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A B S T R A C T

Background: Maintaining a healthy diet is vital to avoid health-related issues, e.g., undernutrition, obesity and
many non-communicable diseases. An indispensable part of the health diet is dietary assessment. Traditional
manual recording methods are not only burdensome but time-consuming, and contain substantial biases and
errors. Recent advances in Artificial Intelligence (AI), especially computer vision technologies, have made it
possible to develop automatic dietary assessment solutions, which are more convenient, less time-consuming
and even more accurate to monitor daily food intake.
Scope and approach: This review presents Vision-Based Dietary Assessment (VBDA) architectures, including
multi-stage architecture and end-to-end one. The multi-stage dietary assessment generally consists of three
stages: food image analysis, volume estimation and nutrient derivation. The prosperity of deep learning makes
VBDA gradually move to an end-to-end implementation, which applies food images to a single network to
directly estimate the nutrition. The recently proposed end-to-end methods are also discussed. We further
analyze existing dietary assessment datasets, indicating that one large-scale benchmark is urgently needed,
and finally highlight critical challenges and future trends for VBDA.
Key findings and conclusions: After thorough exploration, we find that multi-task end-to-end deep learning
approaches are one important trend of VBDA. Despite considerable research progress, many challenges remain
for VBDA due to the meal complexity. We also provide the latest ideas for future development of VBDA,
e.g., fine-grained food analysis and accurate volume estimation. This review aims to encourage researchers to
propose more practical solutions for VBDA.
1. Introduction

The malnutrition such as undernutrition, overweight and obesity is
now increasingly recognized as one of the greatest health and societal
challenges (Ingram et al., 2020). In 2020, 39 million children under
5 years old were overweight or obese due to unhealthy diets, such
as the intake of high-fat and high-energy food (World Health Organi-
zation, 2021). Recently, Cao et al. (2021) found that a high-fat diet
can damage the mesenteric lymphatic vessels, and the leakage of lym-
phatic vessels can cause metabolic problems such as abdominal obesity
and insulin resistance. It is worth mentioning that the malnutrition
is a major risk factor for many non-communicable diseases, such as
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cardiovascular disease, diabetes, and certain cancers (Lauby-Secretan
et al., 2016). The previous International Agency for Research on Cancer
(IARC) working group concluded that there was sufficient evidence
for a cancer-preventive effect of avoidance of weight gain for cancers
of the colon, kidney (renal cell), breast (postmenopausal), esophagus
(adenocarcinoma), and corpus uteri (IARC, 2002). Fortunately, obesity
and many chronic diseases can be prevented via dietary assessment,
which can monitor daily food intake and control eating habits (Nord-
ström, Coff, Jönsson, Nordenfelt, & Görman, 2013). Furthermore, we
can utilize these dietary data to analyze the relations between dietary
patterns and some diseases (Chu, Yu, Chen, Tian, & Zhai, 2021), and
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support personalized nutrition (McDonald, Glusman, & Price, 2016).
Therefore, dietary assessment has become the focus of widespread
attention in various fields of computer vision, medicine, nutrient and
health (Liu et al., 2018; McPherson, Hoelscher, Alexander, Scanlon, &
Serdula, 2000; Pouladzadeh, Shirmohammadi and Almaghrabi, 2014;
Probst, Nguyen, Tran, & Li, 2015; Thames et al., 2021).

Over the years, researchers have explored various methods for
dietary assessment, such as the 24-h-dietary recall (24-HDR) (Foster
et al., 2008; Kirkpatrick et al., 2014; Slimani et al., 2000), food fre-
quency questionnaire (FFQ) (Forster et al., 2014; Kristal et al., 2014;
Willett et al., 1985; Wong, Boushey, Novotny, & Gustafson, 2008),
dietary record (DR) (Gersovitz, Madden, & Smiciklas-Wright, 1978),
and brief dietary assessment instruments or screeners (Illner et al.,
2012). Among them, FFQ can be regarded as a long-term dietary as-
sessment approach, while 24-HDR and dietary records are the primary
subjective methods used in short-term evaluations (Shim, Oh, & Kim,
2014). The implementation of these methods mainly involves paper
questionnaires and interview-based tools (Thompson et al., 2015),
which have provided an important contribution to the development
of nutrition research. Nevertheless, these traditional manual recording
methods are time-consuming, inaccurate (e.g., energy intake under-
reporting (Gibney, Allison, Bier, & Dwyer, 2020)), labor-intensive, and
high-demanding for a certain level of literacy and communication skills.
Therefore, traditional methods make the research process more difficult
or even infeasible for special populations such as children, adolescents
and the elderly. In addition, these issues make the collected dietary data
unreliable and difficult to conduct large-scale assessment. To overcome
these problems, some automatic methods have been developed, such as
smart cooking systems and portable systems (Pouladzadeh, Shirmoham-
madi and Yassine, 2016). The major limitations to these approaches
are the limited or illogical usage. For example, the smart kitchen (Chi,
Chen, Chu, & Lo, 2008) captures images of the food preparation process
to measure all of the ingredients inside the kitchen, yet has the inability
to be used outside the home. GoBe (2021) only calculates the calories
after the user has already eaten the food via measuring the glucose of
user’s cells, which is late for patients who need to know the amount of
calories before eating.

Recent advances in Artificial Intelligence (AI), especially computer
vision and machine learning, have paved the way for more robust
automatic dietary assessment. The widespread use of portable devices
(e.g., smartphones) with enhanced capabilities together with the ad-
vancements in computer vision enabled the development of VBDA.
It allows users to easily measure the nutrition and calories of food
by taking pictures of food through their mobile or wearable devices.
Compared with traditional methods, VBDA can provide a solution
to eliminate subjectivity, get rid of time and space constraints, and
enhance the comprehensiveness and accuracy of dietary intake assess-
ment. It can not only reduce the burden of keeping food journaling,
but also provide immediate dietary assessments, demonstrating great
potentials in effective diet monitoring and control. Furthermore, driven
by advances in deep learning (LeCun, Bengio, & Hinton, 2015), the
higher capacity of automatic food visual analysis results in higher per-
formance of dietary assessment. For these reasons, VBDA is becoming
one mainstream method for dietary assessment. It should be empha-
sized that deep learning algorithms become computationally expensive
when applied to high-dimensional data (e.g., food images), possibly
due to the learning phase associated with a deep-layered hierarchy
(Pouladzadeh, Shirmohammadi et al., 2016).

Some surveys related to VBDA have been conducted. For example,
Tay, Kaur, Quek, Lim, and Henry (2020) focused on highlighting var-
ious methods of food volume estimation. We pointed out that visual
analysis and volume estimation are the basis of multi-stage dietary
assessment. Liu, Pu, and Sun (2021) reviewed Convolutional Neural
Networks (CNNs) for feature extraction from food images. We sum-
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marized both deep learning methods and traditional manual feature
extraction methods (e.g., SIFT and LBP) for food visual analysis. Ad-
ditionally, other articles focused on surveying various food recognition
methods (Knez & Šajn, 2020; Lo, Sun, Qiu, & Lo, 2020a; Subhi, Ali, &
Mohammed, 2019; Tahir & Loo, 2021), where most of these recognition
works are not evaluated on the dietary assessment framework but only
on the recognition task. Höchsmann and Martin (2020) illustrated only
12 different image-assisted food intake assessment methods. In con-
trast, we have listed more methods to analyze their effectiveness and
feasibility comprehensively. In summary, different from their works, we
proposed two VBDA architectures to more comprehensively and sys-
tematically review current dietary assessment methods, and discussed
their advantages and limitations. In addition, most of our surveyed
works are directly for VBDA. Finally, we discuss existing VBDA datasets
and evaluation metrics, and the key challenges and future trends for
VBDA are highlighted.

This review is organized into the following subtopics: Section 2
introduces the VBDA framework including multi-stage one and end-
to-end one. Section 3 describes the multi-stage dietary assessment
including vision-based food analysis, food portion estimation and nutri-
ent derivation. The end-to-end approaches are summarized in Section 4.
We present various dietary assessment datasets and evaluation metrics
in Section 5. Section 6 discusses future development trends in this field.
Finally, we conclude this article in Section 7.

