 block, while the others are downsampled, processed by the S6 block, and then
upsampled, which not only shortens the sequence length for long-range dependencies learning but
also alleviates redundancy. Building on the VMamba with its hierarchical architecture, we incorporate
another hierarchical design within the block, creating a hierarchy within a hierarchy. Furthermore,
we introduce a Convolutional Feed-Forward Network (ConvFFN) within each block to bolster the
model’s capability for channel-wise information exchange and local feature capture.

We conduct extensive experiments to validate the effectiveness of MSVmamba across a spectrum
of tasks, including image classification, object detection, and semantic segmentation. Detailed
comparisons on the ImageNet-1K [3] dataset are illustrated in Fig. 1. MSVMamba achieves a notable
improvement over VMamba across different model sizes.

2 Related work

2.1 Generic Vision Backbone

The evolution of generic vision backbones has significantly shaped the landscape of computer vision,
transitioning from CNNs [25, 40, 18, 54, 21, 19, 42, 33] to ViTs [6, 32, 31, 50, 51, 5, 43, 57]. CNNs
have been the cornerstone of vision-based models, dominating vision tasks in the early era of deep
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learning. The classic CNNs such as AlexNet [25], VGG [40], and ResNet [18], have paved the way
for numerous subsequent innovations [54, 21, 19, 42, 20, 33, 4, 49]. These designs have significantly
improved performance on a wide range of vision tasks by enhancing the network’s ability to capture
complex patterns and features from visual data. The Vision Transformer [6], drawing inspiration
from the success of transformers [47] in natural language processing, has emerged as a formidable
contender to conventional CNNs for vision-related tasks. ViT reimagines image processing by
segmenting an image into patches and employing self-attention mechanisms to process these segments.
This innovative approach enables the model to discern global dependencies across the entire image, a
significant leap forward in understanding complex visual data. However, the ViT architecture demands
considerable computational resources and extensive datasets for effective training. Moreover, its
performance is intricately tied to the input sequence length, exhibiting a quadratic complexity that can
escalate processing costs. In response, subsequent research has focused on developing more efficient
training strategies [43, 45, 24], hierarchical network structures [32, 31, 5, 50, 51, 15], refined spatial
attention mechanisms [57, 59, 52, 46, 16, 5] and convolution-based design [2, 29, 14, 36] to address
these issues.

2.2 State Space Models

State Space Models (SSMs) [10, 12, 11, 41, 8] have garnered increasing attention from researchers
due to their computational complexity, which grows linearly with the length of the input sequence,
and their inherent global awareness properties. To reduce the computational resource consumption
of SSMs, S4 [11] introduced a diagonal structure and combined it with a diagonal plus low-rank
approach to construct structured SSMs. Subsequently, S5 [41] and H3 [8] further enhanced the
efficiency of SSM-based models by introducing parallel scanning techniques and improving hardware
utilization. Mamba [9] then introduced the S6 block, incorporating data-dependent parameters to
amend the Linear Time Invariant(LTI) characteristics of previous SSM models, demonstrating superior
performance over transformers on large-scale datasets. In the realm of vision tasks, S4ND [35]
pioneered the application of SSM models in vision tasks by treating visual data as 1D, 2D, and 3D
signals. U-Mamba [34] combined CNNs with SSMs for medical image segmentation. ViM [60] and
VMamba [30] integrated the S6 block into vision backbone design, employing multiple scanning
directions to accommodate the non-casual nature of image data, achieving competitive results against
ViTs and CNNs. Motivated by the success of ViM and VMamba, a plethora of Mamba-based
works [37, 23, 7, 55, 1, 26, 56, 39] have emerged across various vision tasks, including vision
backbone design [37, 23, 55], medical image segmentation [39, 27], and video classification [26],
showcasing the potential of SSM-based approaches in advancing the field of computer vision.

3 Method

In this section, we first summarize the state space model in Section 3.1. Subsequently, in Section 3.2,
we provide an in-depth analysis of the multi-scan strategy in existing vision Mamba models. Following
the analysis, Section 3.3 tackles the redundancy and long-range dependency issue by introducing
a Multi-Scale 2D (MS2D) scanning strategy. Finally, Section 3.4 details the integration of the
Multi-Scale State Space (MS3) block, which incorporates the MS2D technique alongside a ConvFFN.
Building upon the MS3 block, various model configurations are developed across different scales,
illustrating the adaptability and scalability of our proposed approach.

