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Abstract

We propose Consistency-guided Prompt learning (CoPrompt), a new fine-tuning
method for vision-language models that addresses the challenge of improving the
generalization capability of large foundation models while fine-tuning them on
downstream tasks in a few-shot setting. The basic idea of CoPrompt is to enforce
a consistency constraint in the prediction of the trainable and pre-trained models
to prevent overfitting on the downstream task. Additionally, we introduce the
following two components into our consistency constraint to further boost the
performance: enforcing consistency on two perturbed inputs and combining two
dominant paradigms of tuning, prompting and adapter. Enforcing consistency on
perturbed input further regularizes the consistency constraint, effectively improving
generalization, while tuning additional parameters with prompting and adapters
improves the performance on downstream tasks. Experiments show that CoPrompt
outperforms existing methods on various evaluation suites, including base-to-novel
generalization, domain generalization, and cross-dataset evaluation tasks. On the
generalization task, CoPrompt improves the state-of-the-art by 2.09% on the zero-
shot task and 1.93% on the harmonic mean over 11 recognition datasets. Detailed
ablation studies show the effectiveness of each of the components in CoPrompt.

1 Introduction
Vision-language foundation models (e.g., CLIP [1]) that are trained on large-scale datasets of
image-text pairs have demonstrated excellent generalization capabilities. However, the sheer size of
these models can make it challenging to fine-tune them for downstream tasks, especially for small
downstream tasks (e.g., few-shot learning), while preserving their ability to generalize [2, 3]. Despite
recent advancements in few-shot fine-tuning, it is still a challenge to maintain the generalization
capability of the original models such as CLIP, let alone improve them. In fact, it has been shown that
improvements in few-shot performance often result in a drop in zero-shot capabilities (e.g., CoOp
[2]). This is caused by severe overfitting on newly introduced parameters during few-shot fine-tuning,
resulting in a significant deviation from the foundation model’s original behaviour.

In this work, we propose Consistency-guided Prompt learning (CoPrompt), a new fine-tuning method
for vision-language models that reduces the overfitting problem by preventing the trainable model’s
embeddings from deviating too far from the pre-trained model’s embedding. More specifically, we
enforce a consistency constraint on both the language and image branches between the trainable and
pre-trained models. Furthermore, we introduce two additional components to improve the proposed
consistency constraint. First, we enforce consistency on two perturbed inputs instead of the same
input to further regularize the consistency constraint, effectively improving generalization. On the
‘text’ branch, we use a pre-trained large language model (LLM), GPT [4], to generate a more detailed
and descriptive sentence from an input prompt text of a generic format (a photo of a ‘class’). We
then enforce consistency between the learnable and pre-trained text encoder on the representations of
these two sentences. On the image branch, we apply augmentations on an input image to generate
two perturbed images. Second, we add more trainable parameters to increase the model’s learning
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capacity on the new task. To this end, we combine the two dominant paradigms of tuning, prompting
[5], and adapters [6]. By combining prompt and adapter, we can tune more parameters to improve
the performance on the new task while the consistency constraint maintains or possibly improves the
model’s zero-shot capability.

Extensive experiments on three common evaluation settings demonstrate the strong performances of
CoPrompt. In the base-to-novel generalization task, CoPrompt outperforms existing methods on 11
benchmark datasets, achieving a 2.09% improvement on novel classes and a 1.93% improvement on
the harmonic mean over MaPLe, the previous SOTA. Importantly, our improvements do not come
at the expense of the performance of the base class, which also achieves a 1.72% improvement
over MaPLe. Additionally, CoPrompt achieves considerable improvements over existing methods
on cross-dataset evaluation and domain generalization. An extensive ablation study confirms the
importance of each component of the proposed method. In summary, this paper makes the following
contributions: (1) We propose a consistency-enforced fine-tuning method for large foundation models
that enables learning a new task from a few samples without losing its zero-shot generalizability. (2)
Our method incorporates the knowledge of a pre-trained LLM with consistency constraints on the
text branch and data augmentations on the image branch to improve the generalization further. (3)
Our method combines the two strong paradigms of tuning foundation models, prompting and adapter,
into a single framework to improve performance on new tasks. (4) We set a new state-of-the-art for
a range of evaluation suites, including base-to-novel generalization, cross-dataset recognition, and
domain generalization.

