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Abstract

Gradient-based iterative optimization methods are the workhorse of modern machine learning.
They crucially rely on careful tuning of parameters like learning rate, and yet one typically re-
lies on heuristic approaches without formal near-optimality guarantees. Recent work by Gupta and
Roughgarden studies how to learn a good step-size in gradient descent. However, like most of
the literature with theoretical guarantees for gradient-based optimization, their theoretical results
rely on strong assumptions on the function class including convexity and smoothness which do not
hold in typical applications. In this work, we develop novel analytical tools for provably tuning
the step-size in gradient-based algorithms that apply to non-convex and non-smooth functions. We
obtain matching sample complexity bounds for learning the step-size in gradient descent shown
for smooth, convex functions in prior work (up to logarithmic factors) but for a much broader
class of functions. Our analysis applies to gradient descent for neural networks with piecewise-
polynomial activation functions (including ReL.U activation). Furthermore, we show the versatility
of our framework by applying it to tuning momemtum and step-size simultaneously.

1. Introduction

Gradient descent is a foundational optimization algorithm widely employed in machine learning
and deep learning to minimize loss functions and improve model performance. A critical hyperpa-
rameter in gradient descent is the step size or learning rate, which dictates how far the algorithm
moves along the negative gradient direction in each iteration. Selecting an appropriate step size is
essential: a value too large can cause divergence, while one too small can lead to slow convergence
or the inability to escape undesirable local minima.

Considerable research has focused on tuning the step size for individual tasks. However, many
real-world applications involve multi-task learning or repeated optimization across a collection of
tasks. In such settings, the optimal step size may vary significantly between different task domains,
and naive strategies such as using a fixed or globally tuned step size often yield suboptimal per-
formance. This raises an important question: how can we effectively tune the step size of gradient
descent across multiple, related tasks?

This paper explores principled approaches to tuning step size in gradient descent in multi-task
environments. We investigate the theoretical underpinnings of step size sensitivity across tasks,
by examining how the convergence varies as a function of the step size. We provide theoretical
guarantees for the amount of data needed (sample complexity) for tuning the step size with provable
guarantees, even in the presence of non-smooth and non-convex functions. Concretely,
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Algorithm 1 Gradient descent(step size 1)
Input: Initial point x, function to minimize f, maximum number of iterations H, gradient threshold
for convergence 6

1: Initialize x1 < x
2. fori=1,...,H do
if ||V f(x;)|| <6 then
4: Return z;
5t Xy =x; —nV [f(x;)
Output: Return x4

b

* We study tuning of the step-size (learning rate) in gradient descent across tasks in the frame-
work of [30], but for a much broader class of functions. While prior work for sample com-
plexity of step-size tuning assumes the class of optimized functions to be convex, smooth and
satisfying a guaranteed progress assumption (roughly corresponds to strong convexity), our
analysis works without any of these assumptions. We only assume that the class of functions
is piecewise-polynomial, a property satisfied by neural networks with piecewise-polynomial
activation functions (e.g., ReLLU activation).

« We show sample complexity bounds of O(H?/€?) for uniform convergence, which implies
generalization of the learned step-size to unseen instances (that is, small gap between training
and test errors). Our bounds have a logarithmic dependence on dimensionality d. We further
extend our techniques to simultaneously tune the momentum and learning rate.

Related work. Recently tuning the learning rate in gradient descent by meta learning has received
significant research interest [1, 27, 33, 35, 36]. Despite empirical success, theoretical understanding
of setting a good learning rate is largely limited to convex and strongly-convex functions. In this
work, we develop a principled understanding beyond the convex case under the recently introduced
data-driven algorithm design paradigm [3, 30] (see Appendix A for additional related work).