3.1 Preliminaries

State Space Models. Classical State Space Models (SSMs) represent a continuous system that maps
an input sequence x(t) ∈ RL to a latent space representation h(t) ∈ RN and subsequently predicts an
output sequence y(t) ∈ RL based on this representation. Mathematically, an SSM can be described
as follows:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (1)

where A ∈ RN×N , B ∈ RN×1 and C ∈ R1×N are learnable parameters.

Discretization. To adapt continuous State Space Models (SSMs) for use within deep learning
frameworks, it is crucial to implement discretization operations. By incorporating a timescale
parameter ∆ ∈ R and employing the widely utilized zero-order hold (ZOH) as the discretization rule,
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(a) Horizontal Scan (b) Vertical Scan (c) Decay Ratio (d) Binary Decay Ratio

Figure 2: Illustration of decay along horizontal, vertical scanning routes and their ratio.

the discretized versions of A and B (denoted as A and B, respectively) can be derived, with which,
Eq. 1 can be reformulated into a discretized manner as:

h(t) = Ah(t− 1) +Bx(t), y(t) = Ch(t),
where A = e∆A, B = (∆A)−1(e∆A − I)∆B ≈ ∆B,

(2)

where I denotes the identity matrix. Afterward, the process of Eq. 2 could be implemented in a global
convolution manner as:

y = x⊙K, K =
(
CB,CAB, . . . ,CA

L−1
B
)
, (3)

where K ∈ RL is the convolution kernel.

Selective State Space Models. The Selective State Space (S6) mechanism, introduced by Mamba [9],
renders the parameters B,C, and ∆ input-dependent, thereby enhancing the performance of SSM-
based models. After making B,C, and ∆ input-dependent, the global convolution kernel in Eq. 3
could be rewritten as:

K =

(
CLBL,CLAL−1BL−1, . . . ,CL

L−1∏
i=1

AiB1

)
. (4)

3.2 Analysis of Multi-Scan Strategy

When processing image data using the S6 block, the 2D feature map Z ∈ RH×W×D is flattened
into a 1D sequence of image tokens, denoted as X ∈ RL×D. According to Eq. 4 and Eq. 2, the
contribution of the mth token to the construction of the nth token (m < n) in S6 can be expressed as:

Cn

n∏
i=m

AiBm = CnA(m→n)Bm, where A(m→n) = e
∑n

i=m ∆iA. (5)

Typically, the learned ∆iA is negative, which biases the model towards prioritizing recent tokens’
information. Consequently, as the sequence length increases, the exponential term e

∑n
i=m ∆iA in

Eq. 5 decays significantly, resulting in minimal contributions from distant tokens. We refer to it as
the long-range forgetting issue, which has also been observed in recent studies applying S6 to vision
tasks [13]. Although this problem can be mitigated by increasing the number of parameters and the
depth of the model, such adjustments introduce additional computational costs. Furthermore, the
causal property of the S6 block ensures that information can only propagate in a unidirectional manner
between tokens, preventing earlier tokens from accessing information from subsequent tokens.

The inherent non-causal nature of images renders the direct application of the S6 block to vision-
related tasks less than optimal, as identified by ViM [60]. To mitigate this limitation, ViM [60] and
VMamba [30] have introduced methodologies that entail scanning image features across various
directions and then integrating these features. Generally, the updated token along one of the scanning
routes, denoted as Scan(Z(p,q)), where (p, q) indicates the coordinate, could be obtained by:

Scan(Z(p,q)) = Cα

∑α
i=1 A(i→α)Biσ(Z)i. (6)

In Eq. 6, σ represents the transformation that converts a 2D feature map into a 1D sequence, and α
denotes the corresponding index of Z(p, q) in the transformed 1D sequence. Afterward, results from
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Figure 3: Illustration of the Multi-Scale 2D-Selective-Scan on an image

multi-scan routes are added together to produce enhanced feature Z′(p, q), which can be denoted as:

Z′
(p,q) =

∑
k

Scank(Z(p,q)) =
∑
k

Cαk

αk∑
i=1

A(i→αk)Biσk(Z)i. (7)

This multi-scan strategy allows tokens to access information from each other. In ViM [60], two
distinct scanning routes correspond to two different transformations in Eq. 6, specifically, the flatten
and the flatten with flip transformations. Similarly, VMamba [30] extends the basic bidirectional
scanning by incorporating both horizontal and vertical scanning directions, yielding four distinct
scanning routes. Besides, the multi-scan strategy also alleviates the long-range forgetting problem by
minimizing the effective distance between tokens. For tokens at coordinates (p1, q1) and (p2, q2),
the strategy employs multiple scanning routes, each potentially altering their relative positions. The
minimum distance across these routes is given by mink dk((p1, q1) → (p2, q2)), where dk represents
the distance between the tokens in the sequence generated by the k-th scan. By reducing this distance,
the multi-scan strategy reduces the decay of influence between distant tokens, thereby enhancing the
model’s ability to maintain and utilize long-range information.