2 Related Work
Recent developments in vision-language models, such as CLIP [1], ALIGN [7], LiT [8], FILIP
[9], and Florence [10], have exhibited impressive performance in various vision tasks, including
few-shot and zero-shot learning. However, the enormous size of these models makes it challenging to
fine-tune them without losing their generalization. The two commonly used approaches for using
a pre-trained model for a downstream task are (a) full fine-tuning and (b) linear probing. However,
neither of these methods performs well for foundation models. Full fine-tuning results in a loss
of generalization, while linear probing often leads to poor performance on downstream tasks [5].
Consequently, many recent studies have focused on adapting large foundation models on downstream
tasks without changing the pre-trained weights [2]. Existing works in this direction can be categorized
into two main groups: Prompting [3, 5] and Adapter [6].

Prompts are typically instructions in the form of text that guide the downstream task. They can either
be manually crafted for a specific task or learned automatically. The latter method is called prompt
tuning, which was initially introduced in [11, 12, 13]. In this context, CoOp [2] introduced a set of
continuous vectors into the language branch’s input, which is optimized with the final loss. However,
this approach demonstrated poor performance on unseen classes, indicating poor generalization on
zero-shot tasks. CoCoOp [3] improved CoOp’s zero-shot performance by explicitly conditioning
on the image inputs. ProGrad [14] only updated the prompts where the gradients aligned with the
original prompt’s defined general knowledge. Prompting techniques have also been utilized for dense
prediction tasks [15]. While the earlier works on prompting added prompts only to the text input,
some recent works have also explored prompting on the image inputs [16]. Later, MaPLe took a
multi-modal approach that used prompting on both image and text inputs. This method explicitly
ensured mutual synergy between the language and vision prompts to discourage learning from
unimodal data. Another method for tuning foundation models is Adapters. This approach introduces
learnable parameters to one or multiple layers of the pre-trained model to transform features [6].
Adapters are typically added to the upper layers of the network, which can be seen as a learnable
transformation module for the pre-trained model. Adapters have also been studied in vision-only
models, including dense prediction tasks [17].

3 Method
CoPrompt tackles the issue of reduced generalization due to overfitting on the downstream task, by
implementing a consistency constraint that ensures the text and image embeddings produced by the
trainable model (tunable prompt parameters in both the image and text branches) are not significantly
different from those generated by the pre-trained CLIP.To further impose regularization in the
consistency constraint, we utilize perturbations to the input for the trainable and pre-trained models.
On the language branch, a pre-trained LLM is used to generate more descriptive sentences from
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Figure 1: Overview of the proposed CoPrompt.

the template text input, while on the image
branch, we use augmentations. In addition,
CoPrompt includes additional trainable pa-
rameters by adding adapters on the image
and text branches to enhance performance
on new downstream tasks. In this work,
we build upon the prompting concept of
MaPLe [5], which utilizes a coupling func-
tion F , to condition the image prompt on
the text prompt. An overview of CoPrompt
is illustrated in Figure 1.