2. Notation and preliminaries

We recall the notation and setup for data-driven tuning of gradient step introduced by [30]. The
instance space of problems II here consists of pairs (z, f) of initial points z € R? and functions
f : R® — R. The family of gradient descent algorithms A is given by P C R consisting of
valid values of the step size 7. We recall the vanilla gradient descent algorithm (Algorithm 1). We
define the cost function £(n, z, f) for n € P and (z, f) € II as the number of iterations for which
Algorithm 1 runs on the instance (x, f) when run with step size n. Let ¢, (z, f) := {(n, z, f) for
all n, , f. For guarantees on sample complexity of tuning 7, we will be interested in the learning-
theoretic complexity (pseudo-dimension) of the function class £ = {¢, | n € P}.

Notice that while prior work [30] assumes strong sufficient conditions—convexity, L-smoothness,
and a guaranteed progress condition (that is ||z;11 — 2*|| < (1 —¢)||z; — 2*|| for some ¢ > 0 where
x* is the unique stationary point and x; is the ¢th iterate in Algorithm 1, this roughly corresponds to
strong-convexity)—for the convergence to always happen and includes appropriate restrictions on
the step-size 1. In particular, these results do not apply to deep neural networks. Our results hold
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when all of these conditions are violated. We handle non-convergence by assigning it the same cost
as the maximum number of iterations, equal to . Formally,

minge (g |V f(2:)]| <0, if such an i exists,

Lin,z, f):=
(.. {H, otherwise.

Note that ; depends on 7, x, f and i. We consider the step-size as the hyperparameter of interest
in this work, and assume other parameters like maximum number of iterations H and gradient
threshold for convergence 6 are fixed and known. We will use the O notation to suppress dependence
on quantities apart from H and the generalization error € for simplicity.

Learning theory background. The pseudo-dimension is frequently used to analyze the learning
theoretic complexity of real-valued function classes, and will be a main tool in our sample complex-
ity analysis. For completeness, we include below the formal definition.

Definition 1 (Shattering and Pseudo-dimension, [2]) Let F be a set of functions mapping from
X to R, and suppose that S = {x1, ...,z } C X. Then S is pseudo-shattered by F if there are real
numbers 11, . .., Ty, such that for each b € {0,1}™ there is a function f, in F with sign(fy(x;) —
ri) = b; for i € [m]. We say that v = (r1,...,Tn,) witnesses the shattering. We say that F has
pseudo-dimension d if d is the maximum cardinality of a subset S of X that is pseudo-shattered by
F, denoted Pdim(F) = d. If no such maximum exists, we say that F has infinite pseudo-dimension.

Pseudo-dimension is a real-valued analogue of VC-dimension, and is a classic complexity notion
in learning theory due to the following theorem which implies the uniform convergence for any
function in class 7 when Pdim(F) is finite.

Theorem 2 ((¢, §)-uniform convergence sample complexity via pseudo-dimension, [2]) Suppose
F is a class of real-valued functions with range in [0, H| and finite Pdim(F). For every € > 0
and § € (0,1), given any distribution D over X, with probability 1 — & over the draw of a sam-
ple S ~ DM for all functions f € F, we have |ﬁ Yozes f(@) = Eonp[f(2)]| < € for some

M=0 ((%)2 (Pdim(F) + log %))

We also need the following lemma from data-driven algorithm design, which bounds the pseudo-
dimension of the class of loss functions, when the dual losses (i.e. losses as a function of some
algorithmic hyperparameter computed on any fixed problem instance) have a piecewise constant
structure with a bounded number of pieces.

Lemma 3 (Lemma 2.3, [3]) Suppose that for every problem instance x € X, the function u.(a) :
R — R is piecewise constant with at most N pieces. Then the family {u,(-)} over instances in X
has pseudo-dimension O(log N ).

3. Improved sample complexity guarantees for tuning the gradient descent step size

Our overall approach towards bounding the pseudo-dimension of the cost function class £ = {¢,, :
IT — [0,H] | n € P} (which implies a bound on the sample complexity of tuning 7 by classi-
cal learning theory), is by examining the structure of (7, x, f) on any fixed instance (x, f) as the
step-size 7 is varied (also called the dual cost function £, f(77) [11]) is very different from prior
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work. The key idea of prior work [30, 31] is to establish a near-Lipschitzness property for the dual
cost function, by bounding how far the number of steps to converge may diverge as the step-size
is changed slightly, and then use a discretization argument over the space of step-sizes. It is easy
to see that this approach cannot extend beyond very nicely-behaved functions (roughly, strongly-
convex and L-smooth) as generally small changes to the step-size can cause dramatic changes to
the number of the steps needed for convergence. In contrast, intuitively our analysis examines the
piecewise monotonicity of the number of steps needed to converge as the step-size 7 is varied.

