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ABSTRACT

Multi-objective discrete optimization problems, such as molecular design, pose
significant challenges due to their vast and unstructured combinatorial spaces.
Traditional evolutionary algorithms often get trapped in local optima, while ex-
pert knowledge can provide crucial guidance for accelerating convergence. Large
language models (LLMs) offer powerful priors and reasoning ability, making
them natural optimizers when expert knowledge matters. However, closed-source
LLMs, though strong in exploration, cannot update their parameters and thus
cannot internalize experience. Conversely, smaller open models can be contin-
ually fine-tuned but lack broad knowledge and reasoning strength. We intro-
duce Multi-LLM Collaborative Co-evolution (MCCE), a hybrid framework that
unites a frozen closed-source LLM with a lightweight trainable model. The sys-
tem maintains a trajectory memory of past search processes; the small model
is progressively refined via reinforcement learning, with the two models jointly
supporting and complementing each other in global exploration. Unlike model
distillation, this process enhances the capabilities of both models through mu-
tual inspiration. Experiments on multi-objective drug design benchmarks show
that MCCE achieves state-of-the-art Pareto front quality and consistently out-
performs baselines. These results highlight a new paradigm for enabling con-
tinual evolution in hybrid LLM systems, combining knowledge-driven explo-
ration with experience-driven learning. The code of MCCE is available on
https://anonymous.4open.science/r/MCCE_Anonymous-1F92

1 INTRODUCTION

Discrete optimization and multi-objective optimization problems are pervasive in real-world appli-
cations, ranging from logistics and scheduling to scientific discovery and molecular design (Sun
et al., 2025). These problems are notoriously difficult due to their vast, high-dimensional, and un-
structured search spaces. Traditional evolutionary algorithms, while widely adopted, often suffer
from two critical limitations: (i) they are prone to premature convergence, getting trapped in local
optima, and (ii) they struggle to maintain both diversity and quality in the candidate population.
These limitations highlight the need for more adaptive, intelligent optimization frameworks.

The rise of Large Language Models (LLMs) opens a promising direction. With their strong rea-
soning ability and broad prior knowledge, LLMs can act as powerful operators for generating and
refining candidate solutions (Zhao et al., 2025). However, their application in iterative optimization
remains constrained. First, a single LLM tends to converge to its own distribution, reducing solution
diversity across generations (Li et al., 2025; Luo et al., 2025; Gao et al., 2025b). Second, although
retrieval-augmented generation (RAG) enables the injection of external knowledge through contex-
tual retrieval, it is inherently limited by the size of the context window and lacks the ability to update
model parameters. As a result, such systems cannot genuinely accumulate knowledge or learn from
past experiences. These challenges highlight that effective optimization requires not only problem-
solving capacity but also mechanisms for internalizing feedback and continuously evolving.To this
end, we argue that parameter training is indispensable. Unlike static prompting or RAG, parameter
updates enable a model to accumulate experience in a much deeper and more persistent way. Yet,
this poses a dilemma: closed-source LLMs excel in reasoning and general knowledge but cannot be
fine-tuned, whereas small open-source models are trainable but lack the broad capabilities of larger
models. Relying solely on either side leads to inherent inefficiency and bottlenecks.
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This motivates our proposed Multi-LLM Collaborative Co-evolution (MCCE) framework, a system
where a frozen, closed-source LLM and a lightweight, trainable local model co-evolve through it-
erative collaboration. In each generation, the two models alternate as evolutionary operators: the
closed-source LLM drives global exploration, while the local model learns from accumulated ex-
periences to perform more targeted searches. Crucially, we design a feedback loop where the local
model is periodically refined using breakthrough search trajectories, ensuring that knowledge is con-
tinually internalized and reused. Unlike traditional distillation, our framework establishes mutual
inspiration between models—large models provide global guidance, while small models adaptively
extend the search frontier through learning. Recent work such as ExLLM (Ran et al., 2025) has
demonstrated the promise of using LLMs as evolutionary operators for multi-objective molecular
design, combining in-context learning with prompt engineering to achieve strong results. However,
these approaches still rely on a single frozen LLM, which limits their ability to accumulate expe-
rience through parameter updates and often leads to reduced diversity and premature convergence.
In contrast, our MCCE framework explicitly addresses this gap by coupling a powerful but fixed
closed-source LLM with a lightweight trainable model. This collaborative co-evolution not only
preserves the broad reasoning and exploration capacity of large models, but also equips the system
with a mechanism for continual learning and adaptation. By enabling mutual inspiration between
heterogeneous models, MCCE overcomes the limitations of purely LLM-driven pipelines and es-
tablishes a more sustainable path toward scalable optimization.

The main contributions of this paper are:

1. A collaborative co-evolution framework (MCCE). We integrate closed-source LLMs with
lightweight, trainable local models, combining the exploration capacity of large models with the
adaptability of smaller models. This hybrid design is broadly applicable to discrete, multi-objective
optimization tasks beyond drug discovery.

2. An experience-driven learning paradigm. We leverage breakthrough evolutionary trajectories
as valuable experience, guiding the local model to identify promising search directions. This cooper-
ative mechanism allows the global and local models to co-evolve, reinforcing each other’s strengths
over time.

3. Demonstrated practical efficacy and extensibility. Our framework achieves state-of-the-art per-
formance in multi-objective drug design, highlighting its potential for real-world impact. Moreover,
the paradigm is extensible to a wider range of scientific and engineering domains where structured
optimization is critical.

2 RELATED WORK

2.1 MULTI-MODEL COLLABORATION

Recent studies highlight the promise of collective intelligence in enhancing reasoning and problem-
solving through multiple LLMs (JIANG et al., 2025). For example, Misaki et al. (2025) propose
an adaptive branching Monte Carlo Tree Search (MCTS) framework where multiple models coop-
erate to balance exploration and exploitation. Extending this collaborative paradigm to scientific
discovery, Su et al. (2025) employ a multi-agent system to mimic human teamwork for generating
and refining novel research ideas. By leveraging diverse model perspectives in the search pro-
cess, these approaches significantly improve efficiency and robustness compared to using a single
LLM. Beyond inference scaling, other works explore multi-agent or ensemble strategies. Yang et al.
(2025) demonstrate that integrating diverse reasoning pathways improves search-based reasoning,
while Gao et al. (2025a) show the benefits of cross-model collaboration in structure-based drug de-
sign. Similarly, ensemble methods such as Huang et al. (2024) and Wang et al. (2023) propose novel
ways to combine outputs or probability distributions across heterogeneous LLMs. While most afore-
mentioned methods treat models as static entities, recent works have begun to incorporate training
into the collaborative loop. For instance, Wu et al. (2025b) introduce reinforcement fine-tuning to
transform models from passive responders into active collaborators. regarding heterogeneous col-
laboration, Lu et al. (2025) fine-tune small models to orchestrate fixed LLMs for cost-effective data
labeling, and Xu et al. (2025) train small models to decompose queries to assist black-box LLMs
in retrieval tasks. However, these approaches typically limit parameter updates to a single side of
the collaboration or distinct functional modules. In contrast, our work emphasizes dynamic co-
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evolution, where both large and small models jointly learn and evolve on the same optimization task
through shared experience.

