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Abstract

The expressive power of graph neural networks (GNNs) is typically understood
through their correspondence with graph isomorphism tests such as the Weis-
feiler–Leman (WL) hierarchy. While more expressive GNNs can distinguish a
richer set of graphs, they are also observed to suffer from higher generalization
error. This work provides a theoretical explanation for this trade-off by linking
expressivity and generalization through the lens of coloring algorithms. Specifi-
cally, we show that the number of equivalence classes induced by WL colorings
directly bounds the GNN’s Rademacher complexity – a key data-dependent mea-
sure of generalization. Our analysis reveals that greater expressivity leads to higher
complexity and thus weaker generalization guarantees. Furthermore, we prove
that the Rademacher complexity is stable under perturbations in the color counts
across different samples, ensuring robustness to sampling variability across datasets.
Importantly, our framework is not restricted to message-passing GNNs or 1-WL,
but extends to arbitrary GNN architectures and expressivity measures that partition
graphs into equivalence classes. These results unify the study of expressivity and
generalization in GNNs, providing a principled understanding of why increasing
expressive power often comes at the cost of generalization.

1 Introduction

Graph Neural Networks (GNNs) [26, 11] have shown great success in learning tasks across many
domains such as social networks, knowledge graphs, and chemistry [33]. This empirical success
has sparked a growing interest in understanding the theoretical capabilities of GNNs, leading to
the characterization of their expressive power – a measure of the model’s ability to discriminate
non-isomorphic graphs. One fundamental insight into GNNs’ expressivity is the relationship between
these model classes and the Weisfeiler-Leman (WL) graph isomorphism tests. Previous research
from Xu et al. [30] and Morris et al. [22] established that message-passing GNNs (MPGNN) are at
most as powerful as the 1-dimensional WL test (1-WL), highlighting a fundamental limitation in
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the expressivity of these model architectures. Since then, this relationship has been extended to a
range of more expressive GNN variants, [27, 7, 4, 24, 32, 5, 14, 3, 1], each one endowed with the
corresponding WL test. While expressivity is a meaningful and active focus of GNN research, it
offers limited insight into the fundamental issue of an architecture’s ability to generalize to graphs
outside of its training set.

Recent efforts have begun to connect this characterization of expressivity to generalization theory.
Morris et al. [23] provided the first direct connection between the GNN expressivity and the VC
dimension by showing that the VC dimension is tightly related to the number of graphs that can be
distinguished by 1-WL. For GNNs with piecewise activation functions and in settings where an upper
bound on the graphs’ order (number of vertices) is known, they proved that the VC dimension equals
the maximum number of pairwise 1-WL-distinguishable graphs, while for graphs with bounded
individual color complexity, they derived bounds of O(P log(puP )), where P is the number of
parameters, u is the number of node colors, and p is the number of pieces of the activation functions.
D’Inverno et al. [8] extended these VC dimension analyses to GNNs with Pfaffian activation functions
(such as tanh, sigmoid), providing bounds that also depend on the maximum number of node colors
per graph. Further related work connecting expressivity and generalization is provided in Appendix A.

Other contributions have investigated using Rademacher Complexity as a more refined and data-
dependent approach to bounding generalization. Garg et al. [10] provided the first Rademacher
complexity bounds for message-passing GNNs, explicitly accounting for the local permutation
invariance of GNNs. Their bounds are tighter than existing VC dimension guarantees, but depend
solely on the parameters of the given GNN architecture, leaving the connection between the WL
color distributions and the Rademacher complexity unexplored.

Our work directly addresses this gap by using coloring algorithms to relate the expressive power of
GNNs to their Rademacher complexity, thus providing a theoretical justification for the observed
trade-off between expressive power and generalization performance. The paper’s main contributions
are summarized as follows:

1. We derive a novel upper bound on the empirical Rademacher complexity of GNNs in terms
of the number of equivalence classes induced by the graph coloring function. Moreover, the
bound is tight under the assumption that all the classes have the same cardinality.

2. Our results are general, applying not only to the 1-WL algorithm or a particular GNN class,
but to any GNN architecture together with its associated coloring function.

3. Last, we establish stability guarantees to show that our bounds remain reliable even when a
similar sample set is used to calculate the empirical Rademacher complexity.

This connection unifies expressivity and generalization, extending the previous analyses to arbitrary
GNN architectures, and provides a more comprehensive view of the performance of GNN models.

The paper is organized as follows. Section 2 introduces the necessary notation and preliminaries.
Section 3 presents our main theoretical results, establishing a connection between expressivity and
generalization via coloring functions, including a stability analysis (Section 3.1) and generalization
to arbitrary coloring schemes (Section 3.2). Section 4 discusses limitations and outlines directions
for future work, while Section 5 draws preliminary conclusions. Further related work, definitions,
technical material, and proofs can be found in Appendix A and Sections B to E.

2 Notation and Preliminaries

For n ≥ 1, let [n] := {1, 2, . . . , n}. We use {{. . .}} to denote multisets, i.e., the generalization of sets
allowing for multiple instances of each of their elements.

Graphs. A graph G = (V,E) is a pair with finite set of vertices or nodes V and edges
E ⊆ {{u, v} ⊆ V |u ̸= v}. For ease of notation, we denote the edge {u, v} in E by (u, v) or
(v, u). If not otherwise stated, we set n := |V |, and the graph is of order n. Let N (v) be the
neighborhood of a node v ∈ V , i.e. the set of all nodes adjacent to v, and d(v) the degree of a node
v ∈ V , i.e., the number of neighbors |N (v)|. An attributed graph G = (V,E, α) is a triple with a
graph (V,E) and node-attribute function α : V → A, where A is a a finite subset of Rd, for some
d > 0. We consider the space of finite, simple, undirected, attributed graphs, denoted by G.
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Graph Neural Networks. Message-passing GNNs (MPGNNs) learn real-valued vectors, called
embeddings, for each node by iteratively updating their features based on aggregated information
from their neighbors. Specifically, the embedding hℓ(v) for node v at layer ℓ is computed as:

hℓ(v) = COMBINE(ℓ)
(
hℓ−1(v), AGGREGATE(ℓ)

(
{{hℓ−1(u)}}u∈N (v)

))
. (1)

After L layers, we obtain the final node embedding, which we denote as hL(v). For graph-level
tasks, these are aggregated into a graph representation hL(G). The full architectural details are in
Appendix B.

Expressivity. The expressive power of MPGNNs is studied via their capability to distinguish
non-isomorphic graphs. Research has shown that MPGNNs are at most as powerful as the Weisfeiler-
Leman (1-WL) test, a well-known isomorphism heuristic [30, 22, 29]. The 1-WL test works by
partitioning the nodes of a graph into equivalence classes, where equivalent nodes are assigned the
same color based on their neighborhood structure. At each iteration ℓ, the color cℓ(v) of a node v is
updated by hashing its previous color with the multiset of its neighbors’ colors:

cℓ(v) = HASH
(
cℓ−1(v), {{cℓ−1(u)}}u∈N (v)

)
. (2)

This process continues until the partitioning is stable. We denote by c(v) the color of node v at
convergence of the partitions, that is, c(v) := cL(v) where L is the first iteration after which the
partition no longer changes. The full algorithm is described in Appendix B.
The 1-WL induces an equivalence relation WL∼ on nodes, such that u WL∼ v ⇔ c(u) = c(v).

