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Abstract
Learning with limited labeled tabular samples
is an important problem for industrial machine
learning applications, as acquiring annotations
for tabular data is often too costly. On the other
hand, recent remarkable progress in natural lan-
guage processing has evidenced that such an is-
sue can be circumvented by using pre-trained
large language models (LLMs). Motivated by
this, we ask whether LLMs can help to han-
dle the limited labeled data in the tabular do-
main as well. As a positive answer, we propose
a novel semi-supervised tabular learning frame-
work, coined Self-generated PROmpts from Unla-
beled Tables (SPROUT), which utilizes unlabeled
data in conjunction with LLMs. Our main idea
is to exploit the in-context learning capabilities
of LLMs to effectively extract transferable knowl-
edge from unlabeled tabular samples. Specifically,
SPROUT generates in-context prompts from unla-
beled tables by identifying a column feature that
exhibits a strong correlation with the actual target
label, thereby creating examples that pertain to
the true target tasks. In addition, we demonstrate
how a language prior can facilitate knowledge
transfer from heterogeneous data sources, enhanc-
ing performance of target datasets and mitigating
the challenges posed by varying input formats.
Experimental results show that SPROUT yields
substantial performance improvements over previ-
ous methods across various tabular benchmarks.

1. Introduction
Learning with a limited number of labeled samples is of-
ten a critical requirement for real-world machine learning
applications. While numerous semi-supervised learning ap-
proaches have been thoroughly explored in domains such as
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images (Assran et al., 2021; Pham et al., 2021; Tarvainen &
Valpola, 2017) and languages (Chen et al., 2021; Deschacht
& Moens, 2009), research on tabular data has only recently
begun to gain traction (Nam et al., 2023; Yoon et al., 2020),
despite its wide-ranging impact across various industries
(Guo et al., 2017; Ulmer et al., 2020; Zhang et al., 2020).
Semi-supervised tabular learning is particularly important,
because many tabular datasets require substantial annotation
efforts, as exemplified by credit risk assessment in financial
datasets (Clements et al., 2020), and present difficulties in
obtaining new samples for emerging tasks, such as identify-
ing patients with rare or novel diseases (Peplow, 2016) like
the initial cases of COVID-19 infection (Zhou et al., 2020).

On the other hand, recent advancements in natural language
processing suggest that such an issue can be mitigated by
employing pre-trained large language models (LLMs). In
particular, LLMs have exhibited their effectiveness even
with minimal task-specific instructions in the language do-
main (Brown et al., 2020; Dong et al., 2022; Wei et al.,
2022), suggesting their capacity to address the challenges
of limited labeled data. Furthermore, the inherent flexibil-
ity of language makes it possible to transform tabular data
into language in a natural and direct way. This opens up
the possibility of using LLMs for tabular learning, which
could lead to a number of benefits. Notably, some recent
studies (Dinh et al., 2022; Hegselmann et al., 2023) have
investigated the performance of fine-tuned LLMs (Brown
et al., 2020; Sanh et al., 2022), reporting competitive results
compared to prior tabular learning methods.

Motivated by this, we ask whether unlabeled tabular data
and pre-trained large language models can be integrated to
offer an innovative solution to the challenge of limited la-
beled tabular data. Specifically, we investigate the in-context
learning (ICL) capabilities of LLMs (Dong et al., 2022), as
in-context learning provides a practical advantage by facil-
itating the rapid prototyping of pre-trained large language
models without necessitating fine-tuning (Zhao et al., 2021).
As a positive response, we suggest further exploiting the
benefits of ICL by prompting examples generated from un-
labeled tables, leveraging the knowledge transfer potential
inherent in neural networks.
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[Prompts from labeled tables]
Q: If insulin is 130 μU/ml, BMI is 37.9 kg/m2, age is 21, is the patient diabetic? A: No
…

[Question prompt for correlation identification]
Q: Sort the features based on their relevance to diabetes. A:

Unlabeled 64 33.6 22 x

Unlabeled 171 34.2 33 x

… … … … …

Test query 36 37.4 24 ?

Highly correlated feature: Pseudo-label

Prediction Task

: Frozen LLM Output

[Task description]
Read a given information and questions. Think step by step and predict its value.
Dataset has insulin, BMI, age as 3 features.

[Self-generated prompts from unlabeled tables (SPROUT)]

Q: If BMI is 33.6 kg/m2, age is 22, then what is the insulin level? A: 64.0 μU/ml
…

[Prompts from labeled tables]
Q: If insulin is 130 μU/ml, BMI is 37.9 kg/m2, age is 21, is the patient diabetic? A: No
…

[Test query]
Q: If insulin is 36 μU/ml, BMI is 37.4 kg/m2, age is 24, is the patient diabetic? A:

Step 1: Indentifying feature-label correlations

Step 2: Task generation w/ unlabeled tables

Step 3: Prompt generation for in-context learning

: No

: Insulin, …

Data type Insulin BMI Age Label

Labeled 130 37.9 21 Non-Diabetic

Labeled 210 42.9 36 Diabetic

… … … … …

Figure 1. An overview of the proposed Self-generated PROmpts from Unlabeled Tables (SPROUT).

Contribution. We propose a novel semi-supervised tabu-
lar learning framework, entitled Self-generated PROmpts
from Unlabeled Tables (SPROUT), as illustrated in Fig-
ure 1. Our key idea is to leverage the ICL capabilities of
LLMs to effectively extract transferable knowledge from
unlabeled datasets. To achieve this, we generate prompts
from unlabeled tabular data, by identifying a column fea-
ture that exhibits a strong correlation with the actual target
label. Then, we create examples that pertain to the true
target tasks (e.g., using “tumor size” as a substitute label for
“breast cancer type”). Specifically, our method begins by
providing an LLM with a few labeled samples and asking
it to determine the most important column feature for tar-
get prediction. Next, we generate prompts that predict the
chosen column feature using the remaining column features,
ensuring that the constructed examples are closely related
to the actual target task. Finally, we integrate the generated
prompts with descriptions of a limited number of labeled
samples and apply ICL to enhance learning outcomes.

In addition, certain tabular datasets lack informative col-
umn descriptions, limiting the use of LLM’s language prior.
For example, the credit approval dataset (Asuncion & New-
man, 2007) uses obfuscated feature names and values to
protect data confidentiality. Hence, it becomes necessary to
use generic indicators, such as “input variable”, instead of
real column names. However, the optimal choice of these
indicators is uncertain, while ICL is sensitive to prompt
modifications (Min et al., 2022; Wei et al., 2022). To ad-
dress this challenge, we propose an unsupervised method to
discover LLM-friendly, generic feature and target indicators
(e.g., “output variable”). Our proposed method minimally
alters the prompt, yet exhibits effectiveness.

We verify the effectiveness of the proposed method, by
conducting comprehensive evaluations on diverse datasets
sourced from Dinh et al. (2022). Our experimental results
show that SPROUT significantly and consistently outper-
forms existing methods, including self-supervised learn-
ing (Yoon et al., 2020) and unsupervised meta-learning
(Nam et al., 2023) approaches, particularly in few-shot semi-
supervised settings (Nam et al., 2023). Furthermore, we also
show that SPROUT robustly handles missing values by sim-
ply omitting it from the prompt. In addition, SPROUT suc-
cessfully processes multiple tabular datasets concurrently
by leveraging the flexibility of language and language prior
within LLMs. In essence, SPROUT enhances the perfor-
mance of the target dataset by transferring knowledge from
heterogeneous data sources.

