

000 001 002 003 004 005 MCCE: A FRAMEWORK FOR MULTI-LLM COLLABO- 006 RATIVE CO-EVOLUTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

ABSTRACT

032 Multi-objective discrete optimization problems, such as molecular design, pose
033 significant challenges due to their vast and unstructured combinatorial spaces.
034 Traditional evolutionary algorithms often get trapped in local optima, while ex-
035 pert knowledge can provide crucial guidance for accelerating convergence. Large
036 language models (LLMs) offer powerful priors and reasoning ability, making
037 them natural optimizers when expert knowledge matters. However, closed-source
038 LLMs, though strong in exploration, cannot update their parameters and thus
039 cannot internalize experience. Conversely, smaller open models can be contin-
040 ually fine-tuned but lack broad knowledge and reasoning strength. We intro-
041 duce Multi-LLM Collaborative Co-evolution (MCCE), a hybrid framework that
042 unites a frozen closed-source LLM with a lightweight trainable model. The sys-
043 tem maintains a trajectory memory of past search processes; the small model
044 is progressively refined via reinforcement learning, with the two models jointly
045 supporting and complementing each other in global exploration. Unlike model
046 distillation, this process enhances the capabilities of both models through mu-
047 tual inspiration. Experiments on multi-objective drug design benchmarks show
048 that MCCE achieves state-of-the-art Pareto front quality and consistently out-
049 performs baselines. These results highlight a new paradigm for enabling con-
050 tinual evolution in hybrid LLM systems, combining knowledge-driven explo-
051 ration with experience-driven learning. The code of MCCE is available on
052 https://anonymous.4open.science/r/MCCE_Anonymous-1F92
053

1 INTRODUCTION

032 Discrete optimization and multi-objective optimization problems are pervasive in real-world appli-
033 cations, ranging from logistics and scheduling to scientific discovery and molecular design (Sun
034 et al., 2025). These problems are notoriously difficult due to their vast, high-dimensional, and un-
035 structured search spaces. Traditional evolutionary algorithms, while widely adopted, often suffer
036 from two critical limitations: (i) they are prone to premature convergence, getting trapped in local
037 optima, and (ii) they struggle to maintain both diversity and quality in the candidate population.
038 These limitations highlight the need for more adaptive, intelligent optimization frameworks.
039

040 The rise of Large Language Models (LLMs) opens a promising direction. With their strong rea-
041 soning ability and broad prior knowledge, LLMs can act as powerful operators for generating and
042 refining candidate solutions (Zhao et al., 2025). However, their application in iterative optimization
043 remains constrained. First, a single LLM tends to converge to its own distribution, reducing solution
044 diversity across generations (Li et al., 2025; Luo et al., 2025; Gao et al., 2025b). Second, although
045 retrieval-augmented generation (RAG) enables the injection of external knowledge through con-
046 textual retrieval, it is inherently limited by the size of the context window and lacks the ability to update
047 model parameters. As a result, such systems cannot genuinely accumulate knowledge or learn from
048 past experiences. These challenges highlight that effective optimization requires not only problem-
049 solving capacity but also mechanisms for internalizing feedback and continuously evolving. To this
050 end, we argue that parameter training is indispensable. Unlike static prompting or RAG, parameter
051 updates enable a model to accumulate experience in a much deeper and more persistent way. Yet,
052 this poses a dilemma: closed-source LLMs excel in reasoning and general knowledge but cannot be
053 fine-tuned, whereas small open-source models are trainable but lack the broad capabilities of larger
models. Relying solely on either side leads to inherent inefficiency and bottlenecks.

054 This motivates our proposed Multi-LLM Collaborative Co-evolution (MCCE) framework, a system
 055 where a frozen, closed-source LLM and a lightweight, trainable local model co-evolve through it-
 056 erative collaboration. In each generation, the two models alternate as evolutionary operators: the
 057 closed-source LLM drives global exploration, while the local model learns from accumulated ex-
 058 periences to perform more targeted searches. Crucially, we design a feedback loop where the local
 059 model is periodically refined using breakthrough search trajectories, ensuring that knowledge is con-
 060 tinually internalized and reused. Unlike traditional distillation, our framework establishes mutual
 061 inspiration between models—large models provide global guidance, while small models adaptively
 062 extend the search frontier through learning. Recent work such as ExLLM (Ran et al., 2025) has
 063 demonstrated the promise of using LLMs as evolutionary operators for multi-objective molecular
 064 design, combining in-context learning with prompt engineering to achieve strong results. However,
 065 these approaches still rely on a single frozen LLM, which limits their ability to accumulate ex-
 066 perience through parameter updates and often leads to reduced diversity and premature convergence.
 067 In contrast, our MCCE framework explicitly addresses this gap by coupling a powerful but fixed
 068 closed-source LLM with a lightweight trainable model. This collaborative co-evolution not only
 069 preserves the broad reasoning and exploration capacity of large models, but also equips the system
 070 with a mechanism for continual learning and adaptation. By enabling mutual inspiration between
 071 heterogeneous models, MCCE overcomes the limitations of purely LLM-driven pipelines and es-
 072 tablishes a more sustainable path toward scalable optimization.

072 The main contributions of this paper are:
 073

- 074 **1. A collaborative co-evolution framework (MCCE).** We integrate closed-source LLMs with
 075 lightweight, trainable local models, combining the exploration capacity of large models with the
 076 adaptability of smaller models. This hybrid design is broadly applicable to discrete, multi-objective
 077 optimization tasks beyond drug discovery.
- 078 **2. An experience-driven learning paradigm.** We leverage breakthrough evolutionary trajectories
 079 as valuable experience, guiding the local model to identify promising search directions. This cooper-
 080 ative mechanism allows the global and local models to co-evolve, reinforcing each other’s strengths
 081 over time.
- 082 **3. Demonstrated practical efficacy and extensibility.** Our framework achieves state-of-the-art per-
 083 formance in multi-objective drug design, highlighting its potential for real-world impact. Moreover,
 084 the paradigm is extensible to a wider range of scientific and engineering domains where structured
 085 optimization is critical.

087 2 RELATED WORK

089 2.1 MULTI-MODEL COLLABORATION

091 Recent studies highlight the promise of collective intelligence in enhancing reasoning and problem-
 092 solving through multiple LLMs (JIANG et al., 2025). For example, Misaki et al. (2025) propose
 093 an adaptive branching Monte Carlo Tree Search (MCTS) framework where multiple models coop-
 094 erate to balance exploration and exploitation. Extending this collaborative paradigm to scientific
 095 discovery, Su et al. (2025) employ a multi-agent system to mimic human teamwork for generating
 096 and refining novel research ideas. By leveraging diverse model perspectives in the search pro-
 097 cess, these approaches significantly improve efficiency and robustness compared to using a single
 098 LLM. Beyond inference scaling, other works explore multi-agent or ensemble strategies. Yang et al.
 099 (2025) demonstrate that integrating diverse reasoning pathways improves search-based reasoning,
 100 while Gao et al. (2025a) show the benefits of cross-model collaboration in structure-based drug
 101 design. Similarly, ensemble methods such as Huang et al. (2024) and Wang et al. (2023) propose novel
 102 ways to combine outputs or probability distributions across heterogeneous LLMs. While most afore-
 103 mentioned methods treat models as static entities, recent works have begun to incorporate training
 104 into the collaborative loop. For instance, Wu et al. (2025b) introduce reinforcement fine-tuning to
 105 transform models from passive responders into active collaborators. regarding heterogeneous col-
 106 laboration, Lu et al. (2025) fine-tune small models to orchestrate fixed LLMs for cost-effective data
 107 labeling, and Xu et al. (2025) train small models to decompose queries to assist black-box LLMs
 in retrieval tasks. However, these approaches typically limit parameter updates to a single side of
 the collaboration or distinct functional modules. In contrast, our work emphasizes dynamic co-

108 evolution, where both large and small models jointly learn and evolve on the same optimization task
 109 through shared experience.
 110

111 **2.2 EXPERIENCE LEARNING**
 112

113 The ability of LLM-based agents to continuously learn from experience has been recognized as a
 114 critical step toward AGI (Zheng et al., 2025). Several approaches explore reinforcement learning
 115 (RL) as a means of improving reasoning. For example, ML-agent (Liu et al., 2025b) apply online
 116 RL for autonomous machine learning engineering, while CALM (Huang et al., 2025) and Evo-
 117 Tune (Surina et al., 2025) combine RL with evolutionary search to refine heuristics and algorithms.
 118 However, traditional RL often struggles with the capability boundary of base models. Works such
 119 as RL-PLUS (Dong et al., 2025) and LUFFY (Yan et al., 2025) address this by introducing hybrid-
 120 policy optimization or off-policy guidance. Complementary strategies, including ReLIFT (Ma et al.,
 121 2025) and TAPO (Wu et al., 2025a), integrate supervised fine-tuning or structured external guidance
 122 to capture knowledge beyond the reach of RL. These methods show that a single LLM can incre-
 123 mentally improve through experience, but they remain limited by the inherent ceiling of one model.
 124 Our approach differs by enabling multi-model collaborative experience learning, where small mod-
 125 els benefit from learning while also enriching the exploration capacity of larger models, forming a
 126 co-evolutionary loop.
 127

128 **2.3 EVOLUTIONARY ALGORITHMS**

129 A rapidly growing body of work explores integrating LLMs with evolutionary algorithms for opti-
 130 mization and design. For example, FunSearch (Romera-Paredes et al., 2024), EoH (Liu et al., 2024)
 131 and MEoH (Yao et al., 2025) demonstrate that LLMs can serve as generators for heuristics or al-
 132 gorithms in combinatorial optimization problems. Reflective mechanisms further enhance search
 133 efficiency, as seen in REEVO (Ye et al., 2024) and ML-master (Liu et al., 2025a), where memory or
 134 reflection guides iterative exploration. Evolutionary methods have also been applied in specialized
 135 domains, including prompt evolution for jailbreak attacks (Liu et al., 2023) or over-refusal mitigation
 136 (Wu et al., 2025c). More recent works such as Alphaevolve (Novikov et al., 2025) and Dat et al.
 137 (2025) introduce evaluator feedback loops, but still treat LLMs as static generators within the search
 138 process. Overall, while these studies validate the synergy between LLMs and evolutionary computa-
 139 tion, they typically lack parameter-level adaptation or multi-model dynamics. Our contribution is to
 140 close this gap by combining evolutionary search with experience-driven training and collaborative
 141 co-evolution across models.
 142