We define the color of a graph G, or color histogram of G, the multiset of colors of its nodes:

c(G) = {{c(v)}}v∈V . (3)

The set of graph colors is denoted by GC. To test whether two graphs are isomorphic, 1-WL is applied
to both graphs. If the colors of the two graphs differ, i.e., the graphs have a different number of
nodes with the same color, the graphs are non-isomorphic. If the colors are the same, the algorithm
is inconclusive, meaning that the two graphs may be, but are not guaranteed, isomorphic. More
concretely, given two graphs G = (V,E) and G′ = (V ′, E′) we can define the equivalence relation
induced by 1-WL on graphs as:

G
WL≡ G′ ⇔ c(G) = c(G′) ⇔ {{c(v)}}v∈V = {{c(u)}}u∈V ′ . (4)

Remark 2.1. Comparing Eq. (1) and Eq. (2) reveals that they share the same structure: both the
updates rely on combining a node’s features (or color), with the features (or colors) of its neighbours.
WL test has been proved to be an upper bound for GNNs’ expressivity [30, 22]. This means that if
two nodes have the same color, they must also have the same embedding:

c(u) = c(v) =⇒ hL(u) = hL(v). (5)

The converse holds when COMBINE(ℓ) and AGGREGATE(ℓ) (see Eq. 1) are injective functions [30] and
for graph level tasks this requires that READOUT(ℓ) is also injective.

Throughout the paper, we adopt this correspondence between MPGNNs and 1-WL as a running
example to support the exposition and enhance readability. Nonetheless, the presented results hold in
general for arbitrary GNN architectures along with the coloring test that upper bounds their expressive
power (see Section 3.2).

Generalization. We briefly review the main definitions in the theory of Rademacher complexity.
We invite the reader to consult Mohri et al. [21] for a comprehensive treatment of the topic. Let
S = {(Gi, yi)}i∈[m] ∼ Dm be a dataset composed of m i.i.d. samples which we assume are drawn
from an underlying distribution D on G ×Y , with Y = {−1,+1}. Sometimes we subsume the set Y ,
writing S = {G1, . . . Gm}. For any fixed GNN architecture, we assume a hypothesis class

F = {f : G → [−1, 1]}
of possible graph-level functions that can be learned by this GNN. In the following, f(G; Θ) is the
output of a function parametrized by Θ under a fixed GNN architecture.
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Given a loss function ℓ that measures the prediction error, we define for each f ∈ F the empirical
and true (or population) risk, respectively, by

LS(f) =
1

m

m∑
j=1

ℓ(f(Gj ; Θ), yj), L(f) = E(G,y)∼D[ℓ(f(G; Θ), y)]. (6)

The generalization error is defined as the difference between the true and empirical risk, and it
is bounded by the model complexity. To quantify complexity, let σ1, . . . , σm be independent
Rademacher variables and define the empirical Rademacher complexity

RS(F) = Eσ

sup
f∈F

1

m

m∑
j=1

σjf(Gj ; Θ)

 , (7)

with population counterpart
Rm(F) = ES∼Dm [RS(F)] . (8)

Rademacher complexity measures how well a function class F can correlate with random noise. High
Rademacher complexity indicates that there exists a function in F that is potentially "overfitting" the
labels. The Rademacher complexity can be used to bound the generalization error of a hypothesis
class, as formalized in the next result.
Lemma 2.2 (Mohri et al. [Theorem 3.3]). For any δ > 0, with probability at least 1−δ, the following
holds for all f ∈ F and any loss function ℓ:

L(f) ≤ LS(f) + 2RS(ℓ ◦ F) + 3

√
ln(2/δ)

2m
, (9)

where ℓ ◦ F denotes the standard function composition, i.e., ℓ ◦ F := {ℓ(f(G; Θ), y) | f ∈ F}.

Moreover, if the loss function ℓ: [−1, 1]2 → R is Lipschitz with constant γ (relative to any norm-
induced metric), then RS(ℓ ◦ F) ≤ γRS(F). This result is known as Talagrand’s contraction
lemma.

Combining Lemma 2.2 and Talagrand’s lemma, we claim that it suffices to bound the empirical
Rademacher complexity RS(F) to bound the generalization error of the class F .
Proposition 2.3. Let ℓ be a Lipschitz loss function, of constant γ. For any δ > 0, with probability at
least 1− δ, the following holds for all f ∈ F:

L(f) ≤ LS(f) + 2γRS(F) + 3

√
ln(2/δ)

2m
. (10)

Some examples of such Lipschitz loss functions in the context of (graph) classification are the logistic
loss (log loss), the cross-entropy (CE) when applied to the output of a softmax layer [19] or to the
output of a logistic function when its input is bounded (check Appendix E.1), and a margin loss [10].
Particularly for this work, since our hypothesis class is F = {f : G → [−1, 1]}, we can either use
directly the latter loss with an activation function that gives outputs in the interval [−1, 1] (e.g., tanh),
or combine the GNN’s output with a linear transformation [−1, 1] → [0, 1] and use one of the other
two loss functions (see Appendix E.2). The next section explores the natural connection between
Rademacher complexity and expressivity.

3 Rademacher Meets Colors

The connection between expressivity and generalization can be drawn by relating the coloring
algorithm characterizing a GNN’s expressive power to the Rademacher complexity of its
hypothesis class. Coloring algorithms partition the sample S = {G1, . . . , Gm} in p disjoint
sets I1, . . . , Ip, where each Ij is an equivalence class containing all graphs with the same color
cj

1. This imposes structural constraints on the function class: any function f implementable
by the architecture must be constant over equivalence classes. As a consequence, this limits

1We use the terms (graph) colors and equivalence classes interchangeably.
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its possibility to overfit arbitrary labels, since not all labelings are compatible with the par-
titioning. For ease of presentation, we first introduce our results in the familiar setting of
message-passing GNNs and their connection to the 1-WL coloring algorithm. This framework,
however, extends beyond the familiar WL setting; we refer the reader to Section 3.2 for further details.

First, we extend Definition B.1 to describe how the graph-level output f(G; Θ) is computed, thereby
specifying the hypothesis class F under consideration. Let hL(G) ∈ Rd be the global embedding of
the graph G, obtained by combining the node embeddings using a READOUT function such as sum,
max, or mean. Then, the GNN output f(G; Θ) is computed by applying an activation function (e.g.,
the hyperbolic tangent) ψ(·) to the linearly transformed graph embedding:

f(G; Θ) = ψ(β⊺hL(G)) ∈ [−1, 1], (11)

where β ∈ Rd is a trainable parameter. The following result bounds the Rademacher complexity of
message-passing GNNs in terms of the number of graph colors p.
Proposition 3.1. Let S = {G1, . . . , Gm} be a sample of m graphs, partitioned into p disjoint sets
{I1, . . . , Ip} by a coloring function. Let F be a class of functions whose output f(G; Θ) is the same
on each graph of a fixed class G ∈ Ij . The empirical Rademacher complexity of F on S is bounded
by:

RS(F) ≤
supΘ L(Θ)

√
p

m
(12)

where L(Θ) =
√∑m

i=1 f(Gi; Θ)2 is the ℓ2-norm of the function’s outputs over the sample S.