2. Method
In this section, we propose an effective semi-supervised
tabular classification framework that utilizes the in-context
learning (ICL) capabilities of large language models (LLMs)
to effectively extract transferable knowledge from unlabeled
samples. In a nutshell, our framework generates prompts
from unlabeled tabular datasets, followed by ICL-based clas-
sification using descriptions of labeled samples. We first
briefly describe our problem setup, and then the core com-
ponent, coined Self-generated PROmpts from Unlabeled
Tables (SPROUT), which generates effective prompts from
unlabeled tabular data for use in ICL (Section 2.1). Addition-
ally, we propose an approach to discover LLM-friendly fea-
tures and target output indicators (e.g., “input variable”). We
find that this enhances the compatibility of tabular prompts
with LLMs (Appendix C).
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Problem setup. We first describe the problem setup of
our interest: semi-supervised tabular classification. A la-
beled dataset Dl = {(xl,i,yl,i)}Nl

i=1 ⊆ X × Y and an unla-
beled dataset Du = {xu,i}Nu

i=1 ⊆ X with column name set
F = {f1, · · · , fd, fd+1} are given, where xl,i, xu,i are d-
dimensional feature vectors, which correspond to the value
in the respective table columns (e.g., “Male” and “36.0” are
feature values of the “sex” column and “BMI” column, re-
spectively). F stands for the column names in the dataset,
including the output feature (i.e., fd+1). These could be nat-
ural language descriptions such as “age” or “education,” or,
in the absence of column name descriptions, they could be
generic indicators like “input variable1,” “input variable2,”
and so forth. Further, X and Y represent the tabular input
space and the label space. Labels y ∈ Y are provided in
the form of natural language annotations (e.g., in Figure 1,
“Non-Diabetic” and “Diabetic” are labels of the Diabetes
dataset). Here, the cardinality of the labeled dataset is as-
sumed to be much smaller than the unlabeled dataset.

2.1. Semi-supervised in-context learning with SPROUT

We now present SPROUT, a novel approach to improve
tabular classification performance by creating an effective
prompt generator that encapsulates the context from both la-
beled and unlabeled data. Based on the information derived
from labeled tables, SPROUT employs unlabeled tabular
data to generate in-context prompts. This is accomplished
by identifying a table column feature that shows a significant
correlation with the actual target label, thereby generating
examples that are more directly aligned with the true target
tasks. This context-rich prompt is then used as the input
for the frozen language model classifier, LLM. Formally,
we aim to create a prompt generator function g : X → S,
with S denoting the text space, and implement a language
model classifier LLM : S → Y . Our primary objective is
to precisely predict the label yt of a test sample xt via the
function LLM(g(F,Dl,Du,xt)).

One key aspect that differentiates our approach is that our
prompt generator g incorporates the context from the la-
beled, unlabeled, and test data when generating prompts for
the LLM classifier. This is contrary to prior ICL methods
on the tabular domain (e.g., LIFT-ICL (Dinh et al., 2022)),
which rely solely on Dl to predict the output of xt, i.e.,
LLM(g(F,Dl,xt)). Namely, our proposed method utilizes
Du, the unlabeled data, in the prompt generator for ICL,
leveraging the inherent knowledge from the unlabeled data,
which significantly enhances the effectiveness of ICL.

To begin, we first describe the process of tabular data se-
rialization, a method that maps the tabular data into a text
space. Following this, we describe our primary, carefully
designed algorithm. We start by identifying the specific
feature with the highest correlation to the actual target la-

bel. Utilizing this feature, we then generate prompts. These
prompts are comprised of information derived from unla-
beled data, which is subsequently formatted according to
the task via the serialization technique.

Tabular serialization. In order to transform the tabular
data to natural language, following previous literature (Dinh
et al., 2022; Hegselmann et al., 2023), we formally define
the serialization function serialize : X → S as follows:

serialize(x,y, {fi}di=1, fd+1) =

“Q : When f1 is x1, f2 is x2, · · · , fd is xd,

then what is fd+1? A : y.”

The result is a serialized form of the table to natural lan-
guage, where it presents the data as a question.

Correlation identification. Our method starts by iden-
tifying the feature f that holds the highest correlation
with the target variable, denoted as y. This correlation
is measured among all the features {fj}dj=1. This
identification is carried out by supplying the input,
merge({serialize(xl,i,yl,i, {fj}dj=1, fd+1)}i∈Dl

),
to the LLM classifier. Specifically, the in-
put is structured with the question prompt,
“Sort fi that are more related to the fd+1.” Here, the
function merge collates the inputs, arranging them row
by row within a single prompt, incorporating multiple
sentences within a single prompt. The selected column
feature fk is then computed by:

fk =LLM
(
merge

(
{serialize(xl,i,yl,i, {fj}dj=1, fd+1)}i∈Dl

∪
[question prompt]

))
.

Prompt generation from unlabeled tables. Our main idea
is to generate prompts from unlabeled data based on a highly
correlated feature fk which we use as a pseudo-label. The
rationale behind using fk, as a pseudo-label stems from the
intuition that the most correlated feature likely can form
tasks that closely resemble the original classification task.
For instance, predicting “Diabetes” from “BMI” and “Age”
is similar to predicting “Insulin” using the same features
(Nam et al., 2023). Thus, we generate prompts that predict
the value of fk from remaining features, which we refer to
as SPROUT prompts.

However, utilizing all unlabeled data can be difficult as
LLMs may limit the input prompt size. Thus, we simply
consider only a subset of the unlabeled data by selecting
a small, fixed number of samples that are closest to each
labeled sample in terms of Euclidean distance.1 We denote
by Iu ⊂ [1, Nu] to represent the indices of the selected

1Data is vectorized by one-hot encoding categorical features
and applying min-max scaling to all features.
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Table 1. Few-shot test accuracy (%) on 9 datasets from the OpenML repository (Vanschoren et al., 2014). # shot indicates the number of
labeled samples per class. For the baselines, we report the average test accuracy over 100 different seeds. We report the average accuracy
and standard deviation over 5 different seeds for our method due to the high cost of OpenAI API. The bold denotes the highest average
score. † denotes experiments done with GPT-4 due to the prompt size limit of ChatGPT.

Method Breast TAE Vehicle Hamster Customers LED Pollution Diabetes Car Avg.
# shot = 1

CatBoost (Prokhorenkova et al., 2018) 57.64 34.29 37.60 51.87 64.12 49.71 63.58 58.60 32.33 49.97
LR 61.23 37.35 36.11 51.07 61.34 54.70 63.67 57.61 36.95 51.11
kNN 61.88 37.26 36.22 51.00 63.81 51.49 63.67 58.56 31.51 50.60
VIME+LR (Yoon et al., 2020) 57.38 37.87 35.32 51.53 62.48 52.99 63.33 56.95 34.51 50.26
VIME+kNN (Yoon et al., 2020) 57.38 38.16 34.46 51.53 62.47 53.30 63.33 58.35 33.38 50.26
STUNT (Nam et al., 2023) 53.04 36.87 34.58 51.73 65.14 48.55 63.00 61.08 36.48 50.05
LIFT-ICL (Dinh et al., 2022) 66.43 30.97 37.18 48.00 60.91 20.60† 58.33 62.60 69.13 50.46

SPROUT 68.93±6.13 43.23±7.07 39.88±2.51 58.67±5.58 87.27±3.69 55.40†
±6.15 65.00±3.73 68.44±5.02 71.40±1.79 62.02

# shot = 5
CatBoost (Prokhorenkova et al., 2018) 57.63 39.71 51.94 56.33 81.40 67.04 70.58 64.94 46.96 59.61
LR 61.21 43.42 46.52 51.60 60.82 70.10 73.33 64.19 53.29 58.28
kNN 62.33 44.65 43.47 54.53 64.92 71.17 72.83 67.32 49.62 58.98
VIME+LR (Yoon et al., 2020) 60.89 42.84 47.34 52.80 66.07 68.30 75.50 64.29 52.37 58.93
VIME+kNN (Yoon et al., 2020) 64.12 41.68 40.35 53.47 63.42 71.59 70.33 66.94 49.74 57.96
STUNT (Nam et al., 2023) 61.30 40.77 40.46 52.87 66.44 66.97 70.92 69.88 51.73 57.93
LIFT-ICL (Dinh et al., 2022) 67.86 35.48 39.18† 58.67 88.18† 54.60† 65.00 69.20 70.81 61.00

SPROUT 72.85±1.96 45.81±1.44 41.41†
±4.85 64.00±7.60 89.55†

±0.85 64.00†
±2.00 76.67±3.73 71.44±2.26 72.08±1.03 66.42

unlabeled data, which we incorporate into the task prompt
generation. Formally, we define the prompt generation pro-
cess SPROUT as:

SPROUT
(
xu,i, {fj}dj=1, k

)
=

“Q : When f1 is x1, · · · , fk−1 is xk−1, fk+1 is xk+1, · · · ,
fd is xd, then what is fk? A : xk.”