2. Vision-based dietary assessment

VBDA refers to taking images of a meal as input and then using
computer vision to automatically identify relevant dietary information
as the output. We divide it into two architectures, as shown in Fig. 1.
In the earlier years, the VBDA was conducted in a step-by-step way,
namely multi-stage dietary assessment. In recent years, with the rapid
development of deep learning, instead of training a pipeline of models
to handle subtasks at different stages, the end-to-end deep learning
solutions for dietary assessment are proposed to apply input data to
a single network for direct nutrient derivation. Next, we will briefly
introduce multi-stage and end-to-end solutions, respectively. At the end
of this section, we summarize the representative works of the VBDA.

2.1. Multi-stage architecture

As shown in Fig. 1(a), the multi-stage VBDA generally consists of
three stages, including food image analysis, portion estimation, and
nutrient derivation. The performance of the first two stages highly
depends on the used AI algorithms and the available food datasets,
while the last stage depends on the nutritional composition database.

Food image analysis. The key in the visual analysis is compact and
expressive feature representations that summarize the information of
food images. This phase is related to food recognition, detection and
segmentation. The first column of Fig. 1(a) shows one example for
food recognition, detection and segmentation. Food recognition mainly
predicts the type or composition of food items from images (Min, Jiang,
Liu, Rui, & Jain, 2019). Food detection aims to locate and classify
each food item from the food image, where the localization is realized
via estimating the bounding box of each dish. Compared with food
recognition, food detection additionally provided the localization for
the recognized food item. Food segmentation involves partitioning food
images into multiple food items in a pixel-level way. It is the process
of assigning a food label to every pixel in one food image. Therefore, it
is more precise to localize food items with arbitrary shapes compared
with rectangular shapes for food detection. Such more precise food
area localization is generally more helpful for the following portion

estimation of these food items.
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Fig. 1. The two architectures of VBDA: (a) The multi-stage dietary assessment, which mainly consists of food image analysis, portion estimation, and nutrient derivation. (b) The
end-to-end architecture emphasizes a single model instead of a pipeline of multi-stage methods. Only the original inputs and the final outputs are required to be specified, while
the information learned by the neural network is internally relevant.
Food portion estimation. The visual features are far from sufficient to
estimate calorie content. In order to accurately estimate the nutrient
content of the food from the image, it is necessary to identify the food
item and estimate the weight. Earlier methods conduct rough food
weight estimation based on food area (He, Xu, Khanna, Boushey, &
Delp, 2013; Okamoto & Yanai, 2016a). As the technology evolves, cal-
culating the food portion based on volume estimation in combination
with food density databases becomes more popular.

Nutrient derivation. The conversion from food to meaningful nutritional
information depends on the accuracy of the nutrition fact databases.
There are several food databases in the public domain, such as USDA
Food and Nutrient Database for Dietary Studies (FNDDS) (U.S. De-
partment of Agriculture, Agricultural Research Service, 2020), Food
Databanks National Capability extended dataset (FDNC) (Food Data-
banks National Capability, 2020), The Canadian Nutrient File (Health
Canada, 2021) and Open Food Facts (Open Food Facts, 2020). Take
FNDDS as an example, as shown in Table 1. The FNDDS contains the
most common foods and beverages consumed in the United States, their
nutritional values, and the weights of typical food portions. Nutritional
value data for foods are stored in these tables, which are available from
national and international health organizations. The information in the
nutrition database for each food can be used to calculate the energy of
the food consumed. The actual nutrient content 𝑁 can be calculated
as:

𝑁 =
𝑁𝑇 ×𝑀

𝑀𝑇
(1)

where the food mass 𝑀 can be obtained after portion estimation. 𝑁𝑇
and 𝑀𝑇 represent food nutrition and mass in the table, respectively.
Therefore, the nutrient content of each food consumed is obtained by
simply subtracting the nutrient content after the meal from the nutrient
content before the meal. This means that the energy and nutrients of
225
Table 1
A sample of USDA Food and Nutrient Database for Dietary Studies (FNDDS).

Food (100 g) Energy (kcal) Protein (g) Carbohydrate (g) Fiber (g) Sugars (g)

Apple, raw 52 0.26 13.81 2.4 10.39
Orange, raw 47 0.94 11.75 2.4 9.35
Tomatoes, raw 18 0.88 3.89 1.2 2.63
Bread, white 270 9.43 49.2 2.3 5.34
Egg, whole, raw 143 12.56 0.72 0 0.37
Cucumber, raw 15 0.65 3.63 0.5 1.67
Banana, raw 89 1.09 22.84 2.6 12.23
Orange, raw 47 0.94 11.75 2.4 9.35

the food a person eats can be assessed based on the images obtained
before and after the food is consumed (Woo et al., 2010).

2.2. End-to-end architecture

Although multi-stage VBDA improves a number of baseline methods
for dietary assessment, they have some limitations. First, these methods
are required to be defined and optimized individually at each stage,
while their accuracy remains a challenge (Ruede et al., 2021). Since the
error propagation path leads to the accumulation of errors, multi-stage
leads to the accumulation of errors and has an impact on subsequent
operations. The end-to-end architecture replaces these different stages
with a single neural network, reducing error propagation and joint
optimization paths. Second, the multi-stage architecture requires the
definition of separate stages as well as inputs and outputs for each
stage. It means that potentially helpful information from the early
stages cannot be passed on or used later to improve predictions. In
contrast, the end-to-end architecture emphasizes a single model instead
of a pipeline of multi-stage methods. Only the original inputs and the
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Fig. 2. Representative works for VBDA.
final outputs are required to be specified, while the information learned
by the neural network is internally relevant. Third, the approach mainly
relies on pixel-wise annotations of large amounts of data and additional
information in the food images, such as volume. Based on a compre-
hensive discussion of existing works, we articulate key open challenges
and provide some prospective analysis of possible VBDA solutions in
Section 6. Considering the nutrient estimation involves multiple types
of nutrient components, such as proteins and fat, a multi-task end-to-
end framework for nutrient estimation is generally adopted. Fig. 1(b)
shows its overall framework.

2.3. The timeline of VBDA

Throughout the history of VBDA development, we have summarized
some representative studies as shown in Fig. 2. To the best of our
knowledge, Shroff, Smailagic, and Siewiorek (2008) first conducted a
vision-based method for food recognition, and the calorie of recognized
food items is then obtained from a lookup table. Similar calorie lookup
methods have also been adopted by Pouladzadeh, Shirmohammadi and
Almaghrabi (2014). Considering the food portion was not estimated,
the above-mentioned methods cannot obtain the estimated calorie of
the whole food. In comparison, Puri, Zhu, Yu, Divakaran, and Sawhney
(2009) used 3D reconstruction for volume estimation after identifying
each food item, realizing the first quantitative diet assessment ap-
plication. Zhu, Bosch, Boushey and Delp (2010) developed a mobile
food recording system by performing food visual analysis, volume
estimation, and nutrient estimation continuously, giving birth to the
rudiments of subsequent multi-stage VBDA. Miyazaki, de Silva, and
Aizawa (2011) explored a new approach to estimate calorie without
food recognition and volume estimation. Multiple food features are
extracted and then searched in a dictionary dataset, inspiring the
development of end-to-end approaches. DietCam (Kong & Tan, 2012)
processed the food image through a multi-view understanding and esti-
mated the volume ratio through the size of credit card, which is placed
next to the plate. He et al. (2013) further took into account the shape of
the food, and developed an area-based method to estimate the weight
of irregularly-shaped foods. Two works Menu-Match (Beijbom, Joshi,
Morris, Saponas, & Khullar, 2015) and Im2Calories (Myers et al., 2015)
focused on the restaurant scenario for calorie estimation from a single
image. The difference is that Menu-Match combined different hand-
crafted features while Im2Calories adopted CNNs for feature extraction
for its powerful representation. Later, more advanced CNNs have been
developed for dietary assessment (Mezgec & Koroušić Seljak, 2017;
Okamoto & Yanai, 2016a). Ege and Yanai (2018) achieved nutrient
assessment of multiple dishes using multi-target detection methods.
Fang, Shao, Kerr, Boushey, and Zhu (2019) performed the end-to-end
nutrient estimation by generating energy distribution maps of food
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images through the generative adversarial network. Lu et al. (2020)
proposed a nutrient assessment system using two images. Its accurate
estimation performance and friendly user interface showed the possi-
bility of applying VBDA to daily life. To produce higher performance,
recently, Thames et al. (2021) utilized multi-sensor RGB-D food images
for end-to-end VBDA, and meanwhile released the nutritional dataset
Nutrition5k.