3.1. Gradient descent for piecewise polynomial functions

In this section, we will consider several interesting function classes which are non-convex and non-
smooth but intuitively have a bounded amount of oscillations. Our new analytical approach allows
us to significantly extend the class of convex and smooth functions (with near strong-convexity
properties) studied by [30], for which they obtain a O(H? /%) bound on the sample complexity of
tuning the step-size 17 in Algorithm 1. Remarkably, we will achieve the same asymptotic dependence
on the sample complexity for the much broader class of functions using our new techniques.

We first consider the class of functions f to be the class of polynomial functions in d variables
with a bounded degree A. Our sample complexity bound only has a logarithmic dependence on A,
implying that they are meaningful even when the number of oscillations is exponentially large. Our
overall approach is to show that location of the i-th iterate x; can be expressed as a bounded degree
polynomial in 7 using an inductive argument. This allows us to bound the number for intervals of
n for which Algorithm 1 converges in ¢ steps for any 1 < ¢ < H. We can finally also bound the
number of pieces of the dual cost function £, y where gradient descent fails to converge. Formally,
we have the following theorem (all proofs are in Appendix C).

Theorem 4 Suppose the instance space 11 consists of (x € RY, f € F), where F consists of
polynomial functions R — R of degree at most A > 1. Then (€, 0)-uniform convergence is
achieved for all step-sizes n € P C R>q using m = O (Ig—;(H log A + log %)) samples from D
for any distribution D over 11.

The uniform convergence guarantee in the above result is quite strong. It implies that we only need
to find an approximately optimal 1 on the training set, and our guarantees will imply a small gen-
eralization error. We further extend the result to piecewise polynomial functions with polynomial
boundaries. For simplicity, we assume that the gradient descent procedure never lands exactly on
any boundary (necessary for Algorithm 1 to be well-defined).

Theorem 5 Suppose the instance space 11 consists of (x € R%, f € F), where F consists of
functions R — R that are piecewise-polynomial with at most p polynomial boundaries, with the
maximum degree of any piece function or boundary function at most A > 1. Then (e, d)-uniform
convergence is achieved for all step-sizesn € P C R>q using m = O (f—;(H log(pdA) + log %))
samples from D for any distribution D over 1L

The case of piecewise-polynomial functions is particularly interesting. As discussed below it cap-
tures gradient descent for an important class of feedforward neural networks.
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Algorithm 2 Momentum-based gradient descent(step size 77, momentum parameter )
Input: Initial point x, function to minimize f, maximum number of iterations H, gradient threshold
for convergence 6

1: Initialize z1 < x,y1 < 0
2. fori=1,...,H do

3. if ||V f(x;)|| < 0 then
4: Return z;

5: Yiy1 =Y — V()
6:  Tiy1 =T+ Y

Output: Return x4

Example 1 For deep neural networks with piecewise polynomial activation functions, the network
computes a piecewise polynomial function of its weights on any fixed input x [23]. Therefore the
MSE loss of the network on a given dataset is also a piecewise polynomial function of its weights.
Therefore our results for tuning the gradient descent step-size above apply in this case. Concretely,
Theorem 5 implies a sample complexity bound of 0 (%), where L is the number of layers

in the network and k is the number of nodes (using [23]). The piecewise-polynomial structure also
holds if we add regularization terms related to flatness of the minima e.g. ||V f || to the loss function.

Finally, we note that our techniques can be used to establish similar sample complexity bounds for
tuning the learning rate schedule (see Theorem 9 in the Appendix).