Finally, we propose our prompt generator g, which
incorporates a prompt that describes the task, the
SPROUT derived from unlabeled data, and the in-
formation from the labeled samples. Addition-
ally, it includes a test query prompt which is
“When f1 is xt,1, f2 is xt,2, · · · , fd is xt,d, then what is
fd+1?,” i.e., the conventional test query prompt for ICL.
Formally, we define our prompt generator g as:

g(F,Dl,Du,xt) = merge
(
[task description]

∪
{
SPROUT

(
xu,i, {fj}dj=1, k

)}
i∈Iu

∪
{
serialize(xl,i,yl,i, {fj}dj=1, fd+1)

}
i∈Dl

∪ [test query]
)
.

In-context learning with SPROUT. After generating a
prompt using g, we put the generated prompt into the LLM
to predict the label ypred of the test query xt. Formally,
ypred = LLM

(
g(F,Dl,Du,xt)

)
.

3. Experiments
In this section, we validate the effectiveness of our proposed
method in various semi-supervised learning scenarios, utiliz-
ing diverse tabular datasets sourced from the OpenML repos-
itory (Vanschoren et al., 2014). These selected datasets have

been previously employed in the in-context learning (ICL)
experiments by Dinh et al. (2022). The experimental results
reveal that SPROUT consistently outperforms other baseline
methods. Next, we conduct ablation studies to verify the
impact of each core component of SPROUT (Appendix D).
Finally, to further demonstrate the practical applicability
of our method, we expand our evaluation to introduce its
intriguing properties in two practical scenarios: handling
missing values in tabular data and taking benefit from the
heterogeneous data sources (Appendix E).

Semi-supervised tabular classification. In this section, we
demonstrate the efficacy of SPROUT for semi-supervised
classification tasks. Due to the constraints posed by the
limited input prompt size of LLMs, we have decided to eval-
uate our method in the context of few-shot semi-supervised
classification, as described in Nam et al. (2023). Our perfor-
mance evaluation is based on scenarios with one and five
labeled samples available per class. As demonstrated in
Table 1, SPROUT consistently improves the few-shot semi-
supervised tabular classification performance. Note that this
improvement is achieved without model updates. To pro-
vide a specific example, SPROUT significantly outperforms
LR in 1-shot classification, raising the average performance
from 51.11% to 62.02%. Additionally, SPROUT consis-
tently achieves superior results, yielding the highest score
in all 9 datasets in the 1-shot classification problem, and
in 7 out of the 9 datasets in the 5-shot scenario. These
results represent an improvement of approximately 10.9%
and 5.4% over the best performing baselines, respectively.
The success of SPROUT is attributed to its effective use
of the ICL capabilities of LLMs. By constructing effec-
tive prompts from unlabeled set, SPROUT is able to extract
useful knowledge from the unlabeled set in an ICL manner.
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A. Related work
Utilizing unlabeled tabular data. Researchers have developed a number of methods for training generalizable representa-
tions of tabular datasets using unlabeled data. Pioneering this field, Yoon et al. (2020) targeted self-supervised learning on
tabular datasets, introducing an approach that involves corrupting random features and predicting the corrupted locations in
terms of both rows and columns. Moreover, Ucar et al. (2021) demonstrated that implementing an effective combination of
three pretext task losses (i.e., reconstruction loss, contrastive loss, and distance loss) could yield state-of-the-art performance.
Furthermore, Nam et al. (2023) proposed an unsupervised meta-learning framework to tackle few-shot semi-supervised
learning problems. Compared to prior works, we propose a semi-supervised framework for tabular data using large language
models (LLMs), which applies in-context knowledge transfer, enhancing the effective exploitation of unlabeled tables.

Tabular learning with large language models. Recent advances in LLMs have provided an impetus to explore their
potential for tabular learning. Dinh et al. (2022) investigated the performance of fine-tuned GPT-3 models (Brown et al.,
2020) on tabular data. Extending this line of research, Hegselmann et al. (2023) conducted a comprehensive analysis using
the T0 model (Sanh et al., 2022), leveraging the language prior in LLMs. Their analysis extended to sample efficiency
considerations, even conducting zero-shot experiments. Inspired by these preceding studies, our work proposes a method
for the effective exploitation of unlabeled data - an aspect overlooked in prior research. By integrating the utilization of
unlabeled data with LLMs, we aim to enhance performance in semi-supervised learning scenarios significantly.

In-context learning. As model and dataset sizes increase (Brown et al., 2020; Radford et al., 2019), LLMs have exhibited
the capability for in-context learning (ICL), where they draw knowledge from a handful of contextual examples. For
example, Wei et al. (2022) have illustrated the competency of LLMs in solving mathematical reasoning problems via ICL.
The ICL process begins by employing a small number of examples to establish a contextual framework, typically constructed
using natural language templates. Following this, a query question and a contextual demonstration are combined to form a
prompt, which is subsequently fed to the LLMs for prediction. Notably, ICL does not necessitate parameter updates and
directly carries out predictions using LLMs, enabling easy implementation for large-scale real-world tasks. In our work, we
delve deeper into the potential of ICL by examining its performance on semi-supervised tabular classification tasks, using
unlabeled data as a source for creating effective demonstrations.

B. Common setup and baselines
For all datasets, we use 80% of the data for training, which is all unlabeled except for a limited labeled samples, while
the other 20% is used for testing. Following Ucar et al. (2021), categorical features are one-hot encoded for the baselines,
followed by min-max scaling. To verify our method, we compare the performance with the competitive and effective
baselines subsampled from Nam et al. (2023). In particular, we consider supervised learning baselines including CatBoost
(Prokhorenkova et al., 2018), Logistic Regression (LR), and the nearest neighbor classifier operating on the prototype of the
input data (kNN), that do not utilize unlabeled data. The semi-supervised learning baseline VIME (Yoon et al., 2020) is
also considered where the model is initially pre-trained and then evaluated using labeled samples with LR and kNN. We
deliberately exclude methods requiring careful hyperparameter tuning, due to their inherent sensitivity to hyperparameters
(e.g., MPL (Pham et al., 2021), MT (Tarvainen & Valpola, 2017), ICT (Verma et al., 2022)) and over-fitting issues. Our
problem setup, characterized by limited labeled data, does not lend itself well to hyperparameter tuning in real-world
scenarios, due to the absence of labeled validation set. We also consider STUNT (Nam et al., 2023), the state-of-the-art
few-shot semi-supervised tabular method. Finally, we consider LIFT (Dinh et al., 2022) in ICL setting as a representative
method for leveraging the power of large language models (LLMs). For all experiments using LLMs, we use the GPT
models provided by the OpenAI API. Specifically, text-davinci-003 is used to identify correlation in SPROUT, and
ChatGPT (i.e., gpt-3.5-turbo) is used for all experiments, unless stated otherwise.
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C. Generic indicator discovery with SPROUT

Data type x1 x2 x3

Unlabeled 130 37.9 M

… … … …

x1 x2

130 37.9

… …

y’ (=x3)

M

…

Step1: Pseudo-task generation

Step2: Pseudo-task evaluation using candidate indicators

[SPROUT]
Q: If feature1 is 130, feature2 is 37.9, then what is the output y? A: M
…

Q: If input variable1 is 36, input variable2 is 37.4, then what is the output? …

[SPROUT]
Q: If feature1 is 130, feature2 is 37.9, then what is the output y? A: M
…

Q: If attribute1 is 36, attribute2 is 37.4, then what is the target variable? …

[SPROUT]
Q: If feature1 is 130, feature2 is 37.9, then what is the output y? A: M
…
[Test query]
Q: If feature1 is 36, feature2 is 37.4, then what is the output y? A:

Candidate1: x=”feature”, y’=“output y”

: M

Figure 2. An overview of the proposed generic indicator discovery with SPROUT.