3. Multi-stage dietary assessment

3.1. Food image analysis

In the multi-stage work, food image analysis aims to provide nec-
essary information for the later stages, among which the essential
information is the category of food and its visual regions. Many works
at this stage established different food image analysis pipelines. Accord-
ing to the output types, we classify them into food recognition, food
detection, and food segmentation. Given that various methods for food
image analysis were described, we have added Table 2 to compare the
performance of different approaches. The table lists different methods,
dataset sizes, method evaluation, and nutrient estimation. Since most
methods use their own datasets, we choose to list the size of the datasets
to help readers have a general understanding. For common nutrition-
related datasets and evaluation metrics mentioned in the table, we
describe them in detail in Section 5.

3.1.1. Food recognition
Food recognition can be regarded as the most basic work in visual

analysis, and food item labels can be obtained via food recognition.
Existing research methods are mainly divided into manual feature-
based recognition methods and deep learning-based recognition ones
for dietary assessment. The former starts with relevant features manu-
ally extracted from images, and the features are then used to create a
classification model to recognize the food class. In contrast, the latter
performs end-to-end learning, where a network is given and a classi-
fication task will be performed, and it automatically extracts relevant
features from food images and learns how to do this automatically.

Manual feature-based recognition methods. Manual feature-based recog-
nition methods include feature extraction and classification. Image
feature extraction is the key to food image recognition. Manual features
vary from simple features, such as color, texture, and shape, to other
complex features. Compared with features such as color and texture,
the Scale Invariant Feature Transform (SIFT) descriptor has the advan-
tages of scale, orientation and affine distortion invariance, which can
effectively deal with the deformation characteristics of food images. As

a result, it is widely used in food image recognition tasks. Wu and Yang
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Table 2
Food image analysis approaches in multi-stage VBDA.

References Dataset#
images(class)

Methods Method
evaluation

Nutrient
estimation

Recognition
Wu and Yang (2009) 100(∼10) SIFT feature 52% –
Kong and Tan (2012) -(-) SIFT feature and nearest neighbor

classifier
∼92%

Puri et al. (2009) -(∼150) Color neighborhood, maximum
response features and SVM
classifier

∼90% 5.75(± 3.75)% on volume
estimation

Chen et al. (2012) 100(50) Multi-feature fusion, SVM
classifier

68.3% –

Chokr and Elbassuoni (2017) ∼1000(6) Random forest and SVM classifier 99.1% MAE 0.0933 on calorie
estimation

Christodoulidis, Anthimopoulos, and Mougiakakou (2015) 246(573) Own designed CNN 84.9% –
Mezgec and Koroušić Seljak (2017) 225,953(520) Modification of the AlexNet 86.72% –
Ayon, Mashrafi, Yousuf, Hossain, and Hossain (2021) 23,000(23) InceptionV3 89.48% –
Ma et al. (2021) 10,047(100) InceptionV3 78.26% 𝑅2 0.73 on protein

estimation

Detection
Ciocca, Napoletano, and Schettini (2015) 2000(15) Circle Hough transform – –
Pouladzadeh and Shirmohammadi (2017) 7000(30) Selective search 93.05% Precision –
Jiang, Qiu, Liu, Huang, and Lin (2020) 12,740(100) Faster R-CNN 17.5% mAP –
Mao, He, Shao, Yarlagadda, and Zhu (2021) 14,991(82) Faster R-CNN 0.7064 F1 –
Okamoto and Yanai (2016b) – Background subtraction and the

hough transform
– –

Qiu, Lo, and Lo (2019) 4200(14) Mask R-CNN – –
Lei, Qiu, Lo, and Lo (2021) 14(-) Mask R-CNN – –

Segmentation
Zhu et al. (2008) -(-) Threshold segmentation – –
Mariappan et al. (2009) 50(∼3) Threshold segmentation – –
Eskin and Mihailidis (2012) 676(49) Threshold segmentation with the

morphological method
– –

Zhu, Bosch, Boushey et al. (2010) 63(3) Normalized cut segmentation – Percentage of misreported
nutrient information: 1%

He et al. (2013) 1453(96) Local variation segmentation – ∼10% on weight
estimation

Zhu, Bosch, Khanna, Boushey, and Delp (2015) -(63) Multiple hypothesis segmentation – –
Pouladzadeh, Shirmohammadi and Yassine (2014) -(15) Graph cut segmentation ∼90% PA –
Anthimopoulos et al. (2015) 1620(248) Region growing segmentation 88.5% PA 10% MAE on CHO

estimation
Sudo, Murasaki, Shimamura, and Taniguchi (2014) 2500(29) Super-pixel segmentation – 31.8% average error on

calorie estimation
Myers et al. (2015) 12,625(201) Finetuned DeepLab 25% IoU –
Pouladzadeh, Kuhad, Peddi, Yassine and Shirmohammadi (2016) -(30) Graph cut segmentation – –
Okamoto and Yanai (2016a) ∼1M(1K) GrabCut segmentation – 0.213 relative average

error on calorie estimation
Ege, Shimoda, and Yanai (2019) 1000(-) U-Net 84.1% mIoU –
Ando, Ege, Cho, and Yanai (2019) 5301(-) U-Net 80% mIoU –
Dehais, Anthimopoulos, and Mougiakakou (2016) 821(-) CNN based border map

generation, seeded region
growing segmentation

88% PA –

Dehais, Anthimopoulos, and Mougiakakou (2015) -(-) Seeded region growing
segmentation

80% 𝐹min –

Lu et al. (2020) 21,807(80) Mask-RCNN 83.9% 𝐹min Pearson correlations 0.69
on protein estimation

Lu et al. (2021) 1281(521) Pretrained dilated ResNet50 83.5% PA 𝑅2 0.923 on calorie
estimation
(2009) formulated food recognition from videos as an image retrieval
task using SIFT. Since this study focused on fast food, the calorie in-
formation of most fast food is standardized and available to the public.
Once the food type is recognized, corresponding calorie information
can be directly estimated from a database without considering food
portions. The DietCam system (Kong & Tan, 2012) was an automatic
multi-view food classifier in a health perception system. It calculated
SIFT descriptors for food items. Then three meal images from different
views or a short video were used to realize 3D reconstruction. With the
knowledge of food types and food scales, calories can be estimated via
simple calculation. Considering the complementarity between different
manual features, more methods integrate different manual features
to improve the recognition performance. Puri et al. (2009) adopted
Adaboost-based feature selection to combine color neighborhood fea-
tures and maximum response features to achieve acceptable recognition
227
rates on a large number of food types. Chen et al. (2012) combined
SIFT, local binary patterns, color, Gabor filter descriptors for food
recognition. They separately trained a Support Vector Machine (SVM)
classifier for each type of features and fused them using the AdaBoost
algorithm for classification. Chokr and Elbassuoni (2017) used the
Mathworks Image Processing Toolbox to extract raw features from food
images. Then they applied InfoGain, selected the top 6000 features fol-
lowed by principal component analysis, and ended up with 23 features
per image as their final representation for food recognition and food
mass estimation. It is worth mentioning that the method was limited
to the surface and background of the food images and can only predict
the calorie content of a single food. Hand-engineered features are time-
consuming, brittle, and not scalable in practice, especially when it
comes to unstructured data such as food images and videos. In contrast,
deep learning has become the mainstream method for automatically
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discovering the discriminative feature representation from raw data.
Recent studies have demonstrated that visual features learned by deep
learning are more expressive and robust than handcrafted ones (Cai
et al., 2020; Kamilaris & Prenafeta-Boldú, 2018). For this reason, re-
cently proposed VBDA methods adopt deep-learning networks for food
vision analysis.

