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Abstract

Convolutional neural networks (CNNs) trained for visual recognition can predict
activity in primate inferior temporal cortex (IT). It was generally accepted that this
is because training leads the CNNs to develop tuning to visual features similar
to those in the brain. However, recent evidence that untrained random-weight
CNNs explain IT variance to a similar magnitude appears inconsistent with this
view. Since IT contains rich representations of both perceptual and semantic
features, here we propose a resolution to this conflict, that random and trained
networks capture different aspects of IT activity. Specifically, we hypothesised
that random networks capture perceptual aspects of IT, while trained networks
capture semantic aspects but not perceptual ones. We evaluated a trained standard
AlexNet and an untrained random network shown to correlate better with the
brain, DeepCluster. The ability of the CNNs to predict IT activity patterns and the
role played by perceptual and semantic features was evaluated using regression
models, multidimensional scaling, and mediation analysis. The results support the
hypothesis and highlight that, whether CNNs are used as models of the brain, or
the brain is used to inspire advances in neural networks, it is not enough to know
how similar a given model is to the brain: we also need to know why.

1 Introduction

CNNs trained for object recognition - often AlexNet trained on ImageNet [1, 2, 3] - have proven
to be good models of IT activity measured with neuroimaging or electrophysiology. It has been
proposed that the discriminative features learned by CNNs during visual task training are similar to
the features learned or evolved by the brain to solve vision based problems [4, 5]. However, there
is increasing evidence that random-weight networks (i.e., networks without training) correlate with
IT activity in human and animal models almost as well as trained CNNs, across analysis methods
including representational similarity analysis and encoding models [6, 7, 8, 9]. In at least one
instance, a network with random weights correlated with the brain even better than a trained CNN
[10]. Specifically, Truzzi and Cusack [10] used the standard AlexNet architecture and an unsupervised
network called DeepCluster, and found that the random DeepCluster correlated with IT significantly
better then the trained DeepCluster or the trained/untrained AlexNet. In the case of DeepCluster, the
training seemed to lead the network’s representation away from IT’s, rather than bringing it closer.
It was found that this was not due to the type of training, since using a supervised protocol to train
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the same DeepCluster architecture led to the same result. If the training process is not guaranteed
to bring the CNNs representations closer to the brain’s, we need to ask which features of IT are
captured by random and trained CNNs. Human neuroimaging and electrophysiology has shown
that IT represents both semantic information such as visual class or animacy [11, 12, 1, 13, 14] and
perceptual information like spatial position [15]. Here we investigated the possibility that although
random and trained CNNs correlate with IT with similar magnitude, they do so for different reasons.
Our overarching hypothesis, was that random CNNs are similar to IT because they capture its
perceptual aspects, while trained CNNs capture IT’s semantic aspects but have lost the ability to
capture its perceptual aspects. Indeed, for a CNN to solve the specific task of object recognition, the
presence of irrelevant perceptual information may be a nuisance, and so this will be lost in training. In
contrast, IT serves many downstream tasks of which object classification is just one, and perceptual
features may be retained for these other tasks. We test the overarching hypothesis in three steps. First,
we tested if a random network captures different aspects of IT representation compared to trained
CNNs using linear models. Second, once we established that the two types of network captured
different aspects of IT variability, we qualitatively investigated the nature of the representations in
random and trained CNNs by visualizing them using multidimensional scaling. Third, to quantify
which features, perceptual or semantic, drove the representational similarity between CNNs and IT,
we used a mediation analysis.

2 Methods

2.1 Networks, neuroimaging, and preliminary analysis

Standard AlexNet. We used the standard AlexNet architecture [16] from torchvision.models, as
used in previous studies [1, 2, 3]. The model was trained on ImageNet (top 1-accuracy: 56.6) and was
not fine-tuned to the 92 visual stimuli used in the present study. We recorded activity at the output of
the ReLUs in the five convolutional layers and the two fully connected layers.

DeepCluster. As in Truzzi and Cusack [10], we evaluated DeepCluster [17], trained in an unsuper-
vised way on ImageNet (top 1-accuracy from 5th convolutional layer: 36.1) and again not fine-tuned
to the 92 visual stimuli. The underlying convolutional network of DeepCluster can be an AlexNet
[16] or a VGG16 architecture, both modified for unsupervised learning [17] with the local response
normalisation layers removed and batch normalisation used instead [18] and an initial linear trans-
formation based on Sobel filters applied on the input to remove colour and increase local contrast.
Truzzi and Cusack [10] used the AlexNet instantiation but the results generalise to VGG16 (see
Figure S1 in the appendix). To present a proof-of-principle we focus on the simpler AlexNet, and
record activity at the output to the ReLU of the second convolutional layer of random DeepCluster as
this was previously found to best correlate with IT [10].

