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Abstract

Teaching Graph Neural Networks (GNNs) to accurately classify nodes under severely noisy
labels is an important problem in real-world graph learning applications, but is currently
underexplored. Although pairwise training methods have demonstrated promise in supervised
metric learning and unsupervised contrastive learning, they remain less studied on noisy
graphs, where the structural pairwise interactions (PI) between nodes are abundant and thus
might benefit label noise learning rather than the pointwise methods. This paper bridges the
gap by proposing a pairwise framework for noisy node classification on graphs, which relies
on the PI as a primary learning proxy in addition to the pointwise learning from the noisy
node class labels. Our proposed framework PI-GNN contributes two novel components: (1)
a confidence-aware PI estimation model that adaptively estimates the PI labels, which are
defined as whether the two nodes share the same node labels, and (2) a decoupled training
approach that leverages the estimated PI labels to regularize a node classification model for
robust node classification. Extensive experiments on different datasets and GNN architectures
demonstrate the effectiveness of PI-GNN, yielding a promising improvement over the state-of-
the-art methods. Code is publicly available at https://github.com/TianBian95/pi-gnn.

∗Xuefeng and Tian contributed equally to this work. Work is done while interning at Tencent.
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1 Introduction

Graphs are ubiquitously used to represent data in different fields, including social networks, bioinformatics,
recommendation systems, and computer network security. Accordingly, graph analysis tasks, such as node
classification, have a significant impact in reality (Xu et al., 2019). The success of machine learning models,
such as graph neural networks (GNNs) on node classification relies heavily on the collection of large datasets
with human-annotated labels (Zhou et al., 2019). However, it is extremely expensive and time-consuming to
label millions of nodes with high-quality annotations. Therefore, when dealing with large graphs, usually
a subset of nodes is labeled, and a wide spectrum of semi-supervised learning techniques have emerged for
improving node classification performance (Zhu et al., 2003; Zhou et al., 2003; Kipf & Welling, 2017).

Although achieving promising results, these techniques overlook the existence of noisy node labels. For
instance, practitioners often leverage inexpensive alternatives for annotation, such as combining human and
machine-generated label (Hu et al., 2020), which inevitably yields samples with noisy labels. Since neural
networks (including GNNs) are able to memorize any given (random) labels (NT et al., 2019; Zhang et al.,
2017), these noisy labels would easily prevent them from generalizing well. Therefore, training robust GNNs
for semi-supervised node classification against noisy labels becomes increasingly crucial but less studied for
safety-critical graph analysis, such as predicting the identity groups of users in social networks or the function
of proteins to facilitate wet laboratory experiments, etc.
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Figure 1: Noise ratio comparison with noisy node labels. The noise ratio of PI labels is much smaller than
that of node labels. Number in red denotes noisy label.

In this paper, we pioneer a pairwise framework for noise-robust node classification on graphs, where
relationships between data points are exploited. Currently, although the pairwise approaches are prevailing
and made great progress in supervised metric learning and unsupervised contrastive learning (Qi et al., 2020;
Boudiaf et al., 2020; Chen et al., 2020a; He et al., 2020), they remain largely unexplored in noise-robust graph
learning. In particular, existing pointwise noise-robust learning algorithms (NT et al., 2019; Xia et al., 2021;
Li et al., 2021a; Dong et al., 2020; Li et al., 2020a) are mainly designed for image inputs and strictly rely on
the class label that shows the class that a node belongs to for learning. In contrast, the pairwise framework is
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able to utilize the pairwise interactions (PI) between nodes, which indicate whether or not two nodes belong
to the same class, as a learning proxy. As a result, it reduces the multi-class classification problem into a
binary classification problem, which is easier to handle Patrini et al. (2017) and provides helpful learning
signals apart from the noisy pointwise supervision. For example, Figure 11. shows the transformation from
the class labels to the PI labels. We can easily observe that the noise rate for the PI labels is much lower
than that of the pointwise noisy class labels. Considering two nodes from the same class have the same noisy
labels, their PI label still remains positive, which is helpful for the model to learn.

Although learning with PI intuitively demonstrates promise, it does not trivially transfer to label noise
learning on graphs. For example, previous pairwise learning frameworks (Qi et al., 2020; Chen et al., 2020a)
can easily calculate the PI labels either through class label comparison (same class label→positive PI label)
or data augmentation (augmented views from the same image→positive PI label). However, PI labels can
still contain unneglectable noise (cf. Figure 1) if we directly compare their noisy node class labels. As a
result, the pairwise learning algorithm relying on such suboptimal PI labels can misbehave.

We propose a novel framework dubbed PI-GNN, tackling two highly dependent problems—PI estimation
and learning—in one synergistic framework. Concretely, PI-GNN contributes two novel components: (1) We
introduce an end-to-end confidence-aware PI label estimation branch that dynamically estimates PI labels
with the help of graph structure (Section 3.1). In particular, we learn a graph neural network that is trained
to predict node connectivity, where the connected nodes have a ground truth of 1 and vice versa. Compared
to using node connectivity as the PI label directly, i.e., connected nodes transform to a positive PI label, we
derive PI labels with the predictive confidence from a PI label estimation network to quantify the reliability
of such graph structure. (2) We explore a novel decoupled training approach by leveraging the estimated
PI labels for learning a node classification model to perform noise-robust node classification (Section 3.2).
We propose to decouple the PI label estimation procedure from training with noisy node labels to prevent
corruption on the estimated PI labels. Meanwhile, different from previous works Li et al. (2021b), our PI-GNN
does not require a clean set of node and label pairs as extra supervision and can simultaneously utilize both
the labeled and unlabeled nodes for training, which works well for semi-supervised node classification.

Our main contributions are summarized as follows:

• We propose to train robust GNNs against noisy labels for node classification, which serve as a crucial
step towards the reliable deployment of GNNs in complex real-world applications.

• We introduce a novel learning framework to simultaneously estimate and leverage the pairwise
interactions, which can be applied on both labeled and unlabeled nodes without extra supervision of
clean node labels.

• We demonstrate PI-GNN can be effectively used on different datasets, GNN architectures and different
noise types and rates, e.g., improving the test accuracy by 5.4% on CiteSeer under a severe label
noise.

2 Preliminaries

Graph Neural Networks. Let G = (V, E, A) be a graph with node feature vectors Xv for v ∈ V and edge
set E, where A denotes the adjacency matrix. GNNs use the graph structure and node features Xv to learn a
representation vector of a node hv, or the entire graph hG, which usually follow a neighborhood aggregation
strategy and iteratively update the representation of a node by aggregating representations of its neighbors.
After k iterations of aggregation, a node’s representation captures the structural information within its k-hop
network neighborhood. Formally, the k-th layer of a GNN is

a(k)
v = AGGREGATE (k) ({

h(k−1)
u : u ∈ N (v)

})
, h(k)

v = COMBINE(k) (
h(k−1)

v , a(k)
v

)
, (1)

where h
(k)
v is the feature vector of node v at the k-th layer. h

(0)
v = Xv. N (v) denotes the neighboring nodes

of v. The choices of AGGREGATE (k)(·) and COMBINE(k)(·) can be diverse among different GNNs. For
1There are some additional cases where the conclusion might not hold true, please see Appendix Section O
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Figure 2: The framework of our proposed PI-GNN, which consists of two different branches, i.e., a PI label
estimation branch and a node classification branch for noise-robust semi-supervised node classification. The two
branches fe, ft first estimate the pairwise interactions between each node pair by the graph structure, and then leverage
the estimated PI labels for joint training with the node classification task. × denotes the dot product operation.

example, in GCN Kipf & Welling (2017), the element-wise mean pooling is used, and the AGGREGATE and
COMBINE steps are integrated as follows:

h(k)
v = ReLU

(
W · MEAN

{
h(k−1)

u , ∀u ∈ N (v) ∪ {v}
})

, (2)

where W is a learnable matrix. For node classification, each node v ∈ V has an associated label yv, the node
representation h

(K)
v of the final layer is used for prediction.