Indeed, LLMs require explicit column descriptions to effectively exploit the language prior, but informative descriptions
are often absent in tabular datasets (Asuncion & Newman, 2007). Consequently, researchers are forced to use the generic
indicator, a prompt that is used to substitute (or pretend as) actual column names, for instance, “independent variable” (Dinh
et al., 2022). However, in the context of LLMs (Min et al., 2022; Wei et al., 2022), determining the most suitable generic
indicator remains uncertain, while ICL is sensitive to prompt modifications (Wei et al., 2022). To tackle this challenge, we
propose an unsupervised method for discovering generic indicators that are more compatible with LLMs. In a nutshell,
we generate indicator pairs that indicate the features of input x and y, respectively. Then, we evaluate each indicator pair
through the pseudo-task generated by SPROUT (see Figure 2).

As a detail, in our proposed method, we first ask the LLM to generate candidates of generic indicators F ′ =
{f ′

1, f
′
2, · · · , f ′

d, f
′
d+1}, where {f ′

j}dj=1 are for input features (e.g., “input variable1”, “independent variable1”) and f ′
d+1

is for the target value (e.g., “output variable”, “dependent variable”). We then sample a subset of the unlabeled set
x′
u ∈ D′

u ⊂ Du and generate a pseudo-label y′
u. If x′

u includes categorical features, we select the column feature as y′
u that

has both (i) the smallest number of categories and (ii) the smallest variance between categories. Given a task {x′
u,i,y

′
u,i}i,

we sample two disjoint sets, S and Q. We then use ICL with set S as labeled samples to predict the pseudo-label of set Q
(i.e., test query set), using the SPROUT function. For convenience, we denote the selected categorical column index as k′.
Then formally,

y′
pred = LLM

(
merge

(
{SPROUT(x′

u,i, {f ′
j}dj=1, k

′}i∈S ∪ [test query]
))

where f ′
k′ = f ′

d+1.

Among the generated F ′, the candidate that most accurately predicts the pseudo-label of test queries in Q is then selected.
In the case where x′

u consists only of numerical features, we employ STUNT (Nam et al., 2023) to generate y′
u from the

unlabeled dataset. The overall process remains the same. Discovering generic indicators with our proposed method actually
improves performance (see Table 2c for results) because we discover indicators that are compatible with the features in the
table in terms of LLMs.

8



Semi-supervised Tabular Classification via In-context Learning of Large Language Models

D. Ablation studies

Table 2. The effect of in-context learning (ICL) with labeled and unlabeled data in SPROUT, and the effect of formatting methods for the
unlabeled data. We compare 1-shot test accuracy (%) on three datasets from the OpenML repository (Vanschoren et al., 2014). We report
the average accuracy over 5 different seeds.

(a) Effect of ICL with labeled & unlabeled data.

Method Breast TAE Customers

LR 61.23 37.35 61.34

Ours (generic)
+ labeled 55.00 35.48 62.73
+ unlabeled 58.22 41.94 70.23

Ours (descriptive)
zero-shot 60.71 29.03 43.18
+ labeled 67.50 34.19 65.14
+ unlabeled 68.93 43.23 87.27

(b) Formatting methods for unlabeled data.

Method Breast TAE Customers

w/o unlabeled 55.00 35.48 62.73

Plain 55.36 40.00 68.86
Random Target 53.57 38.07 69.77
Identified Target 58.22 41.94 70.23

(c) Effect of discovered indicator.

Method Breast TAE Customers

Ours (base model) 53.21 35.48 61.36
+ discovered indicator 55.00 35.48 62.73

In this section, we analyze the components of SPROUT on the three OpenML datasets (Vanschoren et al., 2014): Breast,
TAE, and Customers. We mainly focus on: (i) verifying the efficacy of in-context learning with unlabeled data, (ii) assessing
the effectiveness of SPROUT in discovering generic indicators, and (iii) the effect of LLM-friendly informative real column
name descriptions.

Effectiveness of in-context learning with unlabeled data. We first investigate the effect of in-context learning with the
unlabeled data with SPROUT in Table 2a. As an effort to isolate the impact of the language descriptions in the column
names and the categorical data with texts, we present the results of the generic model (“Ours (generic)” in Table 2a)
where the language descriptions are removed. For instance, we employ generic indicators such as “input variables” and
“output variables” for the column names and substitute all categorical values with random alphabetical symbols (e.g., feature
“Summer” is replaced with “A” in the TAE dataset). As shown in Table 2a, leveraging unlabeled data via in-context learning
significantly improves performance for all the cases with and without the language descriptions (e.g., 65.14%→87.27% and
62.73%→70.23% in Customers, respectively).

We also verify the efficacy of our correlation identification method in Table 2b, which seeks the most correlated feature
to the target while generating the task prompt. For comparison, we consider a basic, naïve method (“Plain” in Table 2b)
that serializes the unlabeled data without Q-A pairs, e.g., “f1 is x1, f2 is x2, · · · , fd is xd.”, and the model that randomly
selects the target (“Random Target” in Table 2b). Our results show that serializing the unlabeled data with the identified
target boosts the in-context learning performance by the largest amount (e.g., 35.48%→41.94% in TAE, 62.73%→70.23%
in Customers datasets), while other methods yield sub-optimal improvements. We emphasize that our careful task prompt
construction from unlabeled tabular data closely mimics the actual target task, thereby offering a considerable advantage in
predicting the test query.

Effectiveness of discovered generic indicators. Table 2c ablates our generic indicator discovery method, particularly useful
in the instances where column descriptions are not informative. For instance, our method reveals that for the Breast dataset,
the generic indicators F = {input variable1, · · · , input variabled} and fd+1 = “output variable” are more beneficial than
F = {x1, · · · , xd} and fd+1 = “y value”. By simply replacing these indicators, we observe a consistent improvement, for
example, an increase from 53.21% to 55.00% on the Breast dataset.

Effectiveness of the language descriptions in large language models. Another interesting trend observed in Table 2a is a
significant enhancement in the accuracy due to the language descriptions, as exemplified by a rise from 70.23%→87.27%
on the Customers dataset. To leverage the language prior of LLMs, we recommend practitioners to thoughtfully employ
the detailed column descriptions, if provided. For instance, on the Customers dataset, one can serialize tabular data such
as “feature1 is 3191.0” into a more descriptive form like “annual spending on fresh product is 3191.0”. Intriguingly, even
in the absence of the language descriptions—hence relying solely on a generic prompt that utilizes only basic symbols
for categorical data and generic column indicators—SPROUT consistently outperforms or at least achieves competitive
performance compared to the baselines, e.g., 70.23% on the Customers dataset, which surpasses performances of all the
baselines.
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E. Handling various practical scenarios with SPROUT

Table 3. Classification performances in the missing value scenario. We report the 1-shot test accuracy (%) on the two datasets from the
OpenML repository (Vanschoren et al., 2014). For each dataset, we randomly remove 50% of the feature values. We simulate the missing
values with 5 different seeds and report the average test accuracy. For the baselines, we apply three imputation methods (zero, mean,
median) and report the best results. Bold indicates the performance with the lowest performance drop.