The proof can be found in the Appendix D.1.

The previous result holds for a general class of functions F = {f : G → R} where the output
respects, for example, the 1-WL equivalence. Usually, when studying Rademacher complexity, the
focus is restricted to functions with bounded outputs. Without such an assumption, the Rademacher
complexity may become infinite, in which case the resulting generalization bounds are meaningless.
The following corollary explores the case where f maps to the interval [−1, 1].
Corollary 3.2. Under the assumptions of Proposition 3.1 and in the special case where every function
f ∈ F maps to [−1, 1], the empirical Rademacher complexity is bounded by:

RS(F) ≤
√

p

m
(13)

Proof. The result follows from Prop. 3.1, noting that if the output space is [−1, 1], then
supΘ

√∑m
i=1 f(Gi; Θ)2 =

√
m.

The bound in Corollary 3.2 scales as
√
p/m, where m is the number of graphs in the sample and p is

the number of equivalence classes, e.g. those produced by 1-WL. Intuitively, p measures the diversity
of the graphs within the sample S with respect to the 1-WL test: the more equivalence classes there
are, the more heterogeneous the dataset appears to the GNN. For example, the smallest possible
bound is met in the extreme case when p = 1, namely when the graphs are indistinguishable under
the 1-WL – for instance, when all graphs are regular and have the same order. As p grows, the dataset
becomes more complex, and the bound increases accordingly, reflecting a higher risk of overfitting.
Moreover, since any MPGNN is at most as expressive as the 1-WL test, this result provides a unifying
upper bound for a broad family of architectures and it extends beyond that (see Section 3.2). Finally,
the dependence on 1/

√
m matches standard learning-theoretic intuition: increasing the sample size

tightens the bound regardless of architectural expressivity.

Under the assumption that all the equivalence classes have the same cardinality, the bound of Corollary
3.2 is proven to be tight and asymptotically correct:
Proposition 3.3 (Uniform partitioning assumption). Let S = {G1, . . . , Gm} be a sample of m
graphs, partitioned by a coloring function into p disjoint sets {I1, . . . , Ip} of the same cardinality.
Let F be a class of functions whose output f(G; Θ) is the same on each graph of a fixed Ij . The
empirical Rademacher complexity of F on S is bounded by:

RS(F) ≥
√

p

2m
.
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The proof can be found in Appendix D.2.

Proposition 3.3 shows that the bound of Corollary 3.2 is tight under uniform partitioning, i.e., when
all color classes have the same cardinality. In this case, the empirical Rademacher complexity admits
both upper and lower bounds of the same order, that is, RS(F) = O(

√
p/m).

Last, leveraging Corollary 3.2, we can improve the Dudley entropy integral bound (see Theorem C.2)
on the empirical Rademacher complexity [2] by incorporating the number of graph colors in the
inequality. Let N (F|S , ϵ, || · ||2) be the covering number of F|S

2 at radius ϵ under || · ||2 (the ℓ2
norm). Then:

Proposition 3.4. Let S = {G1, . . . , Gm} be a sample of m graphs, partitioned into p disjoint sets
{I1, . . . , Ip} by a coloring function. Let F be a class of functions f : G → [−1, 1] whose output is
the same on each graph of a fixed Ij . Assume 0 ∈ F . The empirical Rademacher complexity of F on
S is bounded by:

RS(F) ≤ inf
α>0

(
4α

√
p

m
+

12

m

∫ √
m

α

√
logN (F|S , ϵ, || · ||2)dϵ

)
(14)

where the bound is reduced due to the p-dimensional structure of the output space F|S .

The proof can be found in Appendix D.3 and is very similar to the proof of Lemma A.5 from [2].

Relative to prior work [2], the first term in the bound is tighten from 1/
√
m to

√
p/m, yielding a

concrete improvement and an explicit characterization in terms of graph colors. Furthermore, this
bound applies generally to all GNN architectures but can be further refined for a specific function
class by bounding the covering number of F|S . We refer the interested reader to Garg et al. [10] for
an example of such a covering number bound for message-passing GNNs.

3.1 Stability of Rademacher Complexity under color perturbation

The previous results bound the Rademacher complexity of a class of functions F on a fixed sample S.
However, we are also interested in how the change in samples affects the complexity of F . We show
our Rademacher complexity bounds remain meaningful under noisy perturbations, and in particular
that RS(F) is Lipschitz-continuous in the underlying color counts. Concretely, if each color’s count
shifts by at most ϵj , then the resulting change in the empirical Rademacher complexity scales only
linearly in ϵj .

Proposition 3.5. Let

S = {G1, . . . , Gm} and S′ = {G′
1, . . . , G

′
m}

be two samples of size m. Applying a coloring procedure to both samples yields two sets of colors,
and we denote by GC their union. Suppose that for every color cj ∈ GC, the number of graphs with
color cj in the two samples differs by at most ϵj:

|µj(S)− µj(S
′)| ≤ ϵj . (15)

Then the empirical Rademacher complexities of F on these two samples satisfy:

|RS(F)−RS′(F)| ≤
∑

cj∈GC

ϵj
m

(16)

The proof of Proposition 3.5 is deferred to Appendix D.5.

Proposition 3.5 guarantees that our generalization bounds are robust to domain shifts between datasets
that are close in the color space. Bridging to the results from the previous section, as the number of
colors p increases, the Rademacher complexity grows; however, this growth is smooth because the
empirical Rademacher complexity is Lipschitz-continuous with respect to color perturbations.

2The notation F|S denotes the restriction of the class of functions F to functions with domain in S.
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3.2 Extension to arbitrary coloring functions

In this work, we connect expressivity and generalization through the lens of coloring algorithms.
Our analysis is not restricted to 1-WL, but applies to any pair (A, T ) where A is a GNN architecture
and T is the coloring algorithm that bounds its expressive power. With a small abuse of notation we
write A ⊑ T . For example, MPGNN ⊑ 1-WL. Given such a pair (A, T ), the coloring algorithm T
partitions the space of graphs into pT equivalence classes, such that two graphs with the same color
belong to the same partition and get the same output from the architecture A. All results presented in
the previous section for (MPGNN, 1-WL) immediately extend to this general case by replacing p
with pT . This observation enables us to compare the generalization abilities of architectures with
different expressive power. Indeed, if T ⊑ S, then pT ≤ pS , which implies that the bound on the
Rademacher complexity is larger for S (see Fig. 1 for a visual representation of the comparison
between 1-WL and k-WL). This confirms the common belief that expressivity comes at the cost
of generalization power. The key observation is that this holds for any expressivity measurement
which relies on partitioning onto equivalence classes. As a consequence, more expressive GNNs (e.g.,
k-GNNs [22], CW networks [4], Subgraph GNNs [31] or Path GNNs [12]) correspond to a larger p,
leading to higher Rademacher complexity bounds and thus to an increased risk of overfitting.