To more intuitively demonstrate the relationship between the multi-scan strategy and long-range
decay, we visualize the exponential term e

∑α
i=1 ∆iA along the horizontal and vertical scanning

directions in VMamba-Tiny with respect to the central token in Fig. 2a and Fig. 2b. Specifically,
we randomly select 50 images from the ImageNet [3] validation set and compute the average decay
along scanning routes at the last layer of the final stage across these images and feature dimensions.
We use a higher input resolution to enhance the quality of the visualization.

According to these observations, the success of the multi-scan strategy in VMamba can be attributed
to its mitigation of the non-causal properties of image data and alleviation of the long-range forgetting
problem. However, as the number of scanning routes increases, the computational cost also rises
linearly, introducing computational redundancy. In Fig. 2c, we illustrate the maximum ratio of Fig. 2a
to Fig. 2b and vice versa. While in Fig. 2d, we present a binarized version of Fig. 2c, applying
a threshold of 10, which covers more than 40% of the entire figure. This phenomenon indicates
that the varying decay rates across different scanning routes lead to certain routes dominating the
decay dynamics, which can also be attributed to the long-range forgetting problem. The existence
of dominant scanning routes implies that some scans contribute significantly more to information
retention than others, leading to computational redundancy in the multi-scan strategy.

3.3 Multi-Scale 2D Scanning

As discussed in the last subsection, the contribution of tokens decays with increasing scanning
distance. The most effective and direct way to alleviate the long-range forgetting problem is to
reduce the number of tokens. Simultaneously, since the computational complexity of the S6 block
is linearly dependent on the number of tokens, reducing the token count also enhances efficiency.
Thus, an alternative approach to address the aforementioned issue is to apply the multi-scan strategy
on a downsampled feature map. However, setting all scans on a downsampled feature map will
ignore fine-grained features and result in unavoidable information loss. Thus, scanning along the
full-resolution feature map is also essential.

Motivated by these considerations, we introduce a simple yet effective Multi-Scale 2D scan-
ning(MS2D) strategy, as depicted in Fig. 3. Our approach commences with the generation of
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Figure 5: Detailed architecture of Multi-Scale State Space (MS3) block, consisting of a Multi-Scale
Vision Space State (MSVSS) block and a Convolutional Feed-Forward Network (ConvFFN) block.

hierarchical feature maps at varying scales, achieved through the application of Depthwise Convolu-
tion (DWConv) with distinct stride values. These multi-scale feature maps are then processed through
four distinct scanning routes within VMamba. Specifically, we uitlize DWConvs with strides of 1
and s to obtain feature map Z1 ∈ RH×W×D and Z2 ∈ RH

s ×W
s ×D, respectively. Afterwards, Z1 and

Z2 are processed by two S6 blocks as:

Y1 = S6(σ1(Z1)), (8)
[Y2,Y3,Y4] = S6([σ2(Z2), σ3(Z2), σ4(Z2)]), (9)

where σ is transformation that convert 2D feature maps into 1D sequences used in SS2D, and Y is
the processed sequence. These processed sequences are converted back into 2D feature maps, and the
downsampled feature maps are interpolated for merging:

Z′
i = γi(Yi), i ∈ {1, 2, 3, 4}, (10)

Z′ = Z′
1 + Interpolate(

∑
(Z′

j)), j ∈ {2, 3, 4}, (11)

where γ is the inverse transformation of σ and Z′ is the feature map enhanced by MS2D.

(a) SS2D (b) MS2D

Figure 4: Illustration of the decay with different scanning
routes in SS2D and MS2D.

The downsampling operation reduces
the sequence length by a factor of s2,
which also shortens the distance be-
tween tokens in Eq. 5 by a factor of
s2, thereby alleviating the long-range
forgetting problem. As the computa-
tional complexity of a single S6 block
is O(9LDN) [9], where N denotes
the SSM dimension, replacing SS2D
with MS2D reduces the total sequence
length across four scans from 4L to
(1+3/s2)L, thereby improves the effi-
ciency. Practically, the downsampling
rate is set to 2. It is worth noting that
sequences from Z2 are processed by
the same S6 block. This approach
maintains the same accuracy as using multiple S6 blocks for different scanning routes while ef-
fectively reducing the number of parameters.