Neuroimaging and Representational Similarity Analysis. Brain activity in response to 92 images
was measured in the brains of 15 adults using functional MRI by Cichy et al. [19]. We compared how
IT cortex and the CNNs represent these stimuli, using the well-established method of representational
similarity analysis [20, 1], which calculates how dissimilar the brain activity evoked by each stimulus
is to that evoked by every other stimulus (using 1-Pearson correlation), yielding a representational
dissimilarity matrix (RDM). For each layer of interest in the CNNs, an RDM was also calculated
using a the same similarity analysis procedure. The IT and CNNs RDMs were then used in further
analysis.

2.2 Do random and trained CNNs explain different aspects of IT variability?

If random and trained CNNs explain different aspects of IT, then together they should explain more
variance than the trained CNN alone. To test this, we set up an ordinary least squares linear regression
model at the level of the RDMs, which modelled the IT RDM as a weighted combination of one layer
of the trained (AlexNet layer 7) and one layer of the random (DeepCluster layer 2) CNNs. These
two layers were chosen because we expected their internal representations to be driven by mostly
perceptual or semantic features, respectively. We used a method from a recent preprint Storrs et al.
[8] that cross-validates bootstrapping across visual classes as well as across subjects (see Appendix
for more details). However, any predictive power obtained in this model could be simply the result of
the combination of earlier and upper layers of the networks. Layer 2 of random DeepCluster could
be explaining no more IT variability than early layers of trained standard AlexNet, especially when
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Figure 1: Models including random DeepCluster - DC in the figure - (dark and mid blue) explained IT
representation better than models including trained AlexNet alone (light blue). Bars show the mean
and standard deviation of correlation between the representations predicted by the models and the
true IT representations across folds and bootstrapping runs. The gray stripe shows the noise ceiling,
the maximum correlation that could be expected given the noise in the IT measurements.

considering that layer 7 of trained standard AlexNet did not have the strongest correlation with IT.
To account for this possibility, two more models were run. The second model modelled IT from a
weighted combination of all layers of trained standard AlexNet. The third model was the same as the
second, except that it also included layer 2 of random DeepCluster. We only tested a single layer from
random DeepCluster because our goal was to create the most parsimonious model in which to test if
representations from random DeepCluster will improve modelling of IT. Finally, trained standard
AlexNet and random DeepCluster differ in both training and the architecture. To isolate the effect of
training, we ran two final models with random standard AlexNet: i) one model including all layers of
random standard AlexNet, ii) a second model combining all layers from trained standard AlexNet
and layer 2 from random standard AlexNet. These regression models were tested against chance and
contrasted by calculating bootstrapped confidence intervals (see Appendix for more details).

2.3 Contribution of semantic vs perceptual features.

Multidimensional scaling (MDS). To qualitatively explore how images were represented in layer
2 of random DeepCluster and layer 7 of trained standard Alexnet we visually inspected their MDS
plots. MDS was chosen over tSNE as it better preserves the distance structure at the global level.

Mediation analysis. To quantitatively test how semantic and perceptual characteristics mediate the
relation between the CNNs and IT, we used mediation models (see Appendix for more details). For
each image in the stimulus set, two semantic (animacy, semantic category) and seven perceptual
(size, thinness, orientation, silhouette, contrast, hue, luridness) features were assessed (see Appendix
for more details) and each feature’s RDM was calculated. One mediation model was run for each
CNN, with the IT RDM averaged across subjects as dependent variable, the layer’s RDMs (layer 2 of
random DeepCluster vs layer 7 of trained standard AlexNet) as the independent variable, and the
feature RDMs as multiple mediators. From the linear modelling we found that combining these two
layers, layer 7 of trained standard AlexNet + layer 2 of random DeepCluster, was able to explain IT
variability better than a model including all layers from trained standard AlexNet and as well as a
model combining all layers of trained AlexNet with layer 2 of random DeepCluster. Applying the
mediation model to each of these two layers separately allowed us to investigate why the combination
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Figure 2: Multidimensional scaling plots showing whether images from the 92 stimuli set are close
or far apart in the representational space. a) Images as represented by layer 2 of random DeepCluster.
b) Images as represented by layer 7 of trained standard AlexNet