4 Limitations and Future Work

Our theoretical contributions focus on graph-level binary classification, which is consistent with
the current state of the art in generalization theory [28], and aligns well with the most frequently
encountered scenario in GNN benchmarking. Nonetheless, future work includes extending our
generalization bounds to cover a wider range of graph learning tasks, including multi-class evaluation,
regression, and node-level bounds. Given known extensions of Rademacher complexity to multi-class
classification and bounded regression problems [16, 21], we anticipate adapting those techniques to
broaden the theoretical scope of our results.

Another natural extension of our framework would be to replace the discrete partitioning induced by
WL colorings with pseudometric-based notions of structural similarity, in the spirit of Maskey et al.
[20]. This would enable finer-grained expressivity analyses and potentially tighter generalization
bounds. In parallel, we aim to empirically investigate how well these Rademacher-based bounds apply
in practice. We will conduct systematic studies across several GNN function classes and benchmark
tasks to verify how the number of distinct colors influences GNN generalization performance.

Lastly, our current analysis bounds the empirical Rademacher complexity without making assump-
tions on the underlying graph distribution. As a future direction, we aim to study how the true
Rademacher behaves when graphs are sampled from known probabilistic models, such as Ran-
dom Graph Models (RGMs), and to further extend this analysis to general limiting objects such as
graphons [18], which generate these models. For instance, a particularly interesting future direction
is to analyze how graph size affects the number of distinct colors in samples from graphons, and to
investigate the asymptotic behavior of our theory in this setting.

5 Conclusions

This study leverages Rademacher complexity to draw a direct connection between the generalization
ability of GNNs and their expressivity. The resulting bounds depend on the number of partitions
induced by an arbitrary coloring algorithm, making the framework broadly applicable across different
architectures and expressivity measures. We show that more expressivity comes at the cost of a higher
upper bound on the models’ generalization error, implying that less expressive models are at a lower
risk of overfitting than more expressive ones. Moreover, for any fixed coloring algorithm, we show
that the change in Rademacher complexity between two samples scales linearly with the difference in
their color multiplicities. Ultimately, this work highlights an inherent interplay between expressivity
and generalization, motivating further analysis of the generalization power of expressive methods.

7



Acknowledgments and Disclosure of Funding

We are deeply grateful to Alessandro Micheli, who contributed from the early stages of this project
and provided the original stability result that inspired our extension to graphs. We also thank Franco
Scarselli for his continuous support and precious feedback. Last, we would like to acknowledge
the 2025 London Geometry and Machine Learning Summer School (LOGML), where this research
project started. In particular, we would like to express our gratitude to the members of the organizing
committee: Vincenzo Marco De Luca, Massimiliano Esposito, Simone Foti, Valentina Giunchiglia,
Daniel Platt, Pragya Singh, Arne Wolf, and Zhengang Zhong.

References
[1] Ralph Abboud, Radoslav Dimitrov, and Ismail Ilkan Ceylan. Shortest path networks for graph

property prediction. In Learning on graphs conference, pages 5–1. PMLR, 2022. 2

[2] Peter L Bartlett, Dylan J Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems 30 (NIPS 2017), pages
6240–6249, 2017. 6, 12, 17

[3] Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph
aggregation networks. arXiv preprint arXiv:2110.02910, 2021. 2

[4] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar,
and Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in neural
information processing systems, 34:2625–2640, 2021. 2, 7

[5] Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio,
and Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial
networks. In International conference on machine learning, pages 1026–1037. PMLR, 2021. 2

[6] Jan Böker. Graph similarity and homomorphism densities. arXiv preprint arXiv:2104.14213,
2021. 11

[7] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(1):657–668, 2022. 2

[8] Giuseppe Alessio D’Inverno, Monica Bianchini, and Franco Scarselli. Vc dimension of
graph neural networks with pfaffian activation functions. Neural Networks, 182:106924,
2025. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2024.106924. URL https:
//www.sciencedirect.com/science/article/pii/S0893608024008530. 2

[9] Billy J Franks, Christopher Morris, Ameya Velingker, and Floris Geerts. Weisfeiler-leman at
the margin: When more expressivity matters. arXiv preprint arXiv:2402.07568, 2024. 11

[10] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits
of graph neural networks. In International conference on machine learning, pages 3419–3430.
PMLR, 2020. 2, 4, 6

[11] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Message passing neural networks. In Machine learning meets quantum physics, pages 199–214.
Springer, 2020. 1

[12] Caterina Graziani, Tamara Drucks, Fabian Jogl, Monica Bianchini, Franco Scarselli, T Gartner,
et al. The expressive power of path-based graph neural networks. Proceedings of the 41st
International Conference on Machine Learning, 235:16226–16249, 2024. 7

[13] Uffe Haagerup. The best constants in the Khintchine inequality. Studia Mathematica, 70(3):
231–283, 1981. 14

8

https://www.sciencedirect.com/science/article/pii/S0893608024008530
https://www.sciencedirect.com/science/article/pii/S0893608024008530


[14] Lecheng Kong, Yixin Chen, and Muhan Zhang. Geodesic graph neural network for efficient
graph representation learning. Advances in neural information processing systems, 35:5896–
5909, 2022. 2

[15] Ron Levie. A graphon-signal analysis of graph neural networks. Advances in Neural Information
Processing Systems, 36:64482–64525, 2023. 11

[16] Jian Li, Yong Liu, Rong Yin, Hua Zhang, Lizhong Ding, and Weiping Wang. Multi-class
learning: From theory to algorithm. Advances in Neural Information Processing Systems, 31,
2018. 7

[17] Shouheng Li, Floris Geerts, Dongwoo Kim, and Qing Wang. Towards bridging generalization
and expressivity of graph neural networks. arXiv preprint arXiv:2410.10051, 2024. 11

[18] László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc.,
2012. 7

[19] Anqi Mao, Mehryar Mohri, and Yutao Zhong. Cross-entropy loss functions: Theoretical analysis
and applications. In International conference on Machine learning, pages 23803–23828. pmlr,
2023. 4

[20] Sohir Maskey, Raffaele Paolino, Fabian Jogl, Gitta Kutyniok, and Johannes F Lutzeyer. Graph
representational learning: When does more expressivity hurt generalization? arXiv preprint
arXiv:2505.11298, 2025. 7, 11

[21] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT Press, 2012. 3, 4, 7

[22] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
4602–4609, 2019. 1, 3, 7

[23] Christopher Morris, Floris Geerts, Jan Tönshoff, and Martin Grohe. WL meet VC. In Interna-
tional conference on machine learning, pages 25275–25302. PMLR, 2023. 2

[24] Raffaele Paolino, Sohir Maskey, Pascal Welke, and Gitta Kutyniok. Weisfeiler and leman go
loopy: A new hierarchy for graph representational learning. Advances in Neural Information
Processing Systems, 37:120780–120831, 2024. 2

