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Abstract

Image classification is a long-standing task in computer vision with deep neural
networks (DNN) producing excellent results on various challenges. However, they
are required not only to perform highly accurate on benchmarks such as ImageNet,
but also to robustly handle images in adverse conditions, such as modified light-
ing, sharpness, weather conditions and image compression. Various benchmarks
aimed to measure robustness show that neural networks perform differently well
under distribution shifts. While datasets such as ImageNet-C model for example
common corruptions such as blur and adverse weather conditions, we argue that
the properties of the optical system and the potentially resulting complex lens blur
are insufficiently well studied in the literature. This study evaluates the impact of
realistic optical corruptions on the ImageNet classification. The proposed complex
corruption kernels are direction and wavelength dependent and include chromatic
aberration, which are all to be expected in realistic scenarios such as autonomous
driving applications. Our experiments on twelve different DNN models show
significant differences of more than 5% in the top1 classification accuracy, when
compared to the model performances on matched ImageNet-C blur kernels.

1 Introduction

Neural networks for computer vision tasks are used in a wide range of applications and are expected
to be reliable in safety-critical situations such as in autonomous driving [1, 2, 3]. Therefore, it is
crucial that neural networks are able to generalize from the training distribution to unknown images
and slight domain shifts. In order to test such behavior, various benchmarks have been proposed
that introduce targeted corruptions [4, 5, 6, 7] or mimic common corruptions and adverse weather
conditions [8, 9]. The simulation of effects such as lighting conditions, noise or image sharpness
have been addressed for examples by Hendrycks et al. [8]. In [9], Kar et al. aim for more realistic
modeling by proposing additional 3D corruptions such as change of field of view, camera roll or far
focus.

While these papers cover a wide range of corruptions, they introduce necessary simplifications for
each of them. As a result, they do not consider complex corruptions as they can result from the optical
recording system. In this paper, we argue that the modeling of such realistic optical blur kernels that
include chromatic aberrations and astigmatism should be considered, since they are very likely to
eventually occur in practice.
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Thus, we examine the effects of two complex kernel types on ImageNet and evaluate on the resulting
corruptions the behavior of existing, robust and non-robust classification models, using ImageNet-C
[8] as a baseline.

Practically, the image of an object plane produced by a lens can be described using linear systems
theory: If an idealized point light source is propagated through a camera’s objective lens, the point
function is spread to some degree on the image side. This observed intensity function is therefore
called the intensity point spread function (PSF). In the best case, the PSF is diffraction-limited and
therefore small and rotationally-symmetric. As a rule, however, the optical system is not perfectly
balanced and aberrations arise. These aberrations directly affect the observed PSF. Thus, non-
rotationally symmetric shapes that differ in wavelength can often occur and show the effects of
e.g. astigmatism and chromatic aberration. PSF examples are given in the appendix A. In general, the
PSF varies over the image field. The superposition of all these point responses weighted with the
scene’s intensity yields the observed image.[10, 11] By means of simulation, such PSFs applied to an
image can mimic the capture with the virtual lens model. For simplicity, we assume isoplanarity such
that a single PSF represents a virtual lens, but with a focus on directional and wavelength dependence
in contrast to approximate rotational symmetric blur kernels such as assumed in ImageNet-C[8].

In other words, here, the lens effect is mimiced by convolution of an image with a single PSF kernel
representing the whole lens. This assumes independence of the incident angle of light. Further, this
post-process filter is applied to an already projected scene excluding distortion and we do not model
vignetting or effects like ghosts or scattering. Further, convolution assumes a large depth of field
resulting in a PSF, which does not depend on depth. Also, camera sensor simulation is not covered in
this study, excluding e.g. noise and color filter array effects. We focus on the shape of realistic PSFs
compared to disk-like blur kernels.

2 Analysis of the impact of realistic PSF properties to classification

This article investigates the impact of directional and wavelength dependent PSFs at different
severities. The optically motivated kernels will be called optical kernels here in contrast to the
corruption kernels from ImageNet-C [8].

We take the defocus blur kernels from ImageNet-C and compare to them in size approximate matched
optical kernels. Subsequently the image datasets (degraded with defocus blur from ImageNet-C and
the proposed optical kernels) are classified by different pretrained neural networks. We compare the
results for all severities for classification and image degradation. All operations -are done in python
and pytorch. Google Colab GPUs are used to perform the inference for the image datasets and to
perform the different image dataset comparisons.