2.2 EXPERIENCE LEARNING

The ability of LLM-based agents to continuously learn from experience has been recognized as a
critical step toward AGI (Zheng et al., 2025). Several approaches explore reinforcement learning
(RL) as a means of improving reasoning. For example, ML-agent (Liu et al., 2025b) apply online
RL for autonomous machine learning engineering, while CALM (Huang et al., 2025) and Evo-
Tune (Surina et al., 2025) combine RL with evolutionary search to refine heuristics and algorithms.
However, traditional RL often struggles with the capability boundary of base models. Works such
as RL-PLUS (Dong et al., 2025) and LUFFY (Yan et al., 2025) address this by introducing hybrid-
policy optimization or off-policy guidance. Complementary strategies, including ReLIFT (Ma et al.,
2025) and TAPO (Wu et al., 2025a), integrate supervised fine-tuning or structured external guidance
to capture knowledge beyond the reach of RL. These methods show that a single LLM can incre-
mentally improve through experience, but they remain limited by the inherent ceiling of one model.
Our approach differs by enabling multi-model collaborative experience learning, where small mod-
els benefit from learning while also enriching the exploration capacity of larger models, forming a
co-evolutionary loop.

2.3 EVOLUTIONARY ALGORITHMS

A rapidly growing body of work explores integrating LLMs with evolutionary algorithms for opti-
mization and design. For example, FunSearch (Romera-Paredes et al., 2024), EoH (Liu et al., 2024)
and MEoH (Yao et al., 2025) demonstrate that LLMs can serve as generators for heuristics or al-
gorithms in combinatorial optimization problems. Reflective mechanisms further enhance search
efficiency, as seen in REEVO (Ye et al., 2024) and ML-master (Liu et al., 2025a), where memory or
reflection guides iterative exploration. Evolutionary methods have also been applied in specialized
domains, including prompt evolution for jailbreak attacks (Liu et al., 2023) or over-refusal mitiga-
tion (Wu et al., 2025c). More recent works such as Alphaevolve (Novikov et al., 2025) and Dat et al.
(2025) introduce evaluator feedback loops, but still treat LLMs as static generators within the search
process. Overall, while these studies validate the synergy between LLMs and evolutionary computa-
tion, they typically lack parameter-level adaptation or multi-model dynamics. Our contribution is to
close this gap by combining evolutionary search with experience-driven training and collaborative
co-evolution across models.

3 PRELIMINARY

3.1 REINFORCEMENT LEARNING (RL) AND DIRECT PREFERENCE OPTIMIZATION (DPO)

In Reinforcement Learning (RL), an agent learns a policy π(a | s), which defines the probability of
taking action a given state s. The objective is to maximize the expected cumulative reward:

J(π) = Eτ∼π

[
T∑

t=0

γtr(st, at)

]
, (1)

where τ = (s0, a0, . . . , sT ) is a trajectory, r(st, at) is the reward at step t, and γ ∈ (0, 1] is the
discount factor.

Direct Preference Optimization (DPO) replaces explicit rewards with pairwise preferences over tra-
jectories. Given a preferred trajectory τ+ and a dispreferred one τ−, the DPO loss is:

LDPO(π) = −E(τ+,τ−)

[
log σ

(
β
(
log

π(τ+)

πref(τ+)
− log

π(τ−)

πref(τ−)

))]
, (2)

where πref is a frozen reference model, σ is the sigmoid function, and β controls preference sharp-
ness.
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3.2 SUPERVISED FINE-TUNING (SFT)

Supervised Fine-Tuning (SFT) adapts a pre-trained LLM by minimizing the negative log-likelihood
(NLL) of reference outputs y = (y1, . . . , yT ) given a prompt x:

LSFT(θ) = −
T∑

t=1

log pθ(yt | x, y<t). (3)

This objective encourages the model to replicate high-quality, task-specific examples.

3.3 GENERATIVE FLOW NETWORKS (GFLOWNETS)

GFlowNets aim to generate diverse trajectories τ = (s0 → s1 → · · · → sT ) such that their
probability is proportional to a reward function R(sT ):

Pθ(τ) ∝ R(sT ). (4)

This is enforced through the flow matching constraint, ensuring that the incoming and outgoing
flows at each state are balanced:∑

s′: s→s′

Fθ(s→ s′) =
∑

s′′: s′′→s

Fθ(s
′′ → s), (5)

where Fθ(s→ s′) is the probability flow along an edge.

4 METHODOLOGY

We propose Multi-LLM Collaborative Co-evolution (MCCE), a unified and general-purpose opti-
mization framework for complex discrete problems, demonstrated here in molecular design. As
shown in Figure 1, the system operates through an iterative collaboration between two distinct
LLMs: a powerful but frozen model and a lightweight, trainable local model. The frozen LLM
provides robust global exploration, while the local model continuously refines its policy by learning
from successful search trajectories, forming a self-improving feedback loop. To validate MCCE,
we adopt a challenging five-objective molecular optimization task, jointly targeting QED, synthetic
accessibility (SAscore), DRD2 binding, GSK3β binding, and JNK3 binding. This setting builds on
recent benchmarks such as ExLLM (Ran et al., 2025) and MoLLEO (Wang et al., 2024), which em-
phasize that realistic drug discovery requires balancing multiple properties. While MoLLEO showed
the benefit of LLM-based evolutionary operators, its evaluation was restricted to three objectives.
By extending to five objectives, we align with prior work while pushing toward more realistic, high-
dimensional challenges, providing a rigorous test of MCCE’s adaptability.

4.1 OVERALL FRAMEWORK

The proposed MCCE framework operates in an iterative evolutionary loop, where large language
models (LLMs) act as adaptive genetic operators. The overall process can be divided into four key
stages: initialization, generation, evaluation, and update with learning.

Stage 1: Initialization. Let Pt denote the population pool at generation t, consisting of candidate
molecules. The process begins with an initial population P0, which can be sampled either from an
external database or generated by a pretrained LLM:

P0 = {c1, c2, . . . , cM}, ci ∼ πinit(·), (6)

where πinit represents the initialization distribution.