[25] Levi Rauchwerger, Stefanie Jegelka, and Ron Levie. Generalization, expressivity, and univer-
sality of graph neural networks on attributed graphs. arXiv preprint arXiv:2411.05464, 2024.
11

[26] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008. 1

[27] Erik Thiede, Wenda Zhou, and Risi Kondor. Autobahn: Automorphism-based graph neural nets.
Advances in Neural Information Processing Systems, 34:29922–29934, 2021. 2

[28] Antonis Vasileiou, Stefanie Jegelka, Ron Levie, and Christopher Morris. Survey on generaliza-
tion theory for graph neural networks. arXiv preprint arXiv:2503.15650, 2025. 7, 11

[29] Boris Weisfeiler and AA Lehman. A Reduction of a Graph to a Canonical Form and an Algebra
arising during this Reduction. In Nauchno-Technicheskaya Informatsia, pages 2(9):12—-16,
1968. 3

[30] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018. 1, 3

[31] Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness
hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. In International Conference
on Machine Learning, pages 41019–41077. PMLR, 2023. 7

9



[32] Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information
Processing Systems, 34:15734–15747, 2021. 2

[33] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI open, 1:57–81, 2020. 1

10



A Additional Related works

The fundamental trade-off between expressivity and generalization in GNNs is attracting increasing
attention within the community. A recent work by Maskey et al. [20] demonstrated that more
expressive GNNs may have worse generalization capabilities, unless their increased complexity is
balanced by sufficiently large training sets or reduced structural distance between training and test
graphs. Their analysis introduces pseudo-metrics that capture structural similarity and reveal when
expressivity hurts generalization. The case when more expressive power affects generalization is
further refined by Franks et al. [9]. The authors propose using partial concepts to derive bounds of
VC dimension independent of the length of the embedding vector, d. Additionally, they show that for
certain classes of graphs there are tighter lower bounds, thus confirming that more expressivity is
not always worse. In a more general approach, [25] establishes a bound on the generalization error
independentof both the data and the parameter of any MPNN. However, this approach eliminates the
nuances that exist in different datasets. Depending on the task at hand, a more fine-grained analysis
requires taking into account the distribution of graphs, for instance, by using the construction of
graphons such as in [15]. Nonetheless, that approach has its own drawbacks, since under the used
metrics, sparse graphs converge to the empty graph, which hinders seamless adoption in our context.
Vasileiou et al. [28] make use of previous results on generalization, robustness and expressivity are
collapsed under a single framework. This relies on a new pseudo-metric termed Forest Distance,
inspired by Tree Distance [6]. Nevertheless, the bounds are not data dependent and while vertex-
attributed graphs are considered, only discrete attributes are assumed. Additionally, it only works if
the aggregation method for graphs is mean pooling. Meanwhile, Li et al. [17] proposed the notion of
a k-variance margin-based generalization bound, defining the structural quality of graph embeddings
in terms of their expressive power.

Collectively, these findings align with our work, illustrating a more nuanced relationship between
model expressivity and generalization, and they are not restricted to message-passing GNNs, as is
also the case for our study. Our work differs in that it provides a theoretical analysis grounded in
Rademacher complexity, using coloring-based partitioning as a formal lens to characterize expressiv-
ity.

B Formal Definitions

Definition B.1 (MPGNN). Let G = (V,E, α) be an attributed graph. We denote by hℓ(v) the
embedding of node v at layer ℓ. The embeddings are initialized with h0(v) ∈ Rd in a way which is
consistent with α(v), namely, h0(v) = h0(u) iff α(v) = α(u). The GNN propagation scheme for
iteration ℓ ∈ [L], ℓ > 0 is defined as:

hℓ(v) = COMBINE(ℓ)
(
hℓ−1(v), AGGREGATE(ℓ)

(
{{hℓ−1(u)}}u∈N (v)

))
. (17)

where AGGREGATE(ℓ) and COMBINE(ℓ) are differentiable parameterized functions, e.g. neural networks,
and AGGREGATE(ℓ) is permutation invariant over multisets.

Once all L layers have been applied, we obtain a final embedding for each node, hL(v). In the case of
graph-level tasks, e.g., graph classification, a readout layer then compresses these node embeddings
into a graph embedding hL(G):

hL(G) = READOUT({{hL(v)}}v∈V ), (18)
where READOUT can be a differentiable parameterized function.
Definition B.2 (1-WL). Let G = (V,E, α) be an attributed graph with α : V → A ⊂ Rd, and C be
a discrete set of colors. We begin by seeding each node with an initial color c0(v) = HASH0(α(v)),
where HASH0 : A → C is an injective function mapping each node attribute to a color. For each
iteration ℓ ∈ [L], the 1-WL algorithm updates every node color by

cℓ(v) = HASH
(
cℓ−1(v), {{cℓ−1(u)}}u∈N (v)

)
, (19)

where HASH is any injective map that encodes the pair consisting of the node’s previous color and the
multiset of its neighbours’ colors as a new element of C.
The algorithm terminates with a stable coloring when the partitioning does not change between
iterations. We denote by c(v) the color of node v at convergence of the partitions, that is, c(v) :=
cL(v) where L is the first iteration after which the partition no longer changes.
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C Covering Numbers and Dudley’s Integral

In this appendix, we introduce some theoretical tools used throughout the paper and in the proofs. Our
goal is to keep the presentation self-contained, highlighting only the results needed in later proofs. In
particular, we recall basic notions on covering numbers and we include the Dudley entropy integral,
which is instrumental in deriving bounds on the Rademacher complexity.

C.1 Covering Numbers

We begin with the definition of a covering number, which quantifies the "size" of a function class in a
given pseudometric space.

Definition C.1 (Covering Number). Let (X , d) be a pseudometric space and let F be a subset of X .
For any ε > 0, the internal ε-covering number of F , denoted N (F , ε, d), is the minimum cardinality
of a set C ⊆ F such that for every f ∈ F , there exists some fc ∈ C with d(f, fc) ≤ ε. Unless
otherwise specified, all covering numbers in this paper are internal.

C.2 Dudley’s Entropy Integral

Dudley’s entropy integral bounds the Rademacher complexity of a function class using its covering
numbers. We consider the restriction of F to a sample S = {x1, x2, . . . , xm}, which is the set
of vectors: F|S = {(f(x1), . . . , f(xm))|f ∈ F} ⊆ Rm. The covering number in the theorem is
computed with respect to the standard Euclidean norm || · ||2 on Rm.

Theorem C.2 (Dudley’s Entropy Integral Bound [2]). Let F be a real-valued function class taking
values in [0, 1] , and assume that 0 ∈ F . Then

RS(F) ≤ inf
α>0

{
4α√
m

+
12

m

∫ √
m

α

√
logN (F|S , ϵ, || · ||2)dϵ

}
. (20)

In Proposition 3.4, we derive a tighter bound using the p-dimensional structure of F|S .