To better illustrate the alleviation of the long-range forgetting problem, we also provide empirical
evidence, as shown in Fig. 4. We compare the decay along scanning routes in the SS2D of VMamba
and our MS2D, focusing on the last token with the same configuration as Fig. 2. The decay maps in
downsampled features are interpolated back. As observed, the decay rate along scanning routes in
downsampled maps is significantly alleviated, enhancing the capability to capture global information.

3.4 Overall Model Architecture

In this study, we extend the capabilities of the VMamba framework by substituting its VSS block with
our Multi-Scale State Space (MS3) block. The architectural framework of the MS3 block is delineated
in Fig. 5, comprising a Multi-Scale Vision Space State(MSVSS) component and a Convolutional
Feed-Forward Network (ConvFFN). The MSVSS component is devised by adapting the vision
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state space framework in VMamba, substituting the SS2D with an MS2D to further introduce a
hierarchy design in a single layer. Additionally, a Squeeze-Excitation (SE) [20] block is integrated
subsequent to the multi-scale 2D scanning, as informed by related literature [23, 37]. Diverging
from the conventional focus on token mixing in prior vision Mamba architectures [60, 30, 23], our
design introduces a channel mixer to augment the flow of information across different channels,
aligning with the structural paradigms of typical vision transformers. In concordance with preceding
studies [52, 48, 14, 51], the ConvFFN which consists of a depth-wise convolution and two fully
connected layers is employed as the channel mixer. Upon the amalgamation of MSVSS and ConvFFN
within the MS3 block, meticulous adjustments are made to the number of blocks to ensure a
comparable computational budget, facilitating a fair comparison.

To empirically validate the efficacy of our proposed modifications, we introduce model variants
across different scales. These variants, namely Nano, Micro, Tiny, Small and Base, are characterized
by their parameter counts of 7M, 12M, 32M, 50M and 88M respectively. In terms of computational
expenditure, these models require 0.9, 1.5, 5.1, 8.8 and 15.5 GFLOPs correspondingly, demonstrating
a scalable approach to model design that accommodates varying computational constraints. For
models above tiny size, the multiplicative branch of the MSVSS block is removed as informed by the
VMambav3 [30] for better performance. Detailed architectures are shown in Appendix A.

4 Experimental Validation

4.1 ImageNet Classification

Table 1: Accuracy comparison across various mod-
els on ImageNet-1K.

Method #param. FLOPs Top-1
Acc(%).

RegNetY-800M [38] 6M 0.8G 76.3
RegNetY-1.6G [38] 11M 1.6G 78.0
RegNetY-4G [38] 21M 4.0G 80.0

DeiT-S [43] 22M 4.6G 79.8
DeiT-B [43] 86M 17.5G 81.8

Swin-T [32] 29M 4.5G 81.3
Swin-S [32] 50M 8.7G 83.0
Swin-B [32] 88M 15.4G 83.5

ViM-T [60] 7M 1.5G 76.1
ViM-S [60] 26M 5.1G 80.5

VMambav3-T [30] 30M 4.9G 82.6
VMambav3-S [30] 50M 8.7G 83.6
VMambav3-B [30] 89M 15.4G 83.9

LocalVMamba-T [23] 26M 5.7G 82.7
LocalVMamba-S [23] 50M 11.4G 83.7

MSVMamba-N 7M 0.9G 77.3
MSVMamba-M 12M 1.5G 79.8
MSVMamba-T 32M 5.1G 83.0
MSVMamba-S 50M 8.8G 84.1
MSVMamba-B 91M 16.3G 84.4

Settings. Our models are trained and tested
on the ImageNet-1K dataset [3]. In alignment
with previous works [32, 30, 23], all models un-
dergo training for 300 epochs, with the initial
20 epochs dedicated to warming up. The train-
ing utilizes a batch size of 1024 across 8 GPUs.
We employ the AdamW optimizer, setting the
betas to (0.9, 0.999) and momentum to 0.9. The
learning rate is managed through a cosine decay
scheduler, starting from an initial rate of 0.001,
coupled with a weight decay of 0.05. Addition-
ally, we leverage the exponential moving aver-
age (EMA) and implement label smoothing with
a factor of 0.1 to enhance model performance
and generalization. During testing, images are
center cropped with the size of 224×224. When
dealing with the routes for multi-scale scanning,
we select top-left to the bottom-right for dealing
with the full-resolution feature map while the
other three scans are responsible for scanning
the downsampled feature map.