4. Beyond vanilla gradient descent

We will now show that our technique extends beyond tuning the learning rate in gradient descent
to tuning relevant hyperparameters in other popular iterative gradient based optimization methods,
showing the versatile applicability of our analytical framework. In particular, we will show how
to tune the momemtum and learning rate parameters -y, 7 simultaneously in Algorithm 2. Momen-
tum [37] takes an exponentially weighted average of the gradients to update the points at each
iteration, and is particularly important for optimizing non-convex functions. It is widely used in
practice and is a part of optimizers like Adam. We extend our approach to show how to tune the
momentum parameter and the learning rate in momentum-based gradient descent.

Theorem 6 Consider the problem of tuning the 7, in Algorithm 2 over some continuous set
P C RQZO‘ Suppose the instance space 11 consists of (x € R, f € F), where F consists of
functions R¢ — R that are piecewise-polynomial with at most p polynomial boundaries, with the
maximum degree of any piece function or boundary function at most A > 1. Then (e, §)-uniform

convergence is achieved for all v,n € P using m = O <i1—22(H log(pdA) + log %)) samples from
D for any distribution D over I1.

Note the logarithmic dependence on the degree and dimensionality in our bounds. This makes our
bounds meaningful for tuning networks with a large number weights d and a large number of layers
L (A is typically exponential in L, so our bounds imply a linear dependence on L). In conclusion,
our work constitutes an important step forward towards the development of theoretically principled
techniques for step-size selection in more realistic non-convex and non-smooth settings.
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Appendix A. Additional related work

Data-driven algorithm design is a recently introduced paradigm for designing algorithms and prov-
ably tuning hyperparameters in machine learning [3, 30, 39]. The framework can be viewed as a
generalization of average case analysis from uniform distribution over the instances to arbitrary
unknown distributions, that is, the tuned hyperparameters adapt to data distribution at hand. Data-
driven design has been successfully used for designing several fundamental learning algorithms
including regression, low-rank approximation, tree search and many more (see e.g., [4-6, 8,9, 13—
16, 18-22, 24-26, 28, 32, 34, 38]). The techniques allow selection of near-optimal continuous
hyperparameters, using multiple related tasks which are either drawn from an unknown distribu-
tion [6, 11] or arrive online [7, 10, 12, 40-42]. In fact tuning discretized parameters can lead to
provably much worse performance than the best continuous parameter [17]. Recent work develops
techniques for data-driven tuning of model hyperparameters in deep nets [22], but their techniques
do not apply to parameters of training algorithms including tuning the learning rate.

Appendix B. GJ algorithm and pseudo-dimension

A useful technique for bounding the pseudo-dimension in data-driven algorithm design is the GJ
framework based approach proposed by [24]. We include below the formal details for completeness.

Definition 7 ([24, 29]) A GJ algorithm T operates on real-valued inputs, and can perform two types
of operations:

* Arithmetic operations of the form v = vy ® v1, where ® € {+, —, X, +}.

>

* Conditional statements of the form “ifv > 0 ... else ... ”.

In both cases, vy, v are either inputs or values previously computed by the algorithm (which are
rational functions of the inputs). The degree of a GJ algorithm is the maximum degree of any
rational function it computes of the inputs. The predicate complexity of a GJ algorithm is the
number of distinct rational functions that appear in its conditional statements.

The following theorem due to [24] is useful in obtaining some of our pseudodimension bounds by
showing a GJ algorithm that computes the loss for all values of the hyperparameters, on any fixed
input instance.

Theorem 8 ([24]) Suppose that each function f € F is specified by n real parameters. Suppose
that for every x € X and r € R, there is a GJ algorithm Iy, . that given f € F, returns “true” if
f(z) > rand “false” otherwise. Assume that I, , has degree /A and predicate complexity A. Then,

Pdim(F) = O(nlog(AA)).

Appendix C. Complete proofs

Theorem 4 Suppose the instance space 11 consists of (x € R f e F ), where F consists of
polynomial functions RY — R of degree at most A > 1. Then (e, )-uniform convergence is
achieved for all step-sizes 1 € P C R>q using m = O (Iz—;(H log A + log %)) samples from D
for any distribution D over I1.
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Proof We first claim that for i > 2, x; = (g§1)(n), ggz) (n),... ,ggd) (n)) where gZ(]) is a polynomial
function with degree at most A~2. We will show this by induction.