D Proofs

Proposition D.1. Let S = {G1, . . . , Gm} be a sample of m graphs, partitioned into p disjoint sets
{I1, . . . , Ip} by a coloring function. Let F be a class of functions whose output f(G; Θ) is the same
on each graph of a fixed class G ∈ Ij . The empirical Rademacher complexity of F on S is bounded
by:

RS(F) ≤
supΘ L(Θ)

√
p

m

where L(Θ) =
√∑m

i=1 f(Gi; Θ)2 is the L2-norm of the function’s outputs over the sample S.

Proof. The proof proceeds by first reorganizing the sum by graph colour, then applying the Cauchy-
Schwarz inequality to separate the function-dependent norm from the Rademacher variables, and
finally using Jensen’s inequality.

First, we write the definition of the empirical Rademacher complexity and group the sum over the p
partitions

Ij := {i ∈ [m] : c(Gi) = cj}. (21)

Let fj(Θ) be the constant output for any graph in partition Ij .

RS(F) = Eσ

[
sup
Θ

1

m

m∑
i=1

σif(Gi; Θ)

]

=
1

m
Eσ

sup
Θ

p∑
j=1

fj(Θ)
∑
i∈Ij

σi

 . (22)
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Let Zj =
∑

i∈Ij
σi. The inner sum is

∑p
j=1 fj(Θ)Zj . We apply the Cauchy-Schwarz inequality to

this sum over j:

p∑
j=1

fj(Θ)Zj =

p∑
j=1

(
fj(Θ)

√
|Ij |
)( Zj√

|Ij |

)
≤

√√√√ p∑
j=1

fj(Θ)2|Ij | ·

√√√√ p∑
j=1

Z2
j

|Ij |

The first term on the right is precisely the L2-norm L(Θ), since
∑p

j=1 fj(Θ)2|Ij | =∑m
i=1 f(Gi; Θ)2 = L(Θ)2. Substituting this back into the main expression gives:

RS(F) ≤ 1

m
Eσ

sup
Θ

L(Θ) ·

√√√√ p∑
j=1

Z2
j

|Ij |


=

1

m
Eσ

(sup
Θ
L(Θ)

)
·

√√√√ p∑
j=1

Z2
j

|Ij |


=

supΘ L(Θ)

m
Eσ

√√√√ p∑
j=1

(
∑

i∈Ij
σi)2

|Ij |


The second line follows because the term involving the Rademacher variables σi does not depend on
Θ, allowing us to separate the supremum. The third line follows because supΘ L(Θ) is a constant
with respect to the expectation over σ.

Next, we apply Jensen’s inequality to the expectation. Since the square root function is concave,
E[
√
X] ≤

√
E[X].

RS(F) ≤ supΘ L(Θ)

m

√√√√√Eσ

 p∑
j=1

(
∑

i∈Ij
σi)2

|Ij |


Finally, we evaluate the expectation inside the square root. By the linearity of expectation and the
fact that σi are independent random variables with E[σi] = 0 and E[σ2

i ] = 1, we have:

Eσ

 p∑
j=1

(
∑

i∈Ij
σi)

2

|Ij |

 =

p∑
j=1

Eσ[(
∑

i∈Ij
σi)

2]

|Ij |

=

p∑
j=1

∑
i∈Ij

E[σ2
i ] +

∑
i ̸=k E[σiσk]

|Ij |

=

p∑
j=1

∑
i∈Ij

E[σ2
i ]

|Ij |

=

p∑
j=1

|Ij |
|Ij |

= p

Substituting this result back gives the final bound:

RS(F) ≤
supΘ L(Θ)

√
p

m

Proposition D.2 (Uniform cardinality assumption). Let S = {G1, . . . , Gm} be a sample of m
graphs, partitioned by a coloring function into p disjoint sets {I1, . . . , Ip} of the same cardinality.
Let F be a class of functions whose output f(G; Θ) is the same on each graph of a fixed Ij . The
empirical Rademacher complexity of F on S is bounded by:

RS(F) ≥
√

p

2m
.
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distinguishabledistinguishable

More expressivity

Smaller upper bound

Figure 1: Two function classes Fk-WL and FWL, constrained respectively by 1-WL and k-WL
expressivity, induce different partitions of a sample S. The more expressive function class Fk-WL
distinguishes more graphs, leading to a finer partition of the sample and a larger number of equivalence
classes. Since Rademacher complexity depends on the number of partitions of the input space, the
coarser partition induced by FWL yields a tighter upper bound on RS .

Proof. First, we write the definition of the empirical Rademacher complexity and group the sum over
the p partitions

Ij := {i ∈ [m] : c(Gi) = cj}. (23)

Let fj(Θ) be the constant output for any graph in partition Ij .

RS(F) = Eσ

[
sup
Θ

1

m

m∑
i=1

σif(Gi; Θ)

]

=
1

m
Eσ

sup
Θ

p∑
j=1

fj(Θ)
∑
i∈Ij

σi

 (24)

The sup is obtained for fj(Θ) = sign(
∑

i∈Ij
σi). Then,

1

m
Eσ

sup
Θ

p∑
j=1

fj(Θ)
∑
i∈Ij

σi

 =
1

m
Eσ

 p∑
j=1

|
∑
i∈Ij

σi|

 (25)

By the linearity of expectation and the fact that σi are independent random variables with E[σi] = 0
and E[σ2

i ] = 1, we have:

1

m
Eσ

 p∑
j=1

|
∑
i∈Ij

σi|

 =
1

m

p∑
j=1

Eσ

|∑
i∈Ij

σi|

 (26)

By Khintchine’s inequality we get the following bound on the expected value [13]:

Eσ

|∑
i∈Ij

σi|

 ≥
√
µj

2
(27)

14



Then, substituting back into Eq. (26):

1

m

p∑
j=1

Eσ

|∑
i∈Ij

σi|

 ≥ 1

m

p∑
j=1

√
µj

2
. (28)

In the hypothesis that all the classes have the same cardinality, µj = m/p we conclude that:

RS(F) ≥ 1

m

p∑
j=1

√
µj

2

=
1

m

p∑
j=1

√
m

2p

=
p

m

√
m

2p

=

√
p

2m
.

Proposition D.3 (Rademacher complexity bound under Partition Structure). Let S = {G1, . . . , Gm}
be a sample of m graphs, partitioned into p disjoint sets {I1, . . . , Ip} by a coloring function. Let F
be a class of functions f : G → [−1, 1] whose output is the same on each graph of a fixed Ij . Assume
0 ∈ F . The empirical Rademacher complexity of F on S is bounded by:

RS(F) ≤ inf
α>0

(
4α

√
p

m
+

12

m

∫ √
m

α

√
logN (F|S , ϵ, || · ||2)dϵ

)
where the bound is reduced due to the p-dimensional structure of the output space F|S .

Proof. The proof uses the Dudley entropy integral, adapting the bound to the p-dimensional structure
of the function class F .

Let us define a sequence of scales ϵk =
√
m · 2−(k−1) for k ≥ 1. For each k, let Vk be a minimal

ϵk-cover of the set of output vectors F|S with respect to the ℓ2-norm, so |Vk| = N (F|S , ϵk, || · ||2).
Note that F|S lies within the unit hypercube [−1, 1]m therefore the cover is finite for ϵk > 0.