143 **3 PRELIMINARY**

144 **3.1 REINFORCEMENT LEARNING (RL) AND DIRECT PREFERENCE OPTIMIZATION (DPO)**

145 In Reinforcement Learning (RL), an agent learns a policy $\pi(a | s)$, which defines the probability of
 146 taking action a given state s . The objective is to maximize the expected cumulative reward:
 147

$$J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^T \gamma^t r(s_t, a_t) \right], \quad (1)$$

148 where $\tau = (s_0, a_0, \dots, s_T)$ is a trajectory, $r(s_t, a_t)$ is the reward at step t , and $\gamma \in (0, 1]$ is the
 149 discount factor.
 150

151 Direct Preference Optimization (DPO) replaces explicit rewards with pairwise preferences over tra-
 152 jectories. Given a preferred trajectory τ^+ and a dispreferred one τ^- , the DPO loss is:
 153

$$\mathcal{L}_{\text{DPO}}(\pi) = -\mathbb{E}_{(\tau^+, \tau^-)} \left[\log \sigma \left(\beta \left(\log \frac{\pi(\tau^+)}{\pi_{\text{ref}}(\tau^+)} - \log \frac{\pi(\tau^-)}{\pi_{\text{ref}}(\tau^-)} \right) \right) \right], \quad (2)$$

154 where π_{ref} is a frozen reference model, σ is the sigmoid function, and β controls preference sharp-
 155 ness.
 156

162 3.2 SUPERVISED FINE-TUNING (SFT)
163164 Supervised Fine-Tuning (SFT) adapts a pre-trained LLM by minimizing the negative log-likelihood
165 (NLL) of reference outputs $y = (y_1, \dots, y_T)$ given a prompt x :

166
$$\mathcal{L}_{\text{SFT}}(\theta) = - \sum_{t=1}^T \log p_{\theta}(y_t | x, y_{<t}). \quad (3)$$

167
168
169

170 This objective encourages the model to replicate high-quality, task-specific examples.
171172 3.3 GENERATIVE FLOW NETWORKS (GFLOWNETS)
173174 GFlowNets aim to generate diverse trajectories $\tau = (s_0 \rightarrow s_1 \rightarrow \dots \rightarrow s_T)$ such that their
175 probability is proportional to a reward function $R(s_T)$:

176
$$P_{\theta}(\tau) \propto R(s_T). \quad (4)$$

177

178 This is enforced through the flow matching constraint, ensuring that the incoming and outgoing
179 flows at each state are balanced:

180
$$\sum_{s': s \rightarrow s'} F_{\theta}(s \rightarrow s') = \sum_{s'': s'' \rightarrow s} F_{\theta}(s'' \rightarrow s), \quad (5)$$

181
182

183 where $F_{\theta}(s \rightarrow s')$ is the probability flow along an edge.
184185 4 METHODOLOGY
186187 We propose Multi-LLM Collaborative Co-evolution (MCCE), a unified and general-purpose opti-
188 mization framework for complex discrete problems, demonstrated here in molecular design. As
189 shown in Figure 1, the system operates through an iterative collaboration between two distinct
190 LLMs: a powerful but frozen model and a lightweight, trainable local model. The frozen LLM
191 provides robust global exploration, while the local model continuously refines its policy by learning
192 from successful search trajectories, forming a self-improving feedback loop. To validate MCCE,
193 we adopt a challenging five-objective molecular optimization task, jointly targeting *QED*, *synthetic*
194 *accessibility* (*SAscore*), *DRD2 binding*, *GSK3 β binding*, and *JNK3 binding*. This setting builds on
195 recent benchmarks such as ExLLM (Ran et al., 2025) and MoLLEO (Wang et al., 2024), which em-
196 phasize that realistic drug discovery requires balancing multiple properties. While MoLLEO showed
197 the benefit of LLM-based evolutionary operators, its evaluation was restricted to three objectives.
198 By extending to five objectives, we align with prior work while pushing toward more realistic, high-
199 dimensional challenges, providing a rigorous test of MCCE’s adaptability.
200

201 4.1 OVERALL FRAMEWORK

202 The proposed MCCE framework operates in an iterative evolutionary loop, where large language
203 models (LLMs) act as adaptive genetic operators. The overall process can be divided into four key
204 stages: initialization, generation, evaluation, and update with learning.
205206 **Stage 1: Initialization.** Let \mathcal{P}_t denote the population pool at generation t , consisting of candidate
207 molecules. The process begins with an initial population \mathcal{P}_0 , which can be sampled either from an
208 external database or generated by a pretrained LLM:

209
$$\mathcal{P}_0 = \{c_1, c_2, \dots, c_M\}, \quad c_i \sim \pi_{\text{init}}(\cdot), \quad (6)$$

210

211 where π_{init} represents the initialization distribution.
212213 **Stage 2: Candidate Generation.** At each generation t , two parents $p_1, p_2 \in \mathcal{P}_t$ are selected
214 according to a selection strategy (e.g., tournament or fitness-proportional selection). Given the pair
215 (p_1, p_2) and a task-specific prompt function $\text{prompt}(p_1, p_2)$, the LLM-based operator produces two
216 new candidates:

217
$$(c_1, c_2) \sim \pi_{\text{LLM}}(\cdot | \text{prompt}(p_1, p_2)). \quad (7)$$

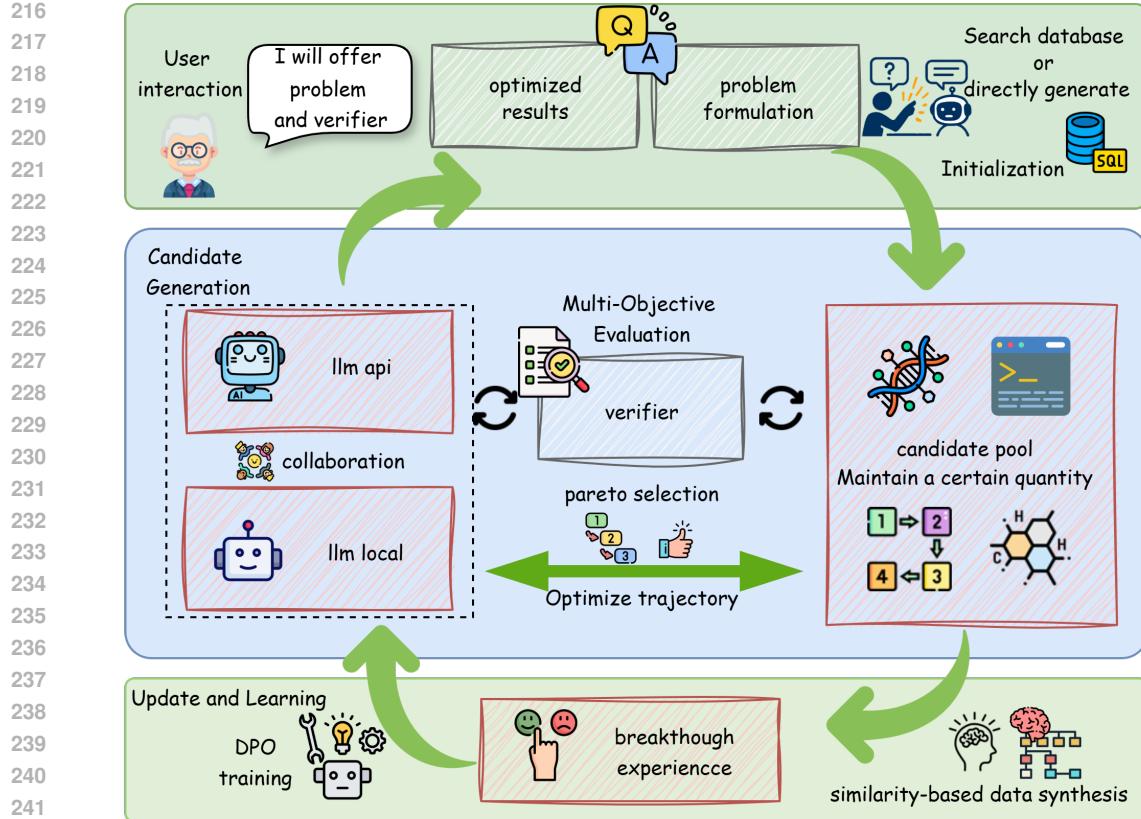


Figure 1: Overview of the proposed MCCE framework. The system begins with **user interaction** and **population initialization** based on the problem definition and evaluation criteria. In the **candidate generation** stage, a frozen API-based LLM and a trainable local LLM collaborate to propose new molecules. These are evaluated by the **multi-objective evaluation** module, which applies Pareto selection to maintain a balanced population, while breakthrough solutions are stored as experience. In the **update and learning** stage, similarity-based data synthesis constructs preference pairs from past trajectories, and the local model is refined via DPO training. This creates a self-improving feedback loop where global exploration (API LLM) and local adaptation (trainable LLM) co-evolve toward progressively optimized solutions.

Since each invocation of the operator generates exactly two candidates, constructing a full population of size M requires

$$\frac{M}{2} \text{ generations of prompts.} \quad (8)$$

This process is repeated with different parent pairs until the entire offspring set is produced. The operator π_{LLM} alternates between a frozen API model and a locally trainable model, thereby balancing *global exploration* (via frozen LLM) and *local adaptation* (via trainable LLM).

Stage 3: Multi-Objective Evaluation. Each generated candidate c is evaluated using a multi-objective scoring function:

$$\mathbf{s}(c) = [s_1(c), s_2(c), \dots, s_K(c)], \quad (9)$$

where $s_k(c)$ is the score under the k -th objective (e.g., drug-likeness, synthesizability, or binding affinity). All scores are normalized to a common scale:

$$\hat{s}_k(c) = \frac{s_k(c) - \mu_k}{\sigma_k}, \quad (10)$$

where μ_k and σ_k are the mean and standard deviation of scores in the current population.