Label-noise representation learning for GNNs. Let Xv be the feature and yv be the label for node v,
we deal with a dataset D = {Dtr

, Dte} which consists of training set Dtr = {(A, Xv, yv)}v∈V that is drawn
from a corrupted distribution D = p(A, X, Y ) where Y denotes the corrupted label. Let p(A, X, Y ) be
the non-corrupted joint probability distribution of features X and labels y, and f∗ be the (Bayes) optimal
hypothesis from X to y. To approximate f∗, the objective requires a hypothesis space H of hypotheses
fθ(·) parametrized by θ. A robust algorithm against noisy labels contains the optimization policy to search
through H in order to find θ∗ that corresponds to the optimal function in the hypothesis for Dtr : fθ∗ ∈ H,
and meanwhile is able to assign correct labels for Dte.

3 Proposed Approach

In this section, we introduce our proposed PI-GNN, which performs noise-robust semi-supervised node
classification by explicitly estimating and leveraging the pairwise interactions on graphs. In what follows,
we will first provide a method overview and then illustrate the confidence-aware estimation of the pairwise
interactions in PI-GNN (Section 3.1). We introduce the decoupled training strategy for leveraging the estimated
pairwise interactions for model regularization (Section 3.2).

Overview. Figure 2 demonstrates the overview of PI-GNN, which is composed of two different branches. The
confidence-aware PI label estimation branch takes in the graph structure and generates the estimated PI
labels for a node pair. We denote it as fe. The node classification branch takes the estimated PI labels and
trains a node classification model jointly with an additional regularization objective, which leverages the PI
labels to regularize the node embeddings. We denote it as ft.

3.1 Confidence-aware PI Label Estimation

Let us suppose certain node class labels in the training set Dtr = {(A, Xv, yv)}v∈V are corrupted with noisy
labels. Since, ultimately, we are interested in finding a GNN model f parametrized by θ that minimizes
the generalization error on a clean test set Dte, a natural solution is to exploit additional information
during training for the learning algorithm to find a robust parameter θ∗ in the hypothesis space H. One
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straightforward candidate for such information is leveraging the pairwise interactions between two nodes to
perform extra regularization, whose learning objective is shown to hold a much smaller noise rate than that
with the noisy class labels (Figure 1).

Train the PI label estimation model. In this paper, we propose to estimate the PI labels yPI ∈ R|V |×|V |

between node pairs by learning from the graph structure (Here |V | is the cardinality of the vertex set on the
input graph G). While a reasonable choice of yPI is by comparing whether two nodes have the same class
label y and assigning those with the same class label a positive PI label, it is impossible to obtain such PI
labels with noisy class labels y.

Therefore, we propose to learn from the graph structure A for estimating the PI labels using a PI label
estimation model fe with paprameter θe, such as a graph neural network. Specifically, given node embeddings
h which is calculated by h = fe(A, X, θe), assume i, j ∈ V , let hT

i · hj be the dot product of two node
embeddings, the training objective for the PI label estimation model Le ∈ R|V |×|V | is formulated as follows:

Le (h; A, X) = λ · E(i,j)∈B−

[
− log 1

1 + exphT
i

·hj

]
+ E(i,j)∈B+

[
− log exphT

i ·hj

1 + exphT
i

·hj

]
, (3)

where B+, B− denote the node pairs that are connected and disconnected, respectively. λ is applied for
the disconnected node pairs to deal with the sample imbalance problem, which can be calculated according
to Kipf & Welling (2016; 2017).

Estimate the PI labels. Given a well-trained PI label estimation model fe, we derive the PI labels by
taking the predictive confidence as the smoothed PI label, which is calculated as follows:

yPI(i, j) = exphT
i ·hj

1 + exphT
i

·hj
. (4)

Algorithm 1 PI-GNN: Noise-robust Graph Learning by Estimating and Leveraging Pairwise Interactions
Input: Input graph G = (V, A, X) with noisy training data Dtr = {(A, Xv, ȳv)}v∈V , randomly initialized
GNNs fe and ft with parameter θe and θt, weight for regularization loss β, pretraining epoch K for fe. Total
training epoch N .
Output: Robust GNN ft.
for epoch = 0; epoch < N ; epoch + + do

if epoch ≤ K then
Update the parameter θe of the PI label estimation model fe by Equation 3.
Set β = 0 in Equation 5, update the parameter θt of the node classification model ft.

else
Update the parameter θe of the PI label estimation model fe by Equation 3.
Estimate the PI label yPI by Equation 4 with fe.
Update the parameter θt of the node classification model ft by Equation 5.

end
end
return The node classification model ft.

where yPI(i, j) is proportional to the value of the dot product hT
i · hj . The estimated PI label measures the

predictive confidence by looking at the closeness between the prediction and the graph structure (i.e., node
connectivity). If the predictive confidence becomes far away from the binary node connectivity (0 or 1), then
the reliability of such predictions is relatively low, which results in a smoothed PI label and vice versa. We
show in Section 4.5 the ablations of training with different kinds of PI labels, including training with the PI
labels by comparing the clean node labels.

The PI label estimation procedure allows for explicitly exploiting the pairwise interactions between two nodes,
resulting in a GNN that is affected less by the noisy class labels. Wu et al. (2021) employed similarity labels
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for regularization. However, it transforms the noise transition matrix estimated from the noisy class labels y
to correct the similarity labels, which is sensitive to the matrix estimation quality. Meanwhile, their approach
did not deal with the noise-robust graph learning problem.

3.2 Decoupled Noise-Robust Training

Given the well-estimated PI labels, now we discuss how to leverage the PI labels for noise-robust training.
One simple solution is to train a single GNN to estimate the PI labels, leverage the estimated PI labels by
replacing the binary labels ystructure with the estimated smoothed PI labels and then perform regularization
by joint training with the node classification task on that single GNN. However, since the GNN is exposed
to the noisy node class labels y, the PI label yPI cannot be estimated well if we entangle both the node label
prediction and PI label estimation in a single GNN.

Decoupling with two branches. In this paper, as shown in Figure 2, we propose to decouple the PI label
estimation and node classification by using two separate GNNs, which are referred as a PI label estimation
model fe and a node classification model ft. The PI label estimation model generates the predictive confidence
yPI by only learning with the PI estimation objective (Equation 3). The node classification model uses the
generated PI label yPI from the PI label estimation model at the same time for model regularization.

Overall training. Put them together, we introduce a new noise-robust training objective for node clas-
sification against noisy labels on GNNs, leveraging the estimated PI label in Section 3.1. The key idea is
to perform the node classification task by the node classification model ft while regularizing ft to produce
similar embeddings for nodes that have a larger PI label and vice versa. Different from Equation 3 that uses
the discrete labels of 0 and 1, we use the smoothed PI label as the learning target. The overall noise-robust
training objective for the node classification branch ft is formulated as:

Lt = Lcls(ft(A, X, θt), y) + β · Lreg, (5)

where β is a hyperparameter to balance the node classification loss Lcls and the regularization loss Lreg using
the estimated PI labels. Concretely, Lreg is defined as follows:

Lreg = λ · E(i,j)∈B−

[
−(1 − yPI(i, j)) · log 1

1 + exphT
i

·hj
− yPI(i, j) · log exphT

i ·hj

1 + exphT
i

·hj

]

+ E(i,j)∈B+

[
−(1 − yPI(i, j)) · log 1

1 + exphT
i

·hj
− yPI(i, j) · log exphT

i ·hj

1 + exphT
i

·hj

] (6)

where yPI(i, j) is defined in Equation 4.