For any function f ∈ F , let f|S be its corresponding vector in Rm. Let vk[f ] be a vector in Vk such
that ||f|S − vk[f ]||2 ≤ ϵk. We decompose the vector f|S using a telescoping sum:

f|S = (f|S − vN [f ]) +

N−1∑
k=1

(vk[f ]− vk+1[f ]) + v1[f ]

The quantity to bound is mRS(F) = Eσ supf∈F ⟨σ,f|S⟩. Substituting the decomposition and using
the triangle inequality for suprema gives:

mRS(F) ≤ Eσ

[
sup
f∈F

⟨σ,f|S − vN [f ]⟩

]
+

N−1∑
k=1

Eσ

[
sup
f∈F

⟨σ,vk[f ]− vk+1[f ]⟩

]

+ Eσ

[
sup
f∈F

⟨σ,v1[f ]⟩

]
For the last term, note the scale ϵ1 =

√
m. Since f(Gi) ∈ [−1, 1], we have ||f|S ||22 =∑m

i=1 f(Gi)
2 ≤ m, which means ||f|S ||2 ≤

√
m. The zero vector 0 is in F|S because 0 ∈ F ,

and for any f|S , ||f|S − 0||2 ≤
√
m = ϵ1. Therefore, V1 = {0} is a valid ϵ1-cover. We can choose

v1[f ] = 0 for all f ∈ F , causing the last term to be zero.

The first term is the expected supremum over the set of residual vectors, GN = {f|S − vN [f ] : f ∈
F}, which is precisely m · RS(GN ).
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To bound the Rademacher complexity, RS(GN ), we can leverage two key properties of this class of
residual functions. First, GN inherits the partition structure from F , which means (f(Gi)−vNi [f ]) =
(f(Gj)− vNj [f ]) whenever f(Gi) = f(Gj).

Given these properties, we can apply Proposition 3.1:

RS(GN ) ≤
supg∈GN

||g||2 ·
√
p

m

By definition of the cover VN , we have supg∈GN
||g||2 ≤ ϵN . Substituting this in:

RS(GN ) ≤
ϵN

√
p

m

Therefore, the term we need to bound is m · RS(GN ), which gives:

Eσ

[
sup
f∈F

⟨σ,f|S − vN [f ]⟩

]
= m · RS(GN ) ≤ ϵN

√
p

For each k ∈ {1, . . . , N − 1}, we bound Eσ

[
supf∈F ⟨σ,vk[f ]− vk+1[f ]⟩

]
. Let Wk =

{vk[f ] − vk+1[f ] : f ∈ F}. The expression is the Rademacher complexity of this finite set,
Eσ

[
supw∈Wk

⟨σ,w⟩
]
. The size of this set is |Wk| ≤ |Vk| · |Vk+1|. Since the covering numbers are

monotonic (ϵk > ϵk+1 =⇒ |Vk| ≤ |Vk+1|), we have |Wk| ≤ |Vk+1|2. The norm of any element
w ∈Wk is bounded by the triangle inequality:

||w||2 = ||vk[f ]− vk+1[f ]||2 ≤ ||vk[f ]− f|S ||2 + ||f|S − vk+1[f ]||2 ≤ ϵk + ϵk+1

Since ϵk = 2ϵk+1, the norm is bounded by 3ϵk+1. Applying Massart’s Lemma:

Eσ

[
sup

w∈Wk

⟨σ,w⟩
]
≤ (3ϵk+1) ·

√
2 log |Wk| ≤ 3ϵk+1

√
2 log(|Vk+1|2)

= 3ϵk+1

√
4 log |Vk+1| = 6ϵk+1

√
logN (F|S , ϵk+1, || · ||2)

Combining the bounds on the residual and chain links yields:

mRS(F) ≤ ϵN
√
p+

N−1∑
k=1

6ϵk+1

√
logN (F|S , ϵk+1, || · ||2)

≤ ϵN
√
p+ 12

N−1∑
k=1

(ϵk − ϵk+1)
√

logN (F|S , ϵk, || · ||2)

Using the standard step of bounding the sum with an integral and the monotonicity of the covering
number:

mRS(F) ≤ ϵN
√
p+ 12

∫ √
m

ϵN+1

√
logN (F|S , ϵ, || · ||2)dϵ

For any given α > 0, we choose N to be the largest integer such that ϵN+1 > α. This implies
ϵN+2 ≤ α. From the definition of the scales, we have ϵN = 2ϵN+1 = 4ϵN+2. This gives the bound
ϵN ≤ 4α. The lower limit of the integral, ϵN , is greater than α. Therefore, the integral is over a
smaller domain than [α,

√
m], so we can bound it:

ϵN
√
p+ 12

∫ √
m

ϵN

√
logN (. . . )dϵ ≤ 4α

√
p+ 12

∫ √
m

α

√
logN (. . . )dϵ

Substituting these into the main inequality:

mRS(F) ≤ 4α
√
p+ 12

∫ √
m

α

√
logN (F|S , ϵ, || · ||2)dϵ
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Dividing bym gives the bound for our chosen α. This improves upon the classical bound [2] replacing
4α/

√
m with 4α

√
p/m. As this holds for any α > 0, we may take the infimum to find the tightest

bound:

RS(F) ≤ inf
α>0

(
4α

√
p

m
+

12

m

∫ √
m

α

√
logN (F|S , ϵ, || · ||2)dϵ

)
This completes the proof.

Lemma D.4. Let X be a nonempty set and let f, g : X → R be two real–valued functions. Then∣∣sup
x∈X

f(x) − sup
x∈X

g(x)
∣∣ ≤ sup

x∈X

∣∣f(x)− g(x)
∣∣. (29)

We are now ready to prove Proposition 3.5.
Proposition D.5. Let

S = {G1, . . . , Gm} and S′ = {G′
1, . . . , G

′
m}

be two samples of size m. Applying a coloring procedure to both samples yields two sets of colours,
GC(S) and GC(S′) respectively. We denote by GC their union.
Suppose that for every colour cj ∈ GC, the number of graphs with colour cj in the two samples
differs by at most ϵj:

|µj(S)− µj(S
′)| ≤ ϵj . (30)

Then the empirical Rademacher complexities of F on these two samples satisfy:

|RS(F)−RS′(F)| ≤
∑

cj∈GC

ϵj
m

(31)

Proof of Proposition 3.5. From Eq. (24), the empirical Rademacher complexity can be expressed in
terms of graph colours as:

RS(F) := Eσ

[
sup
f∈F

1

m

m∑
i=1

σif(Gi; Θ)

]
= Eσ

sup
f∈F

1

m

∑
cj∈GC(S)

fj(Θ)
∑

i∈Ij(S)

σi

 , (32)

where GC(S) is the set of colours apprearing in S, Ij(S) is the set of indices of graphs with colour cj
in S, and fj(Θ) is the constant output for any graph in partition Ij . An analogous expression holds
for S′.