Deep learning based recognition methods. Deep learning, as an exclu-
sively superior framework of contemporary machine learning, was
extensively explored and brought a new stage for food image recog-
nition (Zhou, Zhang, Liu, Qiu, & He, 2019). The key element of deep
learning lies in CNN and its derivative algorithms. Christodoulidis
et al. (2015) used a six-layer CNN to classify food images. Image
chunking was used to extract a set of overlapping square blocks. The
voting determined the type of food in the area. In contrast, Mezgec
and Koroušić Seljak (2017) proposed NutriNet for food and beverage
recognition based on AlexNet. The input image was expanded from
256 × 256 to 512 × 512 pixels, and adding a convolutional layer to
btain hidden features in higher resolution images. The model has
een used in practice as one part of a mobile application for dietary
ssessment of Parkinson’s disease patients. However, its limitation was
hat for images with multiple food items, not every item could be
ccurately identified. Ayon et al. (2021) proposed a food detection
ystem based on multi-label recognition by setting a threshold. They
lso deployed trained models into the webpage to improve the user
xperience. Ma et al. (2021) trained their model by fine-tuning four
eep architectures that were pre-trained on the ImageNet dataset. They
odified the last fully connected layer of the architecture to output 100

lasses. Because the food category has been defined and has a fixed nu-
ritional configuration (e.g., calories, carbohydrates and proteins), the
utrient estimation mainly relies on the classification results. Besides,
hey carried out almost the same experiments on their another dataset
hinaMartFood-109 (Ma, Lau, Yu, Li, & Sheng, 2022). Unlike studies
hat summarized food recognition methods, which only recognized
ood items in their work, we focused on summarizing approaches that
irectly employed food recognition for the nutrition assessment task.
or more works only for food image recognition, please refer to some
urveys, such as Min et al. (2019).

.1.2. Food detection
In dietary assessment, multi-food localization and recognition are

he primary detection technique application. Ciocca et al. (2015) pro-
osed an automatic dietary monitoring system for canteen customers
ased on multi-food detection. They added a plate localization method
o reduce the area to be recognized. Several descriptors are evaluated,
uch as color-based, statistical, spatial-frequency or spectral, structural,
nd hybrid. Due to the weekly fixed menus and the control conditions
f food image acquisition in the canteen, the canteen scenario is
elatively simple. The cafeteria staff provides a fixed amount of food ac-
ording to the nutrition table, and the system can evaluate the leftovers
n the canteen to calculate the amount of food consumed. Pouladzadeh
nd Shirmohammadi (2017) further improved their system and used
he selective search to generate detection areas for multiple foods.
owever, the selective search that depends on the region is time-
onsuming and computationally burdensome. To address this problem,
any studies have applied Faster R-CNN (Ren, He, Girshick, & Sun,
017) to make region proposals more effective. Jiang et al. (2020)
pplied the Faster R-CNN model to extract the regions of interests
ROIs) and improve the efficiency of the detection model. Then, the
eature maps for food recognition were extracted based on CNN. For
ach item detected in the food image, they assume that the basic
eight of each food item was 400 g, and then summarized the dietary
ssessment report for the user. In addition, Mao et al. (2021) trained
he food localization step based on Faster R-CNN by selecting regions
ontaining food items in an input image. The selected food regions
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ere resized to a fixed size and fed into the food classification system.
Based on the features extracted from the CNN model, visual clustering
of similar food categories was performed to establish a visual-aware
hierarchy structure. The final output included bounding boxes and food
labels for each food.

Different from these works, more studies have been proposed to
quantify dietary intake by monitoring users’ eating behavior. GrillCam
(Okamoto & Yanai, 2016b) roughly estimated the calorie intake by
detecting the moment of delivery, identifying food categories, and de-
tecting candidate food areas. It is suitable for situations where the user
has not decided how much food to eat. However, not much research has
been conducted to address the issue of nutrient assessment in shared
food scenarios. Most VBDA methods are either targeted for a single user
or limited to laboratory environments. With the booming development
of deep learning, Mask R-CNN (He, Gkioxari, Dollár, & Girshick, 2017),
which was improved based on Faster R-CNN, was proposed and applied
to human pose recognition, with good results in instance segmentation,
object detection, and human keypoints detection tasks. Inspired by
this, Qiu et al. (2019) estimated dietary intake based on videos of the
eating scenes captured by a 360 camera. In their recorded videos, 2–3
users were sharing food together. They integrated food detection with
face recognition and hand tracking technology, and used the fine-tuned
Mask R-CNN to detect 13 food categories and people. Similarly, another
approach (Lei et al., 2021) captured videos of a typical household
setting where food is shared, integrating dish detection and body pose
to quantify dietary intake. The method was designed with a 4-layer
feed-forward neural network to infer the eating status of the subjects,
utilizing the dish types and the detected food containers bounding
boxes for subsequent food intake assessment for each participant.

3.1.3. Food segmentation
Food segmentation divides one food image into multiple parts. The

segmentation process assigns a label to each pixel so that pixels with the
same label have specific characteristics. Once the segmentation map is
obtained, portion estimation can be done using the segmented food area
or splitting the reconstructed 3D model into different foods. Therefore,
segmentation methods are more widely used than food recognition
and detection in VBDA. It should be noticed that many works take
segmentation as a part of the whole approach without evaluating the
accuracy.

Early food segmentation works were often based on some assump-
tions. For example, plates should have certain color or shape, and food
cannot be overlapped or blocked. These results in larger differences
between the background and the food. Mariappan et al. (2009) and
Zhu et al. (2008) used the threshold segmentation method to process
the image. The image is converted into a grayscale image and then
thresholded to form a binary image. The food item is segmented by a
search algorithm. Additionally, the image can also be converted to the
YCbCr color space to identify potential light-colored food items. Eskin
and Mihailidis (2012) assumed that plates had uniform white color
and elliptical shape, and foods were more colorful than the plate. They
performed the threshold segmentation with the morphological method
to segment the plate and food in succession. Different from these works,
Zhu, Bosch, Boushey et al. (2010) applied the active contour model to
segment food images. The model can deform an initial curve to the
boundary of the object under some constraints from the image. They
discussed the limitation of active contours and chose the normalized
cut as their segmentation method because it can measure both the total
dissimilarity between different groups and the total similarity within
the groups. Normalized cut is a kind of graph-theoretic segmentation
method that treats one pixel from the image as one node of a graph and
considers segmentation a graph partitioning problem. There are many
other graph-theoretic based segmentation methods. For example, He
et al. (2013) used the image-based local variation method to segment
food according to the degree of variability in adjacent regions. Zhu
et al. (2015) proposed multiple segmentation hypotheses and adopted

normalized cut to dynamically select the number of segments guided
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by the classification results. The similarity between these two works
lies in the iterative use of the classification feedback to refine the
segmentation results. A series of works by Pouladzadeh et al. used
the graph cut in the task of food calorie estimation. Pouladzadeh,
Shirmohammadi and Yassine (2014) introduced a new segmentation
approach that combined the graph cut with the texture segmenta-
tion method. It was widely used in their later works (Pouladzadeh,
Shirmohammadi and Almaghrabi, 2014). These works combined the
segmentation approach with SVM to analyze food images. GoCARB
(Anthimopoulos et al., 2015) is a mobile daily carbohydrate assessment
system for patients with type 1 diabetes. The food was segmented
using a region-growing algorithm after detecting the localized plate
regions. It should be noted that the system has certain assumptions,
including the use of flat-bottomed elliptical dishes, and food cannot
be overlapped or blocked. It can also be extended to display other
macronutrients, advancing the development of a healthy human diet.
However, all of the above are unsupervised segmentation methods. In
contrast, in another study (Sudo et al., 2014), semantic segmentation
completes image segmentation and labeling. Label histogram shows
the frequency of occurrence of food ingredient labels, based on which
regression analysis was performed, and nutritional data was estimated.
However, in order to train the semantic segmentation model, a large
amount of recipe data and corresponding food images and ingredient
labels need to be collected.