of layer 7 of trained standard AlexNet and layer 2 of random DeepCluster predicted IT over and
above the combination of all the trained standard AlexNet layers. For each indirect path we calculated
its proportion of the total regression weights (i.e., indirect path+direct path). Then, we calculated
two aggregate sums for the perceptual, and for the semantic features. For the mediation models,
cross-validation was not necessary because our goal was not to predict IT activity but to understand
what drives the prediction.

3 Results

3.1 Do random and trained CNNs explain different aspects of IT variability?

All three main models significantly correlated with IT (trained AlexNet(1-7) Kendall’s τ CI =
[0.04,0.18]; trained AlexNet(7)+random DeepCluster(2) CI = [0.10,0.23]; trained AlexNet(1-
7)+random DeepCluster(2) CI = [0.10,0.23]). Critically, the two models containing random network
(trained AlexNet(7)+random DeepCluster(2); AlexNet(1-7)+random DeepCluster(2)) correlated
more strongly with IT than the trained standard AlexNet (differences in Kendall’s τ , respectively,
CI = [-0.12,-0.5e-04] and CI = [-0.12,-0.01]). The two models containing the random network
did not differ from each other in their prediction of IT (CI = [-0.03,0.03]). In summary, the RDM
of the random CNN explained variance in the IT RDM, over-and-above the RDM of the trained
CNN, supporting our hypothesis that they carry independent predictive value. On the other hand, the
model including all layers from random standard AlexNet did not significantly predict IT (random
AlexNet(1-7) Kendall’s τ CI = [-0.37,0.08]. The model combining all layers of trained standard
AlexNet with layer 2 of random standard AlexNet, although significantly different from baseline
(trained AlexNet(1-7)+random AlexNet(2) Kendall’s τ CI = [0.04,0.18], did not significantly dif-
fer from the model including all layers from trained AlexNet only (differences in Kendall’s τ CI
= [-0.01,0.02]. Instead, both models including layer 2 of random DeepCluster, that is trained
AlexNet(7)+random DeepCluster(2) and trained AlexNet(1-7)+random DeepCluster(2), predicted
IT better than the model including layer 2 or random standard AlexNet (differences in Kendall’s τ ,
respectively, CI = [0.0002,0.12] and CI = [0.007,0.12]. Therefore, the representations in random
standard AlexNet do not capture variability in IT and do not contribute to explain IT over and above
the representations in trained standard AlexNet. Random DeepCluster is therefore able to capture
some variability in IT that both trained and random standard AlexNet are missing. This difference is
likely driven by the presence in DeepCluster of an initial Sobel filter that increases local contrast, or
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Figure 3: The proportion of IT’s RDM explained by random DeepCluster and trained AlexNet that
was mediated by the semantic and perceptual features.

of the batch normalization. Indeed, when adding the same modifications to the VGG16 architecture
we saw that random modified VGG16 correlated with IT better than the trained modified VGG16 (see
Figure S1 in the appendix). It should be noted that none of the models captured all the explainable
variability in IT. However, the magnitude of the variance explained by these models is in line with
other results in the literature [21].

3.2 Visualizing representations of random and trained CNNs.

Multidimensional scaling (MDS) places images that evoke more similar patterns of activation closer
together. The MDS plots showed that in layer 2 of random DeepCluster the stimuli seemed grouped
by shape, with horizontal thin objects towards the upper left and vertical thin objects to the lower
right. In contrast, in layer 7 of trained standard AlexNet the stimuli were grouped by category [Fig.2].
Interestingly, the shape-based grouping seen in layer 2 of random DeepCluster was not present in
layer 2 from random standard AlexNet, where objects seemed to rather be grouped based on colour
(see Fig.S2 in the appendix).

3.3 Mediation analysis of contribution of semantic vs perceptual features.

For random DeepCluster perceptual features explained a higher proportion of the total variance than
the semantic features. In contrast, for trained standard AlexNet the semantic features combined
explained a higher proportion of the total effect compared to the perceptual features [Fig.3]. A break
down of the proportion for the indirect path of each feature is shown in Table 1. The full model
results for both layer 2 random DeepCluster and layer 7 trained standard AlexNet are reported in
Tables S1 and S2, respectively, in the appendix.