Breast Diabetes
Method Complete 50% Missing Complete 50% Missing

CatBoost (Prokhorenkova et al., 2018) 57.64 54.50 (-3.14%) 58.60 54.18 (-4.42%)
LR 61.23 55.84 (-5.39%) 57.61 55.43 (-2.18%)
kNN 61.88 56.80 (-5.08%) 58.56 55.43 (-3.13%)

Ours 68.93±6.13 67.71±6.58 (-1.22%) 68.44±5.02 67.01±4.53 (-1.43%)

In this section, we introduce extended applications of SPROUT within two practical tabular learning scenarios: specifically,
managing missing values (a common challenge in the tabular domain), and knowledge transfer from heterogeneous data
sources, utilizing the language priors of LLMs. We highlight the intriguing properties of SPROUT, which is distinguished
from the baselines.

Robustness to missing values. In practice, tabular data often contains missing values for various reasons. For instance,
biopsy results may not be collected for all patients due to the risks and complications involved in the data collection process
(Yoon et al., 2018). Conventionally, missing values are managed using imputation algorithms (Yi et al., 2020; Yoon et al.,
2018) in the tabular domain, which estimate missing values from other existing information. The performance of standard
tabular machine learning methodologies largely depends on imputation algorithms, as incorrectly estimated data could
introduce severe noise.

In contrast, SPROUT naturally handles missing values by simply excluding these values from the input prompt. For example,
if the “Age” feature is missing, SPROUT serializes the table to prompt like “Insulin is 130, BMI is 37.9.” To verify the
robustness of SPROUT to missing values in tables, we simulate a scenario where 50% of features are randomly omitted.
For the unlabeled data selection process in SPROUT, we employ zero imputation when calculating the distance between
labeled and unlabeled samples. As shown in Table 3, SPROUT shows not only superior classification accuracy but also
exhibits the smallest performance drop (-1.22% and -1.43% for Breast and Diabetes, respectively). These results highlight
that SPROUT is robust to missing values since these values are not required during inference, therefore not being severely
affected by incorrect estimations.
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Table 4. Classification performances in the transfer scenario from heterogeneous data sources. We provide a 1-shot training set for
a target dataset and benchmark the effect of incrementing the additional training samples from a source dataset, from N = 0 (no
heterogeneous sample) to N = 10 (many heterogeneous samples). We report the average test accuracy over 3 different seeds for all
methods. Experiments for non-LM baselines (†) are implemented by extending columns for the heterogeneous data with zero-padded
values. The bold denotes the highest average score.

Target Source Method N=0 N=2 N=4 N=6 N=8 N=10

Adult

Credit Risk

CatBoost† (Prokhorenkova et al., 2018) 56.00 54.67 60.00 61.33 51.33 49.33
LR† 54.00 69.33 69.33 66.00 61.33 55.33
kNN† 54.00 72.00 72.00 57.33 57.33 57.33
LIFT-ICL (Dinh et al., 2022) 69.33 25.33 35.33 52.00 60.00 43.33
Ours 74.67±1.89 75.33±1.89 76.00±0.00 77.33±2.49 79.33±3.77 80.00±1.63

Electricity

CatBoost† (Prokhorenkova et al., 2018) 56.00 50.00 50.67 48.67 45.33 58.00
LR† 54.00 54.67 50.67 50.00 45.33 58.67
kNN† 54.00 42.67 42.67 37.33 37.33 42.67
LIFT-ICL (Dinh et al., 2022) 69.33 60.67 64.67 63.33 58.67 54.00
Ours 74.67±1.89 80.00±2.83 76.00±2.83 78.67±2.49 80.00±1.63 81.33±2.49

Credit-g Credit Approval

CatBoost† (Prokhorenkova et al., 2018) 55.33 46.67 41.33 46.67 40.67 44.00
LR† 52.67 49.33 48.00 33.33 42.00 40.00
kNN† 52.67 58.67 41.33 41.33 41.33 24.00
LIFT-ICL (Dinh et al., 2022) 42.67 49.17 48.17 45.83 46.00 48.67
Ours 55.00±4.30 54.50±2.55 58.67±3.30 59.33±3.30 59.33±2.05 60.67±1.65

Transferring from heterogeneous data sources. We next demonstrate the effect of introducing training samples from
heterogeneous data sources. Alongside the semi-supervised method exploiting the patterns inferred from unlabeled data in
the homogeneous source (i.e., the same distribution as the test set), transferring knowledge from different sources, referred
to as transfer learning (Do & Ng, 2005; Raina et al., 2006), is another reasonable approach to dealing with limited labeled
data in practice.

However, merging distinct column sets from diverse sources in the tabular domain demands a heuristic process to create
a unified feature set. Such an approach may not generalize well, and require sophisticated designs for different data
combinations. In this regard, we find our tabular serialization discussed in Section 2.1 to be a simple and effective method
for combining columns from various heterogeneous sources. As tabular data is transformed into natural language, the
language model can automatically understand the relations between different features from their descriptions.

To investigate the effect of incorporating heterogeneous data, we consider a transfer scenario where target data should be
classified given 1-shot training samples from the same dataset and N additional samples from a heterogeneous source
dataset that shares the target attribute (e.g., “annual income” in Adult, Credit Risk and Electricity datasets) but contains
disparate column sets (e.g., “work class”, “education”, etc. for Adult and “loan amount”, “credit history length”, etc. for
Credit Risk datasets).

As shown in Table 4, SPROUT consistently benefits from heterogeneous data sources (e.g., 74.67%→80.00% on the Adult
dataset, when N = 10 additional samples from the Credit Risk dataset is provided). More importantly, SPROUT is the
only method that shows steady performance improvements as the number of heterogeneous training sample N increases,
while the baselines are not able to properly learn from the additional samples, and their performance could even deteriorate
compared to their 1-shot (N = 0) performances. Interestingly, cramming the extra columns from the heterogeneous dataset
in LIFT-ICL only incurred noise to the accuracy. We attribute this to that our LLM-friendly descriptions enable the LLMs to
exploit the deeper relationship between heterogeneous data, while the naïve concatenation without proper descriptions only
perplexes the LLMs.
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F. Baseline details
In this section, we provide brief explanations of the chosen baselines. For CatBoost (Prokhorenkova et al., 2018) and
logistic regression, we employ the default hyperparameters as provided by the CatBoost library and the Scikit-learn library,
respectively. For VIME (Yoon et al., 2020) pre-training, we adopt the optimal hyperparameters recommended in the original
paper, utilizing the Adam optimizer with a learning rate of 1e− 3 and weight decay of 1e− 4. When implementing STUNT
(Nam et al., 2023), we follow the unsupervised validation scheme proposed in the original paper for hyperparameter search
and early stopping. For LIFT-ICL (Dinh et al., 2022), we use the generic serialization, used in the original paper, for all the
datasets under consideration. Prompt example used for LIFT on the Breast dataset is provided in Table 5.

Table 5. Prompt example used for LIFT-ICL (Dinh et al., 2022) on the Breast dataset.

Question:When x1 is 50-59, x2 is premeno, x3 is 50-54, x4 is 0-2, x5 is yes, x6 is
2, x7 is right, x8 is left_up, x9 is yes, then what is y value? You must choose in
[recurrence-events, no-recurrence-events]. Answer:no-recurrence-events

Question:When x1 is 40-49, x2 is premeno, x3 is 15-19, x4 is 0-2, x5 is yes, x6 is
3, x7 is right, x8 is left_up, x9 is no, then what is y value? You must choose in
[recurrence-events, no-recurrence-events]. Answer:recurrence-events

Question:When x1 is 40-49, x2 is premeno, x3 is 15-19, x4 is 12-14, x5 is no, x6 is
3, x7 is right, x8 is right_low, x9 is yes, then what is y value? You must choose in
[recurrence-events, no-recurrence-events]. Answer:

G. Experimental details

Table 6. Number of unlabeled dataset of SPROUT.