Results. Tab. 1 showcases our MSV-
Mamba models against established CNNs,
ViTs, and SSM-based models on ImageNet-
1K. MSVMamba-T, with 32M parameters and
5.1G FLOPs, achieves 83.0% top-1 accu-
racy, outperforming similar-cost SSM-based
LocalVMamba-T. The MSVMamba-B model
attains 84.4% accuracy with 91M parameters and 16.3G FLOPs, exceeding VMambav3-B by 0.5%.
These results highlight MSVMamba’s efficiency and scalability, offering a robust option for high-
accuracy, resource-efficient model design.

4.2 Object Detection

Setup. We evaluate our MSVMamba on the MSCOCO [28] dataset using the Mask R-CNN [17]
framework for object detection and instance segmentation tasks. Following previous works [32, 30],
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Table 2: Object detection and instance segmentation with Mask R-CNN on COCO. The FLOPs are
computed for an input size of 1280× 800. Multi-scale training is exclusively implemented in the 3×
schedule. All backbones are pre-trained on the ImageNet-1K dataset.

Backbone Mask R-CNN 1x Schedule Mask R-CNN 3x Schedule #param. FLOPs
APb APb

50 APb
75 APm APm

50 APm
75 APb APb

50 APb
75 APm APm

50 APm
75

PVT-T [50] 36.7 59.2 39.3 35.1 56.7 37.3 39.8 62.2 43.0 37.4 59.3 39.9 33M 208G
LightViT-T [22] 37.8 60.7 40.4 35.9 57.8 38.0 41.5 64.4 45.1 38.4 61.2 40.8 28M 187G

EffVMamba-S [37] 39.3 61.8 42.8 36.7 58.9 39.2 41.6 63.9 45.6 38.2 60.8 40.7 31M 197G
MSVMamba-M 43.8 65.8 47.7 39.9 62.9 42.9 46.3 68.1 50.8 41.8 65.1 44.9 32M 201G

Swin-T [32] 42.7 65.2 46.8 39.3 62.2 42.2 46.0 68.1 50.3 41.6 65.1 44.9 48M 267G
ConvNeXt-T [33] 44.2 66.6 48.3 40.1 63.3 42.8 46.2 67.9 50.8 41.7 65.0 44.9 48M 262G
VMambav3-T [30] 47.3 69.3 52.0 42.7 66.4 45.9 48.8 70.4 53.5 43.7 67.4 47.0 50M 271G

LocalVMamba-T [23] 46.7 68.7 50.8 42.2 65.7 45.5 48.7 70.1 53.0 43.4 67.0 46.4 45M 291G
MSVMamba-T 46.9 68.7 51.4 42.5 66.2 45.8 48.7 69.8 53.3 43.4 67.2 46.8 52M 275G

Swin-S [32] 44.8 66.6 48.9 40.9 63.2 44.2 48.2 69.8 52.8 43.2 67.0 46.1 69M 354G
ConvNeXt-S [33] 45.4 67.9 50.0 41.8 65.2 45.1 47.9 70.0 52.7 42.9 66.9 46.2 70M 348G
VMambav3-S [30] 48.7 70.0 53.4 43.7 67.3 47.0 49.9 70.9 54.7 44.2 68.2 47.7 70M 349G

MSVMamba-S 48.1 70.1 52.8 43.2 67.3 46.5 49.7 70.9 54.3 44.2 68.0 47.9 70M 349G

we utilize backbones pretrained on ImageNet-1K for initialization. We employ standard training
strategies of 1× (12 epochs) and 3× (36 epochs) with Multi-Scale (MS) training for a fair comparison.

Results. Tab. 2 presents a performance comparison of our method against CNNs, ViTs, and SSM-
based models. Our model achieve competitive results across various variants and training settings.
Specifically, MSVMamba-T outperforms Swin-T by +4.2 box AP and +3.3 mask AP under the 1×
schedule and also shows improvements in both box AP and mask AP under the 3× schedule.

4.3 Semantic Segmentation
Table 3: We present the results of semantic seg-
mentation on the ADE20K dataset [58] using the
UperNet framework [53]. The computational com-
plexity, measured in FLOPs, is calculated for input
dimensions of 512×2048. The abbreviations "SS"
and "MS" refer to single-scale and multi-scale test-
ing, respectively.