4 Discussion

Even when the representations of random and trained networks correlated with IT to a similar degree,
they explained different aspects of its representations. Adding only one layer of a random CNN
to the model predicting IT activity was already enough to double the explained variance. This
finding highlights that a random DeepCluster captures aspects of IT representation that the trained
standard AlexNet misses. IT has rich representations, likely to sustain many downstream tasks in
addition to object recognition. In contrast, CNNs are typically trained for just one task. The training
process introduces tuning for discriminative features while leading to a reduction in the coding of
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Table 1: The strength of mediation by each feature was quantified by its indirect effect divided by the
sum of indirect and direct effects for the model.

Type Mediating feature Random DeepCluster Trained AlexNet
Semantic category -0.1% 2.6%

animacy 5.8% 30.0%
Perceptual size -0.6% -4.2%

thinness 10.6% 0.8%
orientation 0.1% 0.9%
silhouette 14.2% 14.6%
contrast 0.5% -0.1%
hue -1.0% 0.3%
luridness 1.5% 1.8%

features that could be a nuisance for that particular task. However, the representations that are a
nuisance for one task will be valuable for another. Even in the context of object categorization, IT
may be "cheating" and using shortcuts based on simple perceptual cues, rather than full invariant
representations [22, 23, 24]. CNNs use this strategy as well, but previous findings have shown that
for object recognition humans prioritize global features, such as the shape of objects, while CNNs
prioritize local features, such as their texture [25]. This may cause the CNNs to learn, during training,
to disregard some mid-level perceptual features that are instead retained in IT. If random CNNs are
sensitive to shape information, this could explain some of the variance it captures in IT. Supporting
this, the mediation analysis confirmed that at least one shape measure, thinness, mediates the relation
between random DeepCluster and IT, whereas it does not mediate the correlation between the trained
network and IT. A limitation of the current study is that only two networks were considered and
extension to a wider range of architectures, as well as the use of different random seeds would further
the understanding of what makes CNNs representations similar to neural activity patterns in IT and
of the possibility to generalise the present findings. Nonetheless, our study already highlights that
knowing how well CNNs and IT correlate is not enough, we also need to understand why [26].
Understanding what features make the internal representations of CNNs similar to neural activity
patterns in human IT will impact both neuroscience and AI [23]. In neuroscience, knowing what
type of information is processed in the ventral visual stream will give us insights on what the brain
uses to learn about the world. On the other hand, building CNNs’ architectures that uses the same
features to learn about their visual input could improve the networks’ performance and make it more
generalizable and robust to adversarial attacks.

Broader Impact

Outputs from this research will advance the knowledge in neuroscience and AI benefiting researchers
in those fields. Findings from the present project will not put anyone at a disadvantage. No new
system is tested in the current research.
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Appendix

Cross-validation across subjects and visual classes. Like [8] we used bootstrapping to calculate a
noise ceiling measure and variability estimate. For each model, 20000 bootstraps were run with 20
cross-validation folds each. Within each fold, 12 image classes and 4 subjects were assigned to the
test set. The bootstrap procedure was run with replacement, therefore more then one occurrence of
the same subject and image class could be included in the same test set. However, the train and test
set were mutually exclusive: the same subject or the same image classes were not present in both
the training and test sets of a single fold. A linear regression model was used to fit the portion of
the CNN layer RDMs to the IT RDM using only the training image classes. The IT RDM was the
average of the training subjects’ IT RDMs. This model was then used to predict the representational
similarity of the test image classes, by using the fitted coefficients to re-weight the test portion of
the layer RDMs and summing them. This was then compared to the IT RDMs for the test image
classes for each individual test subject’s RDM, using Kendall’s τ as the correlation statistic. The
use of Kendall’s τ is recommended because, being a rank correlation coefficient, it does not assume
the presence of a linear relationship between the RDM values [1], and because it proved to be more
likely than Spearman’s Rho to prefer the true model over a simplified categorical model [27]. The
final correlation score for each of the two models was calculated by averaging the Kendall’s τ values
across cross-validation folds. Within the bootstrap and cross-validation folds, the lower and upper
bounds of the noise ceiling were also calculated. The calculation of the noise ceiling shows how
much of the data variability is explained by our model by taking into account the noise intrinsic in
the MRI data. If the correlation between the model and the MRI data is close to the noise ceiling,
the model explains the data well [1]. The lower bound was the average correlation of the mean of
the IT response from the training subjects to each individual test subject. The upper bound was the
average correlation of the mean of the IT response across all subjects, both test and training, to each
individual test subject. An aggregate summary of the noise ceiling was then obtained by averaging
the lower and upper values across folds.