Besides, the PI label estimation model is trained only by the binary classification loss Le (Equation 3) and
provides the estimated PI labels for model regularization on the node classification model, which is not
affected by the noisy class labels. During inference, we discard the PI label estimation model fe and only use
the node classification model ft for evaluation, which does not affect the inference speed.

Practically, the learning procedure relies heavily on the quality of the PI label estimation by fe. Therefore,
in the implementation, we pretrain the PI label estimation model fe for K epochs (meanwhile we set β in
Equation 5 to 0 to train the node classification model as well) and then jointly train the two models together
by Equations 3 and 5, respectively. Our algorithm is summarized in Algorithm 1.

Time complexity analysis. Assume the GNN architecture for the node classification model and the PI label
estimation model is GCN, for the node classification model, the time complexity is O

(
TL|E|d + TL|V |d2)

according to Wang et al. (2021) where d is the dimension of the node embedding, |E|, |V | are the number of
edges and nodes of the graph and T, L are the number of iterations and the layers. For the PI label estimation
model, the complexity is O

(
TL|E|d + TL|V |d2 + T |V |2d2)

. For big graph datasets with large |E| and |V |,
we perform subgraph sampling Hamilton et al. (2017) in the implementation (Section 4.2) to reduce the time
complexity.
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Noise type No Noise Symmetric Noise Asymmetric Noise
Cora

Noise ratio 0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
GCN 0.804(0.01) 0.722(0.03) 0.613(0.07) 0.446(0.06) 0.285(0.07) 0.703(0.04) 0.514(0.06) 0.291(0.04) 0.161(0.02)

PI-GNN w/o pc 0.781(0.01) 0.731(0.02) 0.654(0.05) 0.510(0.04) 0.287(0.06) 0.717(0.04) 0.563(0.07) 0.332(0.06) 0.209(0.06)
PI-GNN 0.780(0.01) 0.739(0.02) 0.664(0.03) 0.515(0.03) 0.296(0.05) 0.723(0.03) 0.587(0.07) 0.350(0.07) 0.232(0.06)

CiteSeer
GCN 0.683(0.01) 0.603(0.02) 0.524(0.04) 0.382(0.04) 0.230(0.03) 0.595(0.03) 0.465(0.05) 0.281(0.05) 0.171(0.05)

PI-GNN w/o pc 0.656(0.03) 0.606(0.03) 0.526(0.05) 0.378(0.05) 0.227(0.04) 0.588(0.04) 0.472(0.05) 0.328(0.03) 0.235(0.03)
PI-GNN 0.684(0.03) 0.642(0.03) 0.591(0.03) 0.432(0.07) 0.245(0.05) 0.628(0.03) 0.531(0.06) 0.353(0.06) 0.238(0.06)

PubMed
GCN 0.786(0.01) 0.707(0.02) 0.610(0.06) 0.462(0.07) 0.367(0.07) 0.682(0.05) 0.524(0.08) 0.399(0.06) 0.387(0.07)

PI-GNN w/o pc 0.774(0.00) 0.723(0.03) 0.628(0.05) 0.458(0.07) 0.370(0.06) 0.722(0.03) 0.579(0.07) 0.412(0.05) 0.401(0.03)
PI-GNN 0.774(0.00) 0.724(0.03) 0.638(0.04) 0.470(0.08) 0.379(0.07) 0.723(0.03) 0.583(0.07) 0.425(0.07) 0.406(0.04)

WikiCS
GCN 0.703(0.01) 0.635(0.03) 0.558(0.04) 0.376(0.05) 0.183(0.05) 0.608(0.05) 0.468(0.05) 0.272(0.05) 0.129(0.07)

PI-GNN w/o pc 0.676(0.01) 0.624(0.02) 0.552(0.05) 0.396(0.07) 0.197(0.07) 0.607(0.03) 0.470(0.05) 0.290(0.05) 0.125(0.05)
PI-GNN 0.676(0.01) 0.636(0.02) 0.562(0.04) 0.398(0.07) 0.208(0.07) 0.610(0.04) 0.483(0.05) 0.303(0.04) 0.135(0.06)

OGB-arxiv
GCN 0.491(0.01) 0.461(0.01) 0.433(0.01) 0.393(0.03) 0.278(0.02) 0.435(0.01) 0.399(0.01) 0.059(0.01) 0.019(0.00)

PI-GNN w/o pc 0.462(0.04) 0.469(0.08) 0.445(0.05) 0.406(0.05) 0.357(0.10) 0.445(0.08) 0.425(0.06) 0.060(0.02) 0.021(0.00)
PI-GNN 0.482(0.01) 0.476(0.04) 0.467(0.03) 0.418(0.04) 0.368(0.09) 0.475(0.01) 0.461(0.01) 0.069(0.01) 0.022(0.00)

Table 1: Test accuracy on 5 datasets for PI-GNN with GCN as the backbone. Bold numbers are superior results. Std.
is shown in the bracket. w/o pc means that the PI labels are not estimated using the predictive confidence but just
the node connectivity.

Underlying assumption and limitation. We note that the proposed method PI-GNN has a limitation
during deployment, which relies on the assumption about the underlying graph structure and their label
distribution. Namely, homophilous graphs (i.e., if two nodes are connected, then with high probability, they
should have the same node label) are more suited to PI-GNN compared to heterophilous graphs (Zhu et al.,
2020; Lim et al., 2021; Chien et al., 2022). As a quick verification, we test the performance of PI-GNN on
several heterophilous datasets in Appendix Section E, where the improvement of PI-GNN is less obvious
compared to PI-GNN on homophilous graphs.

4 Experiments and Results

In this section, we present empirical evidence to validate the effectiveness of PI-GNN on different datasets
with different noise types and ratios.

4.1 Experimental setting

Datasets. We used five datasets to evaluate PI-GNN, including Cora, CiteSeer and PubMed with the default
dataset split as in (Kipf & Welling, 2017) and WikiCS dataset (Mernyei & Cangea, 2020) as well as OGB-arxiv
dataset (Hu et al., 2020). For WikiCS, we used the first 20 nodes from each class for training and the next 20
nodes for validation. The remaining nodes for each class are used as the test set. For OGB-arxiv, we use the
default split. The dataset statistics are summarized in Appendix Section C.

Since all datasets are clean, following Patrini et al. (2017), we corrupted these datasets manually by the noise
transition matrix Qij = Pr(y = j | y = i) given that noisy y is flipped from clean y. Assume the matrix Q
has two representative structures: (1) Symmetry flipping (van Rooyen et al., 2015); (2) Asymmetric pair
flipping: a simulation of fine-grained classification with noisy labels, where labelers may make mistakes only
within very similar classes. Note the asymmetric case is much harder than the symmetry case. Their precise
definition is in Appendix Section A. We tested four different noise rates ϵ ∈ {0.2, 0.4, 0.6, 0.8} in this paper
for two different noise types, which cover lightly and extremely noisy supervision. Note that in the most
extreme case, the noise rate 80% for pair flipping means 80% training data have wrong labels that cannot be
learned without additional assumptions.

Implementation details. We used three different GNN architectures, i.e., GCN, GAT and GraphSAGE,
which are implemented by torch-geometric 2 (Fey & Lenssen, 2019). All of them have two layers. Specifically,
the hidden dimension of GCN, GAT and GraphSAGE is set to 16, 8 and 64. GAT has 8 attention heads in
the first layer and 1 head in the second layer. The mean aggregator is used for GraphSAGE. We applied
Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.01 for GCN and GraphSAGE and 0.005 for

2https://github.com/pyg-team/pytorch_geometric/blob/master/examples
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Figure 3: Test accuracy of PI-GNN and comparison with PI-GNN w/o pc and vanilla GNN on two additional model
architectures under different noisy settings.