270 **Stage 4: Update and Learning.** The next-generation population \mathcal{P}_{t+1} is formed by applying Pareto
 271 front selection, which preserves non-dominated solutions while maintaining diversity. Meanwhile,
 272 after every N generated candidates, successful trajectories
 273

$$(prompt(p_1, p_2) \rightarrow (c_1, c_2) \rightarrow \mathbf{s}(c_1), \mathbf{s}(c_2))$$

274 are stored as experience \mathcal{D} . This dataset is then used to refine the trainable LLM. Formally, the
 275 model parameters are updated as
 276

$$\pi_{\text{LLM}} \leftarrow \text{Update}(\pi_{\text{LLM}}, \mathcal{D}), \quad (11)$$

277 where $\text{Update}(\cdot)$ denotes an abstract learning procedure based on the accumulated experience. This
 278 establishes a closed-loop cycle of *generation–evaluation–learning–evolution*.
 279

280 4.2 WHICH TRAINING PARADIGM BEST SUPPORTS EXPERIENCE-DRIVEN LEARNING?

281 A central question in our framework is how to effectively refine the local model’s policy through
 282 accumulated experience. To this end, we systematically explored several candidate training paradigms
 283 and evaluated their suitability for stabilizing learning while preserving the model’s exploratory ca-
 284 pacity. Our findings reveal critical limitations in conventional approaches:
 285

286 **Supervised Fine-Tuning (SFT).** We first adopted SFT by treating “breakthrough” generations as
 287 positive training samples. Concretely, if a generated molecule achieved a score higher than all of its
 288 parents, the corresponding trajectory was labeled as effective data. However, this approach led to
 289 catastrophic forgetting: after training, the uniqueness of generated molecules dropped substantially.
 290 This indicates that the local model tended to memorize successful chemical formulas rather than
 291 internalize a generalizable exploration strategy, thereby losing its ability to propose genuinely novel
 292 solutions.
 293

294 **Reinforcement Learning (RL).** Next, we experimented with reinforcement learning using the scor-
 295 ing function as the reward signal. In practice, this training proved highly unstable. Strong negative
 296 rewards for low-scoring molecules caused the model to collapse, as it struggled to infer the under-
 297 lying reasons for the penalties and consequently lost its ability to generate valid candidates. The
 298 mapping between molecular structures and their scores is inherently unpredictable for an LLM,
 299 making explicit quantitative rewards unsuitable for stable RL training in this context.
 300

301 **Direct Preference Optimization (DPO).** To overcome these issues, we adopted a DPO-based ap-
 302 proach, which provides a more stable and sample-efficient training signal without requiring an ex-
 303 plicit reward model. Initially, we constructed training pairs by contrasting high-scoring versus low-
 304 scoring molecules under the same prompt. However, we observed unstable loss oscillations: since
 305 identical prompts were associated with conflicting responses, the model often became confused.
 306 To address this, we developed a *similarity-based data synthesis* method, which ensures that pref-
 307 erence pairs are constructed from structurally comparable molecules. This adjustment significantly
 308 improved both training stability and data efficiency. The details of this method are elaborated in
 309 Section 4.3.
 310

311 4.3 SIMILARITY-BASED DATA SYNTHESIS

312 Our DPO training requires triplets of the form (q, τ^+, τ^-) where q is a query (prompt), τ^+ is a
 313 preferred (chosen) trajectory and τ^- is a rejected trajectory. To construct such triplets stably and to
 314 mitigate distributional shift between the frozen API model and the local trainable model, we propose
 315 a similarity-based data synthesis pipeline. The pipeline proceeds in three phases: (1) collect can-
 316 didate pool and compute similarity statistics, (2) filter and stratify candidates by score and similarity,
 317 (3) assemble DPO triplets with fallback rules.
 318

319 **Notation.** Let $\mathcal{H} = \{q_1, q_2, \dots, q_{|\mathcal{H}|}\}$ be the historical prompts (ordered by time). For each prompt
 320 q_j we have a set of generated candidates $\mathcal{C}_j = \{c_{j,1}, c_{j,2}, \dots\}$, produced by either the frozen LLM
 321 or the local model during the recent evolution window. Let $s(c)$ denote the (multi-objective) score of
 322 candidate c (we use a scalarized score or a ranking for stratification). Define a molecular similarity
 323 function $\text{sim}(c, q) \in [0, 1]$, computed by a fingerprint-based metric (e.g., Tanimoto on Morgan
 324 fingerprints) or any task-appropriate similarity $\phi(\cdot, \cdot)$.
 325

324 **Phase 1 — similarity statistics.** Collect the similarity values across the considered history and
 325 models:

$$\mathcal{S} = \{\text{sim}(c, q) : q \in \mathcal{H}, c \in \mathcal{C}_q\}.$$

327 Compute the empirical mean and standard deviation:

$$\mu = \frac{1}{|\mathcal{S}|} \sum_{x \in \mathcal{S}} x, \quad \sigma = \sqrt{\frac{1}{|\mathcal{S}|} \sum_{x \in \mathcal{S}} (x - \mu)^2}. \quad (12)$$

331 We will use (μ, σ) as global similarity statistics to reduce distributional mismatch between models
 332 (both models' outputs contribute to \mathcal{S}).
 333

334 Define a global similarity filter:

$$\mathcal{F} = \{c \mid \mu - \sigma \leq \text{sim}(c, q) \leq \mu + \sigma\}. \quad (13)$$

336 Only candidates in \mathcal{F} are considered for DPO pair construction (this ensures candidates are within
 337 one standard deviation of the empirical similarity distribution).
 338

339 **Phase 2 — score stratification and similarity windows.** Let α denote the quantile threshold used
 340 to form top/bottom pools (we use $\alpha = 0.3$ by default). Let $\mathcal{C}_{\text{all}} = \bigcup_q \mathcal{C}_q$ and sort \mathcal{C}_{all} by score $s(\cdot)$.
 341 Define

$$\mathcal{T}_{\text{high}} = \{\text{top } \alpha \text{ fraction of } \mathcal{C}_{\text{all}}\}, \quad \mathcal{T}_{\text{low}} = \{\text{bottom } \alpha \text{ fraction of } \mathcal{C}_{\text{all}}\}.$$

342 We further define nested similarity intervals (from strict to relaxed):
 343

$$I_1 = [\mu + \frac{2}{3}\sigma, \mu + \sigma], \quad I_2 = [\mu + \frac{1}{3}\sigma, \mu + \sigma], \quad I_3 = [\mu, \mu + \sigma]. \quad (14)$$

345 These intervals prioritize chosen candidates that are both high-scoring and reasonably similar to the
 346 prompt (thus reducing contradictory prompt-response pairs that destabilize training).
 347

348 **Phase 3 — per-prompt pair construction with fallback rules.** To construct stable DPO training
 349 triplets, we design a per-prompt pair construction algorithm that selects a preferred (τ^+) and a
 350 rejected (τ^-) candidate for each prompt q . As outlined in Algorithm 1, the procedure first filters
 351 candidates by similarity, then attempts to select τ^+ from the high-score pool and τ^- from the low-
 352 score pool using progressively relaxed similarity intervals ($I_1 \rightarrow I_2 \rightarrow I_3$), and finally falls back
 353 to broader score ranges (Top/Bottom-50%) if no candidates are available. Each valid pair yields a
 354 triplet (q, τ^+, τ^-) used for DPO training.
 355

356 For clarity, we provide in the main text a simplified version of the algorithm, while a fully detailed
 357 pseudocode with all implementation nuances and fallback rules is presented in Appendix, ensuring
 358 reproducibility and transparency of our method.
 359

360 **Algorithm 1:** Simplified Per-Prompt DPO Pair Construction

361 **Input:** Recent prompts \mathcal{H} , candidate sets $\{\mathcal{C}_q\}$

362 **Output:** Triplets (q, τ^+, τ^-)

363 Select recent L prompts from \mathcal{H} ;

364 **foreach** prompt q **do**

365 Filter candidates $\mathcal{C}_q^{\mathcal{F}}$;

366 Pick τ^+ from high-score pool with similarity in $I_1 \rightarrow I_2 \rightarrow I_3 \rightarrow \text{Top-50\%}$;

367 Pick τ^- from low-score pool with similarity in $I_1 \rightarrow I_2 \rightarrow I_3 \rightarrow \text{Bottom-50\%}$;

368 Record triplet (q, τ^+, τ^-) ;

369 **Dataset and hyperparameters.** Let L be the number of recent prompts used and r the number of
 370 pairs per prompt (default $r = 1$). The resulting DPO dataset size is at most $D \leq L \cdot r$. The key
 371 hyperparameters are α (score quantile, default 0.3), the similarity relaxation windows I_1, I_2, I_3 , and
 372 the global similarity acceptance band $\mu \pm \sigma$. These are chosen to (i) favor high-quality examples,
 373 (ii) ensure chosen/rejected pairs are structurally comparable, and (iii) avoid pairing identical prompt
 374 with widely varying responses that confuse the learner.
 375

376 **Why this reduces distribution shift.** By (a) computing μ, σ from the union of both models' outputs,
 377 (b) enforcing the global similarity filter \mathcal{F} , and (c) selecting chosen/rejected candidates from narrow
 378 similarity windows, we ensure that the training pairs are consistent with the local model's typical
 379 output distribution. This reduces the likelihood that the local model is asked to map a single prompt
 380 to mutually contradictory responses and therefore stabilizes DPO optimization.
 381

378
379

5 EXPERIMENTS

380
381

5.1 EXPERIMENTAL SETUP

382
383
384
385
386
387
388
389
390
391
392

We evaluate MCCE in the domain of multi-objective drug design, a highly challenging problem that requires navigating an enormous chemical space to identify molecules balancing multiple, often conflicting, properties. For the frozen, closed-source LLMs, we leveraged the GPT-4o-2024-05-13 and Gemini-2.5-flash-nothinking models through their APIs, while the local trainable component was instantiated with Qwen2.5-7B-Instruct. The initial population of candidate molecules was constructed by randomly sampling 100 molecules from the ZINC dataset, ensuring sufficient diversity at the start of evolution. The generated molecules were assessed against five standard drug-likeness objectives, and the final optimization outcome was measured using the Hypervolume Indicator (HV), a widely adopted metric in multi-objective optimization that jointly reflects solution quality and diversity. For training paradigms, we implemented SFT and RL baselines using the `ver1` library, while our DPO method was implemented with the `tr1` library to ensure stable preference-based optimization.