Bootstrapping confidence interval. The significance of each model against the baseline was calcu-
lated using the percentile bootstrap procedure with alpha = 0.05. The correlation values obtained
across bootstrapping were sorted and the 95% confidence interval was calculated. To compare the
models, the confidence interval was calculated on the difference between models. First the correlation
values obtained across bootstrapping for one model were subtracted from the ones obtained for a
second model. Then, the values obtained after the subtraction were sorted and the 95% confidence
interval was calculated.

Mediation models A mediation model calculates direct and indirect relation between independent
and dependent variables. The direct path calculates the relation between independent and dependent
variables when the mediation factors remain unaltered, whereas the indirect path calculates how
strongly other factors mediate the relation between the independent and dependent variables [Fig.??].

Images’ semantic features. The semantic category was defined using the ones proposed in Khaligh-
Razavi and Kriegeskorte [1]: human body, human face, non-human body, non-human face, inanimate
natural, inanimate artificial. The RDM of the semantic categories was computed by assigning zero
to each pair of images if they belonged to the same category and one if they belonged to different
categories. In a similar way, the animacy of each image was defined and the RDM of animacy
categories was computed by assigning zero to each pair of images if they were both animate or both
inanimate, and one if they belonged to different categories.

Images’ perceptual features. Seven perceptual features were calculated following Cusack et al.
[22]: size, thinness, orientation, silhouette, contrast, hue, luridness. Size was measured as number of
non-background pixels in the image. Thinness was calculated as the ratio of the first two singular
values of the Cartesian coordinates of the occupied pixels. Orientation was assessed by calculating
how many radians off the horizontal axis the primary axis was (the arctan of the ratio of the two
elements in the first row of the singular value decomposition). The silhouette RDM was defined as
the correlation between the silhouettes of the pair of images. Contrast was calculated as the mean
of sum of squared difference of each color channel from the background color, for non-background
pixels. Color hue was defined as the H value of mean color in HSV space, again for non-background
pixels. Color luridness was calculated as the mean of standard deviation across RGB for each pixel,
for non-background pixels. To create an RDM for each perceptual feature, the Euclidean difference
for the feature for each pair of images was computed.
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Figure S1. Results of the correlation between each subject’s RDM and each networks’ layer RDMs
for two architectures: DeepCluster VGG16 modified for unsupervised learning and standard VGG16.
The dashed lines represent the correlations with the random networks. The solid lines represents the
correlations with the trained networks. The grey band represents the noise ceiling for the MRI data.
Asterisks show in which layers one version of the network correlated with IT better than the other. a)
Results for DeepCluster VGG16. b) Results for standard VGG16
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Table S1. Mediation model testing whether the relation between layer 2 of random DeepCluster and
IT is mediated by semantic or perceptual features.