Method mIoU
SS

mIoU
MS #param. FLOPs

ResNet-50 [18] 42.1 42.8 67M 953G
DeiT-S+MLN [44] 43.8 45.1 58M 1217G

Swin-T [32] 44.4 45.8 60M 945G
ConvNeXt-T [33] 46.0 46.7 60M 939G
VMambav3-T [30] 47.9 48.8 62M 949G

MSVMamba-M 45.1 45.4 42M 875G
MSVMamba-T 47.9 48.5 63M 953G

Setup. Consistent with the methodologies used
in Swin [32] and VMamba [30], we utilize the
UperHead [53] framework atop an ImageNet
pre-trained MSVMamba backbone. The train-
ing process is conducted over 160K iterations
with a batch size of 16. We employ the AdamW
optimizer with a learning rate set at 6 × 10−5.
Our experiments are primarily conducted using
a default input resolution of 512 × 512. Addi-
tionally, we also incorporate Multi-Scale (MS)
testing to assess performance variations.

Results. We present the detailed results of our
model and other competitors in Tab. 3, which in-
cludes both single-scale and multi-scale testing.
Our MSVMamba consistently outperforms the
Swin and ConNeXt models in the tiny variant by margins of +2.2 and +1.6 mIoU, respectively.

4.4 Ablation Study

To validate the effectiveness of the proposed modules, we conducted a comprehensive ablation study.
Specifically, we scaled the VMamba-Tiny model by setting its embedding dimension d to 48, the
state space dimension N to 8, and the number of blocks in the four different stages to [1, 2, 4, 2]. The
scaled model, referred to as VMamba-Nano, has parameters and computational costs of 4.4M and
0.87GFLOPs, respectively. This model and the standard tiny-sized models serve as the baseline for
our ablation experiments. Models in ablation study are conducted over a training schedule of 100
epochs on ImageNet-1K to reduce training time. Besides, the APb and APm under Mask R-CNN
with 1x schedule on COCO dataset are also reported for nano-size models.
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Table 4: Evolutionary trajectory from VMamba to MSVMamba on nano-sized model.

Model MS2D SE ConvFFN N = 1 #param. FLOPs Top-1
Acc(%). APb APm

VMamba-Nano 4.4M 0.87G 69.6 38.1 35.6

MSVMamba-Nano

✓ 4.8M 0.89G 71.9↑2.3 39.1↑1.0 36.3↑0.7
✓ ✓ 5.3M 0.89G 72.4↑2.8 39.5↑1.4 36.5↑0.9
✓ ✓ ✓ 6.6M 0.94G 74.4↑4.8 41.0↑2.9 37.8↑2.2
✓ ✓ ✓ ✓ 6.9M 0.88G 75.1↑5.5 41.4↑3.3 37.9↑2.3

Table 5: Performance ablation on tiny-size models. FPS and Memory are tested on a 4090 GPU with
a batch size of 128 and FP32 precision. The symbol † indicates model inherit optimization used in
VMambav3 version.

Model MS2D SE ConvFFN N = 1 #param. FLOPs Top-1
Acc(%). FPS Memory (MB)

VMambav1-Tiny 23M 5.6G 80.3 603 6639

MSVMamba-Tiny ✓ 24M 4.8G 80.9↑0.6 866 4780
✓ ✓ ✓ ✓ 33M 4.6G 81.4↑1.1 1092 4533

MSVMamba-Tiny† ✓ ✓ ✓ ✓ 32M 5.1G 81.7↑1.4 1097 2413

On Multi-Scale 2D Scan. For the nano-size variant, replacing SS2D with our MS2D in the VMamba
framework resulted in an increase in accuracy on ImageNet-1K from 69.6% to 71.9%. Additionally,
the APb and APm metrics improved from 38.1 and 35.6 to 39.1 and 36.3, respectively, as shown
in Tab. 4. Furthermore, we conducted an ablation on the number of scans in the multi-scale scan,
considering both full-resolution and half-resolution branches on nano-size models. The results are
shown in Tab. 6. Placing all scans in the half-resolution branch led to a significant loss of fine-
grained features, resulting in a substantial decrease in model accuracy. Positioning two or three
scans in the full resolution branch, compared to just one, resulted in accuracy improvements of
0.1% and 0.6%, respectively, but introduced an additional computational cost of approximately
12% and 25%. Allocating four scans to the full resolution branch, effectively reverting to the
SS2D method, increased the computational cost by 34% while only improving accuracy by 0.4%.