GAT. The weight decay is set to 5e-4. We trained for 400 epochs on a Tesla P40. The loss weight β is set to
|V |2/(|V |2 − Q)2, where |V | is the number of nodes and Q is the sum of all elements of the preprocessed
adjacency matrix. The number of pretraining epochs K is set to 50 and the total epoch N is set to 400. For
subgraph sampling, we sampled 15 and 10 neighbors for each node in the 1st and 2nd layer of the GNN and
set the batch size to be 1024. We tuned all the hyperparameters on the validation set and reported the node
classification accuracy on the clean test set. Details about the ablation studies on these factors are shown in
Section 4.5. Each experiment is repeated for 10 times with random seeds from 1 to 10. The training time for
our PI-GNN and the vanilla GNN model is compared in the Appendix Section I.

4.2 Effectiveness on different datasets

We evaluated the effectiveness of PI-GNN on five datasets with different noisy labels and noise rates, which
is shown in Table 1 with GCN as the backbone. Specifically, we are interested to observe 1) whether the
introduced regularization objective between nodes can improve a vanilla GNN against noisy labels and 2)
whether the predictive confidence from the PI label estimation model is beneficial for the test accuracy.
Therefore, we compared the accuracy of a vanilla GNN, PI-GNN trained with the node connectivity as the PI
label (PI-GNN w/o pc) and PI-GNN.

From Table 1, we made several observations: Firstly, the GNN trained with the PI regularization objective
is more robust to noisy labels, where both PI-GNN w/o pc and PI-GNN perform much better than a vanilla
GNN. Secondly, by estimating the PI labels using the PI label estimation model, the test accuracy is further
improved compared to directly using the node connectivity as the PI label. For instance, PI-GNN improves
the accuracy by 2.3% with the asymmetric noise (noise ratio ϵ = 0.8) on Cora compared to PI-GNN w/o pc,
which justifies the effectiveness of our design. Thirdly, the PI-GNN does not help the GNN with the clean
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Noise type Symmetric Noise Asymmetric Noise
Noise ratio 0.4 0.6 0.4 0.6

Test dataset: Cora / CiteSeer
Decoupling 0.581(0.06) / 0.518(0.03) 0.425(0.06) / 0.390(0.03) 0.541(0.05) / 0.474(0.04) 0.336(0.03) / 0.323(0.05)

GCE 0.627(0.07) / 0.530(0.03) 0.447(0.06) / 0.383(0.03) 0.511(0.05) / 0.468(0.05) 0.284(0.03) / 0.285(0.05)
APL 0.624(0.08) / 0.522(0.04) 0.446(0.06) / 0.376(0.04) 0.507(0.06) / 0.456(0.06) 0.281(0.03) / 0.281(0.04)

Co-teaching 0.577(0.11) / 0.573(0.07) 0.376(0.07) / 0.404(0.06) 0.457(0.10) / 0.462(0.08) 0.237(0.09) / 0.256(0.08)
LPM-1 0.542(0.09) / 0.467(0.06) 0.447(0.07) / 0.395(0.08) 0.481(0.07) / 0.506(0.08) 0.318(0.04) / 0.341(0.09)

T-Revision 0.596(0.06) / 0.518(0.03) 0.425(0.06) / 0.380(0.04) 0.512(0.06) / 0.457(0.06) 0.281(0.05) / 0.263(0.05)
DivideMix 0.628(0.06) / 0.515(0.05) 0.463(0.09) / 0.355(0.05) 0.428(0.01) / 0.396(0.03) 0.313(0.03) / 0.282(0.02)

PI-GNN (ours) 0.664(0.03) / 0.591(0.03) 0.515(0.03) / 0.432(0.07) 0.587(0.07) / 0.531(0.06) 0.350(0.07) / 0.353(0.06)

Table 2: Comparative results with baselines. Bold numbers are superior results. LPM-1 means one extra clean label
is used for each class. The result on the left and right of each cell is the classification accuracy of the Cora dataset
and CiteSeer dataset, respectively.

node labels, e.g., 80.4% of a vanilla GCN vs. 78.0% of PI-GNN on Cora, which illustrates the PI-GNN helps to
combat noisy supervision rather than inherently improve the node classification with purely clean node labels.
Additional results on heterophilous datasets and with lower noise ratios are in Appendix Sections E and H.

4.3 Performance on different GNN architectures

We evaluated PI-GNN on different GNN architectures, i.e., GAT and GraphSAGE. The experiments are
conducted on Cora, CiteSeer, PubMed and WikiCS datasets, which are shown in Figure 3. As can be
observed, PI-GNN performs similarly on GAT and GraphSAGE compared to the results on GCN, where the
regularization of PI and the predictive confidence are both beneficial for model generalization even with
extremely noisy supervision. Moreover, using the predictive confidence as PI labels is more effective on
GraphSAGE. For example, in the Cora dataset, PI-GNN improves PI-GNN w/o pc by 4.2% and 3.1% on
average under symmetric and asymmetric noise, respectively, which is larger than that for GAT and GCN.
It may suggest the mean aggregator in GraphSAGE is more susceptible to the sub-optimal PI labels. We
provide significance test on the results of GAT in Appendix Section F.

4.4 Comparison with baselines

In order to further demonstrate the competitive performance of PI-GNN, we compared with several powerful
baselines for combating noisy labels in literature. For a fair comparison, we used the same GNN architecture,
i.e., GCN, and the same overlapping hyperparameters during implementation. The other method-specific
hyperparameters are tuned according to the original paper on the validation set. Specifically, we compared
with noise-transition matrix-based method, T-revision (Xia et al., 2019), robust loss functions, such as
Generalized Cross Entropy (GCE) loss (Zhang & Sabuncu, 2018) and Active Passive Loss (APL) (Ma et al.,
2020), optimization-based approaches, such as Co-teaching (Han et al., 2018b), Decoupling (Malach &
Shalev-Shwartz, 2017) and DivideMix (Li et al., 2020b). We also compared with Label Propagation and
Meta learning (LPM) (Xia et al., 2021), a method that is specifically designed for solving label noise for node
classification but uses a small set of clean labels. For illustration, we reported the classification accuracy on
Cora and CiteSeer with symmetric and asymmetric noise (noise rate ϵ = 0.4, 0.6) in Table 2.

From Table 2, PI-GNN outperforms different baselines with a considerable margin, e.g., improving the
classification accuracy by 5.2% on Cora under the symmetric noise (ϵ = 0.6) compared to the best baseline.
Moreover, PI-GNN is able to outperform LPM-1, which relieves the strong assumption that auxiliary clean
node labels are available. We compare with traditional graph semi-supervised learning approaches and on
more datasets in Appendix Section D and Section J, respectively.

4.5 Ablation studies

The effect of PI labels. To show the importance of informative PI labels, we tested PI-GNN under
different PI labels in addition to the one that is estimated by the PI label estimation model (ours): 1)
random labels, 2) noisy class label comparison and 3) estimated PI w/o fe where only one GNN is used
for both node classification and PI label estimation. We also compared with the PI labels by clean
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Figure 4: (a)-(b) Performance of PI-GNN w.r.t. different pretraining epochs on Cora and CiteSeer. x axis denotes
the value of the pretraining epochs for the PI label estimation model. (c)-(d) Performance of PI-GNN w.r.t. the
regularization loss weight β. x axis denotes the value of the loss weight and β′ is the weight that is aware of the
sparsity of the input graph (cf. Section 4.1).

class label comparison, which is expected to be the oracle. We used GCN as the backbone and tested
on two datasets, i.e., Cora and CiteSeer and different noise types. The results are shown in Table 3.