path coef se p value CI[2.5%] CI[97.5%] Sig
category ∼ X -0.20 0.76 0.79 -1.70 1.29 No
animacy ∼ X 3.69 1.00 0.0002 1.73 5.66 Yes
size ∼ X 1.29e+05 8.29+03 0.000 1.13e+05 1.45e+05 Yes
thinness ∼ X 3.58e+01 0.96 0.000 3.39e+01 3.77e+01 Yes
orientation ∼ X 1.68e+01 1.01 0.000 1.48e+01 1.88e+01 Yes
silhouette ∼ X -1.05e+01 3.91e-01 0.000 -1.13e+01 -9.77 Yes
contrast ∼ X 1.17e+05 3.52e+04 0.001 4.78e+04 1.86e+05 Yes
hue ∼ X 3.13e+02 6.38e+01 0.000 -4.38e+02 -1.88e+02 Yes
luridness ∼ X 2.21e+02 2.49e+01 0.000 1.72e+02 2.70e+02 Yes
Y ∼ category 0.01 0.003 0.000 0.009 0.02 Yes
Y ∼ animacy 0.06 0.002 0.000 0.05 0.006 Yes
Y ∼ size -5.59e-07 2.54e-07 0.03 -1.06e-06 -6.14e-08 Yes
Y ∼ thinness 0.03 0.002 0.000 0.02 0.03 Yes
Y ∼ orientation 0.004 0.002 0.09 -5.58e-04 0.008 No
Y ∼ silhouette -0.07 0.006 0.000 -0.08 -0.06 Yes
Y ∼ contrast 2.12e-07 5.02e-08 0.000 1.14e-07 3.11e-07 Yes
Y ∼ hue 5.68e-05 2.78e-05 0.04 2.19e-06 1.11e-04 Yes
Y ∼ luridness 3.83e-04 7.08e-05 0.000 2.45e-04 5.22e-04 Yes
Total 3.52 0.13 0.000 3.26 3.77 Yes
Direct 2.43 0.14 0.000 2.16 2.70 Yes
Indirect category -0.003 0.01 0.8 -0.03 0.02 No
Indirect animacy 0.20 0.057 0.000 0.10 0.31 Yes
Indirect size -0.02 0.03 0.5 -0.08 0.03 No
Indirect thinness 0.4 0.07 0.000 0.2 0.5 Yes
Indirect orientation 0.003 0.04 0.9 -0.06 0.07 No
Indirect silhouette 0.50 0.65 0.000 0.38 0.62 Yes
Indirect contrast 0.02 0.008 0.000 0.006 0.03 Yes
Indirect hue -0.03 0.01 0.004 -0.056 -0.02 Yes
Indirect luridness 0.05 0.02 0.000 0.02 0.09 Yes
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Table S2. Mediation model testing whether the relation between layer 7 of trained standard AlexNet
and IT is mediated by semantic or perceptual features.

path coef se p value CI[2.5%] CI[97.5%] Sig
category ∼ X 0.99 0.04 0.000 0.91 1.08 Yes
animacy ∼ X 1.13 0.057 0.000 1.01 1.25 Yes
size ∼ X 6.67e+03 4.92e+02 0.000 5.69 7.62e+03 Yes
thinness ∼ X 0.05e-02 0.07e-02 0.45 -0.08e-02 0.18 No
orientation ∼ X 1.06 0.06 0.000 0.94 1.17 Yes
silhouette ∼ X -0.57 0.02 0.000 -0.62 -0.53 Yes
contrast ∼ X -5.57 2.08 0.79 -4.62e+03 3.51e+03 No
hue ∼ X 2.85e+01 3.74 0.000 2.12 3.58e+01 Yes
luridness ∼ X 1.30e+01 1.47 0.000 1.01e+01 1.59e+01 Yes
Y ∼ category 0.01 0.003 0.000 0.01 0.02 Yes
Y ∼ animacy 0.06 0.002 0.000 0.05 0.06 Yes
Y ∼ size -5.59e-07 2.54e-07 0.03 -1.06e-06 -6.14e-08 Yes
Y ∼ thinness 0.03 0.002 0.000 0.02 0.03 Yes
Y ∼ orientation 0.004 0.002 0.09 -5.58e-04 0.008 No
Y ∼ silhouette -0.07 0.006 0.000 -0.08 -0.06 Yes
Y ∼ contrast 2.12e-07 5.02e-08 0.000 1.14e-07 3.12e-07 Yes
Y ∼ hue 5.68e-05 2.79e-05 0.04 2.19e-06 1.11e-04 Yes
Y ∼ luridness 3.83e-04 7.08e-05 0.000 2.45e-04 5.22e-04 Yes
Total 0.20 0.008 0.000 0.18 0.21 Yes
Direct 0.11 0.008 0.000 0.09 0.1 Yes
Indirect category 0.005 0.003 0.08 -7.04e-05 0.01 No
Indirect animacy 0.06 0.003 0.000 0.05 0.07 Yes
Indirect size -0.008 0.002 0.000 -0.01 -0.005 Yes
Indirect thinness 0.002 0.002 0.40 -0.002 0.005 No
Indirect orientation 0.002 0.002 0.42 -0.003 0.006 No
Indirect silhouette 0.03 0.004 0.000 0.02 0.04 Yes
Indirect contrast -1.13e-04 4.07e-04 0.78 -9.22e-04 6.30e-04 No
Indirect hue 5.16e-04 7.38e-04 0.53 -7.77e-04 0.002 No
Indirect luridness 0.004 0.001 0.000 0.002 0.006 Yes
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