# shot Breast TAE Vehicle Hamster Customers LED Pollution Diabetes Car

1 30 30 20 30 30 30 20 30 40
5 20 30 10 20 30 30 10 30 40

In this section, we describe the experimental details. To begin with, we have set |S| = 1 and |Q| = 10 across all datasets
during discovering the generic indicators, as discussed in Appendix C. Further, the number of unlabeled data for each dataset
used in SPROUT (i.e., |Iu|), is provided in Table 6.

Additionally, we have conducted experiments on some datasets (i.e., Vehicle, Customers, LED) utilizing GPT-4 (OpenAI,
2023). This choice was made due to the limited prompt size of ChatGPT, as denoted in Table 1. However, considering
the high cost of the GPT-4 API, we have considered to evaluate multiple queries within a single prompt (i.e., batch-wise
queries). This is accomplished by initiating each test query prompt with the prefix “Question N” and requesting the
model to respond in the format “Answer N.” We adopt a batch size of 30, if all samples fit within a single prompt. If not,
we utilize the largest possible batch size. We also note that batching test samples in this manner represents an effective and
cost-efficient method of employing SPROUT. For further clarification, a simplified prompt example, applied to the Customer
dataset (i.e., two unlabeled samples, one labeled sample per class, two batch queries), is illustrated in Table 7.
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Table 7. Prompt example used for batch-wise test using GPT-4 on the Customers dataset.

Read a given information and questions. Think step by step, and then predict whether its
value is class1 or class2. You must choose in [class1, class2]. Class1 indicates Horeca
(Hotel, Restaurant, Cafe) channel, and class2 indicates Retail channel.

The dataset consists of 7 input variables: annual spending on fresh product, annual
spending on milk products, annual spending on grocery products, annual spending on
frozen products, annual spending on detergents and paper products, annual spending on
delicatessen products, and customer’s region. The output variable is the customer’s
channel.

Question: If the annual spending on fresh product is 1479.0, annual spending on milk
products is 14982.0, annual spending on frozen products is 662.0, annual spending on
detergents and paper products is 3891.0, annual spending on delicatessen products is
3508.0, customer’s region (1 indicates Lispon, 2 indicates Porto, and 3 indicates Other)
is 2, then what is the annual spending on grocery products? Answer: 11924.0

Question: If the annual spending on fresh product is 243.0, annual spending on milk
products is 12939.0, annual spending on frozen products is 799.0, annual spending on
detergents and paper products is 3909.0, annual spending on delicatessen products is
211.0, customer’s region (1 indicates Lispon, 2 indicates Porto, and 3 indicates Other)
is 2, then what is the annual spending on grocery products? Answer: 8852.0

Question: If the annual spending on fresh product is 918.0, annual spending on milk
products is 20655.0, annual spending on grocery products is 13567.0, annual spending on
frozen products is 1465.0, annual spending on detergents and paper products is 6846.0,
annual spending on delicatessen products is 806.0, customer’s region (1 indicates Lispon,
2 indicates Porto, and 3 indicates Other) is 2, then what is the customer’s channel?
Choose between [class1, class2]. Class1 indicates Horeca (Hotel, Restaurant, Cafe)
channel, and class2 indicates Retail channel. Answer: class2

Question: If the annual spending on fresh product is 3097.0, annual spending on milk
products is 4230.0, annual spending on grocery products is 16483.0, annual spending on
frozen products is 575.0, annual spending on detergents and paper products is 241.0,
annual spending on delicatessen products is 2080.0, customer’s region (1 indicates Lispon,
2 indicates Porto, and 3 indicates Other) is 3, then what is the customer’s channel?
Choose between [class1, class2]. Class1 indicates Horeca (Hotel, Restaurant, Cafe)
channel, and class2 indicates Retail channel. Answer: class1

Question 1: If the annual spending on fresh product is 11686.0, annual spending on milk
products is 2154.0, annual spending on grocery products is 6824.0, annual spending on
frozen products is 3527.0, annual spending on detergents and paper products is 592.0,
annual spending on delicatessen products is 697.0, customer’s region (1 indicates Lispon,
2 indicates Porto, and 3 indicates Other) is 1, then what is the customer’s channel?
Choose between [class1, class2]. Class1 indicates Horeca (Hotel, Restaurant, Cafe)
channel, and class2 indicates Retail channel.

Question 2: If the annual spending on fresh product is 2083.0, annual spending on milk
products is 5007.0, annual spending on grocery products is 1563.0, annual spending on
frozen products is 1120.0, annual spending on detergents and paper products is 147.0,
annual spending on delicatessen products is 1550.0, customer’s region (1 indicates Lispon,
2 indicates Porto, and 3 indicates Other) is 1, then what is the customer’s channel?
Choose between [class1, class2]. Class1 indicates Horeca (Hotel, Restaurant, Cafe)
channel, and class2 indicates Retail channel.

(Answer the questions in the format "Answer i: (answer)", starting from Answer 1.)
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H. Dataset details

Table 8. Dataset description. We select 9 tabular datasets from the OpenML repository (Vanschoren et al., 2014) for extensive evaluation.

Property \ Dataset Breast TAE Vehicle Hamster Customers LED Pollution Diabetes Car

OpenML id 13 48 54 893 1511 40496 882 37 40975

# Columns 9 5 18 5 7 7 15 8 6
# Numerical 0 1 18 5 6 0 15 8 0
# Categorical 9 4 0 0 1 7 0 0 6
# Classes 2 3 4 2 2 10 2 2 4

In this section, we provide detailed descriptions of the considered datasets chosen from the OpenML repository (Vanschoren
et al., 2014). We select six tabular datasets (i.e., Breast, TAE, Vehicle, Hamster, Customers, LED) which have been
previously used in the in-context learning experiments by Dinh et al. (2022). Additionally, we incorporate three other
datasets from the OpenML repository (i.e., Pollution, Diabetes, Car) to verify our method across diverse types of tabular
datasets. The Pollution dataset, for instance, consists of only numerical features. Likewise, the Diabetes dataset, widely
acknowledged as one of the most frequently utilized datasets in tabular learning literature (Hegselmann et al., 2023; Nam
et al., 2023), also consists of only numerical features. Contrasting with the previous two, the Car dataset is composed solely
of categorical features. We provide detailed dataset description in Table 8.

I. Prompt examples used in SPROUT
In this section, we provide examples of prompts used in SPROUT, specifically focusing on the Breast dataset and the
Customers dataset. In particular, we illustrate the prompts employed to identify the column feature with the highest
correlation (see Table 9 and Table 10), along with the prompts used during the final inference stage (see Table 11 and
Table 12). For the sake of brevity and due to constraints on paper length, the prompts we provide consist of merely two
unlabeled samples along with a single labeled sample per class. Furthermore, we present a prompt wherein the language
descriptions have been completely omitted—that is, employing generic indicators and substituting categorical features with
random alphabetical symbols (see Table 13 and Table 14).

Table 9. Prompt example when identifying the highest correlated feature on the Breast dataset.