Stage 2: Candidate Generation. At each generation t, two parents p1, p2 ∈ Pt are selected
according to a selection strategy (e.g., tournament or fitness-proportional selection). Given the pair
(p1, p2) and a task-specific prompt function prompt(p1, p2), the LLM-based operator produces two
new candidates:

(c1, c2) ∼ πLLM(· | prompt(p1, p2)). (7)
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Figure 1: Overview of the proposed MCCE framework. The system begins with user interac-
tion and population initialization based on the problem definition and evaluation criteria. In the
candidate generation stage, a frozen API-based LLM and a trainable local LLM collaborate to pro-
pose new molecules. These are evaluated by the multi-objective evaluation module, which applies
Pareto selection to maintain a balanced population, while breakthrough solutions are stored as expe-
rience. In the update and learning stage, similarity-based data synthesis constructs preference pairs
from past trajectories, and the local model is refined via DPO training. This creates a self-improving
feedback loop where global exploration (API LLM) and local adaptation (trainable LLM) co-evolve
toward progressively optimized solutions.

Since each invocation of the operator generates exactly two candidates, constructing a full popula-
tion of size M requires

M

2
generations of prompts. (8)

This process is repeated with different parent pairs until the entire offspring set is produced. The op-
erator πLLM alternates between a frozen API model and a locally trainable model, thereby balancing
global exploration (via frozen LLM) and local adaptation (via trainable LLM).

Stage 3: Multi-Objective Evaluation. Each generated candidate c is evaluated using a multi-
objective scoring function:

s(c) =
[
s1(c), s2(c), . . . , sK(c)

]
, (9)

where sk(c) is the score under the k-th objective (e.g., drug-likeness, synthesizability, or binding
affinity). All scores are normalized to a common scale:

ŝk(c) =
sk(c)− µk

σk
, (10)

where µk and σk are the mean and standard deviation of scores in the current population.
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Stage 4: Update and Learning. The next-generation population Pt+1 is formed by applying Pareto
front selection, which preserves non-dominated solutions while maintaining diversity. Meanwhile,
after every N generated candidates, successful trajectories

(prompt(p1, p2) → (c1, c2) → s(c1), s(c2))

are stored as experience D. This dataset is then used to refine the trainable LLM. Formally, the
model parameters are updated as

πLLM ←− Update(πLLM,D), (11)

where Update(·) denotes an abstract learning procedure based on the accumulated experience. This
establishes a closed-loop cycle of generation–evaluation–learning–evolution.

4.2 WHICH TRAINING PARADIGM BEST SUPPORTS EXPERIENCE-DRIVEN LEARNING?

A central question in our framework is how to effectively refine the local model’s policy through ac-
cumulated experience. To this end, we systematically explored several candidate training paradigms
and evaluated their suitability for stabilizing learning while preserving the model’s exploratory ca-
pacity. Our findings reveal critical limitations in conventional approaches:

Supervised Fine-Tuning (SFT). We first adopted SFT by treating “breakthrough” generations as
positive training samples. Concretely, if a generated molecule achieved a score higher than all of its
parents, the corresponding trajectory was labeled as effective data. However, this approach led to
catastrophic forgetting: after training, the uniqueness of generated molecules dropped substantially.
This indicates that the local model tended to memorize successful chemical formulas rather than
internalize a generalizable exploration strategy, thereby losing its ability to propose genuinely novel
solutions.

Reinforcement Learning (RL). Next, we experimented with reinforcement learning using the scor-
ing function as the reward signal. In practice, this training proved highly unstable. Strong negative
rewards for low-scoring molecules caused the model to collapse, as it struggled to infer the under-
lying reasons for the penalties and consequently lost its ability to generate valid candidates. The
mapping between molecular structures and their scores is inherently unpredictable for an LLM,
making explicit quantitative rewards unsuitable for stable RL training in this context.

Direct Preference Optimization (DPO). To overcome these issues, we adopted a DPO-based ap-
proach, which provides a more stable and sample-efficient training signal without requiring an ex-
plicit reward model. Initially, we constructed training pairs by contrasting high-scoring versus low-
scoring molecules under the same prompt. However, we observed unstable loss oscillations: since
identical prompts were associated with conflicting responses, the model often became confused.
To address this, we developed a similarity-based data synthesis method, which ensures that pref-
erence pairs are constructed from structurally comparable molecules. This adjustment significantly
improved both training stability and data efficiency. The details of this method are elaborated in
Section 4.3.

4.3 SIMILARITY-BASED DATA SYNTHESIS

Our DPO training requires triplets of the form (q, τ+, τ−) where q is a query (prompt), τ+ is a
preferred (chosen) trajectory and τ− is a rejected trajectory. To construct such triplets stably and to
mitigate distributional shift between the frozen API model and the local trainable model, we propose
a similarity-based data synthesis pipeline. The pipeline proceeds in three phases: (1) collect candi-
date pool and compute similarity statistics, (2) filter and stratify candidates by score and similarity,
(3) assemble DPO triplets with fallback rules.

Notation. LetH = {q1, q2, . . . , q|H|} be the historical prompts (ordered by time). For each prompt
qj we have a set of generated candidates Cj = {cj,1, cj,2, . . . }, produced by either the frozen LLM
or the local model during the recent evolution window. Let s(c) denote the (multi-objective) score of
candidate c (we use a scalarized score or a ranking for stratification). Define a molecular similarity
function sim(c, q) ∈ [0, 1], computed by a fingerprint-based metric (e.g., Tanimoto on Morgan
fingerprints) or any task-appropriate similarity ϕ(·, ·).

6
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Phase 1 — similarity statistics. Collect the similarity values across the considered history and
models:

S =
{
sim(c, q) : q ∈ H, c ∈ Cq

}
.

Compute the empirical mean and standard deviation:

µ =
1

|S|
∑
x∈S

x, σ =

√
1

|S|
∑
x∈S

(x− µ)2. (12)

We will use (µ, σ) as global similarity statistics to reduce distributional mismatch between models
(both models’ outputs contribute to S).

Define a global similarity filter:
F = { c | µ− σ ≤ sim(c, q) ≤ µ+ σ }. (13)

Only candidates in F are considered for DPO pair construction (this ensures candidates are within
one standard deviation of the empirical similarity distribution).

Phase 2 — score stratification and similarity windows. Let α denote the quantile threshold used
to form top/bottom pools (we use α = 0.3 by default). Let Call =

⋃
q Cq and sort Call by score s(·).