2.1 Metrics

To compare the data, different metrics are used following the dataflow from a set of PSFs to
images (IMG) and classification (CLS). First, PSFs are generated, see Figure 1(left). From this,
the modulation transfer function (MTF) can be generated, which is an established optical quality
metric.[12, 13] The two-dimensional function is given in pairs of orthogonal slices in a particular
direction, e.g. in direction of the coordinate axes or in diagonal direction. There exist different
functionals derived from the MTF curve such as MTF50, which denotes the frequency value where
the MTF falls to 50%, and area under the curve (AUC), which is the integral of the MTF.[14] The
metrics are meaningful, if curves of similar shape are compared to ensure for example for AUC,
that the intensity is concentrated in similar frequency regions. These curves are used to match the
corruption kernels and optical kernels.

The application of each PSF kernel to ImageNet yields a modified image dataset for each severity,
which is compared to the unmodified ImageNet validation dataset. Every image of a modified dataset
is compared to the unmodified original. These comparisons are evaluated with mean squared error
(MSE) and the structural similarity index (SSIM).[15] To obtain a manageable overview, the means
of these metrics are taken and are denoted as mMSE and mSSIM respectively. This asseses each
dataset and severity with a single number.
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The image datasets are then fed to the different classifiers. The classifiers are assessed with the
top1-Accuracy, which takes the mean of all falsely classified images subtracted from 1 to have a
similarity measure. These values are then compared for the different models and for each severity.

2.2 Blur models

The corruption kernels represent the reproduced "defocus blur" corruption kernels from ImageNet-C
for five severities. The generation of these kernels is a two step process: First, a disk shape is created,
which is then blurred with Gaussian blur.[8] This yields approximate rotationally symmetric blur
kernels, which do not depend on the color channel and model constant defocus.

To compare such kernels with more realistic optical kernels, we parameterize the color-dependent
central PSF of a Cooke-Triplet lens model [16]. The below Eq. 1 models the optical system as a
black box, where Eq. 1 propagates the wave containing the effect of the lens from the exit pupil to
the imager position at focus zi. At this distance an intensity PSF h can be observed, representing
imaging with diffraction and aberration [11]:

h(u, v, λ) = |F
{
(P (x, y) · e−j 2π

λzi
Wλ(x,y,λ)

}
|2, (1)

The complex argument of the Fourier Transform F contains the information about the lens consisting
of the pupil shape P and its phase with the wavefront aberration Wλ.[11] The model assumes scalar
diffraction theory and therefore no polarization. Since we use a l1-normed discrete PSF to preserve
energy in the final image, any scalar weights are suppressed. In this article, we further restrict the
model to represent the lens with a single PSF and no dependence on the object distance and angle and
no magnification to concentrate on the kernel’s shape. We observe the PSF h in a region u, v ∈ [0, 24)
pixels.

To obtain the specific PSF, the description of the wavefront aberration Wλ representing the lens as
available from [16] in terms of Zernike Polynomials Zm

n [10] is parameterized:

Wλ(x, y, λ) = λ ·
∑
n,m

Am
n (λ) · Zm

n (2)

Each coefficient Am
n in multiples of the wavelengths λi ∈ {0.4861 µm, 0.5876 µm and 0.6563 µm}

represents the contribution of a particular type of aberration. This allows to parameterize different
aspects such as the amount of coma, astigmatism or defocus. To show directional dependence, oblique
astigmatism A−2

2 is added to the original wavefront aberration Wλ, which may also lead to chromatic
aberration as the wavefront aberration Wλ depends on wavelength. The experimentally determined
parameterization A−2

2 ∈ {1, 1.4, 2, 3, 3.8}λi leads to optical kernels comparable to the corruption
kernels both in terms of PSF metrics (MTF50, AUC, MTF curves) as well as IMG metrics (SSIM,
MSE). Note that the central PSF contains little aberration and the resulting shape is mainly controlled
by the parameterization.

We also include two additional studies in appendix C for "straight" astigmatism and a closer matched
version for oblique astigmatism with comparable trend.