Question:When age is 50-59, menopause is premeno, tumor-size is 15-19, inv-nodes is 0-2,
node-caps is no, deg-malig is 2, breast is right, breast-quad is right_low, irradiat
is no, then what is the breast-cancer class? You must choose in [recurrence-events,
no-recurrence-events]. Answer:no-recurrence-events

Question:When age is 30-39, menopause is premeno, tumor-size is 25-29, inv-nodes is 6-8,
node-caps is yes, deg-malig is 3, breast is left, breast-quad is right_low, irradiat
is yes, then what is the breast-cancer class? You must choose in [recurrence-events,
no-recurrence-events]. Answer:recurrence-events

Question:Sort by input variables that are more related to the breast-cancer class.
Choices: [age, menopause, tumor-size, inv-nodes, node-caps, deg-malig, breast,
breast-quad, irradiat]. Answer:
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Table 10. Prompt example when identifying the highest correlated feature on the Customers dataset.

Question: If the annual spending on fresh product is 583.0, annual spending on milk
products is 685.0, annual spending on grocery products is 2216.0, annual spending on
frozen products is 469.0, annual spending on detergents and paper products is 954.0,
annual spending on delicatessen products is 18.0, customer’s region (1 indicates Lispon, 2
indicates Porto, and 3 indicates Other) is 1, then what is the customer’s channel? Choose
between [class1, class2]. Class1 indicates Horeca (Hotel, Restaurant, Cafe) channel, and
class2 indicates Retail channel. Answer: class1

Question: If the annual spending on fresh product is 7823.0, annual spending on milk
products is 6245.0, annual spending on grocery products is 6544.0, annual spending on
frozen products is 4154.0, annual spending on detergents and paper products is 4074.0,
annual spending on delicatessen products is 964.0, customer’s region (1 indicates Lispon,
2 indicates Porto, and 3 indicates Other) is 3, then what is the customer’s channel?
Choose between [class1, class2]. Class1 indicates Horeca (Hotel, Restaurant, Cafe)
channel, and class2 indicates Retail channel. Answer: class2

Question: Sort features that are more related to the customer’s channel.Choices: [annual
spending on fresh product, annual spending on milk products, annual spending on grocery
products, annual spending on frozen products, annual spending on detergents and paper
products, annual spending on delicatessen products, customer’s region]. Answer:

Table 11. Prompt example of SPROUT on the Breast dataset.

Read a given information and questions. Think step by step, and then predict
whether its value is recurrence-events or no-recurrence-events. You must choose in
[recurrence-events, no-recurrence-events].

Dataset has age, menopause, tumor-size, inv-nodes, node-caps, deg-malig, breast,
breast-quad, irradiat as 9 input variables and breast-cancer class as output.

Question:When age is 30-39, menopause is premeno, tumor-size is 15-19, inv-nodes is 6-8,
node-caps is yes, breast is left, breast-quad is left_low, irradiat is yes, then what is
deg-malig? Answer:3

Question:When age is 50-59, menopause is premeno, tumor-size is 15-19, inv-nodes is 0-2,
node-caps is no, breast is right, breast-quad is left_low, irradiat is no, then what is
deg-malig? Answer:2

Question:When age is 30-39, menopause is premeno, tumor-size is 25-29, inv-nodes is 6-8,
node-caps is yes, deg-malig is 3, breast is left, breast-quad is right_low, irradiat
is yes, then what is the breast-cancer class? You must choose in [recurrence-events,
no-recurrence-events]. Answer:recurrence-events

Question:When age is 50-59, menopause is premeno, tumor-size is 15-19, inv-nodes is 0-2,
node-caps is no, deg-malig is 2, breast is right, breast-quad is right_low, irradiat
is no, then what is the breast-cancer class? You must choose in [recurrence-events,
no-recurrence-events]. Answer:no-recurrence-events

Question:When age is 40-49, menopause is premeno, tumor-size is 15-19, inv-nodes is 12-14,
node-caps is no, deg-malig is 3, breast is right, breast-quad is right_low, irradiat
is yes, then what is the breast-cancer class? You must choose in [recurrence-events,
no-recurrence-events]. Answer:
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Table 12. Prompt example of SPROUT on the Customers dataset.

Read a given information and questions. Think step by step, and then predict whether its
value is class1 or class2. You must choose in [class1, class2]. Class1 indicates Horeca
(Hotel, Restaurant, Cafe) channel, and class2 indicates Retail channel.

The dataset consists of 7 input variables: annual spending on fresh product, annual
spending on milk products, annual spending on grocery products, annual spending on
frozen products, annual spending on detergents and paper products, annual spending on
delicatessen products, and customer’s region. The output variable is the customer’s
channel.

Question: If the annual spending on fresh product is 3191.0, annual spending on milk
products is 1993.0, annual spending on grocery products is 1799.0, annual spending on
frozen products is 1730.0, annual spending on delicatessen products is 710.0, customer’s
region (1 indicates Lispon, 2 indicates Porto, and 3 indicates Other) is 1, then what is
the annual spending on detergents and paper products? Answer: 234.0

Question: If the annual spending on fresh product is 5224.0, annual spending on milk
products is 7603.0, annual spending on grocery products is 8584.0, annual spending on
frozen products is 2540.0, annual spending on delicatessen products is 238.0, customer’s
region (1 indicates Lispon, 2 indicates Porto, and 3 indicates Other) is 3, then what is
the annual spending on detergents and paper products? Answer: 3674.0

Question: If the annual spending on fresh product is 583.0, annual spending on milk
products is 685.0, annual spending on grocery products is 2216.0, annual spending on
frozen products is 469.0, annual spending on detergents and paper products is 954.0,
annual spending on delicatessen products is 18.0, customer’s region (1 indicates Lispon, 2
indicates Porto, and 3 indicates Other) is 1, then what is the customer’s channel? Choose
between [class1, class2]. Class1 indicates Horeca (Hotel, Restaurant, Cafe) channel, and
class2 indicates Retail channel. Answer: class1

Question: If the annual spending on fresh product is 7823.0, annual spending on milk
products is 6245.0, annual spending on grocery products is 6544.0, annual spending on
frozen products is 4154.0, annual spending on detergents and paper products is 4074.0,
annual spending on delicatessen products is 964.0, customer’s region (1 indicates Lispon,
2 indicates Porto, and 3 indicates Other) is 3, then what is the customer’s channel?
Choose between [class1, class2]. Class1 indicates Horeca (Hotel, Restaurant, Cafe)
channel, and class2 indicates Retail channel. Answer: class2

Question: If the annual spending on fresh product is 11686.0, annual spending on milk
products is 2154.0, annual spending on grocery products is 6824.0, annual spending on
frozen products is 3527.0, annual spending on detergents and paper products is 592.0,
annual spending on delicatessen products is 697.0, customer’s region (1 indicates Lispon,
2 indicates Porto, and 3 indicates Other) is 1, then what is the customer’s channel?
Choose between [class1, class2]. Class1 indicates Horeca (Hotel, Restaurant, Cafe)
channel, and class2 indicates Retail channel. Answer:
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Table 13. Generic prompt of SPROUT on the Breast dataset.

Read a given information and questions. Think step by step, and then predict its value.
You must choose in [classA, classB].

Dataset has 9 input variables and output.

Question: If input variable1 is A, input variable2 is C, input variable4 is G, input
variable5 is A, input variable6 is 2, input variable7 is A, input variable8 is A, input
variable9 is A, then what is input variable3? Answer: I

Question: If input variable1 is D, input variable2 is C, input variable4 is A, input
variable5 is B, input variable6 is 3, input variable7 is B, input variable8 is A, input
variable9 is B, then what is input variable3? Answer: I

Question: If input variable1 is A, input variable2 is C, input variable3 is I, input
variable4 is G, input variable5 is A, input variable6 is 2, input variable7 is A, input
variable8 is C, input variable9 is A, then what is output? You must choose in [classA,
classB]. Answer: classB

Question: If input variable1 is D, input variable2 is C, input variable3 is E, input
variable4 is A, input variable5 is B, input variable6 is 3, input variable7 is B, input
variable8 is C, input variable9 is B, then what is output? You must choose in [classA,
classB]. Answer: classA

Question: If input variable1 is B, input variable2 is C, input variable3 is I, input
variable4 is E, input variable5 is A, input variable6 is 3, input variable7 is A, input
variable8 is C, input variable9 is B, then what is output? You must choose in [classA,
classB]. Answer:

Table 14. Generic prompt example of SPROUT on the Customers dataset.