Base case: i = 2. w3 = 11 — NV f(x1) = x — nV f(x) is a polynomial of degree 1 = A%~2 in
7 in each coordinate.

Inductive case: i > 2. Suppose x;—1 = g;_1(n) = (91-(]_)1(77))]'6[(1} where ggj_)l is a polyno-
mial of degree at most A*~3 (inductive hypothesis). Now z; = z;_1 — 7V f(zi_1) = g;,_1(n) —
nVf(g;_1(n)) =: g;(n). Clearly, gz(-j) is a polynomial in 7, with degree at most A*3(A —1)+1 =
Ai—2 _ Ai—3 4 1 § Ai—Q.

Thus, for any fixed 1 < i < H, z; = g,(n) where each coordinate gi(j )isa polynomial with
degree at most A'~2, For a fixed initial point z, this implies that V f(z;) is a polynomial in 7 of
degree at most A*~! in each coordinate. Thus, ||V f(x;)||? is a polynomial of degree at most 2A*~1
in 7. Now, consider the set of points 7 for which ||V f (z;)||? < 6% for some constant §. This consists
of at most O(A*~1) intervals.

Furthermore, we note that for any 7, the cost is determine by the smallest ¢ such that ||V f(z;)|] <
0 (if one exists). Since the cost takes only discrete values, it is a piecewise-constant function
of 1, and we seek to bound the number of these pieces. A naive counting argument gives a
oI, A = o(AH *) bound on the number of pieces, since if there are K;_1 intervals cor-
responds to values of 7 for which the algorithm converges within ¢+ — 1 steps, then each of the
O(A"1) intervals in round 7 computed above may result in at most K; | + 1 new pieces. We can,
however, use an amortized counting argument to give a tighter bound. Indeed, suppose there are
K, intervals with different values of cost < ¢ — 1. Of the new O(Ai_l) intervals say 7T; intersect
at least one of the existing pieces, resulting in at most 7; + K;_; new pieces overall. Thus, the total
number of pieces of the cost function with cost < i is K; < (T; + K;_1) +O(A"™ ) ~Ti + K; 1 <
O(A*=1) 4 2K;_;. Thus, across 7, we have at most O(3.2, 2f—7Ai=1) = O(AH) intervals over
each of which Algorithm 1 converges with a constant number of steps. The cost over the remainder
of the domain P where the algorithm does not converge, which consists of O(AH) intervals, is H.

Thus, using Lemma 3, since each function £, s is O(AH )-monotonic, we get a bound on the

pseudo-dimension of £ of O(H log A), which implies the stated sample complexity. |

Theorem 5 Suppose the instance space 11 consists of (x € R f e F ), where F consists of
functions R¢ — R that are piecewise-polynomial with at most p polynomial boundaries, with the
maximum degree of any piece function or boundary function at most A > 1. Then (e, §)-uniform

convergence is achieved for all step-sizes n € P C R>¢ using m = O (f—;(H log(pdA) + log %))
samples from D for any distribution D over I1.

Proof We first claim that for i > 2, z; = (ggl)(n),gi@) m),... ,gl-(d) (n)) where each ggj) is a
piecewise-polynomial function with degree at most A*~2 and at most (2pdA)*~2 pieces. We will
show this by induction.

Base case: i = 2. x5 = 11 — NV f(x1) = x — nV f(x) is a polynomial of degree 1 = A%?~2 in
7 in each coordinate.