Noise Type Symmetric Noise Asymmetric Noise
Cora

Noise Ratio 0.6 0.6
Random PI label 0.449(0.05) 0.295(0.04)

Noisy label comparison 0.471(0.05) 0.300(0.04)
Estimated PI w/o fe 0.511(0.03) 0.329(0.05)

Clean label comparison (oracle) 0.447(0.07) 0.355(0.05)
Estimated PI (ours) 0.515(0.03) 0.350(0.07)

CiteSeer
Noise Ratio 0.6 0.6

Random PI label 0.351(0.04) 0.298(0.04)
Noisy label comparison 0.378(0.04) 0.312(0.04)
Estimated PI w/o fe 0.430(0.07) 0.340(0.05)

Clean label comparison (oracle) 0.447(0.07) 0.355(0.05)
Estimated PI (ours) 0.432(0.07) 0.353(0.06)

Table 3: Performance of PI-GNN with different PI
labels.

From Table 3, using PI labels based on the PI label estima-
tion model achieves better performance than using noisy
node label comparison. Employing randomly generated PI
labels incurs the worst performance because it completely
ignores the importance of the pairwise interactions. More-
over, removing the PI label estimation model decreases
the test accuracy because the node embeddings are opti-
mized by the noisy class labels as well, which might not be
effective for the PI label estimation (32.9% vs. 35.0% for
Cora with 60% asymmetric noise). Finally, our PI-GNN
achieves a similar performance compared to training by
clean label comparison (the oracle case), showcasing the
effectiveness of our estimated PI labels. Note in our noisy
setting, it is impossible to reach the oracle. More results
are in Appendix Section G.

Sensitivity to the pretraining epoch of the PI label estimation model. We investigated whether the
performance of PI-GNN is sensitive to the number of pretraining epochs for the PI label estimation model.
The experimental results on Cora and CiteSeer with GCN under symmetric and asymmetric noise are shown
in Figure 4 (a) and (b). For illustration, we set the noise ratio to be 0.6. As can be observed, pretraining
the PI label estimation model for K epochs is effective for improving the generalization on the clean test
set. Given a small K, the confidence mask is not estimated well which is not helpful to apply it on the
node classification model for regularization. Meanwhile, K should not be too large in order to sufficiently
regularize the node classification model using Equation 5. K is set to 50 for all the experiments.
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Figure 5: Performance of the PI-GNN applied on different label-noise baselines
on Cora and CiteSeer. Noise ratio is set to 0.6.

Application of PI-GNN on label-
noise baselines. To observe
whether PI-GNN is able to improve
the generalization ability for differ-
ent label-noise baseline models, we
extended three representative ap-
proaches, i.e., T-revision (Xia et al.,
2019), APL (Ma et al., 2020) and Di-
videMix (Li et al., 2020b) by adding
the PI regularization objective dur-
ing training. Specifically, we used the sum of their original loss and the PI regularization loss (Lreg, cf.
Equation 5) to optimize the GNN. The weight for PI regularization loss is set to the same value as our

10



Published in Transactions on Machine Learning Research (06/2023)

approach (cf. Section 4.1). We chose GCN as the backbone and reported the test accuracy on Cora and
CiteSeer with both symmetric and asymmetric noise (ϵ = 0.6) in Figure 5. As the result shows, PI-GNN is
orthogonal to those noise-robust baseline models, which is potentially useful for improving their performance
without bells and whistles. For instance, The test set accuracy is improved by 4.3% on DivideMix under the
asymmetric noise for the CiteSeer dataset and thus demonstrates the universality of our proposed PI-GNN.

Noise Type Sym. Noise Asym. Noise
Noise Ratio 0.6 0.6
GAT only 0.394(0.05) 0.330(0.04)
GCN-GAT 0.412(0.06) 0.339(0.03)

GraphSAGE only 0.503(0.08) 0.376(0.08)
GCN-GraphSAGE 0.512(0.09) 0.383(0.06)
GraphSAGE only 0.503(0.08) 0.376(0.08)
GAT-GraphSAGE 0.516(0.08) 0.381(0.06)

Table 4: Performance of PI-GNN with different
architectures for two branches on CiteSeer.

Different architectures for two branches. PI-GNN allows
for a flexible choice of the architectures for the PI label es-
timation model and the node classification model, where a
light-weight PI label estimation model can help a large node clas-
sification model for node classification during training. In what
follows, we used three different PI label estimation-node clas-
sification model pairs, namely GCN-GAT, GCN-GraphSAGE
and GAT-GraphSAGE. The number of parameters for GCN,
GAT, GraphSAGE is 0.02, 0.09 and 0.18 M, respectively. The
comparison with using the same architectures are shown in
Table 4. From Table 4, using a light-weight GNN for the PI
label estimation model is able to further improve the clean test
accuracy, which is promising for efficient deployment of PI-GNN on real-world graph datasets.

The effect of regularization weight. To observe whether the regularization loss weight β matters to
the model performance, we trained PI-GNN with different values of β, i.e., 0.01, 0.05, 0.1, 0.2, 0.5, 1.0 and
compared with the value β′ = |V |2/(|V |2 − Q)2 which is aware of the sparsity of the graph in Figure 4 (c) and
(d). We conducted experiments on Cora and CiteSeer with GCN and showed the results with symmetric and
asymmetric noise (ϵ = 0.6). From the figure, PI-GNN is sensitive to the choice of regularization loss weight
β. On both datasets with different noise types, PI-GNN trained with β′ achieves the best test accuracy, and
simultaneously avoids heavy tuning procedure on the validation set.

5 Related work

Graph Neural Networks. Graph neural networks have been widely used to model the graph-structured
data with various architectures, such as graph convolutional network (GCN) (Kipf & Welling, 2017), graph
attention network (GAT) (Velickovic et al., 2018), GraphSAGE (Hamilton et al., 2017), Graph Isomorphism
Network (GIN) (Xu et al., 2019), Simple Graph Convolution (SGC) (Wu et al., 2019), etc. Common graph
analysis tasks, including node classification (Lan et al., 2020), link prediction (Zhang & Chen, 2018), graph
classification (Bacciu et al., 2018), graph generation (Liao et al., 2019; Shi et al., 2020), have been widely
studied in literature. However, only a few works focused on training robust GNNs against noisy labels, such
as by loss correction (NT et al., 2019) for graph classification, sample re-weighting (Xia et al., 2021; Li et al.,
2021a) for node classification. None of them exploited explicit PI, which are compared with our PI-GNN in
Section 4.4. Bui et al. (2017); Stretcu et al. (2019); Ng et al. (2018); Qu et al. (2019); Ma et al. (2019) utilized
graph structures for semi-supervised learning but with clean labels. Moreover, they did not further process
the graph structure while PI-GNN utilizes the graph structure and introduces a new PI label estimation
procedure during training. Jiang et al. (2019); Yu et al. (2020); Zheng et al. (2020); Chen et al. (2020b);
Kim & Oh (2021); Fatemi et al. (2021) iteratively refined graph structure during training for missing edge
prediction or error edge detection while PI-GNN does not change the input graph. Luo et al. (2021) proposed
a parameterized topological denoising network to improve the robustness and generalization performance of
GNNs by learning to drop task-irrelevant edges. The main difference is that PI-GNN deals with the situation
where the node labels are corrupted while they deal with the noisy edges.