Consistency constraint. We use cosine
distance as the consistency constraint be-
tween the embeddings of the pre-trained
encoder and the learnable encoder. How-
ever, other similar criteria, like Euclidean
distance, can also be used as a constraint.
We empirically observe that cosine distance as the consistency constraint yields the best performance.
This constraint is applied on image and text branches. We can denote the consistency constraint as:

Lcc = 2− wy · ϕ(ty)
||wy|| ||ϕ(ty)||

− z · θ(i)
||z|| ||θ(i)|| . (1)

Input perturbation. Given the template text ‘a photo of a [category]’, we use a pre-trained LLM,
GPT(ϕGPT ), to generate a more descriptive sentence as sk = ϕGPT (‘a photo of a [category]k’).
For this, we follow the training setup of KgCoOP [18]. But unlike KgCoOp, we generate a single
sentence on the fly rather than generating a pre-defined number of sentences and averaging their
embedding. On the image branch, we use an augmentation module δ to generate perturbed image
x′ = δ(x). Now we enforce the consistency between the embedding of the perturbed input to the
pre-trained model and the learnable model as:

Lcc = 2− ϕ(sy) · ϕ(ty)
||ϕ(sy)|| ||ϕ(ty)||

− θ(x′) · θ(i)
||θ(x′)|| ||θ(i)|| . (2)

Adapters. We incorporate more trainable parameters for better adaptation to the new task. We do so
by adding adapters [6] to both the vision and language branches. Adapters are trainable parameters
that are added on top of the encoder to transform the embedding vector. Following [6], we define
our adapter as two linear layers with non-linearity in between. But unlike [6], we do not restrict
the adapter only to the text branch; rather use it on both. Let ϕa be the text adapter that takes a text
embedding wk as input and transforms it as ϕa(wk). Similarly, θa is the image adapter. The proposed
consistency constraint loss can be represented as:

Lcc = 2− ϕ(sy) · ϕa(ϕ(ty))

||ϕ(sy)|| ||ϕa(ϕ(ty))||
− θ(x′) · θa(θ(i))

||θ(x′)|| ||θa(θ(i))|| . (3)

Final loss. The proposed consistency constraint loss is combined with a supervised loss to form
the final loss. We represent the supervised loss as: Lce = −log

exp(sim(z,wy)/τ)∑C
k=1 exp(sim(z,wk)/τ)

. Adding both
losses with a balancing factor λ, we get the final loss function of CoPrompt is: L = Lce + λLcc.

4 Experiments
Table 1: Performance on
base-to-novel generalization

Base Novel HM

CLIP 69.34 74.22 71.70
CoOp 82.69 63.22 71.66
Co-CoOp 80.47 71.69 75.83
ProGrad 82.48 70.75 76.16
KgCoOp 80.73 73.60 77.00
MaPLe 82.28 75.14 78.55

CoPrompt 84.00 77.23 80.48
+1.72 +2.09 +1.93

Base to Novel Generalization. We present the results of our proposed
method on the base-to-novel generalization task and compare with prior
works in Table 2. We have highlighted the best results in bold and marked
the improvement over the previous state-of-the-art (MaPLe) in blue. As
we see from the average over all datasets (Table 1), CoPrompt outper-
forms all existing methods for both novel and base categories by a large
margin. Our method demonstrates strong zero-shot generalization, with
an improvement of 2.09% on novel categories, increasing the SOTA from
75.14% to 77.23%. Apart from MaPLe, no existing method outperformed
the pre-trained CLIP (which was not fine-tuned), indicating the difficulty
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of maintaining zero-shot performance while learning a new task in a few-shot setting. Along with a
large improvement in zero-shot performance, CoPormpt also improves the few-shot performance by
1.72% on base categories. This confirms that improvement in zero-shot performance does not come
at the cost of few-shot performance or vice versa. In fact, CoPrompt is the first method to beat all
existing methods in both base and novel categories since the introduction of prompt tuning of VLMs
in CoOp. On a harmonic mean, CoPrompt provides a 1.93% improvement over existing methods.

Cross-dataset Evaluation. In Table 2, we present the results for cross-dataset evaluation. Here, the
model is fine-tuned on a source dataset (ImageNet) and evaluated on target datasets in a zero-shot

Table 2: Performance of CoPrompt on cross-dataset evaluation.

Caltech Pets Cars Flowers Food Aircraft SUN397 DTD EuroSAT UCF Ave.