393

394

5.2 MAIN RESULTS

395

396

5.2.1 OVERALL PERFORMANCE

397
398
399
400
401
402
403
404
405
406
407
408

Table 1 provides a comprehensive evaluation across three critical dimensions. First, in terms of Internal Mechanisms, our DPO-driven approach significantly outperforms both single-model baselines and alternative training paradigms (SFT and RL). It achieves the highest Top-1 Fitness by effectively mitigating catastrophic forgetting and training instability. Second, compared against SOTA Baselines such as GFlowNet and DyMol, MCCE demonstrates superior optimization capability. It consistently discovers molecules with higher fitness while maintaining competitive diversity and validity scores. Finally, the Ablation Studies validate the optimality of our design choices, confirming that the proposed similarity-based data synthesis ($\alpha = 0.30$), asymmetric collaboration split (50/32), and frequent model updates are essential factors for maximizing system performance. Figure 2 and Table 1 present a clear comparison of the collaborative system’s performance with and without parameter training, unequivocally demonstrating that the continuous learning mechanism is crucial for long-term optimization gains.

409

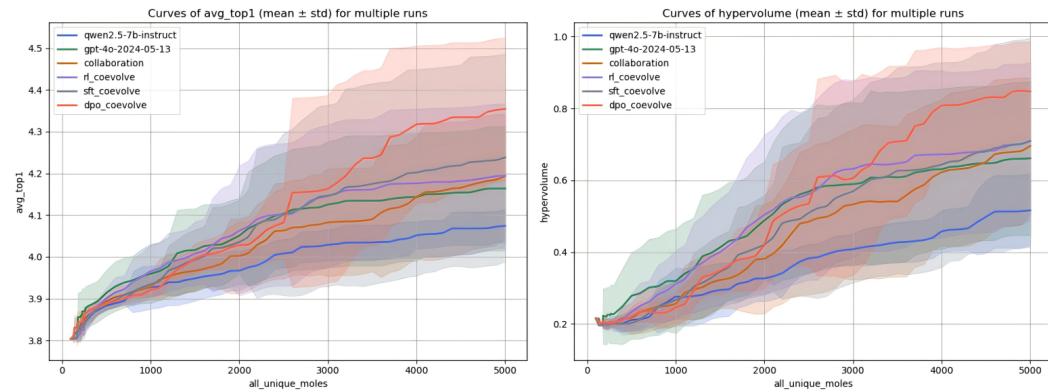
410
411
412
413
414
415
416
417
418
419
420
421
422
423424
425
426
427
428
429
430
431

Figure 2: Overall performance comparison across different baselines. (Left) The curve of **avg_top1** (mean \pm std) shows that our DPO-enhanced co-evolutionary framework consistently outperforms all baselines, steadily increasing the average quality of the top-ranked molecule throughout the optimization process. (Right) The curve of **hypervolume** (mean \pm std) further highlights the superiority of our approach: MCCE with DPO training achieves the largest Pareto front coverage, demonstrating both improved solution quality and diversity. In both metrics, our method significantly surpasses single-model baselines (e.g., Qwen2.5-7B-Instruct, GPT-4o-2024-05-13) as well as alternative co-evolution variants (SFT and RL), achieving state-of-the-art performance.

432
 433 Table 1: Comprehensive performance comparison on multi-objective optimization tasks. The table
 434 is categorized into: (1) **Internal Mechanisms & Training Paradigms**, analyzing the impact of
 435 different learning strategies and model components; (2) **Comparison with SOTA Baselines**; and (3-
 436 5) **Detailed Ablation Studies** on similarity, split ratio, and update frequency. Results are reported as
 437 mean \pm std over 5 runs. Best results within each section are in **bold**, and second-best are underlined.

Model	Top1 F	Top10 F	AUC-Top10	HV	Diversity	Uniqueness	Validity
<i>Internal Mechanisms & Training Paradigms</i>							
qwen2.5-7b-instruct	4.07 \pm 0.04	4.05 \pm 0.04	3.91 \pm 0.03	0.516 \pm 0.102	0.543 \pm 0.047	0.576 \pm 0.018	0.838 \pm 0.025
gpt-4o-2024-05-13	4.16 \pm 0.15	4.14 \pm 0.12	3.99 \pm 0.08	0.661 \pm 0.214	0.497 \pm 0.035	0.702 \pm 0.056	0.902 \pm 0.022
collaboration	4.19 \pm 0.15	4.13 \pm 0.12	3.96 \pm 0.06	0.695 \pm 0.189	0.524 \pm 0.048	0.750 \pm 0.041	0.838 \pm 0.024
rl_coevolve	4.19 \pm 0.17	4.16 \pm 0.15	3.99 \pm 0.09	0.709 \pm 0.219	0.509 \pm 0.059	0.683 \pm 0.045	0.893 \pm 0.021
sft_coevolve	4.24 \pm 0.25	4.20 \pm 0.22	3.99 \pm 0.11	0.709 \pm 0.288	0.478 \pm 0.070	0.571 \pm 0.047	0.905 \pm 0.020
MCCE (dpo_coevolve)	4.35 \pm 0.17	4.28 \pm 0.15	4.02 \pm 0.09	0.847 \pm 0.138	0.484 \pm 0.063	0.660 \pm 0.018	0.820 \pm 0.022
- dpo_coevolve:local	4.27 \pm 0.16	4.22 \pm 0.14	4.01 \pm 0.03	0.826 \pm 0.126	0.555 \pm 0.055	0.633 \pm 0.025	0.759 \pm 0.030
- dpo_coevolve:api	4.35 \pm 0.17	4.28 \pm 0.14	4.03 \pm 0.07	0.855 \pm 0.135	0.505 \pm 0.062	0.784 \pm 0.016	0.907 \pm 0.016
<i>Comparison with SOTA Baselines</i>							
GB-GA(Jensen, 2019)	4.02 \pm 0.10	3.98 \pm 0.10	3.86 \pm 0.05	0.643 \pm 0.268	0.623 \pm 0.047	<u>0.821 \pm 0.032</u>	1.000 \pm 0.000
REINVENT(Olivecrona et al., 2017)	4.23 \pm 0.20	4.14 \pm 0.22	3.93 \pm 0.13	0.742 \pm 0.259	0.640 \pm 0.111	0.690 \pm 0.132	0.979 \pm 0.002
MoLLEO(Wang et al., 2024)	4.19 \pm 0.08	4.08 \pm 0.02	3.95 \pm 0.02	0.860 \pm 0.088	0.670 \pm 0.015	0.575 \pm 0.075	0.938 \pm 0.007
GFlowNet(Kim et al., 2024)	4.24 \pm 0.25	4.20 \pm 0.21	4.08 \pm 0.15	0.871 \pm 0.288	0.633 \pm 0.066	0.349 \pm 0.004	0.998 \pm 0.000
DyMol(Shin et al., 2024)	4.23 \pm 0.17	4.16 \pm 0.13	4.00 \pm 0.05	0.868 \pm 0.146	0.581 \pm 0.069	0.986 \pm 0.005	1.000 \pm 0.000
MCCE (Ours)	4.35 \pm 0.17	4.28 \pm 0.15	4.02 \pm 0.09	0.847 \pm 0.138	0.484 \pm 0.063	0.660 \pm 0.018	0.820 \pm 0.022
<i>Ablation: Similarity Strategy</i>							
dpo_coevolve ($\alpha = 0.30$)	4.35 \pm 0.17	4.28 \pm 0.15	4.02 \pm 0.09	0.847 \pm 0.138	0.484 \pm 0.063	0.660 \pm 0.018	0.820 \pm 0.022
dpo_coevolve ($\alpha = 0.30$, only_I3)	4.32 \pm 0.14	4.21 \pm 0.10	3.99 \pm 0.08	0.848 \pm 0.086	0.532 \pm 0.059	0.694 \pm 0.058	0.829 \pm 0.022
dpo_coevolve ($\alpha = 0.40$)	4.36 \pm 0.12	4.27 \pm 0.07	3.99 \pm 0.05	0.843 \pm 0.091	0.462 \pm 0.009	0.664 \pm 0.072	0.816 \pm 0.025
dpo_coevolve ($\alpha = 0.20$)	4.33 \pm 0.11	4.26 \pm 0.06	4.02 \pm 0.06	0.828 \pm 0.091	0.483 \pm 0.030	0.651 \pm 0.052	0.836 \pm 0.047
dpo_coevolve (embedding)	4.29 \pm 0.12	4.22 \pm 0.07	3.98 \pm 0.05	0.847 \pm 0.104	0.515 \pm 0.060	0.688 \pm 0.038	0.825 \pm 0.023
<i>Ablation: Call Split (API/Local)</i>							
50/50	4.31 \pm 0.12	4.22 \pm 0.08	3.99 \pm 0.05	0.838 \pm 0.120	0.453 \pm 0.061	0.641 \pm 0.082	0.816 \pm 0.038
50/32	4.35 \pm 0.17	4.28 \pm 0.15	4.02 \pm 0.09	0.847 \pm 0.138	0.484 \pm 0.063	0.660 \pm 0.018	0.820 \pm 0.022
50/16	4.25 \pm 0.20	4.19 \pm 0.15	3.96 \pm 0.06	0.734 \pm 0.249	0.462 \pm 0.015	0.656 \pm 0.111	0.809 \pm 0.056
<i>Ablation: Update Frequency</i>							
500 candidates	4.28 \pm 0.17	4.21 \pm 0.12	3.98 \pm 0.06	0.796 \pm 0.205	0.493 \pm 0.054	0.658 \pm 0.099	0.848 \pm 0.048
200 candidates	4.32 \pm 0.17	4.27 \pm 0.16	4.02 \pm 0.11	0.856 \pm 0.160	0.500 \pm 0.055	0.626 \pm 0.033	0.823 \pm 0.019
1.round	4.35 \pm 0.17	4.28 \pm 0.15	4.02 \pm 0.09	0.847 \pm 0.138	0.484 \pm 0.063	0.660 \pm 0.018	0.820 \pm 0.022

5.2.2 THE CO-EVOLUTIONARY CURVE AND OUTPUT DISTRIBUTION ANALYSIS

To highlight the effectiveness of our collaborative design, we present two complementary visualizations in Figure 3.