Afterward, the methods with deep learning have become more and
more popular. Im2Calories (Myers et al., 2015) was the first work to
achieve semantic segmentation specifically for food images using deep
CNN. They combined the segmentation network with a deep prediction
network and converted voxels to estimate the food volume. However,
their evaluation was limited to plastic food replicas for training nutri-
tionists. Pouladzadeh, Kuhad, Peddi et al. (2016) took full advantage
of the graph cut segmentation and CNNs for calorie measurement.
However, they could only be applied to images with a single food
label. Okamoto and Yanai (2016a) applied GrabCut with bounding
boxes as a segmentation seed, and used a CNN-based recognition engine
to classify them. In addition, food segmentation methods based on
region growing and merging algorithms were subsequently improved
via boundary detection networks. DepthCalorieCam (Ando et al., 2019)
employed food segmentation based on U-Net (Ronneberger, Fischer,
& Brox, 2015), the accuracy of segmentation was much higher than
(Okamoto & Yanai, 2016a). Similarly, Ege et al. (2019) also used
U-Net for segmentation. The difference is that the it estimated food
calories based on the actual size of the food area calculated, while
the DepthCalorieCam used a depth camera to obtain the food volume
information and applied the estimated food volume to a regression
equation of the calorie. Dehais et al. (2016) combined CNN-based
border detection with an optimized region growing and merging frame-
work to achieve high average accuracy for dish segmentation. It was
improved from the previous work (Dehais et al., 2015), and yet the
computational resources were costly. Following the GoCARB system,
the team developed goFOODTM (Lu et al., 2020). For semi-automatic
egmentation, region growing and merging algorithms were still used.
hey also developed an automatic food segmentation method based on
he Mask-RCNN (He et al., 2017). For the recognition module, an im-
roved Inception V3 was used to achieve hierarchical food recognition.
oCARB focused on calculating carbohydrates, while goFOODTM can be

used to estimate the calories and nutrients in a meal. These methods
are easy to implement. However, they are limited by the complexity
of the food scene (e.g., background, lighting, inter-class variability of
food). Recently, they were committed to studying the nutritional intake
of hospitalized patients (Lu, Stathopoulou, Vasiloglou et al., 2021).
Through the development of a series of novel AI algorithms, the goal
of achieving high performance on a small amount of training data has
been achieved. Lu, Stathopoulou, Vasiloglou et al. (2021) proposed the
multi-task contextual network to simultaneously segmented plates and
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foods. In addition, the application of the contextual layer enhanced
the relationship between food and plate types and thus resulted in
improved segmentation accuracy. Due to the finite nature of food
samples, they trained one few-shot learning-based classifier for food
recognition in the meta-learning framework (Snell, Swersky, & Zemel,
2017). The core idea was to learn the transferred knowledge in many
similar tasks and use it for new tasks. It was a fully automated pipeline
system based on AI, which promoted further development in nutrient
assessment. In addition to these works, Aslan, Ciocca, Mazzini, and
Schettini (2020) benchmarked many deep learning-based food segmen-
tation methods on their proposed dataset Food50Seg. Food/no-food
segmentation and semantic segmentation methods were benchmarked
from many different perspectives, which will guide the design and
improvement of food analysis systems.

3.2. Food volume estimation

A common approach to estimate food quality is to evaluate its
volume, which can be used in conjunction with a food density database
to gauge the quality of food in the image. Therefore, this section mainly
focuses on volume estimation. Area and depth estimation based on
top and side views can be directly used to estimate the food volume
(Pouladzadeh, Shirmohammadi and Almaghrabi, 2014). However, this
method requires the user’s thumb to be a reference object and is not
accurate. Therefore, the 3D reconstruction methods are commonly used
to estimate the volume. It relies on computer vision techniques to add
missing dimensions from 2D images to create a 3D space, using visual
cues to understand the third dimension of objects.

3D reconstruction starts with the calibration of camera parameters
to perform volume reconstruction. Most methods use fiducial markers
to facilitate the camera calibration process. Traditionally, spherical
objects (Zhang, Wong, & Zhang, 2007) and the checkerboard patterns
(Yu & Peng, 2006) are used as fiducial markers. 3D reconstruction
includes methods that use a single view or multiple views as the input.
Reconstruction based on a single view is an ill-posed problem, but the
geometric model is conducive to recover the 3D parameters of the food
in the scene. Zhu et al. (2010) used both the spherical approximation
model and prismatic approximation model for 3D volume reconstruc-
tion. Extracting feature points from food images based on segmentation,
constructing base surfaces for 3D volume estimation. Chen et al. (2013)
constructed a 3D geometric shape model library, including regular
and irregular models. The food contours are matched to the 3D shape
model, and the food volume is estimated according to the size of the
model. However, the shape model library requires heavy user input,
and the results are unstable. There are some studies, which utilize
the prior knowledge of ‘‘container shape’’ as the geometric context
information to obtain food volume (Fang, Liu, Zhu, Delp, & Boushey,
2015; Xu et al., 2013). In comparison, the method proposed by Gao, Lo,
and Lo (2018) does not require prior knowledge such as shape models.
They adopted the simultaneous localization and mapping system based
on the monocular vision for dynamic food volume measurement. The
optimized multi-convex hull algorithm was applied to the sparse map
to form a 3D mesh object and continuously measured the food volume.

Based on multiple views, sparse reconstruction or dense recon-
struction can be performed. The 3D models reconstructed using sparse
feature points have lower resolution (Kong & Tan, 2012). In dense
reconstruction, the stereo matching method is most commonly used.
Puri et al. (2009) composed two food images into a stereo pair. Ac-
cording to the hierarchical pyramid matching scheme, the left and right
images were matched to perform the 3D reconstruction. Based on the
reconstructed 3D point cloud, the scale was further estimated, and the
3D volume of the food was calculated. This method takes full advantage
of dense reconstruction. However, the whole process is labor-intensive.
Rahman et al. (2012) proposed a volume estimation method based
on a set of images taken from the left and right sides of the food.
They converted the reconstructed 3D point cloud into a series of slices

and added the volume of each slice to obtain the total volume of the
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Fig. 3. The framework of multi-stage dietary assessment (Lu, Stathopoulou, Vasiloglou et al., 2021).
food. Although many attempts on volume estimation were made, most
of them relied on user input as well as strong assumptions. Dehais,
Anthimopoulos, Shevchik, and Mougiakakou (2017) proposed a dense
two-view reconstruction method with a reference card. The method
made minimal assumptions about the type or shape of the food and
was highly automated. They added disparity range extraction to the
stereo matching process. A disparity map is a depth map where the
depth information is derived from offset images of the same scene. Once
the disparity map is estimated, the disparities can be converted to depth
according to the following:

depth =
𝐵𝑓

disparity (2)

where 𝐵 is the length of the baseline connecting the camera centers and
𝑓 is the focal length of the camera. Using the depth map and camera
parameters, the 3D positions of all the points in the food image can
be restored. In addition to the depth information from stereo-matched
images, depth information can be easily obtained using a depth camera.
Chen et al. (2012) introduced a quality estimation method using the
depth information. Take the ‘‘sour and spicy soup’’ as an example. They
used a depth camera Kinect to obtain the color and depth information
of the noodle soup. The area of the bowl and the depth of the food is
used for quantity estimation. However, the Kinect is a depth camera
of structured infrared light, which affects the depth estimation due
to the light reflection. Myers et al. (2015) adopted depth camera-
based 3D volume estimation. The depth map was converted to a voxel
representation using CNN and random sample consensus (RANSAC)
reconstruction. With the development of technology, stereo images can
be quickly acquired through devices with stereo cameras such as 3D
smartphones, and thus becomes another type of popular methods.

Later, researchers have been exploring more convenient and ac-
curate ways to estimate the volume. For example, Yang, Jia, Bucher,
Zhang, and Sun (2019) argued that carrying fiducial markers was very
inconvenient and affected subsequent image processing. Therefore,
they proposed a novel virtual reality-based volume estimation method.
The key idea of eliminating fiducial markers was to determine the
camera orientation through the motion sensor inside the smartphone
and determine the location of visible points based on the width or
length of the phone. Lo, Sun, Qiu, and Lo (2020b) combined the
strength of deep learning and 3D reconstruction and developed a point
completion network to solve the problems of scale ambiguity and food
occlusion.

As one typical multi-stage VBDA work in Fig. 3, in the image anal-
ysis phase, Lu, Stathopoulou, Vasiloglou et al. (2021) performed hyper
food semantic segmentation and fine-grained food recognition. The
next stage includes volume and weight estimation, as well as nutritional
calculation. They used the Intel RealSense RGB-D Sensor to capture
food images before and after a meal, which can output aligned RGB
images and depth images simultaneously. Food consumption depends
on the volume of food before and after a meal. To obtain the plate sur-
face, the segmentation map allows to determine the plate’s position and
then enables the RANSAC algorithm to estimate the orientation of the
plate. In addition, the acquired food depth image was converted into
a point cloud. The triangular surfaces were divided by the Delaunay
triangulation method for the construction of food 3D surfaces. They
combined the plate surface estimation with 3D food surface extraction
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to further calculate the food volume. To calculate nutrition, they con-
verted the volume to weight. According to the calculated weight and
food category, the nutrient content of each food before and after meals
was calculated. It can be seen that each stage has its specific task and
the multi-stage architecture relies on the input and output of each stage.