Zhao et al. (2020); Stadler et al. (2021); Wu et al. (2023) proposed to use uncertainty estimation and
out-of-distribution detection techniques (Du et al., 2022c;b;a; Tao et al., 2023; Yang et al., 2021; Bai et al.,
2023; Sun et al., 2021; Sun & Li, 2022; Sun et al., 2022; Ming et al., 2022a;b; 2023; Wei et al., 2022; Yang
et al., 2022) for detecting out-of-distribution or noisy node samples on graphs, where our goal is to correctly
classify the noisy nodes.
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Neural networks with noisy labels. Methods for neural networks against noisy labels can be roughly
categorized into three types (Han et al., 2020b), i.e., approaches from the perspective of data (van Rooyen
& Williamson, 2017), learning objective (Reed et al., 2015; Miyato et al., 2019) and optimization (Arpit
et al., 2017). Methods based on data mainly built the noise transition matrix to explore the data relationship
between clean and noisy label by an adaptation layer (Sukhbaatar et al., 2015), loss correction (Patrini
et al., 2017) and prior knowledge (Han et al., 2018a). Methods based on objective modified the learning
objective by regularization (Han et al., 2020a), reweighting (Liu & Tao, 2016; Wang et al., 2017) and loss
redesign (Thulasidasan et al., 2019). Methods based on optimization mainly changed the optimization policy,
such as by memorization effect (Jiang et al., 2018), self-training (Ren et al., 2018) and co-training (Yu et al.,
2019). Wu et al. (2021) proposed to use the similarity loss for noisy labels of images but it relied on the noisy
transition matrix, which is sensitive to the matrix estimation quality and cannot use the graph structure for
regularization. In this paper, we extend several approaches from each category to compare with PI-GNN in
Section 4.4.

6 Conclusion

In this paper, we proposed PI-GNN, a simple but effective learning paradigm for helping the GNN to generalize
well with noisy supervision. Our key idea is to leverage the pairwise interactions between nodes to explicitly
regularize the similarity of those node embeddings during training. In order to perform noise-robust node
classification, we introduce a new learning framework to adaptively estimate and leverage the pairwise
interactions for model regularization. We conducted extensive experiments to demonstrate that PI-GNN can
train GNNs robustly under extremely noisy supervision, which serves as a crucial step towards the reliable
deployment of GNNs in complex real-world applications. We hope our work inspires future research on
noise-robust graph learning, such as proposing novel pairwise approaches from the algorithmic perspective
and constructing real-world noisy graph datasets for a more comprehensive and practical empirical evaluation.
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Noise-robust Graph Learning by Estimating and Leveraging
Pairwise Interactions

(Appendix)

A Definition of noise

The definition of transition matrix Q is as follows. n is number of the class.

Asymmetric pair flipping:

Q =


1 − ϵ ϵ 0 . . . 0

0 1 − ϵ ϵ 0
...

. . . . . .
...

0 1 − ϵ ϵ
ϵ 0 . . . 0 1 − ϵ

 , (7)

Symmetry flipping:

Q =


1 − ϵ ϵ

n−1 · · · ϵ
n−1

ϵ
n−1

ϵ
n−1 1 − ϵ ϵ

n−1 · · · ϵ
n−1

...
. . .

...
ϵ

n−1 · · · ϵ
n−1 1 − ϵ ϵ

n−1
ϵ

n−1
ϵ

n−1 · · · ϵ
n−1 1 − ϵ

 . (8)

B Software and hardware

We run all experiments with Python 3.8.5 and PyTorch 1.7.0, using NVIDIA TESLA P40 GPUs.

C Dataset Details

Here we provide the details of graph datasets for node classification.

Dataset #Nodes #Edges #Classes

Cora 2,485 5,069 7
CiteSeer 2,110 3,668 6
PubMed 19,717 44,324 3
WikiCS 11,701 216,123 10
OGB-arxiv 169,343 1,166,243 40

Table 5: Statistics of the datasets.

D Comparison with traditional graph semi-supervised learning based approaches.

For the comparison with the traditional semi-supervised graph embedding methods, we follow the same
experimental setting and compare with ICA (Lu & Getoor, 2003), Planetoid (Yang et al., 2016) and Label
Propagation (LP) (Zhu & Ghahramani, 2002) on Cora as follows in Table 6. The result shows the advantage
of PI-GNN across different noise ratios.

E Experimental results on heterophilous datasets

We perform extra experiments on heterophilous datasets (Ma et al., 2021). The results are demonstrated in
the Table 7. It shows that PI-GNN is still able to outperform the vanilla one except for one case in Chameleon
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Noise type Symmetric Noise Asymmetric Noise
Noise ratio 0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

ICA 0.729(0.01) 0.609(0.01) 0.523(0.04) 0.394(0.00) 0.159(0.00) 0.549(0.00) 0.453(0.00) 0.284(0.01) 0.127(0.01)
LP 0.603(0.00) 0.506(0.02) 0.417(0.03) 0.297(0.03) 0.170(0.03) 0.513(0.03) 0.391(0.04) 0.238(0.03) 0.141(0.02)

Planetoid 0.739(0.01) 0.639(0.03) 0.527(0.04) 0.379(0.05) 0.265(0.06) 0.627(0.03) 0.441(0.04) 0.271(0.06) 0.210(0.09)
PI-GNN 0.780(0.01) 0.739(0.02) 0.664(0.03) 0.515(0.03) 0.296(0.05) 0.723(0.03) 0.587(0.07) 0.350(0.07) 0.232(0.06)

Table 6: Comparison with more baselines on Cora Dataset.

dataset. Meanwhile, the improvement is somewhat smaller, which implies PI-GNN may be more effective on
homophilous datasets.

Noise type Symmetric Asymmetric
Actor

Noise Ratio 0.4 0.6 0.4 0.6
GCN 0.209(0.02) 0.208(0.02) 0.198(0.03) 0.199(0.02)

PI-GNN w/o pc 0.216(0.01) 0.210(0.02) 0.201(0.02) 0.202(0.02)
PI-GNN 0.218(0.02) 0.213(0.02) 0.204(0.02) 0.200(0.02)

Chameleon
GCN 0.251(0.03) 0.246(0.03) 0.245(0.04) 0.228(0.03)

PI-GNN w/o pc 0.264(0.03) 0.249(0.03) 0.242(0.05) 0.229(0.04)
PI-GNN 0.269(0.02) 0.251(0.03) 0.239(0.05) 0.237(0.04)

Table 7: Experimental results on heterophilous datasets.

F Significance test results

We perform significance tests to verify whether PI-GNN outperforms the vanilla GNN model significantly using
double-sided T-test in Table 8. We use python package “scipy.stats.ttest1samp" and report the average results
over 10 different runs as follows. PI-GNN is better than GAT because the absolute value of the t-statistic is
relatively large and the p-value is small.

Method Setting |T-statistic| p-value
Cora

GAT vs. PI-GNN
Symmetric Noise-0.8 4.78 0.001

Asymmetric Noise-0.8 3.42 0.008
CiteSeer

GAT vs. PI-GNN
Symmetric Noise-0.8 2.09 0.060

Asymmetric Noise-0.8 4.63 0.001

Table 8: Statistical significance tests.

G Experimental results on using clean label comparison

To observe the node classification results by training with PI labels from clean label comparison (which are
obtained by comparing the clean class labels for two nodes), we did experiments on Cora, CiteSeer and
PubMed with GCN and a noise ratio of 0.4 and 0.6. The results are shown in the Table 9. In most cases,
clean label comparison can help the PI-GNN to combat noisy labels except for some challenging cases with
asymmetric noise. One reason may be the inherent noise exists in clean node labels for Cora, where we cannot
obtain perfectly clean PI label.