Table 6: Ablation study on MS2D.

Full Half #param FLOPs Top-1
Acc(%).

0 4 5.1M 0.74G 63.1
1 3 4.8M 0.89G 71.9
2 2 5.0M 1.00G 72.0
3 1 5.3M 1.11G 72.5
4 0 5.1M 1.19G 72.3

For an optimal trade-off between computational cost and
accuracy, we select one scan in the full-resolution branch
as the default setting. Building upon the MS2D foun-
dation, we introduce an SE block following EfficientV-
Mamba [37], which further enhanced accuracy by 0.5%
with minimal additional computational cost.

Experiments related to tiny-size model are reported in
Tab. 5. Our findings indicate that the proposed MS2D
module contributes to an improvement of 0.6% in Top-1
accuracy for the tiny-size model while other components
of our model collectively contribute an additional 0.5% in-
crease in accuracy. The MS2D module not only enhances
performance but also contributes to further speed gains and reductions in memory usage. Since
MS2D is orthogonal to the updates in VMambav3, they can be combined for further enhancements.
In the last row of Tab. 5, we present the results after adopting optimization used in VMambav3, which
include reducing the ssm ratio and eliminating the entire multiplicative branch.

On ConvFFN. Upon replacing SS2D with MS2D and incorporating a SE block, we constructed
a model that utilizes ConvFFN as a channel mixer. When only using SSM, the model exhibited
insufficient information exchange between channels. The integration of ConvFFN as a channel mixer
significantly enhanced the model’s capability for inter-channel information interaction. As indicated
in Tab. 4, the addition of ConvFFN resulted in an additional accuracy improvement of 2.0%. Besides,
we set the state space dimension N = 1 and stacked one more block to further enhance the capability
of capturing long-range information while maintaining a roughly constant computational cost. This
operation resulted in an additional accuracy improvement of 0.7%, as shown in Tab. 4. To maintain a
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roughly equivalent computational cost, we adjusted the number of blocks within the model. When
integrating the ConvFFN and setting the state space dimension N = 1, we meticulously calibrate the
quantity of blocks to maintain a nearly constant computational cost, measured in GFLOPs.

5 Limitations

The design of multi-scale VMamba aims to tackle the long-range forgetting problem of Mamba
models with limited parameters on vision tasks. Although the proposed model has proven to be
effective, its scalability remains to be explored since this issue can also be alleviated by increasing
model sizes.

6 Conclusion

In this paper, we introduced Multi-Scale VMamba (MSVMamba), an SSM-based vision backbone
that leverages the advantages of linear complexity and global receptive field. We developed the
Multi-Scale 2D (MS2D) scanning technique to minimize computational redundancy and alleviate the
long-range forgetting problem in parameter-limited vision models. Additionally, we incorporated
the Convolutional Feed-Forward Network (ConvFFN) to enhance the exchange of information
between channels, thereby significantly improving the performance of our model. Our experiments
demonstrate that MSVMamba consistently outperforms popular models from various architectures,
including ConvNeXt, Swin Transformer, and VMamba, in image classification and downstream tasks.
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A Network Architecture

Table 7: Specifications of MSVMamba varints.
Model Blocks Channels ssm ratio FFN ratio #param.(M) GFLOPs
Nano [1, 2, 5, 2] [ 48, 96, 192, 384] 2 2 7 0.9
Micro [1, 2, 5, 2] [ 64, 128, 256, 512] 2 2 12 1.5
Tiny [2, 2, 9, 2] [ 96, 192, 384, 768] 1 4 32 5.1
Small [2, 3, 20, 2] [ 96, 192, 384, 768] 1 4 50 8.8
Base [2, 4, 18, 2] [128, 256, 512, 1024] 1 4 91 16.3

In Tab. 7, we present the detailed architecture of our model variants, including the Nano, Micro, Tiny,
Small and Base versions, each with varying channels, block numbers ssm ratio and FFN ratio.

B More Ablations

To further demonstrate the effectiveness of our MS2D, we add more baselines that involve only
Scan1 (Uni-directional Scan) and a combination of Scan1 and Scan3 (Bi-directional Scan). These
results are presented in Tab. 8. Concretely, our MS2D further outperform Uni-directional Scan and
Bi-directional Scan baselines by 3.0% and 2.4% top-1 acc respectively.