Define
Thigh = { top α fraction of Call }, Tlow = { bottom α fraction of Call }.

We further define nested similarity intervals (from strict to relaxed):
I1 = [µ+ 2

3σ, µ+ σ], I2 = [µ+ 1
3σ, µ+ σ], I3 = [µ, µ+ σ]. (14)

These intervals prioritize chosen candidates that are both high-scoring and reasonably similar to the
prompt (thus reducing contradictory prompt–response pairs that destabilize training).

Phase 3 — per-prompt pair construction with fallback rules. To construct stable DPO training
triplets, we design a per-prompt pair construction algorithm that selects a preferred (τ+) and a
rejected (τ−) candidate for each prompt q. As outlined in Algorithm 1, the procedure first filters
candidates by similarity, then attempts to select τ+ from the high-score pool and τ− from the low-
score pool using progressively relaxed similarity intervals (I1 → I2 → I3), and finally falls back
to broader score ranges (Top/Bottom-50%) if no candidates are available. Each valid pair yields a
triplet (q, τ+, τ−) used for DPO training.

For clarity, we provide in the main text a simplified version of the algorithm, while a fully detailed
pseudocode with all implementation nuances and fallback rules is presented in Appendix, ensuring
reproducibility and transparency of our method.

Algorithm 1: Simplified Per-Prompt DPO Pair Construction
Input: Recent promptsH, candidate sets {Cq}
Output: Triplets (q, τ+, τ−)
Select recent L prompts fromH;
foreach prompt q do

Filter candidates CFq ;
Pick τ+ from high-score pool with similarity in I1→I2→I3→Top-50%;
Pick τ− from low-score pool with similarity in I1→I2→I3→Bottom-50%;
Record triplet (q, τ+, τ−);

Dataset and hyperparameters. Let L be the number of recent prompts used and r the number of
pairs per prompt (default r = 1). The resulting DPO dataset size is at most D ≤ L · r. The key
hyperparameters are α (score quantile, default 0.3), the similarity relaxation windows I1, I2, I3, and
the global similarity acceptance band µ ± σ. These are chosen to (i) favor high-quality examples,
(ii) ensure chosen/rejected pairs are structurally comparable, and (iii) avoid pairing identical prompt
with widely varying responses that confuse the learner.

Why this reduces distribution shift. By (a) computing µ, σ from the union of both models’ outputs,
(b) enforcing the global similarity filter F , and (c) selecting chosen/rejected candidates from narrow
similarity windows, we ensure that the training pairs are consistent with the local model’s typical
output distribution. This reduces the likelihood that the local model is asked to map a single prompt
to mutually contradictory responses and therefore stabilizes DPO optimization.

7
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate MCCE in the domain of multi-objective drug design, a highly challenging problem that
requires navigating an enormous chemical space to identify molecules balancing multiple, often con-
flicting, properties. For the frozen, closed-source LLMs, we leveraged the GPT-4o-2024-05-13 and
Gemini-2.5-flash-nothinking models through their APIs, while the local trainable component was in-
stantiated with Qwen2.5-7B-Instruct. The initial population of candidate molecules was constructed
by randomly sampling 100 molecules from the ZINC dataset, ensuring sufficient diversity at the start
of evolution. The generated molecules were assessed against five standard drug-likeness objectives,
and the final optimization outcome was measured using the Hypervolume Indicator (HV), a widely
adopted metric in multi-objective optimization that jointly reflects solution quality and diversity. For
training paradigms, we implemented SFT and RL baselines using the verl library, while our DPO
method was implemented with the trl library to ensure stable preference-based optimization.

5.2 MAIN RESULTS

5.2.1 OVERALL PERFORMANCE

Table 1 provides a comprehensive evaluation across three critical dimensions. First, in terms of Inter-
nal Mechanisms, our DPO-driven approach significantly outperforms both single-model baselines
and alternative training paradigms (SFT and RL). It achieves the highest Top-1 Fitness by effec-
tively mitigating catastrophic forgetting and training instability. Second, compared against SOTA
Baselines such as GFlowNet and DyMol, MCCE demonstrates superior optimization capability. It
consistently discovers molecules with higher fitness while maintaining competitive diversity and va-
lidity scores. Finally, the Ablation Studies validate the optimality of our design choices, confirming
that the proposed similarity-based data synthesis (α = 0.30), asymmetric collaboration split (50/32),
and frequent model updates are essential factors for maximizing system performance.Figure 2 and
Table 1 present a clear comparison of the collaborative system’s performance with and without pa-
rameter training, unequivocally demonstrating that the continuous learning mechanism is crucial for
long-term optimization gains.

Figure 2: Overall performance comparison across different baselines.(Left) The curve of avg top1
(mean ± std) shows that our DPO-enhanced co-evolutionary framework consistently outperforms
all baselines, steadily increasing the average quality of the top-ranked molecule throughout the opti-
mization process.(Right) The curve of hypervolume (mean ± std) further highlights the superiority
of our approach: MCCE with DPO training achieves the largest Pareto front coverage, demonstrat-
ing both improved solution quality and diversity.In both metrics, our method significantly surpasses
single-model baselines (e.g., Qwen2.5-7B-Instruct, GPT-4o-2024-05-13) as well as alternative co-
evolution variants (SFT and RL), achieving state-of-the-art performance.
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Table 1: Comprehensive performance comparison on multi-objective optimization tasks. The table
is categorized into: (1) Internal Mechanisms & Training Paradigms, analyzing the impact of
different learning strategies and model components; (2) Comparison with SOTA Baselines; and (3-
5) Detailed Ablation Studies on similarity, split ratio, and update frequency. Results are reported as
mean± std over 5 runs. Best results within each section are in bold, and second-best are underlined.