CoOp 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
Co-CoOp 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
MaPLe 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30

CoPrompt 94.50 90.73 65.67 72.30 86.43 24.00 67.57 47.07 51.90 69.73 67.00

manner. As we see,
CoPrompt shows im-
provements on 9 out
of 10 datasets. Overall,
CoPromt provides
an average accuracy of
67.0%, which is 0.70%
higher than the previous state-of-the-art, MaPLe. We obtain the highest improvement of 3.84%
over MaPLe on the EuroSAT dataset.

Table 3: Performance on domain generalization.

Source Target
ImNet ImNetV2 ImNetS ImNetA ImNetR Ave.

CLIP 66.73 60.83 46.15 47.77 73.96 57.17
UPT 72.63 64.35 48.66 50.66 76.24 59.98
CoOp 71.51 64.20 47.99 49.71 75.21 59.28
Co-CoOp 71.02 64.07 48.75 50.63 76.18 59.90
ProGrad 72.24 64.73 47.61 49.39 74.58 59.07
KgCoOp 71.20 64.10 48.97 50.69 76.70 60.11
MaPLe 70.72 64.07 49.15 50.90 76.98 60.26

CoPrompt 70.80 64.25 49.43 50.50 77.51 60.42

Domain Generalization. We present the re-
sults for domain generalization in Table 3. Here,
the original ImageNet dataset is used as the
source dataset to fine-tune the model. The model
is then tested on four other variants of Ima-
geNet that come from different distributions.
CoPrompt shows strong domain generalization
by outperforming MaPLe on all datasets except
for ImageNet-A. It achieves a new state-of-the-
art average accuracy of 60.43% on this task.

Ablation Study. In this section, we present an ablation study by removing different com-
ponents of the proposed method to understand the importance of each of them. We show
the results of these experiments in Table 4. For reference, in the first row of the table,

Table 4: Ablation Study

Cons. In. Pert. Adp. Accuracy

✓ ✓ ✓ 80.48
✓ ✓ ✗ 80.02
✓ ✗ ✓ 79.56
✓ ✗ ✗ 79.50
✗ ✗ ✓ 78.45
✗ ✗ ✗ 78.55

we present the final performance of CoPrompt, which has a harmonic
mean of 80.48%. In the first ablation experiment, we eliminate the
adapters from CoPrompt, leading to an accuracy of 80.02% (a per-
formance drop of 0.46%). This highlights the importance of adapters
in CoPrompt. Next, we remove the input perturbations, effectively
enforcing consistency between the trainable and pre-trained encoder
for the same image and text input. This results in an accuracy of
79.56%, which is a 0.92% drop in performance, suggesting the high
importance of input perturbations in CoPrompt. Then, we remove
both the input perturbations and the adapters, which results in an average accuracy of 79.50%. This
shows that utilizing the consistency constraint alone provides a 0.95% improvement over removing all
three components (as shown in the last row of the table). In the last study, we remove the consistency
constraint along with the input perturbations, effectively training the adapters and prompts without
enforcing consistency. Surprisingly, this results in an accuracy of 78.45%, even lower than when all
three components are removed. Additional experiments can be found in the full version of our paper
at arxiv.org/abs/2306.01195.

5 Conclusion
We present a novel tuning method for large vision-language foundation models that enhances their
performance in downstream tasks and also improve zero-shot generalization. CoPrompt is a carefully
designed method with three important components that reduce the overfitting problem during fine-
tuning. Through extensive evaluations across three different tasks, CoPrompt demonstrated its
effectiveness in few-shot learning, zero-shot learning, cross-dataset, and domain generalization tasks,
surpassing the existing state-of-the-art by a significant margin. Additionally, the study includes
extensive ablation analysis to confirm the effectiveness of each proposed component and explore
feasible alternatives. We believe that our consistency-guided tuning approach will have a substantial
impact on tuning vision and vision-language models for various applications.
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