4. End-to-end approaches

The end-to-end approach focuses on using a single model to replace
the pipeline of the multi-stage method. Considering that end-to-end
methods have shown promising prospects in tasks such as image recog-
nition (He, Zhang, Ren, & Sun, 2016), more and more end-to-end works
for nutrition prediction are proposed. Fang et al. (2019) proposed one
novel end-to-end food energy estimation method, which used the gen-
erative adversarial network to estimate the image-to-energy mapping.
The energy distribution map (Fang et al., 2018) is a new method that
replaces the ‘‘depth map’’ in Myers et al. (2015) for visualizing the
position of food in the images and how much relative energy was
presented in different food regions. He et al. (2021) improved this work
(Fang et al., 2018) by adding a localization network to detect food items
in the image. Bounding boxes were applied to the energy distribution
map to reduce the estimation errors.

However, all of these works only achieved an estimate of the
calories in the food. In dietary assessment, multiple nutrient estimates
(e.g., different types of macronutrients) are often required. There are
also associated representations among other VBDA subtasks. Focusing
on a single task tends to neglect information that might help do better
on the metrics we care about (Ruder, 2017). By realizing the shared
representation between related tasks, the method of learning multiple
related tasks together is called Multi-Task Learning (MTL). Compared
with a single task, it can improve the generalization performance of
the task to realize a more comprehensive VBDA architecture. MTL is
typically implemented with either soft or hard parameter sharing of
hidden layers.

In soft parameter sharing, each task has its model with its pa-
rameters. The distance between the parameters of the model is then
regularized to encourage the parameters to be similar. He et al. (2020)
performed food classification and portion size estimation in a multi-
task framework with shared soft parameters. They used the L2-norm
to regularize the parameters of the two models. Finally, the output of
both models is concatenated and then normalized to regress the calorie
estimation result.

Hard parameter sharing is generally applied by sharing the hidden
layers among all tasks while reserving several task-specific output
layers. Ege and Yanai used this architecture in a series of end-to-
end VBDA works. Ege and Yanai (2017) designed a multi-task CNN
based on VGG-16 to extract features. After that, a Fully-Connected (FC)
layer is shared by all tasks. Another FC layer is branched to each task
for the output unit, including predicting calories and food categories,
ingredients, and cooking instructions. However, they assumed that
food images only contain one dish. Their new work further used the
improved YOLOv2 (Redmon, Divvala, Girshick, & Farhadi, 2016) to
apply object detection to multiple dishes (Ege & Yanai, 2018). The
network can estimate the boundaries, categories, and calories of dishes

from images of multiple dishes. However, the output of this method
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Fig. 4. The framework of MTL end-to-end dietary assessment (Thames et al., 2021).
does not consider food amount and only corresponds to the calories of
a dish. Considering there are no datasets on multiple-dish food images
with both bounding boxes and food calories, two types of datasets
were used alternately in Ege and Yanai (2019) to train a single CNN.
The results showed that their multi-task approach achieved higher
accuracy, higher speed, and smaller network size than a sequential
model for food detection and calorie estimation. Similarly, Situju et al.
(2019) collected two image datasets at different scales for calorie and
salinity assessment. They used the Xception (Chollet, 2017) model to
extract features. The network branches to each task from the global
average-pooling layer. Each task has a global average pooling layer,
a FC layer with the dropout, and an output layer, respectively. Two-
stage fine-tuning was applied to improve the accuracy. The results
proved that the multi-task CNN outperformed the single-task CNN.
Ruede et al. (2021) designed the network from a different perspective.
They introduced a framework for retrieving nutritional information of
recipes by matching ingredients and their mass to a nutrient database
using phrase embedding. Pre-trained ResNet and DenseNet (Huang, Liu,
van der Maaten, & Weinberger, 2017) architectures were leveraged as
the backbone models. The last FC layer was replaced with a linear layer
to regress the macronutrient information. A good distinction is made
between high and low-calorie dishes.

The idea of multi-tasking learning had also been used to design
some complex end-to-end VBDA networks. Lu, Allegra, Anthimopoulos,
Stanco, Farinella, and Mougiakakou (2018) presented a MTL-based
VBDA network, which simultaneously implemented food recognition,
segmentation, and volume estimation. The feature extraction mod-
ule is composed of ResNet50 and feature pyramid network. A Re-
gion Proposal Net (RPN) (Ren et al., 2017) along with the feature
extraction module preliminary produced the bounding box for each
candidate object. MTL is applied to recognize food, regress bounding-
box, and predict binary mask from the output of RPN. In terms of
accuracy, the performance of food segmentation and volume estimation
outperformed the state-of-the-art at that time. Lu, Stathopoulou and
Mougiakakou (2021) focused on reconstructing the 3D food model from
a single RGB-image input without the use of depth information, and
for the first time realized the entire pipeline single view diet assess-
ment. They utilized the ResNet50 as the feature extraction module.
The encoded features were decoded in several different branches to
predict depth maps, semantic maps, and the camera pose between the
consecutive frames.

Thames et al. (2021) carried out a series of VBDA experiments on
their proposed Nutrition5k dataset, which covered the typical end-to-
end works. The experiments was based on a MTL end-to-end network
in Fig. 4. The Inception V2 backbone encoder was used to extract
feature maps. Then average-pooling was applied, and two FC layers
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followed. They trained a separate multi-task head for each regression
task (calorie, macronutrients, and optionally mass), including two FC
layers of different sizes. The experiments included estimating nutrients
per gram from RGB image, estimating nutrients directly from RGB
image, estimating nutrients directly from RGB-D image, and estimating
nutrients from RGB image and portion. The results showed that the
complexity of VBDA substantially increased when portion estimation
is required, and depth information is essential for estimating nutrients
when considering food portion size. Besides, the network outperformed
professional nutritionists at caloric and macronutrient estimation in the
generic food setting.

5. Datasets and evaluation metrics

5.1. Datasets

In this section, we briefly summarize and compare various datasets
for dietary assessment. Table 3 details the major nutrition-related
datasets from different aspects, such as classes, total size of images,
volume, calorie type and macronutrients (i.e., carbohydrate, protein
and fat).

Most of the datasets related to dietary assessment consist of spe-
cific types of foods. For example, Menu-Match (Beijbom et al., 2015)
focuses on the restaurant scenarios, and contains food images and
associated nutritional information. FoodLog (Miyazaki et al., 2011)
contains user-uploaded food images, text, and calorie information. It
is mainly composed of Japanese food. Chen et al. (2012) collected 50
kinds of Chinese food for food identification and quantity estimation.
However, only food recognition and quantity estimation was performed
and no nutritional information was labeled. Later, Ma et al. (2021) built
the first Chinese food image dataset ChinaFood-100 with comprehen-
sive descriptions and nutritional information annotations (i.e., protein,
fiber, vitamin C, calcium and iron). Recently, Nutrition5k (Thames
et al., 2021) is released for the development of dietary assessment.
It consists of food dishes with corresponding video streams, ingredi-
ent weights, depth images and high-precision nutrition annotations
(i.e., carbohydrate, protein and fat).

As we all know, the depth image of food is beneficial for volume
estimation. Lu, Stathopoulou, Vasiloglou et al. (2021) used the Intel
RealSense RGB-D sensor to acquire both RGB images and depth images
of food, and constructed the NIAD dataset. It should be emphasized
that there are few datasets for food volume estimation. The annotations
needed in such datasets are pixel-level food segmentation maps, image-
level labels, and basic facts about food volume. MADiMa (Allegra
et al., 2017) is a dataset that meets these requirements. It contains
RGB images and depth maps of meals, segmentation and recognition
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Table 3
Nutrition-related datasets.