Model Top1 F Top10 F AUC-Top10 HV Diversity Uniqueness Validity

Internal Mechanisms & Training Paradigms
qwen2.5-7b-instruct 4.07 ± 0.04 4.05 ± 0.04 3.91 ± 0.03 0.516 ± 0.102 0.543 ± 0.047 0.576 ± 0.018 0.838 ± 0.025
gpt-4o-2024-05-13 4.16 ± 0.15 4.14 ± 0.12 3.99 ± 0.08 0.661 ± 0.214 0.497 ± 0.035 0.702 ± 0.056 0.902 ± 0.022
collaboration 4.19 ± 0.15 4.13 ± 0.12 3.96 ± 0.06 0.695 ± 0.189 0.524 ± 0.048 0.750 ± 0.041 0.838 ± 0.024
rl coevolve 4.19 ± 0.17 4.16 ± 0.15 3.99 ± 0.09 0.709 ± 0.219 0.509 ± 0.059 0.683 ± 0.045 0.893 ± 0.021
sft coevolve 4.24 ± 0.25 4.20 ± 0.22 3.99 ± 0.11 0.709 ± 0.288 0.478 ± 0.070 0.571 ± 0.047 0.905 ± 0.020
MCCE (dpo coevolve) 4.35 ± 0.17 4.28 ± 0.15 4.02 ± 0.09 0.847 ± 0.138 0.484 ± 0.063 0.660 ± 0.018 0.820 ± 0.022

- dpo coevolve:local 4.27 ± 0.16 4.22 ± 0.14 4.01 ± 0.03 0.826 ± 0.126 0.555 ± 0.055 0.633 ± 0.025 0.759 ± 0.030
- dpo coevolve:api 4.35 ± 0.17 4.28 ± 0.14 4.03 ± 0.07 0.855 ± 0.135 0.505 ± 0.062 0.784 ± 0.016 0.907 ± 0.016

Comparison with SOTA Baselines
GB-GA(Jensen, 2019) 4.02 ± 0.10 3.98 ± 0.10 3.86 ± 0.05 0.643 ± 0.268 0.623 ± 0.047 0.821 ± 0.032 1.000 ± 0.000
REINVENT(Olivecrona et al., 2017) 4.23 ± 0.20 4.14 ± 0.22 3.93 ± 0.13 0.742 ± 0.259 0.640 ± 0.111 0.690 ± 0.132 0.979 ± 0.002
MoLLEO(Wang et al., 2024) 4.19 ± 0.08 4.08 ± 0.02 3.95 ± 0.02 0.860 ± 0.088 0.670 ± 0.015 0.575 ± 0.075 0.938 ± 0.007
GFlowNet(Kim et al., 2024) 4.24 ± 0.25 4.20 ± 0.21 4.08 ± 0.15 0.871 ± 0.288 0.633 ± 0.066 0.349 ± 0.004 0.998 ± 0.000
DyMol(Shin et al., 2024) 4.23 ± 0.17 4.16 ± 0.13 4.00 ± 0.05 0.868 ± 0.146 0.581 ± 0.069 0.986 ± 0.005 1.000 ± 0.000
MCCE (Ours) 4.35 ± 0.17 4.28 ± 0.15 4.02 ± 0.09 0.847 ± 0.138 0.484 ± 0.063 0.660 ± 0.018 0.820 ± 0.022

Ablation: Similarity Strategy
dpo coevolve (α = 0.30) 4.35 ± 0.17 4.28 ± 0.15 4.02 ± 0.09 0.847 ± 0.138 0.484 ± 0.063 0.660 ± 0.018 0.820 ± 0.022
dpo coevolve (α = 0.30, only I3) 4.32 ± 0.14 4.21 ± 0.10 3.99 ± 0.08 0.848 ± 0.086 0.532 ± 0.059 0.694 ± 0.058 0.829 ± 0.022
dpo coevolve (α = 0.40) 4.36 ± 0.12 4.27 ± 0.07 3.99 ± 0.05 0.843 ± 0.091 0.462 ± 0.009 0.664 ± 0.072 0.816 ± 0.025
dpo coevolve (α = 0.20) 4.33 ± 0.11 4.26 ± 0.06 4.02 ± 0.06 0.828 ± 0.091 0.483 ± 0.030 0.651 ± 0.052 0.836 ± 0.047
dpo coevolve (embedding) 4.29 ± 0.12 4.22 ± 0.07 3.98 ± 0.05 0.847 ± 0.104 0.515 ± 0.060 0.688 ± 0.038 0.825 ± 0.023

Ablation: Call Split (API/Local)
50/50 4.31 ± 0.12 4.22 ± 0.08 3.99 ± 0.05 0.838 ± 0.120 0.453 ± 0.061 0.641 ± 0.082 0.816 ± 0.038
50/32 4.35 ± 0.17 4.28 ± 0.15 4.02 ± 0.09 0.847 ± 0.138 0.484 ± 0.063 0.660 ± 0.018 0.820 ± 0.022
50/16 4.25 ± 0.20 4.19 ± 0.15 3.96 ± 0.06 0.734 ± 0.249 0.462 ± 0.015 0.656 ± 0.111 0.809 ± 0.056

Ablation: Update Frequency
500 candidates 4.28 ± 0.17 4.21 ± 0.12 3.98 ± 0.06 0.796 ± 0.205 0.493 ± 0.054 0.658 ± 0.099 0.848 ± 0.048
200 candidates 4.32 ± 0.17 4.27 ± 0.16 4.02 ± 0.11 0.856 ± 0.160 0.500 ± 0.055 0.626 ± 0.033 0.823 ± 0.019
1 round 4.35 ± 0.17 4.28 ± 0.15 4.02 ± 0.09 0.847 ± 0.138 0.484 ± 0.063 0.660 ± 0.018 0.820 ± 0.022

5.2.2 THE CO-EVOLUTIONARY CURVE AND OUTPUT DISTRIBUTION ANALYSIS

To highlight the effectiveness of our collaborative design, we present two complementary visualiza-
tions in Figure 3.

(Left) The co-evolutionary curve. This curve captures the dynamics of how the frozen large LLM
and the fine-tuned local model collaborate throughout the optimization process. The large LLM
consistently provides broad global exploration, generating diverse candidates guided by its rich prior
knowledge. In parallel, the local model—refined through iterative learning from breakthrough tra-
jectories—adapts to the search space and performs targeted exploitation. The alternating interplay
between these two roles prevents premature convergence, increases diversity, and steadily drives the
optimization toward superior regions of the search space. The curve clearly illustrates that their
collaboration outperforms the trajectory of either model alone.

(Right) Output distribution analysis. To further examine the learning effect, we analyze the qual-
ity distribution of molecules generated by three models: the frozen LLM, the initial (untrained) local
model, and the fine-tuned local model. Using a no-parent prompt, we sample 1,000 molecules from
each model. The histogram shows that the trained local model produces a distribution shifted sig-
nificantly toward higher scores, surpassing both the frozen LLM and the untrained local baseline.
This confirms that the fine-tuning procedure successfully internalizes experience, allowing the lo-
cal model to approximate the distribution of high-quality molecules. Combined with the steadily
decreasing training loss, this analysis demonstrates that our framework not only generates strong
solutions but also achieves continual improvement through experience-driven learning.