3 Experiments on ImageNet

We select 12 pretrained neural networks for classification with common architectures [17] from Tab. 1.
All models are pretrained on ImageNet and publicly available from Pytorch Vision’s model zoo. We
also include three models with ResNet50 architecture from the RobustBench’s model zoo [7] ranked
under the top-5 networks at the ImageNet leaderboard for corruptions.[7] These neural networks are
robust on ImageNet-C [8] and ImageNet-3DC [9] corruptions respectively. Hendrycks2020AugMix
is trained on ImageNet together with AugMix, which randomly mixes different augmentations based
on AutoAugment [18], such as posterizing, rotation and translation, while ImageNet-C corruptions
are excluded.[19] Hendrycks2020Many augments ImageNet with DeepAugment, which stochas-
tically perturbates images by zeroing, convolving, changing activation functions and others in the
augmentation network’s forward pass and weights. This creates visually diverse distortions, which
preserve semantics.[20] Geirhos2020SIN+IN is trained on Stylized-ImageNet (SIN) and ImageNet
(IN).[21]

The exact listing of the network architectures can be found in the appendix D in Tab. 1.
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(a) (b) (c) (d) (e)

Figure 1: Left: PSFs representing the different "severities" 1-5 from left to right: First row visualizes
the corruption kernels, the second row astigmatic optical kernels showing chromatic aberration. Right:
Visual examples from the modified datasets with increasing severities: 2 (a), 3 (b-c) and 4 (d-e). The
first row visualizes the effects of corruption kernels and the second of optical kernels. Read example:
Chromatic aberration visible at the reddish and greenish branches (a) and at the window blind (b),
while the simple kernels do not create color fringes.

3.1 PSF comparisons

Here, the complex optical kernels shall first be compared to the optical kernels visually in Fig 1 for
all severities. Visually, the severities are comparable, even though there is a dependence on the color
channel, as well as a break in rotational symmetry. A criterion to quantify the similarity are also the
MTF50 values in appendix B, Fig. 8. The values are similar and indicate an averaged comparability
between the kernels. The MTF curves for the kernels can also be found in the appendix B. Note that
for the optical kernels six different curves exist, which occur because of the direction dependence
and wavelength dependence, whereas the complexity of the corruption kernels can be reduced to a
single MTF curve. Astigmatic behavior can be read, for example, in severity 1 in appendix B, Fig. 6
in the red and blue channels, where either the 45◦ or the −45◦ curves proceed low. In addition, the
orientations are just reversed, resulting in chromatic aberrations.

3.2 Image comparisons

The different filter kernels are then used to convolve the images from ImageNet and yield ten datasets
of 50k images each. Both, images from corruption kernels and optical kernels are saved with the
same slight JPEG compression as in ImageNet-C to avoid a corruption bias between lossless and
lossy image data compression and to keep the processing of 500k images manageable. The usual
transformations center crop and downscale to RGB images of size 224×224 are done as preprocessing
step to the bigger original ImageNet images to ensure that no additional smoothing by the scaling
operation is applied to the filtered images. The image samples in Fig. 1 visualize differences in the
corruption datasets and optical datasets. The blur in the images increases significantly with severities.
Looking at optical datasets 2-4 color fringes at edges are readily visible and directional dependent
blur occurs.

However, the mean values mMSE and mSSIM listed in Fig. 2 are very close to each other, which
indicate similar and comparable image quality.

3.3 Classification on ImageNet

The images from the corruption datasets and optical datasets are then processed with the different
neural networks for classification from appendix D, Tab. 1. Again, the processing is set such that
no additional transformation besides image normalization is done, because the input size matches
already the target size of 224× 224. Fig. 20 visualizes the absolute accuracies for all studies, which
shows a clear trend. While the neural networks of the Pytorch Vision model zoo were trained only
on ImageNet, the networks of the RobustBench model zoo marked with red labels are additionally
trained with different augmentations. As a result, these networks stand out as the most robust.

Further, to directly compare the effect of the optical kernels to the corruption kernels Fig. 2b shows
the differences of Accuracies for the selected 12 neural networks and all severities. Looking at
the mean of the deviation in accuracy µdiff , this bias can possibly be due to the small variation
between the kernel types: The image results show slight variations in mSSIM for the different

4



1 2 3 4 5
Severity

30

40

50

60

70

80

S
S

IM
 %

2 summaries for ssim
higher is better - similarity

standard deviation
standard deviation

datasets ImageNet-C
datasets Oblique Astigmatism

(a)

1 2 3 4 5
Severity

-6

-4

-2

0

2

4

6

D
ev

ia
tio

n 
in

 A
cc

ur
ac

y 
(to

p 1
)

[%
]