H Experimental results with lower noise ratios

For the PI-GNN under lower noise ratios, we empirically verify its effectiveness on Cora and CiteSeer with the
noise ratio of 0.1, which is shown in Table 10.
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Noise type Symmetric Asymmetric
Cora

Noise Ratio 0.4 0.6 0.4 0.6
PI-GNN 0.664(0.03) 0.515(0.03) 0.587(0.07) 0.350(0.07)

Clean PI-GNN 0.671(0.03) 0.523(0.03) 0.589(0.07) 0.341(0.07)
CiteSeer

PI-GNN 0.591(0.03) 0.432(0.07) 0.531(0.06) 0.353(0.06)
Clean PI-GNN 0.605(0.04) 0.447(0.07) 0.536(0.05) 0.355(0.05)

PubMed
PI-GNN 0.638(0.04) 0.470(0.08) 0.583(0.07) 0.425(0.07)

Clean PI-GNN 0.640(0.02) 0.485(0.07) 0.590(0.07) 0.429(0.07)

Table 9: Experimental results on using clean label comparison. Clean PI-GNN means the PI-GNN is trained
with the PI labels from clean label comparison.

Noise type Symmetric Asymmetric
Cora

Noise Ratio 0.1 0.1
GCN 0.766(0.03) 0.762(0.04)

PI-GNN w/o pc 0.769(0.03) 0.763(0.03)
PI-GNN 0.772(0.02) 0.768(0.03)

CiteSeer
Noise Ratio 0.1 0.1

GCN 0.642(0.03) 0.618(0.05)
PI-GNN w/o pc 0.648(0.04) 0.633(0.02)

PI-GNN 0.659(0.03) 0.658(0.05)

Table 10: Experimental results with lower noise ratios.

I Comparison of the training time

We compare the training time of PI-GNN and the vanilla GNN as follows. We observe that using dual
GNNs does not incur much higher computational cost because the two GNNs run in parallel rather than in
sequence on the GPU and the major time-consuming part is for data loading and transforms rather than
forward/backward pass. Additionally, PI-GNN does not incur more inference cost than a vanilla model.

Dataset Cora CiteSeer PubMed WikiCS OGB
Time-GCN(s) 25.79 26.98 140.53 71.12 3930.14

Time-PI-GNN (s) 26.46 30.33 160.29 81.95 4117.00

J Additional comparison with baselines

In addition to Table 2 in the main paper, we provide the comparison on PubMed and WikiCS with baselines
to further demonstrate the effectiveness of our PI-GNN, which is shown as follows.
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Noise type Symmetric Noise(0.4) Asymmetric Noise(0.4)
Test dataset: PubMed / WikiCS

Decoupling 0.627(0.05) / 0.555(0.05) 0.578(0.06) / 0.465(0.05)
GCE 0.604(0.06) / 0.536(0.06) 0.524(0.08) / 0.456(0.06)
APL 0.606(0.06) / 0.526(0.09) 0.524(0.08) / 0.336(0.11)

Co-teaching 0.523(0.06) / 0.337(0.10) 0.433(0.11) / 0.262(0.08)
LPM-1 0.634(0.06) / 0.554(0.04) 0.570(0.09) / 0.401(0.04)

T-Revision 0.603(0.04) / 0.542(0.07) 0.554(0.08) / 0.478(0.10)
DivideMix 0.543(0.08) / 0.419(0.08) 0.566(0.07) / 0.169(0.08)

PI-GNN (ours) 0.638(0.04) / 0.562(0.04) 0.583(0.07) / 0.483(0.05)

Table 11: Additional comparison with baselines on two different datasets. We use the GCN as the graph
neural network backbone.

K Sensitivity to the model initialization

We provide the sensitivity analysis for PI-GNN on different model initializations in Table 12. The results
demonstrate that the performance is not sensitive to different model initializations, where the biggest gap
among all the model initializations is smaller than 3%.

Noise type Symmetric Noise Asymmetric Noise
Noise ratio 0.6 0.6

Test dataset: Cora / CiteSeer
Uniform Initialization 0.514(0.05) / 0.443(0.05) 0.364(0.02) / 0.321(0.04)
Normal Initialization 0.548(0.03) / 0.426(0.05) 0.361(0.05) / 0.345(0.01)

Constant Initialization 0.504(0.01) / 0.413(0.04) 0.339(0.03) / 0.341(0.04)
Kaiming Initialization 0.503(0.04) / 0.429(0.03) 0.333(0.02) / 0.372(0.09)

Glorot Initialization (Ours) 0.515(0.03) / 0.432(0.07) 0.350(0.07) / 0.353(0.06)

Table 12: Sensitivity to the model initialization. Model architecture is the GCN.

L Results on a larger graph dataset

We evaluate our proposed PI-GNN on an even larger OGB-products dataset, which has 2,449,029 nodes with
61,859,140 edges and thus is much larger than the OGB-arxiv dataset (169,343 nodes and 1,166,243 edges)
used in Table 1. The results are shown in Table 13, where our PI-GNN can still demonstrate promise compared
to the vanilla GCN model and PI-GNN w/o predictive confidence.

Noise type No Noise Symmetric Noise Asymmetric Noise
OGB-products

Noise ratio 0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
GCN 0.732(0.04) 0.709(0.01) 0.661(0.09) 0.612(0.07) 0.471(0.06) 0.689(0.03) 0.635(0.03) 0.102(0.03) 0.053(0.01)

PI-GNN w/o pc 0.711(0.03) 0.721(0.04) 0.669(0.03) 0.631(0.06) 0.487(0.09) 0.700(0.09) 0.641(0.04) 0.136(0.01) 0.110(0.04)
PI-GNN 0.727(0.05) 0.738(0.06) 0.677(0.06) 0.658(0.03) 0.506(0.05) 0.719(0.06) 0.667(0.03) 0.196(0.06) 0.153(0.04)

Table 13: Test accuracy on the OGB-products dataset for PI-GNN with GCN as the backbone. Bold numbers are
superior results. Std. is shown in the bracket. w/o pc means that the PI labels are not estimated using the predictive
confidence but just the node connectivity.

M Results on using low-rank approximation for PI estimation

We estimate the PI labels by performing SVD on the input graph and using the low-rank representations
as the estimation results. Suppose the rank of the representation is r, we tested the node classification
performance under different values of r (i.e., 1, 50, 100, 200, 400, 600, 1000). Note that we use GCN and
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Cora as the GNN architecture and the dataset, respectively. During the low-rank approximation, we force
the values of the smoothed reconstruction to be greater than 0 and less than 1 by value clipping. The results
are updated in Table 14.

Noise type Symmetric Noise Asymmetric Noise
Noise ratio 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

GCN 0.722(0.03) 0.613(0.07) 0.446(0.06) 0.285(0.07) 0.703(0.04) 0.514(0.06) 0.291(0.04) 0.161(0.02)
Low-rank approximation-1 0.693(0.01) 0.587(0.03) 0.418(0.05) 0.272(0.03) 0.688(0.06) 0.483(0.04) 0.269(0.02) 0.110(0.05)

Low-rank approximation-50 0.698(0.04) 0.593(0.03) 0.436(0.03) 0.269(0.01) 0.679(0.04) 0.502(0.06) 0.271(0.08) 0.132(0.08)
Low-rank approximation-100 0.712(0.09) 0.603(0.05) 0.427(0.06) 0.277(0.05) 0.673(0.01) 0.515(0.06) 0.286(0.04) 0.149(0.02)
Low-rank approximation-200 0.732(0.04) 0.607(0.04) 0.474(0.04) 0.282(0.03) 0.694(0.05) 0.547(0.06) 0.294(0.01) 0.173(0.08)
Low-rank approximation-400 0.734(0.01) 0.611(0.09) 0.496(0.05) 0.300(0.07) 0.686(0.01) 0.563(0.02) 0.319(0.00) 0.183(0.05)
Low-rank approximation-600 0.726(0.02) 0.626(0.02) 0.476(0.03) 0.298(0.03) 0.695(0.04) 0.534(0.07) 0.321(0.03) 0.201(0.03)