5.3 GENERALIZATION TO COMBINATORIAL OPTIMIZATION

To further validate the universality of the MCCE framework beyond molecular design, we extended
our evaluation to three classic NP-hard problems: the Circle Packing problem, the Multi-Objective
Traveling Salesman Problem (MOTSP), and the Multi-Objective Capacitated Vehicle Routing Prob-
lem (MOCVRP).
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Figure 3: (Left) The co-evolutionary curve showing how the large LLM and local model comple-
ment each other to achieve superior trajectories. (Right) Output distribution analysis of molecules
generated from the frozen LLM, the initial local model, and the fine-tuned local model.

Circle Packing: Requires placing n non-overlapping circles in a unit square to maximize the com-
mon radius. We compare our results against long-standing community records.

MOTSP: Seeks a single Hamiltonian circuit that, starting and ending at a given depot, visits every
city exactly once while simultaneously minimizing multiple conflicting objectives.

MOCVRP: Designs a set of capacitated vehicle routes that originate from a common depot, serve
all customer demands, and jointly minimize the total travel distance and the makespan.

Benchmark instances for the combinatorial tasks were generated following Lin et al. (2022). We
adopt Hyper-volume (HV) as the performance indicator. Baselines include the solver Pymoo (Blank
& Deb, 2020) and recent search-based algorithms such as ReEvo, AlphaEvolve, AIDE (Jiang et al.,
2025), and FunSearch. The results are shown in Table 2 and Table 3.

Table 2: Hypervolume comparison on Combinatorial
Optimization. MCCE achieves SOTA performance on
MOCVRP and remains highly competitive on MOTSP
against recent baselines.

Method MOTSP (n = 100) MOCVRP (n = 100,m = 20)

Pymoo 0.983488 0.955802
AIDE 1.020798 1.005552
FunSearch 1.023301 1.032126
ReEvo 1.028890 1.034541
AlphaEvolve 1.029279 1.031803
MCCE 1.025206 1.048843

Table 3: Comparison of MCCE
against current community records for
the Circle Packing problem. MCCE
successfully discovers configurations
surpassing the previous best-known
results.

Size Current Record MCCE

n = 26 2.634+ 2.635983
n = 31 2.889+ 2.889970

6 CONCLUSION

In this work, we presented MCCE, a collaborative co-evolutionary framework that unites a frozen
large language model with a trainable local model to tackle large-scale multi-objective discrete opti-
mization. Our approach establishes a closed feedback loop where the LLM drives global exploration
while the local model progressively improves through experience-driven learning, yielding a mutu-
ally reinforcing synergy rather than one-way distillation. Extensive experiments in multi-objective
drug design demonstrate that this hybrid paradigm achieves state-of-the-art performance and sig-
nificantly surpasses existing baselines. Beyond its empirical success, MCCE highlights a broader
principle: hybrid AI systems that combine powerful static models with adaptive, trainable coun-
terparts can unlock new capabilities in complex problem-solving. Looking forward, we envision
extending MCCE to other domains of discrete optimization and exploring more adaptive mecha-
nisms for inter-model communication and dynamic balance, further strengthening the generality
and impact of this paradigm.
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A APPENDIX

A.1 PROMPT EXAMPLE

Suggest new molecules that satisfy the following requirements: 1. decrease the SA value. 2. de-
crease the DRD2 value. 3. increase the QED value. 4. decrease the GSK30̆3b2 value. 5. increase
the JNK3 value.

sa: SA measures how easily a molecule can be synthesized based on its structural complexity. Sim-
plifying a molecule by reducing complex ring systems or functional groups can lower SA, making
synthesis easier, while adding complex structures can increase SA, making synthesis harder.

drd2: Dopamine receptor D2 (DRD2) is a receptor involved in the modulation of neurotransmission
and is a target for various psychiatric and neurological disorders. Adding functional groups like
hydroxyl or halogen atoms to aromatic rings can enhance binding affinity to DRD2. Removing
aromaticity or introducing bulky groups near the binding sites often decreases DRD2 activity.

qed: QED (Quantitative Estimate of Drug-likeness) is a measure that quantifieshow ’drug-like’ a
molecule is based on properties such as molecular weight,solubility, and the number of hydrogen
bond donors and acceptors.Adding functional groups that improve drug-like properties (e.g., small
molecular size,balanced hydrophilicity) can increase QED, while introducing large, complex, or
highly polar groups can decrease it.

gsk3b: Glycogen synthase kinase-3 beta (GSK30̆3b2) is an enzyme involved in cellular pro-
cesses like metabolism and apoptosis, and is a therapeutic target for cancer and neurological dis-
eases.Adding polar groups, such as hydroxyls, can improve hydrogen bonding with GSK30̆3b2’s
active site.Introducing steric hindrance or highly hydrophobic regions can reduce interactions with
GSK30̆3b2.

jnk3: c-Jun N-terminal kinase 3 (JNK3) is a kinase involved in stress signaling and is targeted
for neuroprotection in diseases like Alzheimer’s.Introducing small polar or electronegative groups
can enhance binding affinity to JNK3.Removing polar functional groups or adding large, bulky
substituents can reduce activity by obstructing the active site.

Give me 2 new molecules that fit the features.

You can do it by applying crossover on the given points and based on your knowledge. The molecule
should be valid.

Do not write code. Do not give any explanation. Each output new molecule must start with mol and
end with /mol in SIMLES form.Your answer can only contain two molecules and end immediately.

A.2 DPO LOSS ANALYSIS

Figure 4: loss Analysis

Figure 4 plots the training loss curve of our DPO optimization. We observe that as the training
step increases, the overall loss gradually decreases and the peak values become progressively lower.
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This trend indicates that the local model is steadily learning and aligning with the distribution of
high-quality molecules. The occasional sharp peaks correspond to the introduction of newly syn-
thesized training data, which temporarily increases the difficulty of optimization. Importantly, the
diminishing magnitude of these peaks over time reflects that the model is effectively absorbing new
knowledge while maintaining stability, thereby confirming the robustness of our similarity-based
data synthesis strategy.

A.3 TRAINING DETAILS

To ensure stability during Direct Preference Optimization (DPO) training, we adopt the initial un-
trained local model πθ0 as the reference model πref in the DPO loss. For each training triplet
(q, τ+, τ−), the DPO objective is

ℓDPO(q, τ
+, τ−) = − log σ

(
β
[
log

πθ(τ
+ | q)

πθ0(τ
+ | q)

− log
πθ(τ

− | q)
πθ0(τ

− | q)

])
, (15)

where σ(·) is the sigmoid function and β > 0 is a scaling parameter. By fixing πref = πθ0 , we pre-
vent drift of the reference distribution and guarantee that the optimization process always measures
progress relative to the original model. This prevents instability that might occur if the reference
model itself were updated during training. In practice, we observe a monotonically decreasing
average loss curve, which provides evidence that the local model is gradually aligning with the
distribution of high-quality molecules.