(Left) The co-evolutionary curve. This curve captures the dynamics of how the frozen large LLM and the fine-tuned local model collaborate throughout the optimization process. The large LLM consistently provides broad global exploration, generating diverse candidates guided by its rich prior knowledge. In parallel, the local model—refined through iterative learning from breakthrough trajectories—adapts to the search space and performs targeted exploitation. The alternating interplay between these two roles prevents premature convergence, increases diversity, and steadily drives the optimization toward superior regions of the search space. The curve clearly illustrates that their collaboration outperforms the trajectory of either model alone.

(Right) Output distribution analysis. To further examine the learning effect, we analyze the quality distribution of molecules generated by three models: the frozen LLM, the initial (untrained) local model, and the fine-tuned local model. Using a no-parent prompt, we sample 1,000 molecules from each model. The histogram shows that the trained local model produces a distribution shifted significantly toward higher scores, surpassing both the frozen LLM and the untrained local baseline. This confirms that the fine-tuning procedure successfully internalizes experience, allowing the local model to approximate the distribution of high-quality molecules. Combined with the steadily decreasing training loss, this analysis demonstrates that our framework not only generates strong solutions but also achieves continual improvement through experience-driven learning.

5.3 GENERALIZATION TO COMBINATORIAL OPTIMIZATION

To further validate the universality of the MCCE framework beyond molecular design, we extended our evaluation to three classic NP-hard problems: the Circle Packing problem, the Multi-Objective Traveling Salesman Problem (MOTSP), and the Multi-Objective Capacitated Vehicle Routing Problem (MOCVRP).

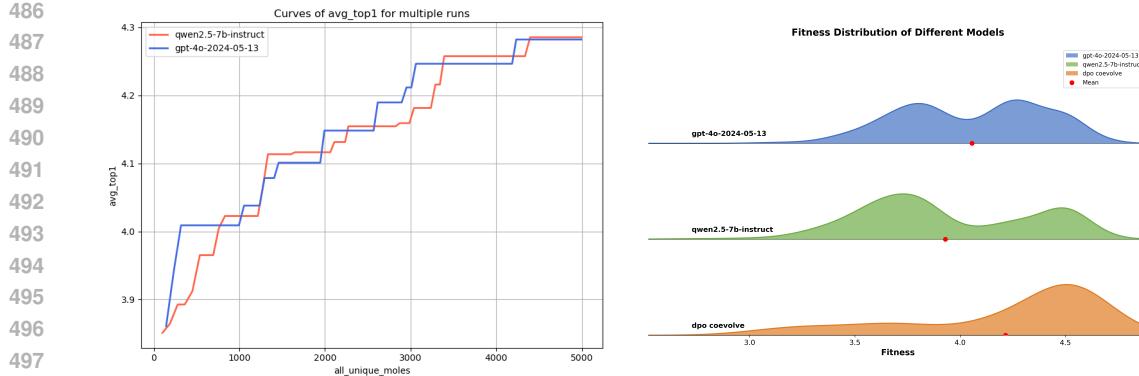


Figure 3: (Left) The co-evolutionary curve showing how the large LLM and local model complement each other to achieve superior trajectories. (Right) Output distribution analysis of molecules generated from the frozen LLM, the initial local model, and the fine-tuned local model.

Circle Packing: Requires placing n non-overlapping circles in a unit square to maximize the common radius. We compare our results against long-standing community records.

MOTSP: Seeks a single Hamiltonian circuit that, starting and ending at a given depot, visits every city exactly once while simultaneously minimizing multiple conflicting objectives.

MOCVRP: Designs a set of capacitated vehicle routes that originate from a common depot, serve all customer demands, and jointly minimize the total travel distance and the makespan.

Benchmark instances for the combinatorial tasks were generated following Lin et al. (2022). We adopt Hyper-volume (HV) as the performance indicator. Baselines include the solver Pymoo (Blank & Deb, 2020) and recent search-based algorithms such as ReEvo, AlphaEvolve, AIDE (Jiang et al., 2025), and FunSearch. The results are shown in Table 2 and Table 3.

Table 2: Hypervolume comparison on Combinatorial Optimization. MCCE achieves SOTA performance on MOCVRP and remains highly competitive on MOTSP against recent baselines.

Method	MOTSP ($n = 100$)	MOCVRP ($n = 100, m = 20$)
Pymoo	0.983488	0.955802
AIDE	1.020798	1.005552
FunSearch	1.023301	1.032126
ReEvo	1.028890	1.034541
AlphaEvolve	1.029279	1.031803
MCCE	1.025206	1.048843

Table 3: Comparison of MCCE against current community records for the Circle Packing problem. MCCE successfully discovers configurations surpassing the previous best-known results.

Size	Current Record	MCCE
$n = 26$	2.634+	2.635983
$n = 31$	2.889+	2.889970

6 CONCLUSION

In this work, we presented MCCE, a collaborative co-evolutionary framework that unites a frozen large language model with a trainable local model to tackle large-scale multi-objective discrete optimization. Our approach establishes a closed feedback loop where the LLM drives global exploration while the local model progressively improves through experience-driven learning, yielding a mutually reinforcing synergy rather than one-way distillation. Extensive experiments in multi-objective drug design demonstrate that this hybrid paradigm achieves state-of-the-art performance and significantly surpasses existing baselines. Beyond its empirical success, MCCE highlights a broader principle: hybrid AI systems that combine powerful static models with adaptive, trainable counterparts can unlock new capabilities in complex problem-solving. Looking forward, we envision extending MCCE to other domains of discrete optimization and exploring more adaptive mechanisms for inter-model communication and dynamic balance, further strengthening the generality and impact of this paradigm.

540 REFERENCES
541

542 Julian Blank and Kalyanmoy Deb. Pymoo: Multi-objective optimization in python. *Ieee access*, 8:
543 89497–89509, 2020.

544 Pham Vu Tuan Dat, Long Doan, and Huynh Thi Thanh Binh. Hsevo: Elevating automatic heuristic
545 design with diversity-driven harmony search and genetic algorithm using llms. In *Proceedings of
546 the AAAI Conference on Artificial Intelligence*, volume 39, pp. 26931–26938, 2025.

547 Yihong Dong, Xue Jiang, Yongding Tao, Huanyu Liu, Kechi Zhang, Lili Mou, Rongyu Cao, Ying-
548 wei Ma, Jue Chen, Binhua Li, et al. Rl-plus: Countering capability boundary collapse of llms in
549 reinforcement learning with hybrid-policy optimization. *arXiv preprint arXiv:2508.00222*, 2025.

550 Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
551 molecules based on molecular complexity and fragment contributions. *Journal of cheminformatics*,
552 1(1):8, 2009.

553 Bowen Gao, Yanwen Huang, Yiqiao Liu, Wenzuan Xie, Wei-Ying Ma, Ya-Qin Zhang, and Yanyan
554 Lan. Pushing the boundaries of structure-based drug design through collaboration with large
555 language models. *arXiv preprint arXiv:2503.01376*, 2025a.

556 Huan-ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong
557 Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, et al. A survey of self-evolving agents: On path to artificial
558 super intelligence. *arXiv preprint arXiv:2507.21046*, 2025b.

559 Yichong Huang, Xiaocheng Feng, Baohang Li, Yang Xiang, Hui Wang, Ting Liu, and Bing Qin.
560 Ensemble learning for heterogeneous large language models with deep parallel collaboration.
561 *Advances in Neural Information Processing Systems*, 37:119838–119860, 2024.

562 Ziyao Huang, Weiwei Wu, Kui Wu, Jianping Wang, and Wei-Bin Lee. Calm: Co-evolution of
563 algorithms and language model for automatic heuristic design. *arXiv preprint arXiv:2505.12285*,
564 2025.

565 Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for
566 the exploration of chemical space. *Chemical science*, 10(12):3567–3572, 2019.

567 YICHEN JIANG, SUORONG YANG, SHENGJI TANG, SHENGHE ZHENG, and JIANJIAN
568 CAO. A comprehensive survey of llm-driven collective intelligence: Past, present, and future.
569 2025.

570 Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixin Xu, Ian Kaplan, Deniss Jacenko, and
571 Yuxiang Wu. Aide: Ai-driven exploration in the space of code. *arXiv preprint arXiv:2502.13138*,
572 2025.

573 Hyeonah Kim, Minsu Kim, Sanghyeok Choi, and Jinkyoo Park. Genetic-guided gflownets for sam-
574 ple efficient molecular optimization. *Advances in Neural Information Processing Systems*, 37:
575 42618–42648, 2024.

576 Yubo Li, Xiaobin Shen, Xinyu Yao, Xueying Ding, Yidi Miao, Ramayya Krishnan, and Rema Pad-
577 man. Beyond single-turn: A survey on multi-turn interactions with large language models. *arXiv
578 preprint arXiv:2504.04717*, 2025.

579 Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective combinato-
580 rial optimization. *arXiv preprint arXiv:2203.15386*, 2022.

581 Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
582 Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
583 model. *arXiv preprint arXiv:2401.02051*, 2024.

584 Xiaogeng Liu, Nan Xu, Muhan Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
585 prompts on aligned large language models. *arXiv preprint arXiv:2310.04451*, 2023.

586 Zexi Liu, Yuzhu Cai, Xinyu Zhu, Yujie Zheng, Runkun Chen, Ying Wen, Yanfeng Wang, Siheng
587 Chen, et al. MI-master: Towards ai-for-ai via integration of exploration and reasoning. *arXiv
588 preprint arXiv:2506.16499*, 2025a.

594 Zexi Liu, Jingyi Chai, Xinyu Zhu, Shuo Tang, Rui Ye, Bo Zhang, Lei Bai, and Siheng Chen. Mi-
 595 agent: Reinforcing llm agents for autonomous machine learning engineering. *arXiv preprint*
 596 *arXiv:2505.23723*, 2025b.

597 Yao Lu, Zhaiyuan Ji, Jiawei Du, Yu Shanqing, Qi Xuan, and Tianyi Zhou. From llm-anation to
 598 llm-orchestrator: Coordinating small models for data labeling. *arXiv preprint arXiv:2506.16393*,
 599 2025.

600 Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Binqi
 601 Chen, Ziyue Qiao, Qingqing Long, et al. Large language model agent: A survey on methodology,
 602 applications and challenges. *arXiv preprint arXiv:2503.21460*, 2025.