Dataset Total#
images/class

Data type References

Multi-stage
FoodLog 6512(2000) Images with calorie values Miyazaki et al. (2011)
FOOD 676(49) Images with categories, weight and nutrient composition Eskin and Mihailidis (2012)
Menu-Match 646(41) Images with tags and calorie values Beijbom et al. (2015)
FooDD 3k(30) Images with categories Pouladzadeh, Yassine, and

Shirmohammadi (2015)
Inselspital dataset 1620(248) Images with categories, bounding boxes, actual volume and CHO grams Anthimopoulos et al. (2015)
Okamoto 120(20) Images with calorie values Okamoto and Yanai (2016a)
Chokr 1132(5) Images with categories, size and calorie values Chokr and Elbassuoni (2017)
MADiMa 21,807(80) Images with depth maps, weight, volume and nutrient composition Allegra et al. (2017)
Fast food 20(14) Image pairs with categories and nutrient composition Lu et al. (2020)
VIPER-FoodNet dataset 14,991(82) Images with categories and bounding boxes Mao et al. (2021)
ChinaFood-100 10,047(100) Images with nutrient composition Ma et al. (2021)
NIAD 1281(521) Images with depth, recipes and nutrient composition Lu, Stathopoulou, Vasiloglou

et al. (2021)
ChinaMartFood-109 10,921(18) Images with nutrient composition Ma et al. (2022)

End-to-end
American recipe dataset 2848(21) Images with categories and recipe Ege and Yanai (2017)Japanese recipe dataset 4877(15) Images with categories and recipe
Situju 3051(14) Images with calories and salinity values Situju et al. (2019)
Image-to-Energy dataset -(79) Images with categories, segmentation masks and calorie values Fang et al. (2019)
Eating occasion image to food
energy dataset

834(21) Images with categories and portion size groundtruth He et al. (2020)

Eating occasion image to food
energy dataset

915(31) Images with bounding box, categories and calorie values He et al. (2021)

pic2kcal 308,000(70,000) Images with categories, recipe and nutrient composition Ruede et al. (2021)
Nutrition5k 20k(5k) Multimedia data includes video streams and depth images with

component weights, and nutrient composition
Thames et al. (2021)

Canteen dataset 16k(80) Video frames with annotation Lu, Stathopoulou and
Mougiakakou (2021)
maps, 3D models, weights and volumes. Therefore, many studies have
conducted experiments on this dataset to provide baseline performance
of food segmentation, depth, and volume estimation. For example, Lu
et al. (2020) evaluated the performance of the entire process of dietary
assessment based on this MADiMa dataset. Considering that MADiMa
only contains meal images taken by a monocular camera, they created
one fast food dataset from McDonald’s to support two-view images and
stereo image pairs as input to comprehensively evaluate the perfor-
mance of goFOODTM. Lu et al. (2018) also used the MADiMa dataset as
the training and evaluation dataset. Lu, Stathopoulou and Mougiakakou
(2021) used it to evaluate the performance of the proposed method.
Furthermore, the Canteen dataset (Lu, Stathopoulou and Mougiakakou,
2021) was proposed as a real scenario-based evaluation compared with
MADiMa, which was created in a laboratory environment.

In addition, many studies have proposed the dataset of eating
occasion images for food energy datasets (Fang et al., 2019; He et al.,
2021, 2020). The distribution of food energy in the eating scene
can be represented as an energy distribution image. The purpose is
to estimate the energy values of the images based on the estimated
energy distribution. Such datasets usually contain annotations of food
categories, bounding box information, and the food size. To verify the
effectiveness of multi-task learning, Ege and Yanai (2017) constructed
two datasets of Japanese and American with food calories, categories,
ingredients and cooking directions. In addition, due to the high cost
of manually creating nutrition annotations, they chose to collect data
from the web. Many researches were done using this approach. For
example, Ruede et al. (2021) collected the dataset from a German
recipe website, namely the pic2kcal dataset, which contains cooking
instructions, ingredients and images. Situju et al. (2019) collected large
datasets of food images with calorie and salinity annotations based
on cooking food websites. The proliferation of these recipe-sharing
websites has facilitated the collection of food datasets. For example,
Ajinomoto Park includes food ingredients, cooking instructions and rich
nutritional information. All recipes also contains the above information
and adds a user comment module. They are usually provided by experts
such as culinary researchers or cooks and thus has excellent credibility.
With the rapid development of technological infrastructure, web-based
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data collection methods will become more popular.
5.2. Evaluation metrics

One dietary assessment system should be evaluated in multiple
respects, such as accuracy, run time, and resource requirements. How-
ever, most researchers have only focused on metrics for assessment
accuracy. For the multi-stage method, the evaluation should be per-
formed in each stage. In contrast, the end-to-end method should be
evaluated as a whole, which is similar to the final stage of the multi-
stage method. Due to the difference of each stage, evaluation metrics
are classified and summarized by the output type.

For food image analysis, Top-1 Accuracy and Top-5 Accuracy are
often used to evaluate the performance of recognition. Here, Top-N
accuracy means the probability that the correct class of food presents
in Top-n recognition results. Detection procedures will mark out targets
with bounding boxes. The area in the bounding box is a set of pixels.
Segmentation procedures will output a mask of the input image. For
one particular category in the image, its mask is also a set of pixels.
As a result, the evaluation metrics of food detection and segmentation
are similar, and they are evaluated using the Intersection over Union
(IoU):

IoU = 𝐽 (𝐴,𝐵) =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

(3)

where IoU is defined as the area of intersection between the predicted
map 𝐴 and the ground truth map 𝐵, divided by the area of the union
between the two maps, and ranges between 0 and 1. Mean-IoU (mIoU)
is further defined as the average IoU over all classes (Minaee et al.,
2021). Precision/Recall/F1 score can be defined for each class, as well
as at the aggregate level, as follows:

Precision = TP
TP + FP Recall = TP

TP + FN (4)

where TP, FP, FN refer to the true positive fraction, the false positive
fraction, and the false negative fraction, respectively. The Precision–
Recall curve shows the tradeoff between the Precision and Recall values
for different thresholds. This curve helps to select the best threshold
to maximize both metrics. Compared to graphically deciding the best
values for Precision and Recall, using the F1 score to measure their
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balance is better. It is defined as the harmonic mean of Precision and
Recall:

F1 = 2 Precision Recall
Precision + Recall (5)

When the value of F1 is high, this means both the Precision and
Recall are high. In addition, the Average Precision (AP) is a way to
summarize the Precision–Recall curve into a single value representing
the average of all Precisions (Ahmed Fawzy Gad, 2021). It is defined as
the weighted sum of Precisions at each threshold where the weight is
the increase in Recall. The mean of the APs for all classes is the mAP.

Besides, Pixel Accuracy (PA) is also widely used in evaluating
segmentation. Its definition is the ratio of correctly classified pixels
divided by the total number.

PA =
The number of correctly classified pixels

The total number of pixels (6)

Considering the output type of portion estimation, nutrient estima-
tion, and end-to-end methods is numeric, Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE) are usually used in the
evaluation.

MAE = 1
𝑁

𝑁
∑

𝑖=1

|

|

�̃�𝑖 − �̄�𝑖
|

|

(7)

MAPE = 1
𝑁

𝑁
∑

𝑖=1

|

|

�̃�𝑖 − �̄�𝑖
|

|

�̄�𝑖
(8)

here �̃�𝑖 is the estimated portion size of the 𝑖th image, �̄�𝑖 is the
roundtruth value of 𝑖th image and 𝑁 is the number of testing images
Shao et al., 2021).

. Future works

According to comprehensive discussions on existing efforts, we now
rticulate key open challenges and give some prospective analysis on
uture works for VBDA.

.1. Large-scale benchmark dataset construction

Currently, VBDA works are driven mainly by data and thus highly
ely on the construction of datasets. However, most works tend to
onstruct their own datasets for specific tasks rather than reusing
xisting datasets. Besides, accurate portion and nutrition annotation
re extremely burdensome and costly to obtain, which limits the scale
f VBDA datasets. These reasons lead to the lack of large-scale VBDA
enchmarks. There are two representative datasets, namely MADiMa
Allegra et al., 2017) and recently released Nutrition5k (Thames et al.,
021). The MADiMa dataset contains food images, depth maps, seg-
entation maps, weight/volume measurements of served meals, nutri-

nt content together with the corresponding annotations, labels and
ccelerometer data. It is constructed for multi-stage VBDA. Segmen-
ation map plays a vital role in multi-stage VBDA. However, it is
ot necessary for an end-to-end approach. Nutrition5k (Thames et al.,
021) thus drops the segmentation maps and adds food ingredient
nformation for an end-to-end VBDA. Ingredient information gives a
ew perspective to understand nutrients and enables the model to han-
le unseen food categories. However, these two datasets only contain
estern food with small scale. The standard benchmark dataset should

ontain not only western cuisines, but also eastern ones, and cover a
ide range of food types from all over the world. Different cuisines
iffer in many aspects, such as the level of separation of ingredients,
nd cooking procedures. The ingredients from western cuisines are
enerally separate while ones from eastern ones are often mixed. The
ooking procedure in the eastern cuisine is more various than western
nes. Such differences make the VBDA solutions probably different.
nd for each item, there should be corresponding images, depth map,
233

eight, nutrition information, recipe, and ingredient distribution map.
herefore, the VBDA dataset with various cuisine types should be
onstructed to enable targeted solutions for different cuisines, resulting
n more widespread use and popularization of VBDA. Because of the
ata-driven nature of deep learning, a large-scale VBDA dataset is also
rgently needed for developing advanced VBDA algorithms.