Read a given information and questions. Think step by step, and then predict its value.
You must choose in [classA, classB].

Dataset has 7 features and output y.

Question: If feature1 is 3191.0, feature2 is 1993.0, feature3 is 1799.0, feature4 is
1730.0, feature5 is 234.0, feature6 is 710.0, then what is feature7? Answer: 1

Question: If feature1 is 5224.0, feature2 is 7603.0, feature3 is 8584.0, feature4 is
2540.0, feature5 is 3674.0, feature6 is 238.0, then what is feature7? Answer: 3

Question: If feature1 is 583.0, feature2 is 685.0, feature3 is 2216.0, feature4 is 469.0,
feature5 is 954.0, feature6 is 18.0, feature7 is 1, then what is output y? You must
choose in [classA, classB]. Answer: classA

Question: If feature1 is 7823.0, feature2 is 6245.0, feature3 is 6544.0, feature4 is
4154.0, feature5 is 4074.0, feature6 is 964.0, feature7 is 3, then what is output y? You
must choose in [classA, classB]. Answer: classB

Question: If feature1 is 11686.0, feature2 is 2154.0, feature3 is 6824.0, feature4 is
3527.0, feature5 is 592.0, feature6 is 697.0, feature7 is 1, then what is output y? You
must choose in [classA, classB]. Answer:
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J. Details on generic indicator discovery via SPROUT

Table 15. Candidates of generic indicators and selected result through SPROUT.
x y Breast TAE Vehicle Hamster Customers LED Pollution Diabetes Car
x y value ✓

feature output y ✓ ✓ ✓
input variable output ✓ ✓

independent variable dependent variable ✓ ✓
predictor variable response variable

attribute target variable ✓

In this section, we provide further details on generic indicator discovery via SPROUT , as discussed in Appendix C. We
detail the six candidates used for this purpose in Table 15. In addition, we present the generic indicators selected through
our proposed methodology in Table 15.

K. Broader impacts
Tabular data often include privacy-sensitive or confidential features, such as social security numbers. As such, it is crucial
to handle this data with care. However, SPROUT is also effective for managing anonymized features. For instance, our
experiments indicate that even when categorical features are replaced with random alphabetical symbols, and generic
indicators are used instead of actual column names, SPROUT still shows competitive performance. Therefore, despite
potential privacy concerns related to tabular classification, SPROUT shows promise for widespread use alongside privacy-
preserving techniques.

L. Experimental details on the knowledge transfer in heterogeneous data

Table 16. Dataset descriptions for the knowledge transfer experiments.

Property \ Dataset Adult Credit-g Credit Risk Electricity Credit Approval

OpenML id 1590 31 43454 43588 29

# Columns 14 20 11 8 15
# Numerical 6 8 8 8 6
# Categorical 8 12 3 0 9
# Classes 2 2 2 2 2

In this section, we provide additional experimental details for the knowledge transfer scenario between heterogeneous data
sources in Appendix E. As presented in Table 4, we consider two target datasets (Adult and Credit-g) and three source
datasets (Credit Risk, Electricity, and Credit Approval) from the OpenML repository (Vanschoren et al., 2014), and we
provide their detailed properties and OpenML ids in Table 16. Finally, we provide an example prompt, the transfer scenario
from the Credit Risk dataset to the Adult dataset in Table 17.
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Table 17. Prompt example of the transfer from Credit Risk to Adult datasets.

Read a given information and questions. Think step by step, and then predict the annual
income based on the given attributes. You must choose in [class1, class2]. Class1
indicates less than 50k and class2 indicates more than 50K a year.

Question: When person_age is 42, person_home_ownership is RENT, person_emp_length is
3.0, loan_intent is DEBTCONSOLIDATION, loan_grade is A, loan_amnt is 2575, loan_int_rate
is 6.76, loan_status is 0, loan_percent_income is 0.03, cb_person_default_on_file is N,
cb_person_cred_hist_length is 11, then what is the annual income? (class1 indicates less
than 50k and class2 indicates more than 50K a year) Answer: class2

Question: When person_age is 25, person_home_ownership is OWN, person_emp_length is
1.0, loan_intent is PERSONAL, loan_grade is A, loan_amnt is 3000, loan_int_rate is
9.63, loan_status is 0, loan_percent_income is 0.1, cb_person_default_on_file is N,
cb_person_cred_hist_length is 2, then what is the annual income? (class1 indicates less
than 50k and class2 indicates more than 50K a year) Answer: class1

Question: When person_age is 27, person_home_ownership is MORTGAGE, person_emp_length
is 2.0, loan_intent is VENTURE, loan_grade is B, loan_amnt is 16000, loan_int_rate is
12.21, loan_status is 0, loan_percent_income is 0.13, cb_person_default_on_file is N,
cb_person_cred_hist_length is 5, then what is the annual income? (class1 indicates less
than 50k and class2 indicates more than 50K a year) Answer: class2

Question: When person_age is 25, person_home_ownership is RENT, person_emp_length
is 6.0, loan_intent is VENTURE, loan_grade is A, loan_amnt is 4000, loan_int_rate is
6.39, loan_status is 0, loan_percent_income is 0.14, cb_person_default_on_file is N,
cb_person_cred_hist_length is 3, then what is the annual income? (class1 indicates less
than 50k and class2 indicates more than 50K a year) Answer: class1

Question: When person_age is 32, person_home_ownership is RENT, person_emp_length
is 16.0, loan_intent is VENTURE, loan_grade is B, loan_amnt is 6300, loan_int_rate is
9.91, loan_status is 0, loan_percent_income is 0.13, cb_person_default_on_file is N,
cb_person_cred_hist_length is 6, then what is the annual income? (class1 indicates less
than 50k and class2 indicates more than 50K a year) Answer: class1

Question: When person_age is 24, person_home_ownership is RENT, person_emp_length is
8.0, loan_intent is VENTURE, loan_grade is A, loan_amnt is 10000, loan_int_rate is
9.32, loan_status is 1, loan_percent_income is 0.42, cb_person_default_on_file is N,
cb_person_cred_hist_length is 4, then what is the annual income? (class1 indicates less
than 50k and class2 indicates more than 50K a year) Answer: class1

Question: When age is 35, workclass is Private, fnlwgt is 29874.0, education is
Some-college, education-num is 10, marital-status is Married-civ-spouse, occupation is
Handlers-cleaners, relationship is Husband, race is White, sex is Male, capital-gain is
0.0, capital-loss is 0.0, hours-per-week is 40, native-country is United-States, then what
is the annual income? (class1 indicates less than 50k and class2 indicates more than 50K
a year) Answer: class1

Question: When age is 50, workclass is Self-emp-not-inc, fnlwgt is 29231.0, education
is HS-grad, education-num is 9, marital-status is Married-civ-spouse, occupation is
Exec-managerial, relationship is Husband, race is White, sex is Male, capital-gain is 0.0,
capital-loss is 0.0, hours-per-week is 45, native-country is United-States, then what is
the annual income? (class1 indicates less than 50k and class2 indicates more than 50K a
year) Answer: class2

Question: When age is 53, workclass is Self-emp-not-inc, fnlwgt is 169112.0, education
is Bachelors, education-num is 13, marital-status is Married-civ-spouse, occupation is
Exec-managerial, relationship is Husband, race is White, sex is Male, capital-gain is 0.0,
capital-loss is 0.0, hours-per-week is 40, native-country is Hungary, then what is the
annual income? (class1 indicates less than 50k and class2 indicates more than 50K a year)
Answer:
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