603 Lu Ma, Hao Liang, Meiyi Qiang, Lexiang Tang, Xiaochen Ma, Zhen Hao Wong, Junbo Niu,
 604 Chengyu Shen, Runming He, Bin Cui, et al. Learning what reinforcement learning can't: In-
 605 terleaved online fine-tuning for hardest questions. *arXiv preprint arXiv:2506.07527*, 2025.

606 Kou Misaki, Yuichi Inoue, Yuki Imajuku, So Kuroki, Taishi Nakamura, and Takuya Akiba. Wider or
 607 deeper? scaling llm inference-time compute with adaptive branching tree search. *arXiv preprint*
 608 *arXiv:2503.04412*, 2025.

609 Alexander Novikov, Ng n V , Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
 610 Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
 611 et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. *arXiv preprint*
 612 *arXiv:2506.13131*, 2025.

613 Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
 614 design through deep reinforcement learning. *Journal of cheminformatics*, 9(1):48, 2017.

615 Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
 616 Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
 617 Veselov, et al. Molecular sets (moses): a benchmarking platform for molecular generation models.
 618 *Frontiers in pharmacology*, 11:565644, 2020.

619 Nian Ran, Yue Wang, and Richard Allmendinger. Mollm: Multi-objective large language model for
 620 molecular design–optimizing with experts. *arXiv preprint arXiv:2502.12845*, 2025.

621 Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
 622 M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
 623 Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
 624 *Nature*, 625(7995):468–475, 2024.

625 Dong-Hee Shin, Young-Han Son, Deok-Joong Lee, Ji-Wung Han, and Tae-Eui Kam. Dynamic
 626 many-objective molecular optimization: Unfolding complexity with objective decomposition and
 627 progressive optimization. In *Proceedings of the Thirty-Third International Joint Conference on*
 628 *Artificial Intelligence (IJCAI)*, pp. 6026–6034, 2024.

629 Haoyang Su, Renqi Chen, Shixiang Tang, Zhenfei Yin, Xinzhe Zheng, Jinzhe Li, Biqing Qi, Qi Wu,
 630 Hui Li, Wanli Ouyang, et al. Many heads are better than one: Improved scientific idea generation
 631 by a llm-based multi-agent system. In *Proceedings of the 63rd Annual Meeting of the Association*
 632 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 28201–28240, 2025.

633 Weiwei Sun, Shengyu Feng, Shanda Li, and Yiming Yang. Co-bench: Benchmarking lan-
 634 guage model agents in algorithm search for combinatorial optimization. *arXiv preprint*
 635 *arXiv:2504.04310*, 2025.

636 Anja Surina, Amin Mansouri, Lars Quaedvlieg, Amal Seddas, Maryna Viazovska, Emmanuel Abbe,
 637 and Caglar Gulcehre. Algorithm discovery with llms: Evolutionary search meets reinforcement
 638 learning. *arXiv preprint arXiv:2504.05108*, 2025.

639 Haorui Wang, Marta Skreta, Cher-Tian Ser, Wenhao Gao, Lingkai Kong, Felix Strieth-Kalthoff,
 640 Chenru Duan, Yuchen Zhuang, Yue Yu, Yanqiao Zhu, et al. Efficient evolutionary search over
 641 chemical space with large language models. *arXiv preprint arXiv:2406.16976*, 2024.

648 Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu, Eric Xing, and Mikhail Yurochkin.
 649 Fusing models with complementary expertise. *arXiv preprint arXiv:2310.01542*, 2023.
 650

651 Jinyang Wu, Chonghua Liao, Mingkuan Feng, Shuai Zhang, Zhengqi Wen, Pengpeng Shao, Huazhe
 652 Xu, and Jianhua Tao. Thought-augmented policy optimization: Bridging external guidance and
 653 internal capabilities. *arXiv preprint arXiv:2505.15692*, 2025a.

654 Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, Gavin Li, Yao Dou, Weixin Cai, James Zou,
 655 Jure Leskovec, and Jianfeng Gao. Collabllm: From passive responders to active collaborators.
 656 *arXiv preprint arXiv:2502.00640*, 2025b.

657

658 Xiaorui Wu, Xiaofeng Mao, Fei Li, Xin Zhang, Xiaolu Zhang, Jun Zhou, Yuxiang Peng, Li Zheng,
 659 Chong Teng, Donghong Ji, et al. Evorefuse: Evolutionary prompt optimization for evaluation and
 660 mitigation of llm over-refusal to pseudo-malicious instructions. *arXiv preprint arXiv:2505.23473*,
 661 2025c.

662 Ran Xu, Wenqi Shi, Yuchen Zhuang, Yue Yu, Joyce C Ho, Haoyu Wang, and Carl Yang. Collab-
 663 rag: Boosting retrieval-augmented generation for complex question answering via white-box and
 664 black-box llm collaboration. *arXiv preprint arXiv:2504.04915*, 2025.

665 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 666 Learning to reason under off-policy guidance. *arXiv preprint arXiv:2504.14945*, 2025.

667

668 Sen Yang, Yafu Li, Wai Lam, and Yu Cheng. Multi-llm collaborative search for complex problem
 669 solving. *arXiv preprint arXiv:2502.18873*, 2025.

670 Shunyu Yao, Fei Liu, Xi Lin, Zhichao Lu, Zhenkun Wang, and Qingfu Zhang. Multi-objective
 671 evolution of heuristic using large language model. In *Proceedings of the AAAI Conference on*
 672 *Artificial Intelligence*, volume 39, pp. 27144–27152, 2025.

673

674 Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
 675 and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution.
 676 *Advances in neural information processing systems*, 37:43571–43608, 2024.

677 Jie Zhao, Tao Wen, and Kang Hao Cheong. Can large language models be trusted as black-box
 678 evolutionary optimizers for combinatorial problems? *arXiv e-prints*, pp. arXiv–2501, 2025.

679

680 Junhao Zheng, Chengming Shi, Xidi Cai, Qiuke Li, Duzhen Zhang, Chenxing Li, Dong Yu, and
 681 Qianli Ma. Lifelong learning of large language model based agents: A roadmap. *arXiv preprint*
 682 *arXiv:2501.07278*, 2025.

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703 A APPENDIX

704 A.1 PROMPT EXAMPLE

705
706 Suggest new molecules that satisfy the following requirements: 1. decrease the SA value. 2. de-
707 crease the DRD2 value. 3. increase the QED value. 4. decrease the GSK3b2 value. 5. increase
708 the JNK3 value.709 sa: SA measures how easily a molecule can be synthesized based on its structural complexity. Sim-
710 plifying a molecule by reducing complex ring systems or functional groups can lower SA, making
711 synthesis easier, while adding complex structures can increase SA, making synthesis harder.712 drd2: Dopamine receptor D2 (DRD2) is a receptor involved in the modulation of neurotransmission
713 and is a target for various psychiatric and neurological disorders. Adding functional groups like
714 hydroxyl or halogen atoms to aromatic rings can enhance binding affinity to DRD2. Removing
715 aromaticity or introducing bulky groups near the binding sites often decreases DRD2 activity.716 qed: QED (Quantitative Estimate of Drug-likeness) is a measure that quantifies how 'drug-like' a
717 molecule is based on properties such as molecular weight, solubility, and the number of hydrogen
718 bond donors and acceptors. Adding functional groups that improve drug-like properties (e.g., small
719 molecular size, balanced hydrophilicity) can increase QED, while introducing large, complex, or
720 highly polar groups can decrease it.721 gsk3b: Glycogen synthase kinase-3 beta (GSK3b2) is an enzyme involved in cellular pro-
722 cesses like metabolism and apoptosis, and is a therapeutic target for cancer and neurological dis-
723 eases. Adding polar groups, such as hydroxyls, can improve hydrogen bonding with GSK3b2's
724 active site. Introducing steric hindrance or highly hydrophobic regions can reduce interactions with
725 GSK3b2.726 jnk3: c-Jun N-terminal kinase 3 (JNK3) is a kinase involved in stress signaling and is targeted
727 for neuroprotection in diseases like Alzheimer's. Introducing small polar or electronegative groups
728 can enhance binding affinity to JNK3. Removing polar functional groups or adding large, bulky
729 substituents can reduce activity by obstructing the active site.

730 Give me 2 new molecules that fit the features.

731 You can do it by applying crossover on the given points and based on your knowledge. The molecule
732 should be valid.733 Do not write code. Do not give any explanation. Each output new molecule must start with mol and
734 end with /mol in SMILES form. Your answer can only contain two molecules and end immediately.

735 A.2 DPO LOSS ANALYSIS

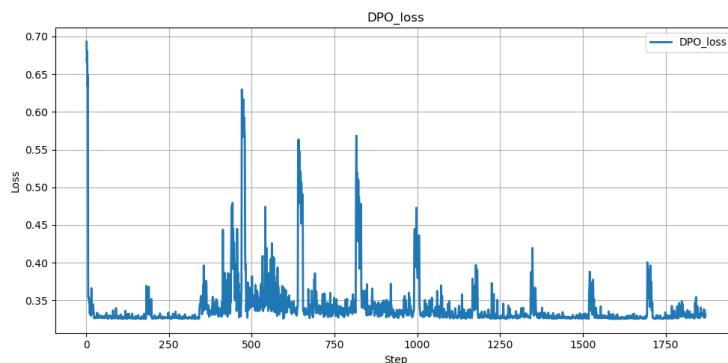


Figure 4: loss Analysis

Figure 4 plots the training loss curve of our DPO optimization. We observe that as the training
step increases, the overall loss gradually decreases and the peak values become progressively lower.

756 This trend indicates that the local model is steadily learning and aligning with the distribution of
 757 high-quality molecules. The occasional sharp peaks correspond to the introduction of newly syn-
 758 thesized training data, which temporarily increases the difficulty of optimization. Importantly, the
 759 diminishing magnitude of these peaks over time reflects that the model is effectively absorbing new
 760 knowledge while maintaining stability, thereby confirming the robustness of our similarity-based
 761 data synthesis strategy.