To compare the empirical Rademacher Complexity of two different samples S and S′, we require
the definition to be invariant under permutations of the graph indices (otherwise, the Rademacher
complexity of the same sample could change simply by reordering its elements). To ensure this
invariance, we rewrite

∑
i∈Ij(S) σi in terms of colours and their multiplicity, that is µj := |Ij |:∑

i∈Ij(S)

σi =

µj(S)∑
i=1

σj,i

where for every color cj , the sequence (σj,i)i≥1 is shared across samples (with each sample using
only the first µj(S) terms, depending on its multiplicity). Additionally,we re-index Eq.32 over the
union of colours GC.

|RS(F)−RS′(F)| ≤ Eσ

∣∣∣∣∣∣supf∈F

1

m

∑
cj∈GC

fj(Θ)

µj(S)∑
i=1

σj,i − sup
f∈F

1

m

∑
cj∈GC

fj(Θ)

µj(S
′)∑

i=1

σj,i

∣∣∣∣∣∣ . (33)

Note that if a colour c occurs only in one sample, its multiplicity is zero in the other, so the
corresponding contribution vanishes. Now by Lemma D.4, we can upper-bound the difference of
suprema by the supremum of the differences, yielding:

|RS(F)−RS′(F)| ≤ Eσ

sup
f∈F

∣∣∣∣∣∣ 1m
∑

cj∈GC
fj(Θ)

µj(S)∑
i=1

σj,i −
1

m

∑
cj∈GC

fj(Θ)

µj(S
′)∑

i=1

σj,i

∣∣∣∣∣∣


≤ Eσ

sup
f∈F

1

m

∑
cj∈GC

|fj(Θ)|

∣∣∣∣∣∣
µj(S)∑
i=1

σc,i −
µc(S

′)∑
i=1

σj,i

∣∣∣∣∣∣
 .

(34)
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Now, set min µj := min(µj(S), µj(S
′)) and max µj := max(µj(S), µj(S

′)) and, given that the
Rademacher sequence (σj,i)i≥1 is shared across samples, we can write:∣∣∣∣∣∣

µj(S)∑
i=1

σj,i −
µj(S

′)∑
i=1

σj,i

∣∣∣∣∣∣ =
∣∣∣∣∣∣

maxµj∑
i=minµj+1

σi

∣∣∣∣∣∣ ≤ |µj(S)− µj(S
′)|

Hence, the bound in Eq.34 can be rewritten in terms of color multiplicities, independently of the σi’s:

|RS(F)−RS′(F)| ≤ sup
f∈F

1

m

∑
cj∈GC

|fj(Θ)|
∣∣µj − µ′

j

∣∣ .
The final bound is obtained using the fact that sup

f∈F
|f(G)| ≤ 1:

|RS(F)−RS′(F)| ≤ 1

m

∑
cj∈GC

∣∣µj − µ′
j

∣∣ = ∑
cj∈GC

ϵj
m
.

E Lipschitz continuity of loss functions

Proposition E.1. Let ℓCE be the cross-entropy loss function. Moreover, let f(Gi) = ψ(β⊤ϕ(Gi))
be a GNN output, where ψ(·) is the logistic activation function (i.e., ψ : R → [0, 1]), and ϕ(·) the
GNN’s final representation. Assume that ∥ϕ∥∞ ≤ bϕ and ∥β∥1 ≤ Bβ , for constants b, Bβ > 0.
Therefore, ℓCE is Lipschitz continuous.

Proof. The cross-entropy loss is defined as:

ℓCE(f(G), y) = −
m∑
i=1

[yi log(f(Gi)) + (1− yi) log(1− f(Gi))] .

The partial derivative of ℓCE with respect to zi = βTϕ(Gi) is

∂ℓCE

∂zi
= −

[
yi
ψ′(zi)

ψ(zi)
− (1− yi)

ψ′(zi)

1− ψ(zi)

]
= −

[
yi
ψ(zi)(1− ψ(zi))

ψ(zi)
− (1− yi)

ψ(zi)(1− ψ(zi))

1− ψ(zi)

]
= − [yi(1− ψ(zi))− (1− yi)ψ(zi)]

= ψ(zi)− yi (∗)

Since ϕ(Gi) is bounded by bϕ in L∞-norm, and ∥β∥1 ≤ Bβ , we have

|zi| = |βTϕ(Gi)| ≤
d∑

j=1

|βj ||ϕj(Gi)| ≤ ∥ϕ∥∞∥β∥1 ≤ bϕBβ .

Thus, zi ∈ [−bϕBβ , bϕBβ ], and the sigmoid function ψ(z) satisfies:

ψ(−bϕBβ) ≤ ψ(zi) ≤ ψ(bϕBβ),

for all Gi.

Then, we have that

(∗) : |ψ(zi)− yi| ≤ max{|ψ(bϕBβ)|, |1− ψ(bϕBβ)|},
since yi ∈ {0, 1}.

The derivative of the loss with respect to zi is bounded; therefore, ℓCE(f(Gi), yi) is Lipschitz
continuous in ϕ(Gi).
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Proposition E.2. Assume the conditions from Prop. E.1 hold. Moreover, assume that the activation
function is a sigmoid, i.e., ψ : R → [a, b], for a, b ∈ R and a < b. In addition, assume that
its derivative is bounded, |ψ′(x)| ≤ C, for C > 0. Analogously, let ℓCE be the cross-entropy
loss function, and define g : [a, b] → [0, 1], g(x) = x−a

b−a . Therefore, ℓCE(g ◦ f(Gi)) is Lipschitz
continuous.

Proof. Using the cross-entropy loss definition shown before, we have:

ℓCE(g ◦ f(G), y) = −
m∑
i=1

[yi log(f(g ◦Gi)) + (1− yi) log(1− g ◦ f(Gi))] .

Analogously, the partial derivative of ℓCE with respect to zi = β⊤ϕ(Gi) is

∂ℓCE

∂zi
= −

[
yi

1

g(ψ(zi))
− (1− yi)

1

1− g(ψ(zi))

]
· 1

g′(ψ(zi))
· ψ′(zi)

= −
[
yi

1

g(ψ(zi))
− (1− yi)

1

1− g(ψ(zi))

]
· 1

(b− a)
· ψ′(zi)

=

[
g(ψ(zi))− yi

g(ψ(zi))(1− g(ψ(zi)))

]
· C

(b− a)
(∗)

Since |zi| ≤ bϕBβ , then a < ψ(−bϕBβ) ≤ ψ(zi) ≤ ψ(bϕBβ) < b. Hence, we have that
0 < g(−bϕBβ) ≤ g(ψ(zi)) ≤ g(bϕBβ) < 1, for all Gi, and

(∗) :

∣∣∣∣ g(ψ(zi))− yi
g(ψ(zi))(1− g(ψ(zi)))

∣∣∣∣ · C

(b− a)
≤ C

(b− a)
·max

{
1

|g(ψ(bϕBβ))|
,

1

|1− g(ψ(bϕBβ))|

}
.

Again, because the derivative of the loss with respect to zi is bounded, we have that ℓCE(g◦f(Gi), yi)
is Lipschitz continuous in ϕ(Gi).
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