In Tab. 9, we explore the impact of full-resolution scanning directions. The results indicate that while
different scans yield similar accuracy, Scan1 was selected for its marginally superior performance
consistency.

Table 8: Ablation with more baselines. The CrossScan is utilized in VMamba, while the Uni-Scan
and Bi-Scan denote Uni-directional Scan and Bi-directional Scan respectively.

Setting #param.(M) GFLOPs Accuracy (%)
Uni-Scan 4.4 0.87 68.9
Bi-Scan 4.4 0.87 69.5
CrossScan 4.4 0.87 69.6

MS2D 4.8 0.89 71.9

Table 9: Ablation for full-resolution branch.
Full Scan1 Scan2 Scan3 Scan4

Top-1 Acc(%) 71.9 71.8 71.8 71.9

C Efficiency Comparison

We report detailed throughput comparison of Swin [32], ConvNeXt [33], and VMamba [30] in
Tab. 10. All models are tested on a RTX 4090 GPU with a batch size of 128 and FP32 precision at an
image resolution of 224.

D Qualitative Analysis

We provide visualizations in Fig. 6 comparing the proposed MS2D and SS2D configurations in
VMamba. These visualizations are generated by converting the S6 layer into an attention format,
as demonstrated by VMamba [30]. The results clearly show that the full-resolution in MS2D scan
captures more detailed features, whereas the scans at half resolution primarily focus on broader
architectural details, compared to SS2D. The proposed hierarchical scanning pattern facilitates the
current layer’s ability to discern and amalgamate features across various levels of abstraction.
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Table 10: Efficiency comparison with our baseline VMamba [30] and widely-used Swin Trans-
former [32] and ConvNeXt [33].

Model Top-1 #Params FLOPs Thru. Memory
Acc(%) (G) (imgs/sec) (MB)

Swin-T [32] 81.3 28 M 4.5 986 2402
ConvNeXt-T [33] 82.1 29 M 4.5 1062 1670
VMambav1-T [30] 82.2 23 M 5.6 603 6639
VMambav3-T [30] 82.6 30 M 4.9 1456 3204
MSVMamba-T 83.0 32 M 5.1 1097 2413

Swin-S [32] 83.0 50 M 8.7 561 2596
ConvNeXt-S [33] 83.1 50 M 8.7 605 1753
VMambav1-S [30] 83.5 44 M 11.2 425 6882
VMambav3-S [30] 83.6 50 M 8.7 764 5780
MSVMamba-S 84.1 50 M 8.8 708 2545

Swin-B [32] 83.5 88 M 15.5 363 3362
ConvNeXt-B [33] 83.8 89 M 15.4 387 2380
VMambav1-B [30] 83.7 76 M 18.0 314 8853
VMambav3-B [30] 83.9 89 M 15.4 555 7826
MSVMamba-B 84.4 91 M 16.3 514 3699

Scan 1 Scan 2 Scan 3 Scan 4

SS2D

MS2D

Figure 6: Attention maps from four distinct scanning directions, generated by SS2D and our MS2D
in the last layer of the second stage. In the second row, full-resolution scan (first scan) captures
fine-grained features, whereas scans at half resolution capture coarse-grained features. Maps are
rendered at a higher resolution to enhance visualization quality.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main contributions of the paper,
including the theoretical and experimental results. The claims made are consistent with the
findings presented in the paper and accurately reflect the scope of the research.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work in Section 5 of the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: The paper provides the full set of assumptions and a complete (and correct)
proof for theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper discloses all the information needed to reproduce the main experi-
mental results. Besides, code, models and logs will be released after review.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code, models and logs are provided in the github repo.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details are properly stated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not report error bars or statistical significance information
because the results of multiple experiments are consistent and show minimal variation.
Therefore, the precision of the results is deemed sufficient without the need for additional
statistical measures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computer resources needed to reproduce the experiments are stated in the
Experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in the paper adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper focuses on the design and development of a classification model,
which is foundational research in the field of machine learning. As such, it does not directly
address specific applications or deployments that could lead to societal impacts. The work
is primarily technical and does not include discussions on potential positive or negative
societal impacts.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets used in the paper, including code, data, and models, are properly
credited to their original creators. The licenses and terms of use for these assets are explicitly
mentioned in the paper, and their usage complies with the specified terms. Proper citations
and acknowledgments are provided to ensure that the contributions of the original creators
are recognized and respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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