762 763 764 A.3 TRAINING DETAILS

765 To ensure stability during Direct Preference Optimization (DPO) training, we adopt the *initial un-*
 766 *trained local model* π_{θ_0} as the reference model π_{ref} in the DPO loss. For each training triplet
 767 (q, τ^+, τ^-) , the DPO objective is

$$771 \quad 772 \quad 773 \quad 774 \quad 775 \quad \ell_{\text{DPO}}(q, \tau^+, \tau^-) = -\log \sigma \left(\beta \left[\log \frac{\pi_{\theta}(\tau^+ | q)}{\pi_{\theta_0}(\tau^+ | q)} - \log \frac{\pi_{\theta}(\tau^- | q)}{\pi_{\theta_0}(\tau^- | q)} \right] \right), \quad (15)$$

776 where $\sigma(\cdot)$ is the sigmoid function and $\beta > 0$ is a scaling parameter. By fixing $\pi_{\text{ref}} = \pi_{\theta_0}$, we pre-
 777 vent drift of the reference distribution and guarantee that the optimization process always measures
 778 progress relative to the original model. This prevents instability that might occur if the reference
 779 model itself were updated during training. In practice, we observe a monotonically decreasing
 780 average loss curve, which provides evidence that the local model is gradually aligning with the
 781 distribution of high-quality molecules.

782 **Training frequency and dataset size.** We denote by f the update frequency (number of generated
 783 candidates between two training updates) and by $|\mathcal{D}|$ the size of the synthesized DPO dataset. Both
 784 hyperparameters significantly influence stability and performance. Empirically, smaller f (i.e., more
 785 frequent updates) accelerates adaptation but may introduce variance due to limited data per update,
 786 while larger $|\mathcal{D}|$ provides smoother gradients at the cost of slower responsiveness.

787 **Comparison across paradigms.** We conducted extensive hyperparameter sweeps for several train-
 788 ing paradigms, including SFT, offline RL, GFlowNets, and our DPO method. Let \mathcal{M} denote the set
 789 of all hyperparameter configurations explored for a given method m . The optimal performance is
 790 reported as

$$793 \quad 794 \quad 795 \quad 796 \quad 797 \quad 798 \quad 799 \quad \text{Perf}(m) = \max_{\lambda \in \mathcal{M}} \mathbb{E}[s(c) | c \sim \pi_{m, \lambda}], \quad (16)$$

800 where $s(c)$ is the evaluation score of molecule c and $\pi_{m, \lambda}$ is the trained model with hyperparameter
 801 configuration λ . Across all settings, our DPO-based approach consistently achieved higher $\text{Perf}(m)$
 802 than SFT and offline RL, and demonstrated greater robustness to hyperparameter variations.

803 804 805 A.4 DETAILED ALGORITHM FOR SIMILARITY-BASED DATA SYNTHESIS

806 For completeness, we provide the full pseudocode of the per-prompt DPO pair construction pro-
 807 cedure, including all fallback rules and implementation details.

810
 811 **Algorithm 2:** Per-Prompt DPO Pair Construction with Fallback Rules
 812 **Input:** Historical prompts \mathcal{H} , candidate sets $\{\mathcal{C}_q\}$, similarity filter \mathcal{F} , high/low score pools
 813 $\mathcal{T}_{\text{high}}, \mathcal{T}_{\text{low}}$, intervals I_1, I_2, I_3 , max recent prompts L , max pairs per prompt r
 814 **Output:** Set of DPO triplets $\{(q, \tau^+, \tau^-)\}$
 815 Select the most recent L prompts from \mathcal{H} ;
 816 **foreach** prompt q in selected prompts **do**
 817 Initialize $\mathcal{C}_q^{\mathcal{F}} \leftarrow \mathcal{C}_q \cap \mathcal{F}$;
 818 **for** $i \leftarrow 1$ to r **do**
 819 Try to select τ^+ from $\mathcal{C}_q^{\mathcal{F}} \cap \mathcal{T}_{\text{high}} \cap I_1$;
 820 **if** τ^+ not found **then**
 821 Relax to I_2 ;
 822 If still none, relax to I_3 ;
 823 If still none, broaden to Top-50% pool;
 824 **else**
 825 Keep τ^+
 826 If multiple candidates satisfy, choose highest-scoring or sample uniformly;
 827 Try to select τ^- from $\mathcal{C}_q^{\mathcal{F}} \cap \mathcal{T}_{\text{low}} \cap I_1$;
 828 **if** τ^- not found **then**
 829 Relax to I_2 , then I_3 , then Bottom-50% pool;
 830 **else**
 831 Keep τ^-
 832 **if** τ^+ or τ^- missing **then**
 833 Optionally skip this prompt or draw a random sample from the respective 50% pool;
 834 Record triplet (q, τ^+, τ^-) and optionally store $s(\tau^{\pm})$, $\text{sim}(\tau^{\pm}, q)$;

A.5 ADDITIONAL CO-EVOLUTIONARY CURVES

To further validate the effectiveness of our collaborative co-evolution framework, we provide four additional co-evolutionary curves in Figure 5. These curves consistently demonstrate the same trend observed in the main text: the frozen large LLM provides broad exploration by leveraging its prior knowledge, while the local model—progressively refined through experience learning—contributes focused exploitation and adaptation to the evolving search space. The alternating interplay between exploration and exploitation prevents premature convergence, enhances diversity, and steadily drives the optimization toward superior solutions. Importantly, across all cases, the collaborative trajectory consistently surpasses that of either model operating alone, confirming the robustness and generality of the co-evolutionary mechanism.

A.6 SUPPLEMENTARY ANALYSIS OF SYNTHETIC ACCESSIBILITY

To assess the practical applicability of the molecules generated by our MCCE framework, we rigorously evaluated their Synthetic Accessibility (SA). We utilized the SA Oracle provided by the *Therapeutics Data Commons* (TDC)¹, instantiated via `Oracle(name = 'SA')`.

The SA score estimates the difficulty of synthesizing a given molecule based on a combination of the molecule’s fragment contributions and molecular complexity. The metric is calculated via RDKit using a set of chemical rules originally defined by Ertl & Schuffenhauer (2009). This implementation is widely adopted in molecular generation benchmarks, including the Molecular Sets (MOSES) platform (Polykovskiy et al., 2020).

The scoring scale follows these empirical guidelines:

- **1.0 – 3.0:** Easy to synthesize.
- **3.0 – 6.0:** Intermediate to difficult.
- **> 6.0:** Very difficult or impossible to synthesize.

¹<https://tdcommons.ai/functions/oracles/#synthetic-accessibility-sa>

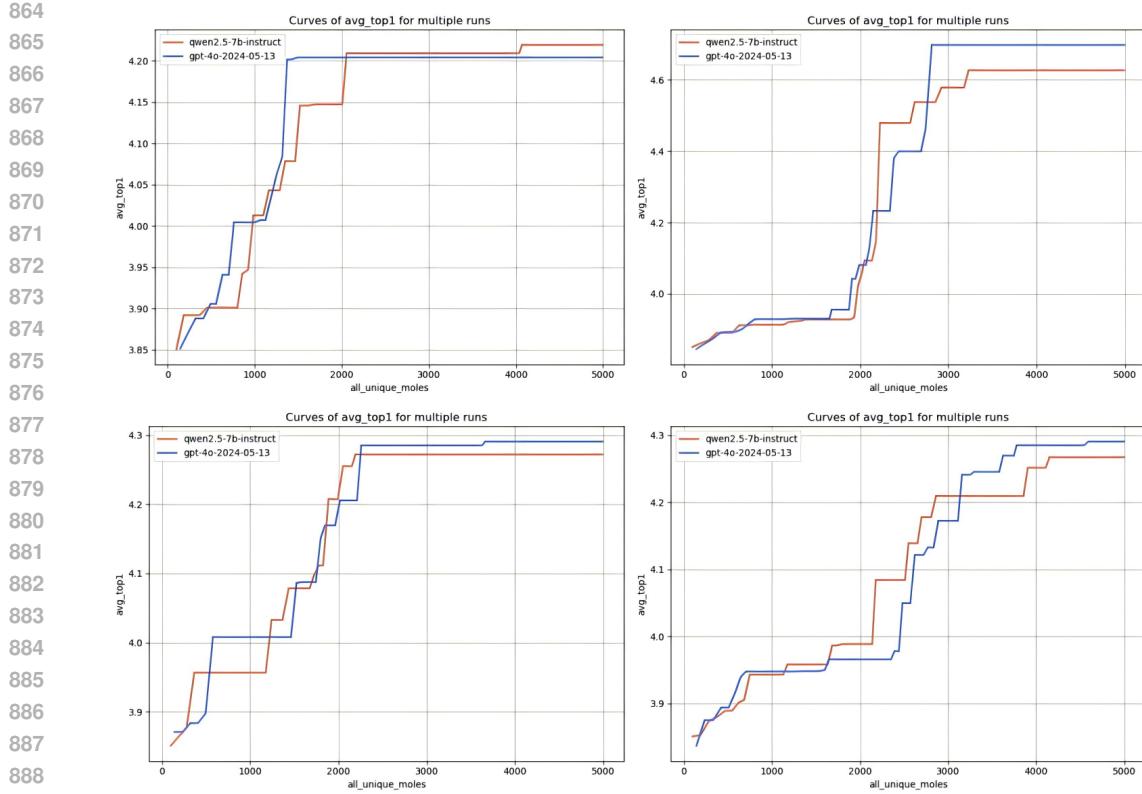


Figure 5: Additional Co-evolutionary Curves

A lower score indicates better synthesizability, which is a critical constraint in real-world drug discovery pipelines.

We conducted a statistical analysis on the final populations ('final_pops') obtained after 5 independent evolutionary runs. The aggregated statistics for the Synthetic Accessibility scores are presented in Table 4.

Table 4: Statistical Analysis of Synthetic Accessibility (SA) Scores in Final Populations.

Metric	Count (N)	Mean	Std. Dev.	Min	Max
Synthetic Accessibility	250	2.00	0.22	1.49	3.06

As shown in Table 4, the generated molecules exhibit exceptional synthesizability profiles:

High Synthesizability: The mean SA score is **2.00**, which falls well within the "easy to synthesize" range (1–3). This is significantly lower than the typical threshold for intermediate difficulty, suggesting that the generated candidates are chemically realistic and practical for wet-lab synthesis.

Concentrated Distribution: The standard deviation is low (**0.22**), and the range is narrow ([1.49, 3.06]). This indicates that the MCCE framework maintains a tight control over the chemical complexity of the population. Unlike traditional evolutionary methods that might exploit scoring functions by generating overly complex or chaotic structures, our collaborative co-evolution approach effectively filters out "hard-to-synthesize" outliers.