Low-rank approximation-1000 0.704(0.05) 0.610(0.08) 0.455(0.04) 0.256(0.07) 0.668(0.02) 0.508(0.05) 0.346(0.07) 0.188(0.09)
PI-GNN 0.739(0.02) 0.664(0.03) 0.515(0.03) 0.296(0.05) 0.723(0.03) 0.587(0.07) 0.350(0.07) 0.232(0.06)

Table 14: Test accuracy on using low-rank approximation as the PI labels.

r = 400 roughly achieves the best performance but still cannot outperform our PI-GNN. The reason might
be that low-rank approximation is mainly designed for matrix compression, denoising and completion
(https://web.stanford.edu/class/cs168/l/l9.pdf), which cannot capture the uncertainty of the PI labels in
essence as in PI-GNN. Moreover, we observe that during low-rank approximation, the values of each node pair
will quickly goes from negative values to values larger than 1, which is not suitable to be the PI labels for
training. Although we directly adopt the clipping approach to force the values to be in the range of 0 and 1,
additional curated designs might be more beneficial. Finally, the rank r is an important hyperparameter to
tune in the low-rank approximation approaches, which requires extra manual tuning compared to our PI-GNN.

N Discusssion on a different training strategy

In Table 15 and 16, we test the performance of PI-GNN using a different training scheme, where we firstly
pretrain the PI label estimation network fe for 400 epochs. Then we directly apply the pretrained fe to
output the estimated PI labels for training ft. We show the results on Cora and CiteSeer datasets as follows:

Noise type No Noise Symmetric Noise Asymmetric Noise
OGB-products

Noise ratio 0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
PI-GNN (Pretrain) 0.772(0.01) 0.733(0.03) 0.672(0.04) 0.508(0.06) 0.319(0.04) 0.728(0.04) 0.569(0.04) 0.339(0.06) 0.245(0.06)

PI-GNN (Ours) 0.780(0.01) 0.739(0.02) 0.664(0.03) 0.515(0.03) 0.296(0.05) 0.723(0.03) 0.587(0.07) 0.350(0.07) 0.232(0.06)

Table 15: Test accuracy on Cora using a different training scheme.

Noise type No Noise Symmetric Noise Asymmetric Noise
OGB-products

Noise ratio 0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
PI-GNN (Pretrain) 0.693(0.01) 0.631(0.03) 0.606(0.04) 0.452(0.04) 0.229(0.05) 0.604(0.04) 0.511(0.04) 0.338(0.02) 0.242(0.06)

PI-GNN (Ours) 0.684(0.03) 0.642(0.03) 0.591(0.03) 0.432(0.07) 0.245(0.05) 0.628(0.03) 0.531(0.06) 0.353(0.06) 0.238(0.06)

Table 16: Test accuracy on CiteSeer using a different training scheme.

where we can observe that firstly pretraining the PI label estimation network and freezing it during training
the node classification model achieves a similar classification performance compared to our training scheme
(c.f. Algorithm 1).

O Additional cases of the teaser example

We note that there are additional cases that the conclusion of the teaser example might not hold. For instance,
four nodes have the clean labels as x1 − 0, x2 − 0, x3 − 0, x4 − 0, after noise corruption, the node labels are
changed to x1 − 1, x2 − 0, x3 − 0, x4 − 0. Therefore, the noise ratio of the node labels is 25% while that of the
PI labels is 37.5%. We provide the comparison of noise ratios between PI labels and node labels on real-world
datasets in Section P in order to verify the validity of our proposed PI-GNN.
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P Noise ratio comparison between PI labels and node labels on real-world datasets

For evaluating the noise ratio of the PI labels on real-world graph datasets, we compare the noise ratio of the
PI labels and node labels on Cora and CiteSeer datasets. The results are shown as follows:

Cora
Noise ratio of the node labels (Symmetric) 0.2 0.4 0.6 0.8

Noise ratio of the PI labels 0.008 0.021 0.031 0.036
Noise ratio of the node labels (Asymmetric) 0.2 0.4 0.6 0.8

Noise ratio of the PI labels 0.012 0.021 0.029 0.035
CiteSeer

Noise ratio of the node labels (Symmetric) 0.2 0.4 0.6 0.8
Noise ratio of the PI labels 0.009 0.017 0.024 0.034

Noise ratio of the node labels (Asymmetric) 0.2 0.4 0.6 0.8
Noise ratio of the PI labels 0.009 0.016 0.025 0.031

Table 17: Noise ratio comparison between PI labels and node labels on real-world datasets

From the above table, we can observe the noise ratio of the PI labels is indeed small on the real graph
datasets, which is able to justify the intuition of our PI-GNN.

Q Subgraph sampling on smaller graphs

We test the performance of PI-GNN (GCN as the backbone) after using subgraph sampling on smaller graphs,
i.e., Cora and CiteSeer datasets. Specifically, we sample 15 and 10 neighbors for each node in the 1st and
2nd layer of the GNN and set the batch size to 128. The results are shown as follows:

Noise type No Noise Symmetric Noise Asymmetric Noise
OGB-products

Noise ratio 0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
PI-GNN (Subgraph sampling) 0.771(0.01) 0.728(0.03) 0.651(0.03) 0.523(0.05) 0.311(0.02) 0.708(0.03) 0.573(0.07) 0.349(0.01) 0.246(0.07)

PI-GNN (Ours) 0.780(0.01) 0.739(0.02) 0.664(0.03) 0.515(0.03) 0.296(0.05) 0.723(0.03) 0.587(0.07) 0.350(0.07) 0.232(0.06)

Table 18: Test accuracy on Cora using subgraph sampling.

Noise type No Noise Symmetric Noise Asymmetric Noise
OGB-products

Noise ratio 0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
PI-GNN (Subgraph sampling) 0.674(0.01) 0.639(0.04) 0.579(0.07) 0.430(0.09) 0.258(0.05) 0.618(0.04) 0.528(0.04) 0.348(0.03) 0.250(0.08)

PI-GNN (Ours) 0.684(0.03) 0.642(0.03) 0.591(0.03) 0.432(0.07) 0.245(0.05) 0.628(0.03) 0.531(0.06) 0.353(0.06) 0.238(0.06)

Table 19: Test accuracy on CiteSeer using subgraph sampling.

where we can observe that applying subgraph sampling is less effective than using the entire graph as the
input on smaller noise ratios.

R Comparison with baselines on OGB-arxiv

In Table 20, we implement all the baselines on OGB-arxiv dataset and compare them with PI-GNN using
subgraph sampling.

where we observe PI-GNN can still outperform all the baselines in most cases.
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Noise type Symmetric Noise Asymmetric Noise
Noise ratio 0.4 0.6 0.4 0.6

Test dataset: OGB-arxiv
Decoupling 0.385(0.09) 0.347(0.05) 0.411(0.04) 0.029(0.01)

GCE 0.451(0.05) 0.407(0.02) 0.391(0.06) 0.057(0.03)
APL 0.412(0.05) 0.375(0.05) 0.399(0.06) 0.062(0.01)

Co-teaching 0.461(0.04) 0.403(0.04) 0.410(0.05) 0.038(0.01)
LPM-1 0.450(0.01) 0.397(0.03) 0.439(0.06) 0.056(0.01)

T-Revision 0.417(0.04) 0.409(0.05) 0.427(0.05) 0.071(0.04)
DivideMix 0.448(0.01) 0.403(0.05) 0.438(0.05) 0.041(0.02)

PI-GNN (ours) 0.467(0.03) 0.418(0.04) 0.461(0.01) 0.069(0.01)

Table 20: Comparative results with baselines on OGB-arxiv.
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