Difference in Accuracy: defocus_blur_diff_imagenet-o

googlenet
vgg16
densenet161
mobilenet_v3_large
resnet101
alexnet

efficientnet_b0
efficientnet_b4
resnext50_32x4dcorr
Hendrycks2020Many
Hendrycks2020AugMix
Geirhos2018_SIN_IN

(b)

Figure 2: (a) Difference in mSSIM for all severities. (b) Difference in Accuracy between modified
and unmodified ImageNet for corruption datasets (blue) and optical datasets (orange). The average
difference in mSSIM is below 1.1% for severities 3-5. Classification results (b) with a + denote
higher Accuracy for optical datasets with oblique astigmatism.

severities. For instance, severity 3 shows for the optical datasets a higher mSSIM (1.11%) and
for severity 4, the mSSIM for optical datasets is lower than for corruption datasets (−0.720%).
However, significant differences between the networks can be found within these conditions. For
example, Hendrycks2020Many (red dot) [20, 22], as well as in most cases GoogLeNet (green dot)
[23], can handle the blur of optical kernels better than that of corruption kernels (higher Accuracy).
Hendrycks2020AugMix (red triangle) [19, 22] does mostly the opposite. The total deviation in
accuracy between these two neural networks is above 7% for severity 4. Comparing the ImageNet
only trained networks, indicated by blue and green colors, GoogLeNet can handle the blurred optical
datasets more than 4% better than corruption datasets for severity 3 compared to VGG16 (green
triangle). Note that the differences in mSSIM, mMSE, MTF50 and AUC are for severities 1-2 greater,
but the Accuracy deviation is smaller for these less blurred images.

4 Conclusion

This article compares the ImageNet validation dataset in several modified versions degraded with
corruption kernels from ImageNet-C and optical kernels, which are directional and wavelength
dependent. Although the blur kernels are of comparable size and produce similar image datasets,
some classification results differ significantly. We conclude that realistic optical corruptions should
be considered in our standard benchmarks towards model robustness.
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A PSFs

The different used kernels are visualized in Figs. 3, 4 and 5.

(a) (b) (c) (d) (e)

Figure 3: Average PSFs representing the different "severities" 1-5: (a-e) corruption kernels, (f-j)
optical kernels with oblique astigmatism and chromatic aberrations.

(a) (b) (c) (d) (e)

Figure 4: Average PSFs representing the different "severities" 1-5: (a-e) corruption kernels, (f-j)
optical kernels with oblique astigmatism and chromatic aberrations. These kernels have higher match
quality and minimize mSSIM on the datasets, although visually hard to distinct from Fig. 3

(a) (b) (c) (d) (e)

Figure 5: Average PSFs representing the different "severities" 1-5: (a-e) corruption kernels, (f-j)
optical kernels with straight astigmatism and chromatic aberrations.
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B MTF curves

Here, the direction in coordinate axes is denoted with (x, y) and the diagonal direction is denoted with
±45◦. Note that sometimes curves for the optical kernels in different directions proceed differently.
This astigmatic behaviour is color channel dependent and therefore creates chromatic aberrations.

(a) (b) (c) (d) (e)

Figure 6: MTF slices from PSFs for severities (1-5, a-e): First row corruption kernels, second row
optical kernels with oblique astigmatism from Fig. 3

(a) (b) (c) (d) (e)

Figure 7: MTF slices from PSFs for severities (1-5, a-e): First row corruption kernels, second row
optical kernels with straight astigmatism (0◦,90◦) from Fig. 5

B.1 Aggregated MTF metrics - differences for MTF50
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Figure 8: MTF50 values for all severities and the different studies: (a) visualizes corruption kernels
vs. optical kernels with straight astigmatism from Fig. 5 and (b) displays the optical kernels from
Fig. 3 and 4. Each point is acquired by averaging color, orientation and direction to get a single MTF
from the above MTF curves from Figs. 7 and 6. From this resulting MTF the MTF50 value is taken.
We also show the MTF50 values from curves with minimum mSSIM on the datasets.
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C Additional studies for different optical kernels

C.1 Oblique astigmatism (higher match quality)

We provide here a version with closer match in mSSIM, mMSE, MTF50 and AUC for all severities
with the parameterization A−2

2 ∈ {0.9, 1.3, 2.1, 2.8, 3.6}λi. The mSSIM for severities 3-5 is below
0.5%, but although significantly smaller differences occur compared to Fig. 14 still the DNNs can
handle the blur types differently well, which indicates a distribution shift. Lower severities tend to be
more robust to changes in mSSIM and the improved match quality has little effect.