.2. Fine-grained visual analysis

Compared with ordinary objects, many kinds of food do not display
nique spatial configurations. They are generally non-rigid, and food
ppearance can be diverse depending on the used ingredients and
he cooking styles. Additionally, hidden ingredients and distinctive
ooking methods (e.g., stir-fry, steaming, boiling, roasting) present
bstacles to assessing the nutrient composition of different dishes.
n addition, external factors such as illumination are also a pressing
ssue in image analysis. In order to solve these problems, we should
mplement more fine-grained visual analysis and present three possible
uture directions in detail. First, more complex and advanced CNNs
nd Transformers have demonstrated powerful capabilities in a range
f visually related tasks (Khan et al., 2021). Similarly, we believe
hat a new network structure designed for VBDA allows for better
xtraction of visual features and fine-grained visual analysis. Second,
he performance of visual analysis can be improved using pre-trained
odels on the large-scale food analysis dataset (Min et al., 2020, 2021).

or example, Min et al. (2021) verified the better generalization of their
roposed large-scale dataset Food2K in various vision tasks, such as
ood recognition, detection, and segmentation. We can study transfer
earning from more aspects in the future, such as cross-cuisine, cross-
cenario, and cross super-class. Transfer learning expands the training
ata in a sense which makes the model more robust and enhances
he generalization ability. Third, besides improving the performance
f neural networks, utilizing food recipes can also help realize fine-
rained visual analysis. For example, Fontanellaz, Christodoulidis, and
ougiakakou (2019) suggested that multimodal recipe retrieval could

e the first step in a pipeline for nutrient assessment. Understanding
he food composition is more scalable than identifying food categories.
he ingredient information and cooking methods in food recipes can
stablish the nutritional connection among relative foods and help the
odel understand different visual forms of the same ingredient.

.3. Accurate food volume estimation

Volume estimation is a commonly used method of portion estima-
ion. However, the performance of current volume estimation portion
s not yet satisfactory. Existing studies mainly focused on model-based
r stereo-based methods. The first food volume estimation system con-
tructed 3D geometric shape model libraries (Chen et al., 2013). They
atched 2D food contours to the 3D shape model, and estimated the

ood volume based on the size of the model. However, the shape model
ibrary is not applicable to all food objects. To solve the problem, multi-
iew based approaches are developed to perceive depth according to
ore spatial information of food geometry (Dehais et al., 2017; Kong
Tan, 2012; Puri et al., 2009). However, it is inconvenient for users to

ake multiple food images from different angles. Although food volume
stimation methods based on a single view are generally preferred, such
ethods cannot provide complete information about the 3D shape of

he food (e.g., the back of the food is not visible). Later, the depth
nformation of food images is explored to facilitate the food localization
nd 3D reconstruction. However, the depth images estimated based
n food images are not accurate enough. Therefore, Lu, Stathopoulou,
asiloglou et al. (2021) simultaneously acquired RGB and depth images
f food using the RealSense RGB-D sensor. They converted the acquired
epth images into the point cloud to further calculate the food volume.
f more mobile devices with depth images acquisition sensors could be
eveloped and popularized, it would simplify the volume estimation
o a great extent. Additionally, Chen, Wang, Chen, and Zeng (2021)
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found that the spatial structure information in the scene plays a crucial
role in depth perception. They proposed S2R-DepthNet to remove the
influence on the texture information and utilized the human visual
system features for spatial structure grasping to enable the network the
powerful generalization capability for depth estimation. This is because
the human visual system can perceive depth through stereo vision of
both eyes. Based on the accumulation of many natural scenes, humans
can judge the distance between objects in the image when there is only
one image. Therefore, integrating human visual observation features of
structural information into volume estimation is probably one future
direction.

6.4. Practical VBDA solution

There has been considerable effort to achieve fully automated,
highly accurate nutrient assessments in the academic field. However,
the applications available to end-users still mainly rely on the manual
recording of food types and amounts, indicating a dichotomy between
the academic and the industrial fields. There is no doubt that the ac-
curacy of visual analysis and volume estimation affects the accuracy of
the results. Besides, the scenario provides additional context relations
and can further improve the assessment accuracy. In a scenario-specific
dietary assessment, making full use of the knowledge of the scenario is
the key to improve usability. For example, in the canteen environment,
the type of food is fixed, specific containers will be used to hold specific
types of food. In addition, specialized devices such as depth cameras
can be deployed to gather more information. Thames et al. (2021)
proved the depth information improved the accuracy of nutrient assess-
ment in the control experiment. However, it is not practical to require
users to acquire such equipment as depth cameras. Considering smart-
phones are still the most widely used portable device in daily dietary
assessments. We can also obtain rich multimodal information from the
smartphone’s camera, positioning system, and inertial measurement
sensors. Therefore, designing solutions specifically for portable devices,
such as smartphones, is a hot topic for research. However, the solutions
are confined to a laboratory environment and have many limitations
in practice, such as the scarcity of analyzable food types and the lack
of large-scale opening testing. In addition, complex eastern cuisines are
more difficult so that existing VBDA methods cannot obtain satisfactory
assessment performance. Therefore, toward realizing a practical VBDA
solution, there is still a long way to go.

6.5. Intelligent dietary management

People generally understand the connection between diet and
health. However, the concept cannot be applied to practice, and it is
difficult for them to reasonably control their dietary intake in daily
life. For example, excessive sodium intake over a long period can raise
blood pressure and become a risk factor for hypertension. Therefore,
dietary management can help people solve potential dietary problems
and achieve personalized health needs. Intelligent food record and
food recommendation are two critical aspects of intelligent dietary
management.

For the intelligent food record, FoodLog (Kitamura, Yamasaki, &
Aizawa, 2008) has been created to process images taken by users.
We expect to conduct statistics on the practical and diversified food
data spontaneously generated by users. Food nutrition information is
obtained and recorded through VBDA, generating a weekly or monthly
diet record sheet for users. By analyzing the diet record sheet, we can
decide that the intake of a certain type of food should be reduced or
increased, thus assisting users in dietary management. For the food
recommendation, intelligent food record can obtain the user’s real-
time eating habit information, and then learn the dynamics of user
preferences based on VBDA (Delarue & Loescher, 2004), and finally
combine user’s health information with the learned user preference to
realize personalized dietary recommendations (Min, Jiang and Jain,
234
2020). Furthermore, VBDA-based recommendations can be used as an
auxiliary tool for nutritionists. For example, with the popularity of the
healthy and green living concept, more and more people prefer healthy
weight loss. It is undeniable that healthy weight loss must not only en-
sure a balanced diet, but also meet the nutritional needs of the body and
exercise. Based on the dietary recommendations provided by VBDA, nu-
tritionists with rich professional knowledge further provide reasonable
nutritional requirements for the body and exercise. In summary, VBDA
has obvious potential and advantages in automatically monitoring diet
and compliance with nutritional interventions for intelligent dietary
management.

7. Conclusions

VBDA is currently a hot and challenging research field, which has
gradually replaced traditional dietary assessment methods. In this re-
view, we divide existing VBDA methods into two types of architectures.
One is a multi-stage VBDA architecture, which mainly consists of three
parts: food image analysis, portion estimation, and nutrient derivation.
Each stage has its own specific task and is linked to each other for
nourishment. The end-to-end VBDA architecture emphasizes specifying
the original input and nutritional output without multiple steps. The
food datasets and evaluation metrics related to VBDA have also been
clarified in the article. Although VBDA has made good progress, it
has great potential to further enhance the practicality of VBDA. For
example, it is urgent to build a large-scale benchmark dataset to enable
the faster development of VBDA. How to achieve fine-grained visual
analysis and accurate volume estimation based on food characteristics
are worthy of further exploration. The promising directions for VBDA
are discussed in this paper, and we look forward to seeing a wide range
of VBDA applications in the future.
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