Training frequency and dataset size. We denote by f the update frequency (number of generated
candidates between two training updates) and by |D| the size of the synthesized DPO dataset. Both
hyperparameters significantly influence stability and performance. Empirically, smaller f (i.e., more
frequent updates) accelerates adaptation but may introduce variance due to limited data per update,
while larger |D| provides smoother gradients at the cost of slower responsiveness.

Comparison across paradigms. We conducted extensive hyperparameter sweeps for several train-
ing paradigms, including SFT, offline RL, GFlowNets, and our DPO method. LetM denote the set
of all hyperparameter configurations explored for a given method m. The optimal performance is
reported as

Perf(m) = max
λ∈M

E[s(c) | c ∼ πm,λ], (16)

where s(c) is the evaluation score of molecule c and πm,λ is the trained model with hyperparameter
configuration λ. Across all settings, our DPO-based approach consistently achieved higher Perf(m)
than SFT and offline RL, and demonstrated greater robustness to hyperparameter variations.

A.4 DETAILED ALGORITHM FOR SIMILARITY-BASED DATA SYNTHESIS

For completeness, we provide the full pseudocode of the per-prompt DPO pair construction proce-
dure, including all fallback rules and implementation details.
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Algorithm 2: Per-Prompt DPO Pair Construction with Fallback Rules
Input: Historical promptsH, candidate sets {Cq}, similarity filter F , high/low score pools

Thigh, Tlow, intervals I1, I2, I3, max recent prompts L, max pairs per prompt r
Output: Set of DPO triplets {(q, τ+, τ−)}
Select the most recent L prompts fromH;
foreach prompt q in selected prompts do

Initialize CFq ← Cq ∩ F ;
for i← 1 to r do

Try to select τ+ from CFq ∩ Thigh ∩ I1;
if τ+ not found then

Relax to I2;
If still none, relax to I3;
If still none, broaden to Top-50% pool;

else
Keep τ+

If multiple candidates satisfy, choose highest-scoring or sample uniformly;
Try to select τ− from CFq ∩ Tlow ∩ I1;
if τ− not found then

Relax to I2, then I3, then Bottom-50% pool;
else

Keep τ−

if τ+ or τ− missing then
Optionally skip this prompt or draw a random sample from the respective 50% pool;

Record triplet (q, τ+, τ−) and optionally store s(τ±), sim(τ±, q);

A.5 ADDITIONAL CO-EVOLUTIONARY CURVES

To further validate the effectiveness of our collaborative co-evolution framework, we provide four
additional co-evolutionary curves in Figure 5. These curves consistently demonstrate the same trend
observed in the main text: the frozen large LLM provides broad exploration by leveraging its prior
knowledge, while the local model—progressively refined through experience learning—contributes
focused exploitation and adaptation to the evolving search space. The alternating interplay between
exploration and exploitation prevents premature convergence, enhances diversity, and steadily drives
the optimization toward superior solutions. Importantly, across all cases, the collaborative trajectory
consistently surpasses that of either model operating alone, confirming the robustness and generality
of the co-evolutionary mechanism.

A.6 SUPPLEMENTARY ANALYSIS OF SYNTHETIC ACCESSIBILITY

To assess the practical applicability of the molecules generated by our MCCE framework, we rig-
orously evaluated their Synthetic Accessibility (SA). We utilized the SA Oracle provided by the
Therapeutics Data Commons (TDC)1, instantiated via Oracle(name = ’SA’).

The SA score estimates the difficulty of synthesizing a given molecule based on a combination of the
molecule’s fragment contributions and molecular complexity. The metric is calculated via RDKit
using a set of chemical rules originally defined by Ertl & Schuffenhauer (2009). This implementa-
tion is widely adopted in molecular generation benchmarks, including the Molecular Sets (MOSES)
platform (Polykovskiy et al., 2020).

The scoring scale follows these empirical guidelines:

• 1.0 – 3.0: Easy to synthesize.
• 3.0 – 6.0: Intermediate to difficult.
• > 6.0: Very difficult or impossible to synthesize.

1https://tdcommons.ai/functions/oracles/#synthetic-accessibility-sa
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Figure 5: Additional Co-evolutionary Curves

A lower score indicates better synthesizability, which is a critical constraint in real-world drug dis-
covery pipelines.

We conducted a statistical analysis on the final populations (‘final pops‘) obtained after 5 indepen-
dent evolutionary runs. The aggregated statistics for the Synthetic Accessibility scores are presented
in Table 4.

Table 4: Statistical Analysis of Synthetic Accessibility (SA) Scores in Final Populations.

Metric Count (N ) Mean Std. Dev. Min Max
Synthetic Accessibility 250 2.00 0.22 1.49 3.06

As shown in Table 4, the generated molecules exhibit exceptional synthesizability profiles:

High Synthesizability: The mean SA score is 2.00, which falls well within the ”easy to synthe-
size” range (1–3). This is significantly lower than the typical threshold for intermediate difficulty,
suggesting that the generated candidates are chemically realistic and practical for wet-lab synthesis.

Concentrated Distribution: The standard deviation is low (0.22), and the range is narrow ([1.49,
3.06]). This indicates that the MCCE framework maintains a tight control over the chemical com-
plexity of the population. Unlike traditional evolutionary methods that might exploit scoring func-
tions by generating overly complex or chaotic structures, our collaborative co-evolution approach
effectively filters out ”hard-to-synthesize” outliers.

Successful Multi-Objective Constraint: It is important to note that these favorable SA scores were
achieved while simultaneously optimizing four other challenging objectives (DRD2, QED, GSK3β,
and JNK3). The fact that the maximum SA score observed is only 3.06 (borderline intermediate)
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demonstrates that MCCE successfully treats SA as a hard constraint. The local trainable model,
refined via DPO, appears to have internalized the implicit rules of chemical validity and simplicity,
avoiding the generation of unrealistic high-scoring artifacts.

In conclusion, the SA analysis confirms that the MCCE framework produces high-quality molecular
candidates that are not only theoretically potent (high binding affinity) but also practically viable for
synthesis.

A.7 COST ANALYSIS

To demonstrate the cost-effectiveness of the MCCE framework, we tracked the detailed computa-
tional resources and financial costs associated with a standard evolutionary run. The experiment was
conducted using the GPT-4o-2024-05-13 model as the frozen global explorer and a local trainable
model Qwen2.5-7B-Instruct on a high-performance compute node.