Inductive case: i > 2. Suppose ;1 = g, 1(n) = (gfi)l(n))je[d} where 91@1 is piecewise-

polynomial with at most (2pdA)*~3 pieces and degree at most A*~3 (inductive hypothesis). Now

zi = xi1 = NV f(@i-1) = g;1(n) —nV f(g;_1(n)) =t g;(n). Now, V f(g;_1(n)) is piecewise-
polynomial. The degree is at most (A — 1)A*~3 < A2 — 1. Any critical point is either a critical

10
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()

71—

(1) (d)

point of some g,”’;, or a solution of the equation f) (9;-4(n),...,9;—(n)) = 0 for some boundary

function f*) (k € [p]) of f. The total number of critical points of gz(»] ) (for any j € [d]) is therefore
at most (2pdA)i =3 + (pdA)(2pdA)' =3 < (2pdA)*—2. Therefore, gl(.j ) is piecewise-polynomial in
7, with degree at most A*~2 and at most (2pdA)~2 pieces.

Thus, for any fixed 1 < i < H, x; = g;(n) where each coordinate ggj Vis piecewise-polynomial
with degree at most A~2 and at most (2pdA)*~2 pieces. Using the argument above, for any fixed
initial point =, ||V f(z;)|? is piecewise-polynomial with degree at most 2A*~! in 1 and at most
(2pdA)*=1 pieces. Now, consider the set of points 1) for which ||V f(x;)||?> < 62 for some constant
6. This consists of at most O((2pdA)*~1) intervals.

We can now apply the amortized counting argument from the proof of Theorem 4 to conclude
that the number of pieces in the dual cost function is O((2pdA)*) here.

Thus, using Lemma 3, we get a bound on the pseudo-dimension of £ of O(H log pdA), which
implies the stated sample complexity. |

Theorem 6 Consider the problem of tuning the ), ~y in Algorithm 2 over some continuous set P C
RZZ()- Suppose the instance space 11 consists of (x € R%, f € F), where F consists of functions
R? — R that are piecewise-polynomial with at most p polynomial boundaries, with the maximum
degree of any piece function or boundary function at most A > 1. Then (e, 0)-uniform convergence

is achieved for all v,n € P using m = O (%;(H log(pdA) + log %)) samples from D for any
distribution D over I1.

Proof We claim that for i > 2,

zi = (9 0,7, 95 0,7), -+ 9P (0,7))

and 1 2 d
yi = (WY (0,9), B2 (0, %), ... b\ (n, 7)),

where each gZ(J ) and hl(] Visa piecewise-polynomial function with degree at most A2 and at most
(2pd)*~2 boundaries, each an algebraic curve with degree at most A*~2, We will show this by a
simultaneous induction argument for x; and y;.

Base case: i = 2. yo = —nV f(x1) and 9 = z1 + y1 = 21 — nV f(x1) are both polynomials
of degree 1 = A?~2in 1, in each coordinate.

Inductive case: i > 2. Suppose x;—1 = g;,_1(n) = (gZ(]_)1 (M) jelq) and yi—1 = hi—1(n) =
(h§£)1 (m,7), hl@l (m,7), -, hz@l(n,v)), where ggi )1 and hgi)l are piecewise-polynomial with at
most (2pd)*~3 pieces and degree at most A*~3 (for both pieces and boundaries, by inductive hy-
pothesis).

Now g; = ygi-1=nV f(zi-1) = vhi—1(n,7) =1V f(gi-1(n, 7)) =: hi(n,7). Sinceg; 1 (n,7)
is piecewise-polynomial, V f(g;_;(n,7)) is also piecewise-polynomial. The degree is at most (A —
1)A=3 < A2 — 1. Any boundary function (algebraic curve along which V f(g;_,(n,~)) is dis-

1@1 for some j, or a solution of f(*) (gﬁ)1 (1,7)s -+, gl@l (n,7)) =

continuous) is either a boundary of g
0 for some boundary function ) (k e [p]) of f. The total number of algebraic curves correspond-

ing boundaries of gl(j) (for any j € [d]) is therefore at most d(2pd)*—3 + (pd)(2pd)* =3 < (2pd)*~2,

11
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with degree at most A - A”™3 = Ai=2, Therefore, gl(j )is piecewise-polynomial in 1, v, with degree
at most A2 (for both pieces and boundaries) and at most (2pd)’~2 boundaries.