Successful Multi-Objective Constraint: It is important to note that these favorable SA scores were achieved while simultaneously optimizing four other challenging objectives (DRD2, QED, GSK3 β , and JNK3). The fact that the maximum SA score observed is only **3.06** (borderline intermediate)

918 demonstrates that MCCE successfully treats SA as a hard constraint. The local trainable model,
 919 refined via DPO, appears to have internalized the implicit rules of chemical validity and simplicity,
 920 avoiding the generation of unrealistic high-scoring artifacts.

921 In conclusion, the SA analysis confirms that the MCCE framework produces high-quality molecular
 922 candidates that are not only theoretically potent (high binding affinity) but also practically viable for
 923 synthesis.

925 A.7 COST ANALYSIS

927 To demonstrate the cost-effectiveness of the MCCE framework, we tracked the detailed computational
 928 resources and financial costs associated with a standard evolutionary run. The experiment was
 929 conducted using the **GPT-4o-2024-05-13** model as the frozen global explorer and a local trainable
 930 model **Qwen2.5-7B-Instruct** on a high-performance compute node.

931 The breakdown of the computational budget and incurred costs for generating a total of 5,000 can-
 932 didates (‘Budget_candidates’) is summarized in Table 5.

935 Table 5: Computational Cost and Resource Usage for MCCE (GPT-4o + Local Model). Statistics
 936 are reported as Mean \pm Std over multiple runs.

Metric	Value / Specification
Target Population Budget	5,000 Candidates
Model Configuration (API / Local)	50 / 32
Hardware Infrastructure	8 \times NVIDIA A800 (40GB)
Total LLM Calls	3471.14 ± 165.34
Total Wall-clock Time (Hours)	3.12 ± 0.31
Total API Cost (USD)	\$3.814 \pm 0.457

946 The data in Table 5 highlights several key advantages of the collaborative co-evolution paradigm:

947 **High Cost-Efficiency:** The total financial cost for accessing the proprietary closed-source model
 948 (GPT-4o) was remarkably low, averaging approximately **\$3.81 per run**. This is significantly more
 949 economical than pure API-based evolutionary methods, which typically require extensive token con-
 950 sumption for every generation step. By offloading a significant portion of the localized search and
 951 exploitation to the local trainable model, MCCE drastically reduces the dependency on expensive
 952 API calls.

953 **Reasonable Time Complexity:** Utilizing an 8 \times A800 GPU cluster, the entire evolutionary pro-
 954 cess (including DPO fine-tuning and candidate evaluation) concluded in roughly **3.12 hours**. This
 955 demonstrates that the framework is computationally feasible for iterative scientific discovery loops,
 956 where rapid turnaround is essential.

957 **Effective Collaboration:** The total number of LLM calls ($\approx 3,471$) relative to the candidate budget
 958 (5,000) suggests an efficient generation strategy. The difference implies that the system effectively
 959 utilizes crossover, mutation, and the local model’s generation capabilities to expand the population,
 960 further optimizing the resource-to-performance ratio.

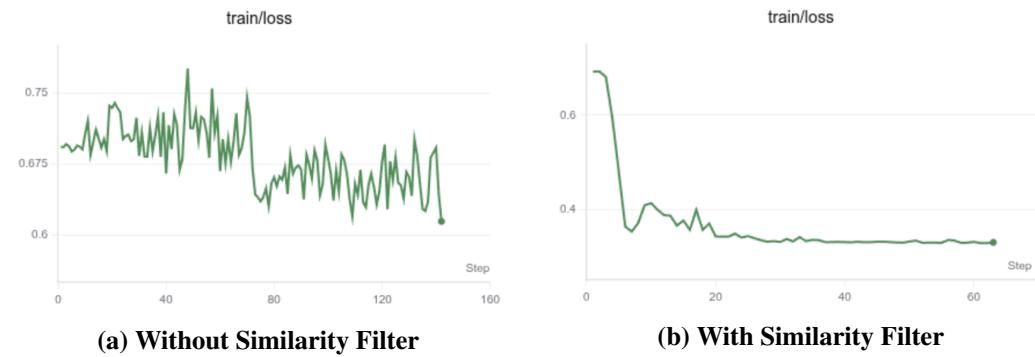
961 These findings confirm that MCCE offers a scalable and sustainable path for leveraging Large Lan-
 962 guage Models in optimization, minimizing the “token tax” usually associated with state-of-the-art
 963 foundation models.

966 A.8 IMPACT OF SIMILARITY METRICS AND DPO STABILITY ANALYSIS

968 A core finding of our experiments is that the stability of Direct Preference Optimization (DPO)
 969 within a co-evolutionary framework is heavily dependent on the structural similarity of the train-
 970 ing pairs. Regardless of the specific mathematical definition of the metric, as long as the metric
 971 effectively reflects the pairwise similarity between the chosen (τ^+) and rejected (τ^-) trajectories, it
 significantly stabilizes the training process.

972 Our experiments demonstrate that DPO training data synthesis without similarity constraints leads
 973 to high variance and gradient conflicts, as the model is forced to compare candidates from disjoint
 974 distributions. In contrast, enforcing a similarity constraint ensures that the model learns from consis-
 975 tent, local improvements (i.e., "how to make a good molecule slightly better") rather than confusing
 976 global jumps.

977 Figure 6 visualizes this phenomenon. The loss curve without similarity filtering (a) exhibits se-
 978 vere oscillations and instability, whereas the curve with similarity-based data synthesis (b) remains
 979 smooth and converges steadily.



994 Figure 6: Comparison of DPO training stability. **(a)** Without similarity constraints, the loss is highly
 995 volatile due to distributional mismatch. **(b)** With our similarity-based data synthesis, the training
 996 loss is stable and converges smoothly, confirming the effectiveness of the proposed strategy.

997 While our primary experiments on molecular optimization utilized domain-specific molecular fin-
 998 gerprints (e.g., Tanimoto similarity on Morgan fingerprints), we extended our framework to other
 999 combinatorial and geometric domains by adopting **embedding-based similarity metrics**.

1000 In these supplementary tasks, we found that mapping the decision variables (e.g., routes, coordi-
 1001 nates) into a latent embedding space and computing Cosine Similarity yielded equally effective
 1002 results. This confirms that the MCCE framework is not tied to a specific chemical metric but is a
 1003 generalizable paradigm dependent only on a reliable measure of "distance" in the solution space.
 1004 Table 6 details the specific configurations used for each task type.

1005
 1006
 1007 Table 6: Similarity metrics and configurations used across different optimization tasks. While
 1008 molecular tasks rely on discrete fingerprints, continuous and combinatorial tasks utilize embedding-
 1009 based cosine similarity.

Task Type	Similarity Metric	Embedding Content	Normalization	Similarity Range
Circle Packing	Cosine Similarity	Circle centers + radii	L2 normalization	[0, 1]
Molecule Optimization	TDC Similarity_Meta	Molecular fingerprints (SMILES)	N/A (external library)	[0, 1]
Vehicle Routing	Cosine Similarity	Per-route (customer count, demand, distance)	L2 normalization	[0, 1]
Traveling Salesman	Cosine Similarity	Edge length sequences under two objectives	L2 normalization	[0, 1]

1016 A.9 DETAILS OF MULTI-OBJECTIVE SELECTION MECHANISM

1017 To strictly balance convergence quality and population diversity—thereby maximizing the Hyper-
 1018 volume (HV) indicator—we designed a **Hybrid Elite-Diversity Selection Strategy**. This strategy
 1019 constructs the next-generation population of size N by combining Single-Objective (SO) optimiza-
 1020 tion with Pareto-based diversity maintenance.

1021 The population construction is divided into two phases:

- 1022 • **Elite Preservation (Top 50%):** To ensure rapid convergence towards high-fitness regions,
 1023 the first half of the population ($N/2$) is selected solely based on the aggregated total score
 1024 (SO Selection). This acts as a strong exploitation signal.

- **Diversity Maintenance (Bottom 50%):** To prevent the population from collapsing into a single mode and to cover the Pareto front widely, the remaining $N/2$ slots are filled using candidates from the optimal Pareto layers. In this phase, we enforce strict duplicate removal to guarantee structural uniqueness.

The detailed algorithmic flow is as follows:

1. **Elite Selection:** Sort all candidates in the current pool by their aggregated fitness score $S(c)$. Select the top $N/2$ individuals to form the elite set \mathcal{P}_{elite} .
2. **Pareto Layering:** Perform Non-Dominated Sorting on the entire candidate pool to partition it into Pareto ranks $\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_k$, where \mathcal{R}_1 represents the non-dominated front.
3. **Diversity Filling:** Initialize the diversity set $\mathcal{P}_{div} = \emptyset$. Iterate through ranks $i = 1, 2, \dots$:
 - Sort candidates within \mathcal{R}_i by total score.
 - Sequentially add candidate $c \in \mathcal{R}_i$ to \mathcal{P}_{div} if and only if c is chemically unique (i.e., its canonical SMILES string is not already present in $\mathcal{P}_{elite} \cup \mathcal{P}_{div}$).
 - Stop once $|\mathcal{P}_{elite}| + |\mathcal{P}_{div}| = N$.
4. **Final Population:** $\mathcal{P}_{next} = \mathcal{P}_{elite} \cup \mathcal{P}_{div}$.

By prioritizing rank-1 Pareto solutions while explicitly filtering duplicates, this method effectively maintains a diverse set of high-quality trade-off solutions, directly contributing to the superior HV and Uniqueness metrics observed in our experiments.

B ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimentation was involved. All datasets used, including ZINK, were sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discriminatory outcomes in our research process. No personally identifiable information was used, and no experiments were conducted that could raise privacy or security concerns. We are committed to maintaining transparency and integrity throughout the research process.

C REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code and datasets have been made publicly available in an anonymous repository to facilitate replication and verification. The experimental setup, including training steps, model configurations, and hardware details, is described in detail in the paper. We have also provided a full description of MCCE, to assist others in reproducing our experiments.

We believe these measures will enable other researchers to reproduce our work and further advance the field.

D LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript. Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing, grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or experimental design. All research concepts, ideas, and analyses were developed and conducted by the authors. The contributions of the LLM were solely focused on improving the linguistic quality of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or scientific misconduct.