The breakdown of the computational budget and incurred costs for generating a total of 5,000 can-
didates (‘Budget candidates‘) is summarized in Table 5.

Table 5: Computational Cost and Resource Usage for MCCE (GPT-4o + Local Model). Statistics
are reported as Mean ± Std over multiple runs.

Metric Value / Specification
Target Population Budget 5,000 Candidates
Model Configuration (API / Local) 50 / 32
Hardware Infrastructure 8 × NVIDIA A800 (40GB)

Total LLM Calls 3471.14± 165.34
Total Wall-clock Time (Hours) 3.12± 0.31
Total API Cost (USD) $3.814 ± 0.457

The data in Table 5 highlights several key advantages of the collaborative co-evolution paradigm:

High Cost-Efficiency: The total financial cost for accessing the proprietary closed-source model
(GPT-4o) was remarkably low, averaging approximately $3.81 per run. This is significantly more
economical than pure API-based evolutionary methods, which typically require extensive token con-
sumption for every generation step. By offloading a significant portion of the localized search and
exploitation to the local trainable model, MCCE drastically reduces the dependency on expensive
API calls.

Reasonable Time Complexity: Utilizing an 8×A800 GPU cluster, the entire evolutionary pro-
cess (including DPO fine-tuning and candidate evaluation) concluded in roughly 3.12 hours. This
demonstrates that the framework is computationally feasible for iterative scientific discovery loops,
where rapid turnaround is essential.

Effective Collaboration: The total number of LLM calls (≈ 3, 471) relative to the candidate budget
(5,000) suggests an efficient generation strategy. The difference implies that the system effectively
utilizes crossover, mutation, and the local model’s generation capabilities to expand the population,
further optimizing the resource-to-performance ratio.

These findings confirm that MCCE offers a scalable and sustainable path for leveraging Large Lan-
guage Models in optimization, minimizing the ”token tax” usually associated with state-of-the-art
foundation models.

A.8 IMPACT OF SIMILARITY METRICS AND DPO STABILITY ANALYSIS

A core finding of our experiments is that the stability of Direct Preference Optimization (DPO)
within a co-evolutionary framework is heavily dependent on the structural similarity of the train-
ing pairs. Regardless of the specific mathematical definition of the metric, as long as the metric
effectively reflects the pairwise similarity between the chosen (τ+) and rejected (τ−) trajectories, it
significantly stabilizes the training process.
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Our experiments demonstrate that DPO training data synthesis without similarity constraints leads
to high variance and gradient conflicts, as the model is forced to compare candidates from disjoint
distributions. In contrast, enforcing a similarity constraint ensures that the model learns from consis-
tent, local improvements (i.e., ”how to make a good molecule slightly better”) rather than confusing
global jumps.

Figure 6 visualizes this phenomenon. The loss curve without similarity filtering (a) exhibits se-
vere oscillations and instability, whereas the curve with similarity-based data synthesis (b) remains
smooth and converges steadily.

(a) Without Similarity Filter (b) With Similarity Filter

Figure 6: Comparison of DPO training stability. (a) Without similarity constraints, the loss is highly
volatile due to distributional mismatch. (b) With our similarity-based data synthesis, the training
loss is stable and converges smoothly, confirming the effectiveness of the proposed strategy.

While our primary experiments on molecular optimization utilized domain-specific molecular fin-
gerprints (e.g., Tanimoto similarity on Morgan fingerprints), we extended our framework to other
combinatorial and geometric domains by adopting embedding-based similarity metrics.

In these supplementary tasks, we found that mapping the decision variables (e.g., routes, coordi-
nates) into a latent embedding space and computing Cosine Similarity yielded equally effective
results. This confirms that the MCCE framework is not tied to a specific chemical metric but is a
generalizable paradigm dependent only on a reliable measure of ”distance” in the solution space.
Table 6 details the specific configurations used for each task type.

Table 6: Similarity metrics and configurations used across different optimization tasks. While
molecular tasks rely on discrete fingerprints, continuous and combinatorial tasks utilize embedding-
based cosine similarity.

Task Type Similarity Metric Embedding Content Normalization Similarity Range
Circle Packing Cosine Similarity Circle centers + radii L2 normalization [0, 1]
Molecule Optimization TDC Similarity Meta Molecular fingerprints (SMILES) N/A (external library) [0, 1]
Vehicle Routing Cosine Similarity Per-route (customer count, demand, distance) L2 normalization [0, 1]
Traveling Salesman Cosine Similarity Edge length sequences under two objectives L2 normalization [0, 1]

A.9 DETAILS OF MULTI-OBJECTIVE SELECTION MECHANISM

To strictly balance convergence quality and population diversity—thereby maximizing the Hyper-
volume (HV) indicator—we designed a Hybrid Elite-Diversity Selection Strategy. This strategy
constructs the next-generation population of size N by combining Single-Objective (SO) optimiza-
tion with Pareto-based diversity maintenance.

The population construction is divided into two phases:

• Elite Preservation (Top 50%): To ensure rapid convergence towards high-fitness regions,
the first half of the population (N/2) is selected solely based on the aggregated total score
(SO Selection). This acts as a strong exploitation signal.
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• Diversity Maintenance (Bottom 50%): To prevent the population from collapsing into a
single mode and to cover the Pareto front widely, the remaining N/2 slots are filled using
candidates from the optimal Pareto layers. In this phase, we enforce strict duplicate removal
to guarantee structural uniqueness.

The detailed algorithmic flow is as follows:

1. Elite Selection: Sort all candidates in the current pool by their aggregated fitness score
S(c). Select the top N/2 individuals to form the elite set Pelite.

2. Pareto Layering: Perform Non-Dominated Sorting on the entire candidate pool to parti-
tion it into Pareto ranksR1,R2, . . . ,Rk, whereR1 represents the non-dominated front.

3. Diversity Filling: Initialize the diversity set Pdiv = ∅. Iterate through ranks i = 1, 2, . . . :
• Sort candidates withinRi by total score.
• Sequentially add candidate c ∈ Ri to Pdiv if and only if c is chemically unique (i.e.,

its canonical SMILES string is not already present in Pelite ∪ Pdiv).
• Stop once |Pelite|+ |Pdiv| = N .

4. Final Population: Pnext = Pelite ∪ Pdiv .

By prioritizing rank-1 Pareto solutions while explicitly filtering duplicates, this method effectively
maintains a diverse set of high-quality trade-off solutions, directly contributing to the superior HV
and Uniqueness metrics observed in our experiments.
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