Thus, for any fixed 1 < ¢ < H, z; = g;(n,v) where each coordinate gi(j ) is piecewise-
polynomial with degree at most A*~2 and at most (2pd)*~2 boundaries. Using the argument above,
for any fixed initial point x, ||V f(z;)||? is piecewise-polynomial with degree at most 2A~! in
1,7 and at most (2pd)*~! boundaries. Therefore, for a fixed 6, the condition ||V f(x;)||? < 62
can be evaluated using a GJ algorithm [24] of degree O(A?) and predicate complexity O((2pd)?).
This implies that the dual cost function can be computed using a GJ algorithm with degree at most
O(A™) and predicate complexity O(3>",(2pd)?) = (2pd)°H). Using [24], we get a bound on the
pseudo-dimension of £ of O(H log pdA), which implies the stated sample complexity. |

Appendix D. Learning the step-size schedule

Designing a good learning rate schedule is considered a crucial problem in gradient-based iterative
optimization. Our framework allows learning an iterate-dependent learning rate. That is, we set the
learning rate to 7); for ¢ € [H], and we learn the sequence 7); from data.

Theorem 9 Consider a variant of Algorithm 1, where a different step-size n; is used in the i-th
update, i.e., v;11 = x; — n;V f (x;) with parameters n; chosen from some continuous set P C ]RI;O.
Suppose the instance space 11 consists of (v € Re, feF ), where F consists of functions R - R
that are piecewise-polynomial with at most p polynomial boundaries, with the maximum degree
of any piece function or boundary function at most A > 1. Then (¢, d)-uniform convergence is
achieved for all (m1,...,ng) € P using m = O(I;’—;(H2 log(pdA) + log %)) samples from D for
any distribution D over 11.

Proof We first claim that for i > 2, z; = (g(l)(m, ey i)y ,gz-(d) (m,...,mi—1)) where each

(2
gi(] ) is a piecewise-polynomial function with degree at most A2 and at most (2pd)i~2 algebraic
boundaries of degree at most A2, We show this by induction.

Base case: i = 2. x9 = 11 — mV f(x1) = x — 1V f(x) is a polynomial of degree 1 = A%~2
in 777 in each coordinate.

Inductive case: i > 2. Suppose x;_1 = gi_1(mi_a) = ( 2@1 (M1, - .. ,ni_g))je[d] where ggi)l is
piecewise-polynomial with at most (2pd)*~3 boundaries and degree at most A?~3 (for both pieces
and boundaries, by the inductive hypothesis).

Now z; = @1 — i1V f(@i-1) = gi1(Mi—2) — 1i-1V f(gi—1(n;—2)) =: gi(n;_1). Now,
Vf(g;_1(n;_y)) is piecewise-polynomial. The degree of is at most (A — 1)A™3 < AP=2 — 1,
()
i

tion f() (gﬁ)l(ni_z), . ,gz-(i)l(ni_Q)) = 0 for some boundary function f*) (k € [p]) of f. The

Any discontinuity point is either a discontinuity point of some g,”’;, or a solution of the equa-

total number of boundary functions of gz(»J ) (for any j € [d]) is therefore at most d(2pd)'~3 +
(pd)(2pd)=3 < (2pd)*=2. Therefore, ggj ) is piecewise-polynomial in 7,_;, with degree at most
A2 and at most (2pdA )2 pieces.

Thus, for any fixed 1 < i < H, z; = g;(n,_;) where each coordinate ng ) is piecewise-
polynomial with degree at most A*~2 and at most (2pd)*~? algebraic boundaries. Using the ar-
gument above, for any fixed initial point z, ||V f(x;)|? is piecewise-polynomial with degree at

12
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most 2A*"! in n;_; and at most (2pdA)i~! boundaries. This implies that the dual cost func-
tion can be computed using a GJ algorithm with degree at most O(A*!) and predicate complex-
ity O(3;(2pd)’) = (2pd)°H). Using [24], we get a bound on the pseudo-dimension of £ of
O(H?log pdA), which implies the stated sample complexity. |
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