(a) (b) (c) (d) (e)

Figure 9: Average PSFs representing the different "severities" 1-5. First row: corruption kernels with
higher match quality, second row: optical kernels with chromatic aberrations.
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Figure 10: Average MSE (a) and SSIM (b) between corrupted image database and unmodified
original.
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Figure 11: Deviation in Accuracy for all neural networks and severities. "+" means that optical
datasets have higher Accuracy than corruption datasets.
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C.2 Oblique astigmatism

We include here the study on oblique astigmatic optical kernels as used in the main article. The size
of the kernels in Fig. 3 look very similar to Fig. 4, but create a slightly larger mSSIM ≤ 1.1% for
severities 3-5.

(a) (b) (c) (d) (e)

Figure 12: Average PSFs representing the different "severities" 1-5. First row: corruption kernels,
second row: optical kernels with chromatic aberrations.
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Figure 13: Average MSE (a) and SSIM (b) between corrupted image database and unmodified
original.
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Figure 14: Deviation in Accuracy for all neural networks and severities. "+" means that optical
datasets have higher Accuracy than corruption datasets.
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C.3 Straight astigmatism

This study shows the effect of the parameterization of straight astigmatism A+2
2 ∈

{1.0, 1.4, 2.2, 2.8, 3.6}λi, which leads to comparable results as in Fig. 11.

(a) (b) (c) (d) (e)

Figure 15: Average PSFs representing the different "severities" 1-5. First row: corruption kernels,
second row: optical kernels with chromatic aberrations.
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Figure 16: Average MSE (a) and SSIM (b) between corrupted image database and unmodified
original.
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Figure 17: Deviation in Accuracy for all neural networks and severities. "+" means that optical
datasets have higher Accuracy than corruption datasets. Difference in mSSIM ≤ 1%.
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D Additional tables

Table 1: Selection of pretrained models from pytorch vision and RobustBench model zoos with
corresponding number of trainable parameters. The selected neural networks from RobustBench use
a Resnet50.

Name Number of Parameters [×106] Name Number of Parameters [×106]

VGG16 138.4 ResNeXt50 25.0
AlexNet 61.1 EfficientNet_B4 19.3
ResNet101 44.5 GoogLeNet 6.6
DenseNet161 28.7 MobileNet_v3 5.5
Resnet50 25.6 EfficientNet_B0 5.3

E Additional image examples

(a) (b) (c) (d) (e) (f)

Figure 18: All images are zoomed in. First row corruption datasets, second row optical datasets.
Severity 3 (a-c): Chromatic aberration visible at the airplanes wheels, the dog’s face, the window
blind and the boat’s mast. Note also the diagonal astigmatism. Severity 5: (d-e) visible chromatic
aberration at the fish scales as orange stripes, the eagle, and as color fringe at the baby’s hair.

(a) (b) (c) (d) (e) (f)

Figure 19: First row corruption datasets, second row optical datasets (straight). Severity 3 (a-c):
Chromatic aberration visible at the airplanes wheels, the dog’s face, the window blind and the boat’s
mast. Note also the diagonal astigmatism. Severity 5: (d-e) visible chromatic aberration at the fish
scales as orange stripes, the eagle, and as color fringe at the baby’s hair.
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F Absolute classification Accuracies on the different modified dataset versions

Below Fig. 20 shows the classification accuracies for all studies from appendix C. Note that while
AlexNet (blue triangle downward) has always the worst accuracy, Hendrycks2020Many (red dot)
achieves in all cases the best results. Additionally, the pretrained models from RobustBench’s model
zoo (red markers) outperfom most of the PyTorch Vision models.
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(a) Accuracy for corruption kernels from upper
row in Fig. 3 for severities 1-5.
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(b) Accuracy for optical kernels (oblique astigma-
tism) from Fig. 3 for severities 1-5. Difference in
mSSIM ≤ 1.1% for severities 3-5.
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(c) Accuracy in percentage points: optical
datasets with optical kernels from Fig. 4 with
higher match quality for severities 1-5. Differ-
ence in mSSIM ≤ 0.5% for severities 3-5.
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(d) Accuracy in percentage points for optical
datasets with straight astigmatism from Fig. 5
for severities 1-5. Difference in mSSIM ≤ 1%.

Figure 20: Classification results: Accuracies for the different studies from appendix C.
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